Università degli studi Roma Tre Corso di laurea in Matematica A.A 2010-2011 Istituzioni di Algebra Superiore 28 Settembre 2010 - Esercitazione n.2 Antonio Cigliola

Esercizio 1. Si esibisca una base del campo numerico $\mathbb{Q}(\sqrt[3]{3})$ e si dimostri che $\mathbb{Q}(\sqrt[3]{3}) = \mathbb{Q}(\sqrt[3]{9})$. Posto $\alpha = \sqrt[3]{3}$, portare in forma canonica gli elementi:

(a)
$$\alpha^{-1}$$
;

(b)
$$\alpha^{-2} + 2\alpha^{-1} + 3\alpha^4 - 5$$
;

(c)
$$\alpha^5 - \alpha^4 - \alpha^3 + 5\alpha^2 + 2\alpha + 2$$
;

$$(d) \ \frac{1}{\alpha^2 - 7\alpha + 4};$$

(e)
$$\frac{2\alpha^2 + \alpha - 3}{\alpha^2 - \alpha}$$
.

Esercizio 2. Razionalizzare i seguenti numeri reali:

(a)
$$\frac{-2}{-2\sqrt[3]{5}-\sqrt[3]{25}+3}$$
;

(b)
$$\frac{\sqrt{3}+2}{\sqrt{2\sqrt{3}+1}-1}$$
;

(c)
$$\frac{\sqrt[5]{2}+7}{\sqrt[5]{16}-1+2\sqrt[5]{4}-\sqrt[5]{8}}$$
.

Esercizio 3. Provare le seguenti uguaglianze tra campi:

(a)
$$\mathbb{Q}(\sqrt{2}, \sqrt{3}) = \mathbb{Q}(\sqrt{2}, \sqrt{6}) = \mathbb{Q}(\sqrt{3} + \sqrt{6});$$

(b)
$$\mathbb{Q}(\sqrt[3]{5}, i) = \mathbb{Q}(i\sqrt[3]{5}) = \mathbb{Q}(\sqrt[3]{5} + i);$$

(c)
$$\mathbb{Q}(\sqrt{7}-2\sqrt{3}-10)=\mathbb{Q}(\sqrt{7}, \sqrt{3});$$

(d)
$$\mathbb{Q}(\pi, \pi^2) = \mathbb{Q}(\frac{1}{\pi}) = \mathbb{Q}(\pi - \frac{1}{3});$$

(e)
$$\mathbb{Q}(\sqrt[3]{2}) = \mathbb{Q}(\sqrt[3]{2} + \sqrt[3]{4}).$$

Esercizio 4. Siano F un campo e β una radice del polinomnio $f(x) = x^5 - 9x^4 - 3x^2 + 3 \in F[x]$.

(a) Si studi l'irriducibilità di
$$f(x)$$
 su $F = \mathbb{Z}$, \mathbb{Q} , \mathbb{R} , \mathbb{C} e \mathbb{Z}_2 .

(b) Posto
$$F = \mathbb{Q}$$
, si dica se $\mathbb{Q}(\beta) = \mathbb{Q}(\beta^2)$.

- (c) Si dimostri che β^2 è algebrico su $F = \mathbb{Q}$ e su $F = \mathbb{C}$.
- (d) Si trovi il polinomio minimo di β^2 in entrambi i casi di cui al punto precedente.

Esercizio 5. Descrivere esplicitamente gli elementi dei seguenti campi:

- (a) $\mathbb{Q}(\sqrt{3}, \sqrt{5})$;
- (b) $\mathbb{Q}(\sqrt{3}, \sqrt{5}, \sqrt{7});$
- (c) $\mathbb{Q}(\sqrt[3]{6}, i)$;
- (d) $\mathbb{Q}(\frac{\sqrt{3}}{8}, 2\sqrt{3}-41);$
- (e) $\mathbb{Q}(\sqrt[4]{3}, \sqrt{5});$
- $(f) \mathbb{Q}(\sqrt{3}+\sqrt{2});$
- $(g) \mathbb{Q}(i-\sqrt{5});$
- (h) $\mathbb{Q}(e, \sqrt{7});$
- (i) $\mathbb{Q}(\pi, \pi^2, 2\sqrt{8}-6)$;
- (j) $\mathbb{Q}(\sqrt{13}, \sqrt{11}, \log 2)$.

Esercizio 6. Calcolare i seguenti gradi di estensioni di campi:

- (a) $[\mathbb{Q}(\sqrt{3},\sqrt{5}):\mathbb{Q}];$
- (b) $[\mathbb{Q}(\sqrt{3},\sqrt{5}):\mathbb{Q}(\sqrt{5})];$
- (c) $[\mathbb{Q}(\sqrt[3]{7}+i):\mathbb{Q}];$
- (d) $[\mathbb{Q}(\pi, \sqrt[100]{5}) : \mathbb{Q}];$
- (e) $[\mathbb{Q}(\pi, \sqrt[101]{5}) : \mathbb{Q}(\pi)];$
- (f) $[\mathbb{Q}(\pi, \pi^2 3\pi + 1) : \mathbb{Q}(\pi^2)];$
- (g) $[\mathbb{Q}(\pi, \pi^2 3\pi + 1) : \mathbb{Q}(\pi)];$
- (h) $[\mathbb{Q}(e):\mathbb{Q}(e^2)];$
- (i) $\left[\mathbb{Q}\left(\sqrt{5-2\sqrt{3+\sqrt{7}}}\right):\mathbb{Q}\right];$
- $(j) \left[\mathbb{Q}\left(\sqrt{5-2\sqrt{3+\sqrt{7}}}\right) : \mathbb{Q}(\sqrt{7}) \right];$
- $(k) \ \left[\mathbb{Q} \left(\sqrt[3]{5 2\sqrt{3 + \sqrt{7}}} \right) \colon \mathbb{Q} \left(\sqrt[4]{3 + \sqrt{7}} \right) \right];$

(l)
$$\left[\mathbb{Q}\left(\frac{\sqrt{3}+2}{\sqrt{2\sqrt{3}+1}-1}\right):\mathbb{Q}\right];$$

$$(m) \left[\mathbb{Q} \left(\sqrt[3]{\frac{\sqrt{3}+2}{\sqrt{2\sqrt{3}+1}-1}} \right) \colon \mathbb{Q}(\sqrt{3}) \right];$$

(n)
$$\left[\mathbb{Q}\left(\frac{i}{\sqrt{6}}\right):\mathbb{Q}\right]$$
;

(o)
$$\left[\mathbb{Q}\left(\sqrt{3}-i, \frac{\sqrt{7}}{3}+9\right): \mathbb{Q}(\sqrt{7}, i-2\sqrt{3})\right];$$

$$(p) \left[\mathbb{Q} \left(\sqrt[3]{\sqrt{2} + \sqrt{3} + \sqrt{6}} \right) : \mathbb{Q} \right];$$

$$(q) \left[\mathbb{Q} \left(\sqrt[3]{\sqrt{2} + \sqrt{3} + \sqrt{6}} \right) : \mathbb{Q}(\sqrt{6}) \right].$$

Esercizio 7. Per ciascuno dei seguenti numeri calcolare il polinomio minimo sui campi a fianco indicati:

(a)
$$\frac{4+2\sqrt{2}}{3}$$
 su $\mathbb{Q}(\sqrt{2})$ e \mathbb{Q} ;

(b)
$$\sqrt{3} - 2\sqrt{7}$$
 su $\mathbb{Q}(\sqrt{7})$, $\mathbb{Q}(\sqrt{3})$ e \mathbb{Q} ;

(c)
$$i\sqrt[4]{5}$$
 su \mathbb{Q} , $\mathbb{Q}(i)$, \mathbb{R} , $\mathbb{Q}(\sqrt[4]{5})$, \mathbb{C} e $\mathbb{Q}(\sqrt[2]{5})$;

(d)
$$\pi$$
 su \mathbb{Q} e $\mathbb{Q}(\pi^3)$;

(e)
$$\frac{\sqrt{2}}{2}(2-i)$$
 su $\mathbb{Q}(\sqrt{2})$, \mathbb{Q} , $\mathbb{Q}(i)$, \mathbb{R} e \mathbb{C} ;

(f)
$$\cos 2\alpha \ su \ \mathbb{Q}(\sin \alpha)$$
, $\mathbb{Q}(\cos \alpha) \ ed \ \mathbb{R}^{\ \dagger}$;

(g)
$$\pi^3$$
 su \mathbb{Q} e $\mathbb{Q}(\pi^2)$;

(h)
$$\sqrt[3]{7} - i \ su \ \mathbb{Q}(\sqrt[3]{7}), \ \mathbb{Q}(\sqrt[3]{49}), \ \mathbb{Q}(i), \ \mathbb{Q} \ ed \ \mathbb{R};$$

(i)
$$\sqrt[3]{2+\sqrt{3-\sqrt{2}}}$$
 su \mathbb{Q} , $\mathbb{Q}(\sqrt{2})$, $\mathbb{Q}(\sqrt{3-\sqrt{2}})$, \mathbb{C} ed \mathbb{R} .

(j)
$$\sqrt[3]{\sqrt{2}+\sqrt{3}+\sqrt{6}}$$
 su $\mathbb{Q}(\sqrt{2})$, $\mathbb{Q}(\sqrt{3})$, $\mathbb{Q}(\sqrt{6})$ e $\mathbb{Q}(\sqrt{2}+\sqrt{3})$.

Esercizio 8. Provare che il numero reale $\alpha = \pi^4 + 2\pi^3 - \pi - 2$ è trascendente su \mathbb{Q} . Determinare, se esiste, un'estensione dei campi \mathbb{Q} e $\mathbb{Q}(\pi)$ di grado minimo su cui α è algebrico.

Esercizio 9. Determinare, anche in forma parametrica, per quali valori del numero intero k il polinomio $f(x) = x^4 - kx^2 + 1$ è irriducibile su \mathbb{Z} .

Esercizio 10. Siano p e q due primi distinti. Dimostrare che le estensioni semplici $\mathbb{Q}(\sqrt{p})$ e $\mathbb{Q}(\sqrt{q})$ non sono isomorfe come campi. Cosa si può dire delle stesse strutture viste come \mathbb{Q} -spazi vettoriali?

 [†]si supponga che tutte le funzioni goniometriche con cui si lavora siano trascendenti su \mathbb{Q} .

Esercizio 11. Mostrare che $\mathbb{Q}(\sqrt[s]{2}, \sqrt[t]{3}) = \mathbb{Q}(\sqrt[s]{2}\sqrt[t]{3})$ per ogni $s, t \ge 2$ interi coprimi.

Esercizio 12. Mostrare che dati comunque $m, n \ge 2$ esiste $r \ge 2$ tale che $\mathbb{Q}(\sqrt[m]{2}, \sqrt[n]{2}) = \mathbb{Q}(\sqrt[r]{2}).$

Esercizio 13. Siano F un campo ed $\alpha = \frac{x^3}{x-1} \in F(x)$. Mostrare che α è trascendente su F e che x è algebrico su $F(\alpha)$. Determinare il polinomio minimo di x su $F(\alpha)$ e $[F(x):F(\alpha)]$.

Esercizio 14 (Leibnitz). Sia β una radice del polinomio $g(x) = x^4 + 1$. Mostrare che β ha grado 4 su \mathbb{Q} ma ha grado 2 su \mathbb{R} . Fattorizzare g(x) su \mathbb{Q} , \mathbb{R} $e \mathbb{C}$.

Esercizio 15. Dire se $\mathbb{Q}(\sqrt[3]{2}+1, \sqrt{3})$ è un'estensione biquadratica di $\mathbb{Q}(\sqrt[3]{2})$.

Esercizio 16 (Estensioni quadratiche in caratteristica 2). Provare che il polinomio $p(x) = x^2 + x + 1 \in \mathbb{Z}_2[x]$ è irriducibile su \mathbb{Z}_2 . Costruire esplicitamente gli elementi del campo $K = \frac{\mathbb{Z}_2[x]}{(x^2+x+1)}$ e calcolare il suo grado su \mathbb{Z}_2 . Calcolare i quadrati degli elementi di K e dedurre che in caratteristica 2 non vale la caratterizzazione data per le estensioni quadratiche in caratteristica diversa da 2.

Esercizio 17. Siano K un campo ed a e b elementi algebrici su K. Dire se [K(a, b): K(a)] divide [K(b): K]. In caso negativo esibire un controesempio.

Esercizio 18. Mostrare che se F è un qualsiasi campo numerico e d è un numero intero allora $F(\sqrt{d}) = F(a + b\sqrt{d}) = F(c\sqrt{d})$, per ogni $a, b, c \in F^*$.

Esercizio 19. Stabilire se $\mathbb{Q}(i+\sqrt{2}) = \mathbb{Q}(i\sqrt{2})$.