Università degli Studi di Roma Tre Corso di Laurea in Matematica – a.a. 2012/2013 AL310 – Istituzioni di Algebra superiore Seconda prova di valutazione in itinere

Esercizio 1. Sia $\zeta \in \mathbf{C}$ una radice primitiva diciannovesima dell'unità e sia $K := \mathbf{Q}(\zeta)$. Dopo aver descritto la struttura di $\mathrm{Gal}(K/\mathbf{Q})$, si illustri la corrispondenza di Galois per l'ampliamento $\mathbf{Q} \subseteq K$, spiegando quanti e quali sono i campi intermedi fra \mathbf{Q} e K che sono reali.

Esercizio 2. Si consideri il polinomio $f(T) := T^6 - 1 \in \mathbb{F}_5$.

- (i) Si costruisca un campo di spezzamento K di f(T) su \mathbf{F}_5 , si calcoli $[K:\mathbf{F}_5]$ e si esibisca una base \mathcal{B} di K su \mathbf{F}_5 .
- (ii) Se esiste, si trovi un isomorfismo fra K e il campo di spezzamento del polinomio $T^3 + T + 1$ (su \mathbf{F}_5).
- (iii) Se esiste, si trovi un isomorfismo fra K e il campo di spezzamento del polinomio $T^2 + 2$ (su \mathbf{F}_5).
- (iv) Si scrivano le radici in K del polinomio T^6-1 come combinazione lineare degli elementi di \mathcal{B} .
- (v) Scelta una radice primitiva sesta dell'unità $\eta \in K$ e fissata una indeterminata U su K, si dimostri che la mappa $\varphi : K(U) \longrightarrow K(U), \ f(U) \mapsto f(\eta^2 U)$, è un automorfismo di K(U). Si trovi un elemento primitivo su K del campo fisso $K(U)^{\varphi}$ di φ , motivando la risposta data.

Esercizio 3. Si dimostri che il gruppo di Galois del polinomio $f(T) := T^5 - 6T + 3$ su \mathbf{Q} è isomorfo a \mathbf{S}_5 , e si stabilisca se f(T) è risolubile per radicali.

Esercizio 4. Si consideri il polinomio $f(T) := T^4 - 2T^2 + 2 \in \mathbb{Q}[T]$.

- (i) Si calcoli il grado su \mathbf{Q} del campo di spezzamento K di f(T).
- (ii) Si determini la struttura del gruppo di Galois di f(T) su \mathbb{Q} .
- (iii) Si dica quanti sono i sottocampi F di K che sono normali su \mathbb{Q} .

Esercizio 5. Si calcoli il gruppo di Galois su Q di ciascuno dei seguenti polinomi

$$T^3 - T - 2$$
 $(T^3 - T - 2)(T^2 - 26)$ $(T^3 - T - 2)(T^2 + 26)$

Esercizio 6. Sia $f(T) \in \mathbf{Q}[T]$ un polinomio irriducibile il cui gruppo di Galois sia ciclico di ordine un numero primo $p \geq 3$. Si dimostri che f ha grado p e tutte radici reali.

Esercizio 7. (FACOLTATIVO) Si dica, motivando accuratamente la risposta, se esiste un ampliamento K di $\mathbf Q$ soddisfacente simultaneamente le seguenti condizioni.

- (a) $[K : \mathbf{Q}] = 15$.
- (b) K sia il campo di spezzamento su \mathbf{Q} di un polinomio $f(T) \in \mathbf{Q}[T]$ irriducibile di grado 5.