Università degli Studi di Roma Tre Corso di Laurea in Matematica – a.a. 2012/2013 AL310 – Istituzioni di Algebra superiore Preparazione alla seconda prova in itinere

Esercizio 0. Siano K un ampliamento di Galois di \mathbf{Q} di grado dispari, $\kappa \in K$ un elemento primitivo di K su \mathbf{Q} e $f(T) \in \mathbf{Q}[T]$ il polinomio minimo di κ su \mathbf{Q} . Si dimostri che f(T) si decompone linearmente in $\mathbf{R}[T]$. [Suggerimento: si consideri la restrizione a K del coniugio complesso... \odot]

Esercizio 1. Si determini un polinomio $f(T) \in \mathbf{Q}[T]$ di grado 5 irriducibile in $\mathbf{Q}[T]$ con tutte radici reali e si descriva l'azione degli automorfismi del gruppo di Galois di f(T) sulle radici di f(T).

Esercizio 2. Sia $K \subseteq \mathbb{C}$ il campo di spezzamento del polinomio $T^4 - 5 \in \mathbb{Q}[T]$.

- (i) Si determini un isomorfismo fra $Gal(K/\mathbb{Q})$ e un gruppo noto.
- (ii) Si trovino i sottocampi di K che sono normali su \mathbb{Q} , e si determini per ciascuno di essi un elemento primitivo.

Esercizio 3. Si dimostri che non esistono ampliamenti biquadratici di un campo finito.

Esercizio 4. Sia $f(T) \in \mathbf{Q}[T]$ un polinomio di quarto grado con tutte radici reali.

- (i) Si verifichi che il discriminante D(f) di f(T) è non negativo.
- (ii) Si dica quali sono i possibili gruppi di Galois di f(T) su \mathbf{Q} , se D(f) è un quadrato in \mathbf{Q} .

Esercizio 5. Siano $\omega \in \mathbb{C}$ una radice terza primitiva dell'unità, $K := \mathbb{Q}(\omega, \sqrt{2}, \sqrt[3]{3})$.

- (i) Si verifichi che $[K : \mathbf{Q}] = 12$.
- (ii) Si mostri che K è un ampliamento normale di \mathbb{Q} .
- (iii) Si determini la struttura del gruppo $\operatorname{Gal}(K/\mathbf{Q}(\sqrt{2}))$, si dica se è risolubile e in caso positivo se ne esibisca una serie risolvente.
- (iv) Si illustri la corrispondenza di Galois per l'ampliamento $\mathbf{Q}(\sqrt{2}) \subset K$, e si trovino i campi intermedi F tra $\mathbf{Q}(\sqrt{2})$ e K tali che F è normale su \mathbf{Q} .
- (v) Si identifichi $Gal(K/\mathbf{Q})$ con un prodotto diretto di gruppi noti.

Esercizio 6. Si consideri il polinomio $f := X^4 + X + 2 \in \mathbf{F}_3[X]$, e siano K un campo di spezzamento di f su \mathbf{F}_3 , $\alpha \in K$ una radice di f.

- (i) Si verifichi che f è irriducibile e separabile.
- (ii) Si verifichi che esiste un unico automorfismo τ di $\mathbf{F}_3(\alpha)$ tale che $\tau(\alpha) = \alpha^3$.
- (iii) Si trovi un elemento primitivo e il suo polinomio minimo su \mathbf{F}_3 per ciascun campo F tale che $\mathbf{F}_3 \subsetneq F \subsetneq K$.