Università degli studi Roma Tre Corso di laurea in Matematica A.A 2012-2013 Istituzioni di Algebra Superiore AL310 10 Ottobre 2012 - Tutorato n.2 Giulio Meleleo

Esercizio 1. Determinare per quali valori del numero intero k il polinomio $f(X) = X^4 - kX^2 + 1$ è irriducibile su \mathbb{Z} .

Esercizio 2. Sia dato il polinomio

$$f(X) = X^5 - X^3 - 6X - \frac{1}{3}X^4 + \frac{1}{3}X^2 + 2 \in \mathbb{Q}[X].$$

Si determinino, a meno di isomorfismo, gli anelli $\frac{\mathbb{Q}[X]}{(f(X))}$, $\frac{\mathbb{R}[X]}{(f(X))}$, $\frac{\mathbb{C}[X]}{(f(X))}$. Quale tra questi anelli quozienti è un campo? Quale integro?

Esercizio 3. Sia dato il polinomio $f(X) = X^4 + X^2 \in \mathbb{Q}[X]$. Si dica se $\frac{\mathbb{Q}[X]}{(f(X))}$ è isomorfo a $\mathbb{Q} \times \mathbb{Q} \times \mathbb{Q}(i)$; in caso negativo esibire un anello isomorfo a $\frac{\mathbb{Q}[X]}{(f(X))}$ fornendo tutti i dettagli.

Esercizio 4. Si esibisca una base del campo $\mathbb{Q}(\sqrt[3]{3})$ visto come spazio vettoriale su \mathbb{Q} e si dimostri che $\mathbb{Q}(\sqrt[3]{3}) = \mathbb{Q}(\sqrt[3]{9})$. Posto $\alpha = \sqrt[3]{3}$, portare in forma canonica gli elementi:

- (a) α^{-1} ;
- (b) $\alpha^{-2} + 2\alpha^{-1} + 3\alpha^4 5$;
- (c) $\alpha^5 \alpha^4 \alpha^3 + 5\alpha^2 + 2\alpha + 2$;
- (d) $\frac{1}{\alpha^2-7\alpha+4}$;
- (e) $\frac{2\alpha^2 + \alpha 3}{\alpha^2 \alpha}$.

Esercizio 5. Provare le seguenti uguaglianze tra campi:

- (a) $\mathbb{Q}(\sqrt{2}, \sqrt{3}) = \mathbb{Q}(\sqrt{2}, \sqrt{6}) = \mathbb{Q}(\sqrt{3} + \sqrt{6});$
- (b) $\mathbb{Q}(\sqrt[3]{5}, i) = \mathbb{Q}(i\sqrt[3]{5}) = \mathbb{Q}(\sqrt[3]{5} + i);$
- (c) $\mathbb{Q}(\sqrt{7} 2\sqrt{3} 10) = \mathbb{Q}(\sqrt{7}, \sqrt{3});$
- (d) $\mathbb{Q}(\pi, \pi^2) = \mathbb{Q}(\frac{1}{\pi}) = \mathbb{Q}(\pi \frac{1}{3});$

(e)
$$\mathbb{Q}(\sqrt[3]{2}) = \mathbb{Q}(\sqrt[3]{2} + \sqrt[3]{4}).$$

Esercizio 6. Descrivere esplicitamente gli elementi dei seguenti campi:

(a)
$$\mathbb{Q}(\sqrt{3}, \sqrt{5})$$
;

(b)
$$\mathbb{Q}(\sqrt{3}, \sqrt{5}, \sqrt{7})$$
;

(c)
$$\mathbb{Q}(\sqrt[3]{6}, i)$$
;

(d)
$$\mathbb{Q}(\frac{\sqrt{3}}{8}, 2\sqrt{3}-41);$$

(e)
$$\mathbb{Q}(\sqrt[4]{3}, \sqrt{5});$$

(f)
$$\mathbb{Q}(\sqrt{3}+\sqrt{2});$$

$$(g) \mathbb{Q}(i-\sqrt{5});$$

(h)
$$\mathbb{Q}(e, \sqrt{7});$$

(i)
$$\mathbb{Q}(\pi, \pi^2, 2\sqrt{8}-6)$$
;

(j)
$$\mathbb{Q}(\sqrt{13}, \sqrt{11}, \log 2)$$
.

Esercizio 7. Calcolare i seguenti gradi di ampliamenti di campi:

(a)
$$[\mathbb{Q}(\sqrt{3},\sqrt{5}):\mathbb{Q}];$$

(b)
$$[\mathbb{Q}(\sqrt{3},\sqrt{5}):\mathbb{Q}(\sqrt{5})];$$

(c)
$$[\mathbb{Q}(\sqrt[3]{7}+i):\mathbb{Q}];$$

(d)
$$[\mathbb{Q}(\pi, \sqrt[100]{5}) : \mathbb{Q}];$$

(e)
$$[\mathbb{Q}(\pi, \sqrt[101]{5}) : \mathbb{Q}(\pi)];$$

(f)
$$[\mathbb{Q}(\pi, \pi^2 - 3\pi + 1) : \mathbb{Q}(\pi^2)];$$

(g)
$$[\mathbb{Q}(\pi, \pi^2 - 3\pi + 1) : \mathbb{Q}(\pi)];$$

(h)
$$[\mathbb{Q}(e):\mathbb{Q}(e^2)];$$

(i)
$$\left[\mathbb{Q}\left(\sqrt{5-2\sqrt{3+\sqrt{7}}}\right):\mathbb{Q}\right];$$

$$(j) \left[\mathbb{Q}\left(\sqrt{5-2\sqrt{3+\sqrt{7}}}\right) : \mathbb{Q}(\sqrt{7}) \right];$$

$$(k) \ \left[\mathbb{Q} \left(\sqrt[3]{5 - 2\sqrt{3 + \sqrt{7}}} \right) \colon \mathbb{Q} \left(\sqrt[4]{3 + \sqrt{7}} \right) \right];$$

$$(l) \left[\mathbb{Q} \left(\frac{\sqrt{3}+2}{\sqrt{2\sqrt{3}+1}-1} \right) : \mathbb{Q} \right];$$

$$(m) \left[\mathbb{Q} \left(\sqrt[3]{\frac{\sqrt{3}+2}{\sqrt{2\sqrt{3}+1}-1}} \right) : \mathbb{Q}(\sqrt{3}) \right];$$

(n)
$$\left[\mathbb{Q}\left(\frac{i}{\sqrt{6}}\right):\mathbb{Q}\right]$$
;

(o)
$$\left[\mathbb{Q}\left(\sqrt{3}-i, \frac{\sqrt{7}}{3}+9\right): \mathbb{Q}(\sqrt{7}, i-2\sqrt{3})\right];$$

$$(p) \left[\mathbb{Q} \left(\sqrt[3]{\sqrt{2} + \sqrt{3} + \sqrt{6}} \right) : \mathbb{Q} \right];$$

$$(q) \left[\mathbb{Q} \left(\sqrt[3]{\sqrt{2} + \sqrt{3} + \sqrt{6}} \right) : \mathbb{Q}(\sqrt{6}) \right].$$

Esercizio 8. Siano p e q due primi distinti. Dimostrare che gli ampliamenti semplici $\mathbb{Q}(\sqrt{p})$ e $\mathbb{Q}(\sqrt{q})$ non sono isomorfi come campi. Cosa si può dire delle stesse strutture viste come \mathbb{Q} -spazi vettoriali?

Esercizio 9. Mostrare che $\mathbb{Q}(\sqrt[s]{2}, \sqrt[t]{3}) = \mathbb{Q}(\sqrt[s]{2}\sqrt[t]{3})$ per ogni $s, t \ge 2$ interi coprimi.

Esercizio 10. Sia β una radice del polinomio $g(X) = X^4 + 1$. Mostrare che β ha grado 4 su \mathbb{Q} ma ha grado 2 su \mathbb{R} . Fattorizzare g(x) su \mathbb{Q} , \mathbb{R} $e \mathbb{C}$.

Esercizio 11. Dire se $\mathbb{Q}(\sqrt[3]{2}+1, \sqrt{3})$ è un ampliamento biquadratico di $\mathbb{Q}(\sqrt[3]{2})$.

Esercizio 12. Provare che il polinomio $p(X) = X^2 + X + 1 \in \mathbb{Z}_2[X]$ è irriducibile su \mathbb{Z}_2 . Costruire esplicitamente gli elementi del campo $K = \frac{\mathbb{Z}_2[X]}{(X^2 + X + 1)}$ e calcolare il suo grado su \mathbb{Z}_2 . Calcolare i quadrati degli elementi di K e dedurre che in caratteristica 2 non vale la caratterizzazione data per gli ampliamenti quadratici in caratteristica diversa da 2 (Paragrafo 3.5.1 del libro di testo).

Esercizio 13. Stabilire se $\mathbb{Q}(i+\sqrt{2}) = \mathbb{Q}(i\sqrt{2})$.

Esercizio 14. Siano K un campo ed a e b elementi algebrici su K. Dire se [K(a, b) : K(a)] divide [K(b) : K]. In caso negativo esibire un controesempio.

Esercizio 15. Siano F un campo ed $\alpha = \frac{x^3}{x-1} \in F(x)$. Mostrare che α è trascendente su F e che x è algebrico su $F(\alpha)$. Determinare il polinomio minimo di x su $F(\alpha)$ e $[F(x):F(\alpha)]$.

Esercizio 16. Per ciascuno dei seguenti numeri calcolare il polinomio minimo sui campi a fianco indicati:

(a)
$$\frac{4+2\sqrt{2}}{3}$$
 su $\mathbb{Q}(\sqrt{2})$ e \mathbb{Q} ;

(b)
$$\sqrt{3} - 2\sqrt{7} \ su \ \mathbb{Q}(\sqrt{7}), \ \mathbb{Q}(\sqrt{3}) \ e \ \mathbb{Q};$$

(c)
$$i\sqrt[4]{5}$$
 su \mathbb{Q} , $\mathbb{Q}(i)$, \mathbb{R} , $\mathbb{Q}(\sqrt[4]{5})$, \mathbb{C} e $\mathbb{Q}(\sqrt[2]{5})$;

(d)
$$\pi$$
 su \mathbb{Q} e $\mathbb{Q}(\pi^3)$;

(e)
$$\frac{\sqrt{2}}{2}(2-i)$$
 su $\mathbb{Q}(\sqrt{2})$, \mathbb{Q} , $\mathbb{Q}(i)$, \mathbb{R} e \mathbb{C} ;

(f)
$$\cos 2\alpha \ su \ \mathbb{Q}(\sin \alpha), \ \mathbb{Q}(\cos \alpha) \ ed \ \mathbb{R}^{\ \dagger};$$

(g)
$$\pi^3$$
 su \mathbb{Q} e $\mathbb{Q}(\pi^2)$;

(h)
$$\sqrt[3]{7} - i \ su \ \mathbb{Q}(\sqrt[3]{7}), \ \mathbb{Q}(\sqrt[3]{49}), \ \mathbb{Q}(i), \ \mathbb{Q} \ ed \ \mathbb{R};$$

(i)
$$\sqrt[3]{2+\sqrt{3-\sqrt{2}}}$$
 su \mathbb{Q} , $\mathbb{Q}(\sqrt{2})$, $\mathbb{Q}(\sqrt{3-\sqrt{2}})$, \mathbb{C} ed \mathbb{R} .

(j)
$$\sqrt[3]{\sqrt{2}+\sqrt{3}+\sqrt{6}}$$
 su $\mathbb{Q}(\sqrt{2})$, $\mathbb{Q}(\sqrt{3})$, $\mathbb{Q}(\sqrt{6})$ e $\mathbb{Q}(\sqrt{2}+\sqrt{3})$.

 [†]si supponga che tutte le funzioni goniometriche con cui si lavora siano trascendenti su \mathbb{Q} .