Università degli studi Roma Tre Corso di laurea in Matematica A.A. 2012-2013 Istituzioni di Algebra Superiore AL310 7 Novembre 2012 - Tutorato n.4 Giulio Meleleo

Esercizio 1. Può un automorfismo di $\mathbb{Q}(\sqrt{2})$ che manda $\sqrt{2}$ in $-\sqrt{2}$ essere esteso ad un automorfismo di $\mathbb{Q}(\sqrt{1+\sqrt{2}})$? In quanti modi?

Esercizio 2. Può un automorfismo di $\mathbb{Q}(\sqrt{6})$ che manda $\sqrt{6}$ in $-\sqrt{6}$ essere esteso ad un automorfismo di $\mathbb{Q}(\sqrt{2},\sqrt{3})$? In quanti modi?

Esercizio 3. Sia $\omega \neq 1$ una radice cubica primitiva dell'unità in \mathbb{C} . Può un automorfismo di $\mathbb{Q}(\omega)$ mandare ω in $-\omega$?

Esercizio 4. Sia $\omega \neq 1$ una radice quinta primitiva dell'unità in \mathbb{C} . Può un automorfismo di $\mathbb{Q}(\omega)$ mandare ω in $-\omega$? E in ω^{-1} ?

Esercizio 5. Determinare tutti gli automorfismi di $\mathbb{Q}(\sqrt[3]{2}, \sqrt[3]{3}, \zeta_3)$ ($\zeta_3 \in una\ radice\ terza\ primitiva\ dell'unità)\ su$:

- 1. Q;
- 2. $\mathbb{Q}(\sqrt[3]{2});$
- 3. $\mathbb{Q}(\sqrt[3]{3})$;
- 4. $\mathbb{Q}(\sqrt[3]{2}, \sqrt[3]{3});$
- 5. $\mathbb{Q}(\sqrt[3]{2}, \zeta_3);$
- 6. $\mathbb{Q}(\zeta_3)$.

Esercizio 6. Determinare il numero degli automorfismi di K dove K è il campo di spezzamento su \mathbb{Q} del polinomio dato:

- 1. $X^4 + X^2 + 1$;
- 2. $X^3 + 2X 1$;
- 3. $X^4 + 1$;
- 4. $(X^2 + 2X 1)^2(X^3 2)^6$;
- 5. $(X^2 5X + 6)^{17}(X^3 + 3X^2 + 3X + 1)^6(X^6 9X^3 + 8)^{23}$.

Esercizio 7. Determinare le radici seste dell'unità di \mathbb{F}_5 . Selezionare tra esse quelle che sono primitive e scrivere il sesto polinomio ciclotomico su \mathbb{F}_5 . Costruire il sesto ampliamento ciclotomico di \mathbb{F}_5 e provare che è isomorfo ad \mathbb{F}_{25} ; determinare tutti i suoi sottocampi.

Esercizio 8. Calcolare le radici centoventottesime primitive dell'unità di \mathbb{F}_2 .

Esercizio 9. Sia K un campo di caratteristica p. Mostrare che, se p non divide n, l'n-esimo polinomio ciclotomico su K si ottiene dall'n-esimo polinomio ciclotomico $\Phi_n(X)$ su $\mathbb Q$ riducendo i suoi coefficienti modulo p.

Esercizio 10. Determinare tutti gli isomorfismi in \mathbb{C} dei seguenti campi specificando quali tra essi sono automorfismi:

- 1. $\mathbb{Q}(\sqrt{13})$;
- 2. $\mathbb{Q}(\sqrt{2},i)$;
- 3. $\mathbb{Q}(\sqrt[3]{5});$
- 4. $\mathbb{Q}(\sqrt[3]{5}, \sqrt{11});$
- 5. $\mathbb{Q}(\sqrt[3]{7}, \sqrt{17}, \zeta_3)$.

Esercizio 11 (Ripasso sul gruppo simmetrico S_n). Descrivere il gruppo simmetrico S_n per n = 2, 3, 4. Dire che tipo di sottogruppi ha e quali tra questi sono sottogruppi normali.

Esercizio 12. Calcolare $f(X) \in \mathbb{Q}[X]$ il polinomio minimo di $\alpha = \sqrt[3]{\sqrt{2} + \sqrt{3}}$ su \mathbb{Q} . Determinare tutti i \mathbb{Q} -isomorfismi di $\mathbb{Q}(\alpha)$ in \mathbb{C} .