Università degli Studi Roma Tre Corso di Laurea in Matematica, a.a. 2013/2014 AL310 - Teoria di Galois (prof. Gabelli) Esercizi 1

1. Siano $z, z' \in \mathbb{C}$. Verificare che

$$||z|| \cdot ||z'|| = ||zz'||$$

(dove, se z = a + bi, $||z|| = a^2 + b^2$ è la norma di z).

2. Si scrivano i seguenti numeri complessi, i loro coniugati ed i loro inversi in forma trigonometrica, ovvero nella forma $\rho(\cos \theta + i \sin \theta)$, con $\rho \in \mathbb{R}^+$, e $0 < \theta \leq 2\pi$:

$$5, -7, i, -3i, 1+i, -\sqrt{3}+i.$$

Determinare inoltre le loro radici terze e quarte e rappresentarle sul piano di Gauss.

3. Sia $\xi=\cos\frac{2k\pi}{n}+i\sin\frac{2k\pi}{n}$ una radice n-sima dell'unità. Se m è il minimo intero positivo tale che $\xi^m=1$, si dice che ξ ha $ordine\ m$. Con questa terminologia, le radici $primitive\ n$ -sime sono esattamente quelle di ordine n.

Dimostrare che:

- (1) Se k divide n, ξ ha ordine $\frac{n}{k}$;
- (2) Se m è l'ordine di ξ , m divide n (Suggerimento: dividere n per m);
- (3) Se d := MCD(n, k), l'ordine di ξ è $\frac{n}{d}$;
- (4) ξ è una radice *n*-sima primitiva se e soltanto se d := MCD(n, k) = 1;
- (5) Se ξ è una radice n-sima primitiva, tutte e sole le radicin-sime di 1 sono

$$\xi, \xi^2, \dots, \xi^n = 1.$$

4. Determinare il gruppo delle radici n-sime dell'unità per n=3,4,5,6,7,8,12.

Stabilire inoltre qual è l'ordine di ogni radice.

- 5. Calcolare i lati di un rettangolo la cui area è di 204 m^2 e il cui perimetro è di 80 m.
- 6. Sia $f(X) = X^3 + X 1 \in \mathbb{Q}[X]$ e siano $\rho \in \mathbb{R}$, σ , τ le sue radici. Mostrare che $\sigma + \tau = -\rho$ e $\sigma \tau = \rho^{-1}$.
- 7. Mostrare che un polinomio $f(X) \in K[X]$ è irriducibile se e soltanto se lo è la sua forma ridotta.
- 8. Risolvere le seguenti equazioni di terzo grado usando le formule di Tartaglia -Cardano:

$$X^3 + 9X - 10$$
, $X^3 + 6X - 20$, $X^3 + 6X - 7$.

9. Mostrare che l'equazione

$$f(X) = X^3 - 2pX + p \in \mathbb{Q}[X]$$

con pprimo, ha tre radici reali distinte e determinare queste radici con le formule di Tartaglia-Cardano.

10. Trovare le radici dei seguenti polinomi reciproci usando la sostituzione $Y=X+\frac{1}{X}:$

$$X^4 + 2X^3 + 2X + 1$$
; $X^5 + X^4 + X^3 - X^2 - X - 1$.