Università degli Studi Roma Tre Corso di Laurea in Matematica, a.a. 2013/2014 AL310 - Teoria di Galois (prof. Gabelli) Esercizi 4

- 1. Si consideri il polinomio $f := X^3 + 2X^2 + 2 \in \mathbb{F}_3[X]$.
 - (a) Determinare un campo di spezzamento K di f su \mathbb{F}_3 , e determinare un elemento $\alpha \in K$ tale che $K = \mathbb{F}_3(\alpha)$.
 - (b) Scrivere tutti gli elementi di K.
 - (c) Determinare tutti i generatori del gruppo moltiplicativo K^* .
 - (d) Per ogni $\beta \in K \setminus \mathbb{F}_3$, determinare il polinomio minimo di β su \mathbb{F}_3 .

Sia L un'estensione di K e sia $\gamma \in L$ un elemento algebrico di grado 5 su K.

- (e) Dire perché γ è algebrico su \mathbb{F}_3 e determinare il grado del polinomio minimo di γ su \mathbb{F}_3 .
- (f) Determinare la cardinalità del campo $K(\gamma)$.
- 2. Si considerino i polinomi

$$f := X^2 + X + 6$$
, $g := X^2 + X + 3 \in \mathbb{F}_7[X]$.

- (a) Dopo aver aver verificato che gli anelli $K_f := \mathbb{F}_7[X]/(f), K_g := \mathbb{F}_7[X]/(g)$ sono campi, dire perché essi sono isomorfi e determinare tutti gli isomorfismi di K_f su K_g .
- (b) Poniamo $K := K_f$. Se $h \in K[X]$ è un polinomio irriducibile di grado due e L è un campo di spezzamento di h su K, determinare la struttura del gruppo $Gal(K/\mathbb{F}_7)$.
- 3. Sia K un campo con 16 elementi.
 - (a) Determinare un polinomio $f(X) \in \mathbb{F}_2[X]$ irriducibile il cui campo di spezzamento su \mathbb{F}_2 sia K.
 - (b) Determinare la struttura di $Gal(K/\mathbb{F}_2)$.

- 4. Siano p un numero primo, U un'indeterminata su $\mathbb{Q}, L := \mathbb{Q}(U^2), K := \mathbb{Q}(U, \sqrt{p} + p).$
 - (a) Calcolare, dichiarando esplicitamente tutti i risultati usati, il grado di K su L.
 - (b) Dire perch l'estensione di campi K/L è separabile e determinare un elemento primitivo α di K su L.
 - (c) Determinare il polinomio minimo di α su L.
 - (d) Determinare la struttura del gruppo Gal(K/L).
- 5. Si consideri il polinomio $f(X) := X^4 + X^3 + X^2 + 1 \in \mathbb{F}_2[X]$.
 - (a) Determinare un campo L contenente una radice α di f(X) tale che $\alpha \notin \mathbb{F}_2$ e un'immersione $\varphi : \mathbb{F}_2 \hookrightarrow L$.
 - (b) Dimostare che f(X) si decompone in fattori lineari in L[X].
 - (c) Dedurre che $\mathbb{F}_2(\alpha)$ è un campo di spezzamento di f(X) su \mathbb{F}_2 .
 - (d) Determinare tutti gli elementi di $\mathbb{F}_2(\alpha)$ e tutti gli automorfismi del gruppo moltiplicativo $G := \mathbb{F}_2(\alpha)^*$.
 - (e) Determinare almeno un automorfismo di G che non si estende a un automorfismo del campo $\mathbb{F}_2(\alpha)$.
- 6. Consideriamo il polinomio $f(X) := X^3 + X + 1 \in \mathbb{F}_2[X]$. Sia K un campo di spezzamento di f(X) su \mathbb{F}_2 e sia $\alpha \in K$ una radice di f(X).
 - (a) Verificare che $K = \mathbb{F}_2(\alpha)$.
 - (b) Se L è un campo di spezzamento su \mathbb{F}_2 del polinomio

$$g(X) := X^4 + X^2 + X + 1 \in \mathbb{F}_2[X],$$

dire perché i campi K ed L sono isomorfi, e determinare esplicitamente un isomorfismo $\varphi:K\to L.$

7. Mostrare che l'applicazione

$$\Phi: \mathbb{F}_p(X) \longrightarrow \mathbb{F}_p(X); \quad f \mapsto f^p$$

è un omomorfismo (omomorfismo di Fröbenius), ma non un automorfismo.

- 8. Determinare il numero dei polinomi di grado 2 irriducibili su \mathbb{F}_p .
- 9. Stabilire se esistono polinomi irriducibili su \mathbb{F}_3 di grado 2 o 3 che si spezzano linearmente sul campo con 27 elementi e in caso affermativo determinarne almeno uno.