Università degli studi Roma Tre Corso di laurea in Matematica A.A. 2014-2015 AL310 - Istituzioni di Algebra Superiore Prima prova di valutazione in itinere 3 Novembre 2014

Esercizio 1. Sia

$$f(x) \coloneqq \frac{1}{3}x^3 - 2x^2 + \frac{2}{3}x - \frac{2}{3} \in \mathbb{Q}[x]$$

e sia $\gamma \in \mathbb{C}$ una sua radice.

- (i) Stabilire se gli anelli $\frac{\mathbb{Q}[x]}{(f(x))}$, $\frac{\mathbb{R}[x]}{(f(x))}$ e $\frac{\mathbb{C}[x]}{(f(x))}$ sono campi.
- (ii) Dimostrare, senza fare i conti, che il polinomio f(x) è irriducibile su $\mathbb{Q}(i)$.
- (iii) Fattorizzare il polinomio g(x) := 9f(x) su \mathbb{Z} .
- (iv) Dimostrare, senza fare i conti, che $\mathbb{Q}(\gamma) = \mathbb{Q}(\gamma^2)$.

Esercizio 2. Sia y un'indeterminata su \mathbb{Q} .

(i) Stabilire se $\mathbb{Q}(\pi)$ e $\mathbb{Q}(y)$ sono isomorfi.

Sia poi

$$\alpha \coloneqq \frac{\pi^2}{\pi + 1} \in \mathbb{Q}(\pi).$$

- (ii) Provare che α è trascendente su \mathbb{Q} e che π è algebrico $\mathbb{Q}(\alpha)$.
- (iii) Determinare $[\mathbb{Q}(\pi):\mathbb{Q}(\alpha)]$.

Esercizio 3. Si consideri il polinomio

$$f(x) = (x^4 + 4x^2 + 2x)(x^2 + 1) \in \mathbb{F}_5[x].$$

- (i) Fattorizzare f(x) su \mathbb{F}_5 .
- (ii) Costruire un'estensione K di \mathbb{F}_5 che sia campo di spezzamento per f(x) su \mathbb{F}_5 ed esplicitare le radici di f(x) in K.
- (iii) Calcolare $[K : \mathbb{F}_5]$ e la cardinalità di K.
- (iv) Determinare il gruppo degli automorfismi di K e la sua struttura.

Esercizio 4. Sia $p \ge 3$ un numero primo e sia $\rho \ne -1$ una radice p-esima complessa di -1.

- (i) Dimostrare che $\mathbb{Q}(\rho) = \mathbb{Q}(\zeta_{2p})$, dove $\zeta_{2p} \in \mathbb{C}$ è una radice 2p-esima primitiva dell'unità.
- (ii) Per p = 5, calcolare il polinomio minimo di ρ su \mathbb{Q} .
- (iii) Per p = 5, determinare esplicitamente il gruppo degli automorfismi di $\mathbb{Q}(\rho)$ e dire qual è la sua struttura.

Esercizio 5. Determinare il grado e tutte le radici in \mathbb{C} del polinomio minimo su \mathbb{Q} di $\alpha := \sqrt{\sqrt{3} + i \sqrt[4]{3}}$.