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Introduction

Throughout this paper R will denote an integral domain with quotient field
K and we will assume that R 6= K. An overring of R is a domain T such
that R ⊆ T ⊆ K.

A fractional ideal of R (or simply an ideal) is an R-submodule I of K
such that dI ⊆ R for some nonzero element d ∈ R. If I ⊆ R, we say
that I is an integral ideal. Any finitely generated R-submodule of K is a
fractional ideal. We denote by F (R) the set of nonzero fractional ideals
of R and by f(R) its subset of finitely generated ideals. Both F (R) and
f(R) are semigroups with respect to multiplication of ideals. An invertible
element of F (R) is called an invertible ideal. Principal ideals are invertible
and invertible ideals are finitely generated. Denoting by Inv(R) the group
of invertible ideals and by P (R) its subgroup of principal ideals, we have a
chain of semigroups

P (R) ⊆ Inv(R) ⊆ f(R) ⊆ F (R).

Two wide classes of integral domains, namely Noetherian and Prüfer do-
mains, may be defined by the property that one of these inclusions becomes
an equality. In fact R is a Noetherian domain (a domain satisfying the
ascending chain condition on integral ideals) if and only if each ideal is
finitely generated, that is if f(R) = F (R), and R is a Prüfer domain (a
domain whose localizations at maximal ideals are valuation domains) if and
only if each finitely generated ideal is invertible, that is Inv(R) = f(R). A
Dedekind domain is a Noetherian Prüfer domain, that is a domain such that
each ideal is invertible, or Inv(R) = F (R). If each ideal is principal, that is
P (R) = F (R), R is called a principal ideal domain, for short a PID.

In this course we will give similar characterizations of more general
classes of domains by introducing other semigroups of ideals; this kind of
study is particularly useful for investigating some arithmetical properties.
For example it is well known that a PID is a unique factorization domain,
for short a UFD, and that it is precisely a one-dimensional (equivalently a
Dedekind) UFD. To study UFDs in dimension greater than one, it is nec-
essary to enlarge the class of Dedekind domain to the class of Krull domains
(classically defined as intersection of DV Rs with finite character) and con-
sider the semigroup of v-ideals, or divisorial ideals. In fact P. Samuel proved
that a UFD is precisely a Krull domain such that each divisorial ideal is
principal [39]. In the same vein, A. Bouvier and M. Zafrullah showed that
to study the existence of the greatest common divisor one has to enlarge the
class of Krull domains to the class of Prüfer v-multiplication domains, for
short PvMDs (domains whose localizations at t-maximal ideals are valua-
tion domains), and consider the semigroup of t-ideals. Indeed they proved
that a domain with the greatest common divisor, for short a GCD-domain,
is precisely a PvMD such that each t-invertible ideal is principal [8].
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Divisorial and t-ideals are examples of star ideals, that is ideals closed
under a star operation. In order to unify the notations, we will firstly in-
troduce star operations and survey their main properties. Then we will
use t-ideals to study Mori domains (domains satisfying the ascending chain
condition on integral divisorial ideals) and PvMDs. The reason for intro-
ducing Mori domains in this context is that a Krull domain is precisely a
Mori PvMD. Finally we will introduce the Class Group of t-ideals and show
that a UFD (respectively a GCD-domain) is a Krull domain (respectively
a PvMD) with trivial class group.

We will assume a good knowledge of the basic properties of Noetherian
and valuation domains; for these one can refer to [20, 13, 3, 7].

1 Star operations

A star operation is a map I → I∗ from the set F (R) of nonzero fractional
ideals of R to itself such that:

(1) R∗ = R and (aI)∗ = aI∗, for all a ∈ K r {0};
(2) I ⊆ I∗ and if I ⊆ J then I∗ ⊆ J∗;
(3) I∗∗ = I∗.
General references for star operations and systems of ideals are [20, 24,

25, 32].
A nonzero fractional ideal I is called a ∗-ideal if I = I∗; the set of ∗-ideals

of R will be denoted by F∗(R). The identity is a star operation, called the
d-operation; thus Fd(R) = F (R).

The following properties can be easily proved. Recall that for two ideals
I and J of R, the set (I : J) := {x ∈ K ; xJ ⊆ I} is an ideal of R.

Proposition 1.1 Let ∗ a star operation on R. For all I, J ∈ F (R) and
any family of nonzero ideals {Iα}

(a) If
∑
Iα ∈ F (R), (

∑
Iα)∗ = (

∑
I∗α)∗; in particular (I + J)∗ = (I∗ +

J∗)∗.

(b) If ∩Iα 6= (0), ∩I∗α = (∩I∗α)∗; in particular, F∗(R) is closed under finite
intersections.

(c) (IJ)∗ = (I∗J)∗ = (I∗J∗)∗.

(d) (I∗ : J∗) = (I∗ : J) is a ∗-ideal.

A star operation ∗ is of finite type if I∗ = ∪{J∗ ; J ⊆ I and J is finitely
generated}, for each I ∈ F (R). To any star operation ∗, we can associate a
star operation ∗f of finite type by defining I∗f = ∪J∗, with the union taken
over all finitely generated ideals J contained in I. Clearly I∗f ⊆ I∗ and the
equality holds if I is finitely generated. Note that I = I∗f if and only if
(x1, . . . , xn)∗ ⊆ I, for every finite set {x1, . . . , xn} ⊆ I.
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The set of star operations defined on R can be ordered. We say that ∗2
is coarser than ∗1 and write ∗1 ≤ ∗2, if I∗1 ⊆ I∗2 , for all I ∈ F (R). Hence,
if ∗1 ≤ ∗2, a ∗2-ideal is also a ∗1-ideal. Note that ∗f ≤ ∗ and, when ∗1 ≤ ∗2,
we also have (∗1)f ≤ (∗2)f .

A nonzero ideal I is called ∗-finite if I∗ = J∗ for some finitely generated
ideal J and strictly ∗-finite if I∗ = J∗ for some finitely generated ideal J ⊆ I.
The set of ∗-finite ∗-ideals will be denoted by f∗(R).

Proposition 1.2 Let I be a nonzero ideal of R. The following conditions
are equivalent:

(i) I is strictly ∗-finite;

(ii) I is ∗f -finite;

(iii) I is strictly ∗f -finite.

Under these conditions, I∗ = J∗ = J∗f = I∗f for some finitely generated
ideal J ⊆ I.

Proof. (i) ⇒ (iii) Let I∗ = J∗, with J ⊆ I finitely generated. Hence
I∗ = J∗ = J∗f ⊆ I∗f ⊆ I∗. Whence I∗ = J∗f = I∗f .

(ii) ⇒ (iii) Let I∗f = H∗f , where H := x1R + · · · + xnR. Since ∗f is
of finite type, for each i = 1, . . . , n, there exists a finitely generated ideal
Fi ⊆ I such that xi ∈ F

∗f
i . Hence J := F1 + · · ·+ Fn ⊆ I and I∗f = H∗f ⊆

J∗f ⊆ I∗f . Thus J∗f = I∗f .
(iii) ⇒ (ii) is clear and (iii) ⇒ (i) because ∗f ≤ ∗. �

A prime ∗-ideal is called a ∗-prime ideal. A ∗-maximal ideal is an ideal
that is maximal in the set of the proper ∗-ideals. It is easy to check that
a ∗-maximal ideal (if it exists) is a prime ideal. The set of the ∗-maximal
ideals of R will be denoted by ∗ -Max(R).

Proposition 1.3 If ∗ = ∗f is a star operation of finite type, the set of the
∗-maximal ideals of R is not empty. Moreover, for each I ∈ F (R),

I∗ = ∩M∈∗ -Max(R)I
∗RM ;

in particular R = ∩M∈∗ -Max(R)RM .

Proof. Let I be the union of an ascending chain {Iα} of ∗-ideals. If
x1, . . . , xn ∈ I, then (x1, . . . , xn)∗ is contained in some Iα and so in I. It
follows that I is a ∗-ideal and by applying Zorn’s Lemma, ∗ -Max(R) 6= ∅.

For the second part, it is enough to consider integral ∗-ideals I = I∗ ⊆
R and show that ∩M∈∗ -Max(R)IRM ⊆ I. Let x ∈ IRM , for each M ∈
∗ -Max(R) and write x = a(M)/t(M), with a(M) ∈ I and t(M) ∈ R \M .
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Hence t(M) ∈ (I : x) ∩ R and (I :R x) = (I : x) ∩ R * M . It follows that
(I :R x)∗ = (I :R x) = R and so x ∈ I. �

Since ∗f ≤ ∗, each ∗-ideal is contained in a ∗f -maximal ideal. However
we will see later that, if ∗ is not of finite type, the set of ∗-maximal ideals
may be empty (Remark 1.8).

Proposition 1.4 For any star operation ∗, a minimal prime of a ∗-ideal
(in particular of a nonzero principal ideal) is a ∗f -prime.

Proof. Let I = I∗ and P a prime minimal over I. We have to show that
J∗ ⊆ P , for each finitely generated ideal J ⊆ P . Since

√
IRP = PRP ,

JnRP ⊆ IRP for some n ≥ 1. Let s ∈ R \ P be such that sJn ⊆ I. Then

s(J∗)n ⊆ (s(J∗)n)∗ = (sJn)∗ ⊆ I ⊆ P

and so J∗ ⊆ P . �

1.1 The v-operation and the t-operation

The v- and the t-operations are the best known nontrivial star operations.
The v-operation, or divisorial closure, is defined by setting

Iv := (R : (R : I))

for each I ∈ F (R). A v-ideal is also called a divisorial ideal.

Proposition 1.5 For each I ∈ F (R), Iv = ∩{yR ; y ∈ K , I ⊆ yR}.

Proof. Let J := ∩{yR ; y ∈ K , I ⊆ yR}. Since principal ideals are
divisorial, Iv ⊆ J . Assume that Iv  J and let x ∈ J \Iv. Then x(R : I) * R
and x /∈ z−1R for some z ∈ (R : I). This is a contradiction, since I ⊆ z−1R,
and so J ⊆ z−1R. �

Proposition 1.6 The following statements are equivalent for a nonzero
ideal I of R:

(i) I is divisorial (i.e. I = (R : (R : I));

(ii) I = (R : J), for some ideal J ;

(iii) I = ∩{yR ; y ∈ K , I ⊆ yR}.

Proof. (i) ⇒ (ii) Take J := (R : I).
(ii)⇒ (iii) follows from Proposition 1.5, since (R : J) is divisorial (Propo-

sition 1.1, (d)).
(iii)⇒ (i) Because a nonzero intersection of divisorial ideals is a divisorial

ideal (Proposition 1.1, (b)). �
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The t-operation is the finite type star operation associated to the v-
operation: it is therefore defined by

It := ∪{Jv; J ⊆ I and J is finitely generated},

for each I ∈ F (R), and Jv = Jt whenever J is finitely generated.
Since (R : I) = (R : I∗) (Proposition 1.1 (d)), we have I∗ ⊆ Iv, for

each ideal I ∈ F (R) and each star operation ∗. It follows that a divisorial
ideal is a ∗-ideal and a t-ideal is a ∗f -ideal. In other words, the v-operation
is the coarsest star operation on R and the t-operation is the coarsest star
operations of finite type.

Proposition 1.7 An height-one prime is a t-ideal.

Proof. It is enough to observe that an height-one prime is minimal over a
principal ideal and apply Proposition 1.4. �

Remark 1.8 Let V be a valuation domain. Then:

(a) Each nonzero ideal of V is a t-ideal, because each finitely generated
ideal is principal.

(b) A nonzero principal prime ideal of V is maximal. In fact, let P = xR
and y ∈ R \ P . Then P ⊆ yR and z := xy−1 ∈ R. Since x = zy, P is
prime and y /∈ P , we have z := xy−1 ∈ P = xR. Hence y−1 ∈ R and
y is invertible.

(c) If P is a nonprincipal prime ideal of V , then VP = (P : P ) = (V : P ).
To show this, we first note that VP ⊆ (P : P ). This is clearly true
if P is maximal, that is V = VP ; thus we can assume that V  VP .
Let x ∈ VP \ V . Then y := x−1 ∈ V \ P and so P ⊆ yV . It follows
that xP ⊆ V . Also P = xyP and y /∈ P implies xP ⊆ P . Hence
x ∈ (P : P ). Finally (V : P ) ⊆ VP . In fact, let z ∈ (V : P ). Since VP
is a valuation domain, if z /∈ VP , then z−1 ∈ PVP ⊆ P (P : P ) ⊆ P .
Hence 1 = z−1z ∈ P (V : P ) and P is invertible, that is principal. A
contradiction.

(d) The maximal ideal M of V is divisorial if and only if it is principal.
Indeed, if M is divisorial, V  (V : M). Thus, if x ∈ (V : M) \ V , we
have Mv = M ⊆ x−1V ⊆ V , whence M = x−1V .

(e) If P is a nonzero nonmaximal prime ideal of V , then P is divisorial.
In fact, if P is nonmaximal, VP is a proper overring of V and Pv =
(V : (V : P )) = (V : VP ) is a proper ideal of VP . Since PVP = P (P :
P ) = P ⊆ Pv  VP , we conclude that P = Pv.
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We see that whenM is not principal v -Max(V ) is empty, while t -Max(V ) =
{M}. Also, if V is a one-dimensional non-discrete valuation domain, M is
an height-one prime that is not divisorial.

A v-maximal divisorial idealM may be properly contained in a t-maximal
ideal; examples are given in [19] or [31]. However the next result shows that
this cannot happen if M is v-finite.

Proposition 1.9 A v-finite v-maximal ideal is a t-maximal ideal.

Proof. Assume that J is finitely generated and Jv := M ∈ v -Max(R).
Since Iv = It for any I finitely generated, for each x /∈ M we have (M +
xR)t = (Jt + xR)t = (Jv + xR)v = R. Hence M ∈ t -Max(R). �

1.2 The w-operation

If {Rα} is a family of overrings of R such that R ⊆ Rα ⊆ K and R = ∩Rα,
for all I ∈ F (R), the map I 7→ I∗ = ∩IRα is a star operation induced by
the family {Rα} [20]. Then, by Proposition 1.3, one can consider the star
operation induced by the family {RM}M∈t -Max(R). This operation is called
the w-operation and is defined by setting

Iw := ∩M∈t-Max(R)IRM ,

for each nonzero ideal I. An equivalent definition is obtained by setting

Iw := ∪{(I : J); J is finitely generated and (R : J) = R}.

By using the latter definition, one can see that the notion of w-ideal co-
incides with the notion of semi-divisorial ideal introduced by S. Glaz and
W. Vasconcelos in 1977 [22]. As a star-operation, the w-operation was first
considered by E. Hedstrom and E. Houston in 1980 under the name of F∞-
operation [26]. Since 1997 this star operation was intensely studied by Wang
Fanggui and R. McCasland in a more general context. In particular they
showed that the notion of w-closure is a very useful tool in the study of
Strong Mori domains [41, 42].

The w-operation is of finite type and distributes over intersections, that
is (I ∩ J)w = Iw ∩ Jw, for all I, J ∈ F (R). This is equivalent to say that
(I : J)w = (Iw : J) = (Iw : Jw) for all I, J ∈ F (R) and J finitely generated.
We have w -Max(R) = t -Max(R) and IRM = IwRM ⊆ ItRM , for each
I ∈ F (R) and M ∈ t -Max(R). Thus w ≤ t ≤ v. In addition, w is the
coarsest star operation is of finite type which distributes over intersections.

8



1.3 t-compatible extensions of domains

The v-operation, t-operation and w-operation are intrinsecally defined on
any domain, so it makes sense to study the behaviour of these operations
with respect to extensions of domains R ⊆ T . The general problem of
comparing a star operation on R with a star operation on T is studied in
[11].

Given an extension of domains R ⊆ T , we will denote by v′ and t′

respectively the divisorial closure and the t-operation in T .

Proposition 1.10 Let R ⊆ T be an extension of domains. The following
conditions are equivalent:

(i) Jv ⊆ (JT )v′, for each nonzero finitely generated ideal J of R;

(ii) (ItT )t′ = (IT )t′, for each nonzero ideal I of R;

(iii) I ′ ∩R is a t-ideal, for each t′-ideal I ′ of T such that I ′ ∩R 6= 0;

(iv) (IT )t′ ∩R is a t-ideal, for each nonzero ideal I of R.

Proof. (i) ⇒ (ii). From the definition of the t-closure, condition (i) implies
that It ⊆ (IT )t′ , for each ideal I of R. Whence (ItT )t′ = (IT )t′ .

(ii) ⇒ (iii) If J is a finitely generated ideal, the v- and the t-operation
coincide on J and so, if (ii) holds, Jv ⊆ (JvT )v′ = (JT )v′ . Then, if J ⊆ I ′∩R,
we have Jv ⊆ (JT )v′ ∩R ⊆ I ′ ∩R and I ′ ∩R is a t-ideal.

(iii) ⇒ (iv) ⇒ (i) are clear. �

Under the equivalent conditions of Proposition 1.10, we say that the
extension R ⊆ T is t-compatible.

We now show that flat extensions and generalized rings of fractions are
t-compatible.

Proposition 1.11 Let R ⊆ T be a flat extension of domains. Then:

(a) (R : J)T = (T : JT ), for each nonzero finitely generated ideal J of R.

(b) The extension is t-compatible.

(c) If J is a nonzero finitely generated ideal of R and (R : J) is v-finite,
(JvT )v′ = JvT .

Proof. (a) Let J := x1R + · · · + xnR. Then (R : J) = x−11 R ∩ · · · ∩ x−1n R
and, by flatness, (R : J)T = x−11 T ∩ · · · ∩ x−1n T = (T : JT ).

(b) If J is finitely generated, by (a) we have Jv ⊆ JvT ⊆ (T : (R :
J)T ) = (T : (T : JT )) = (JT )v′ .
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(c) Let J be finitely generated and (R : J) = Hv, with H finitely gener-
ated. By part (b), (HT )v′ = (HvT )v′ . Hence

JvT = (R : H)T = (T : HT ) = (T : HvT )

= (T : (R : J)T ) = (T : (T : JT )) = (JT )v′ .

�

If S is a multiplicative set of nonzero integral ideals of R, the generalized
ring of fractions of R with respect to S is the overring

RS := ∪{(R : J) ; J ∈ S}.

When S ⊆ R is a multiplicative part of R, setting S := {xR ;x ∈ S} we
have RS = RS .

For any ideal I of R, the set IS := ∪{(I : J) ; J ∈ S} is an ideal of RS
such that IRS ⊆ IS .

The saturation of S is the multiplicative system of ideals

S := {I ⊆ R ; there exists J ∈ S such that J ⊆ I}.

Clearly IS = IS for each ideal I, thus if necessary we can assume that S = S,
in other words that S is saturated.

We will denote by vS and tS respectively the divisorial closure and the
t-operation in RS .

Proposition 1.12 Let I, J be nonzero ideals of R and S a multiplicative
set of ideals. Then:

(a) IS = RS if and only if I ∈ S;

(b) (I : J)S ⊆ (IS : JS) and if J is finitely generated, (I : J)S = (IS :
JS) = (IS : JRS).

(c) If J is finitely generated, (Jv)S ⊆ (JS)vS = (JRS)vS ; whence the
extension R ⊆ RS is t-compatible.

(d) If J is finitely generated and (R : J) is v-finite, (JvRS)vS = (Jv)S =
(JRS)vS .

Proof. (a) Let I ∈ S. If x ∈ RS , then xH ⊆ R for some H ∈ S and
xHI ⊆ I. Since IH ∈ S, then x ∈ IS = IS and so IS = RS .

Conversely, if IS = RS , then 1 ∈ IS and so H = 1H ⊆ I, for some
H ∈ S. It follows that I ∈ S.

(b) If x ∈ (I : J)S and y ∈ JS , then xy ∈ IS . Indeed, if H, L ∈ S are
such that xH ⊆ (I : J) and yL ⊆ J , then HL ∈ S and xyHL ⊆ I. Hence
(I : J)S ⊆ (IS : JS) ⊆ (IS : JRS).
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Now assume that J := x1R + · · · + xnR is finitely generated. Let y ∈
(IS : JRS), so that yJ ⊆ IS , and let Hi ∈ S be such that yxiHi ⊆ I,
i = 1, . . . , n. Hence H := H1 . . . Hn ∈ S and yJH ⊆ I. Whence y ∈ (I : J)S
and (IS : JRS) ⊆ (I : J)S .

(c) By applying (a), for I = R, we have that (JS)vS = (JRS)vS . In
addition

(Jv)S ⊆ (RS : (R : J)S) = (RS : (RS : JS)) = (JS)vS = (JRS)vS .

(d) Let J be finitely generated and (R : J) = Hv, with H finitely gener-
ated. By using (a),

(Jv)S = (R : H)S = (RS : HS) = (RS : (RS : JRS)) = (JRS)vS .

In addition JvRS ⊆ (Jv)S = (JRS)vS , whence (JvRS)vS = (JRS)vS . �

Remark 1.13 (1) An overring T of R is flat if and only if TM = RM∩R
for each maximal ideal M of T [15, Lemma 6.5].

(2) It is well known that a ring of fractions of R is a flat overring. In
addition, a flat overring is an intersection of localizations of R (by the
previous remark) and an intersection of localizations is a generalized
ring of fractions (indeed, if Z ⊆ Spec(R) and T = ∩{RP ;P ∈ Z},
then T = RS with S = S = {ideals I ⊆ R ; I * P, for each P ∈ Z}).
On the other hand, none of the previous implications reverses: an
example of a generalized ring of fractions that is not an intersection
of localizations is given in [13, Example 8.4.6] and an example of an
intersection of localizations that is not flat is given in [15, pag. 32].
Prüfer domains are characterized by the property that each overring
is flat [13, Theorem 1.1.1].

(3) Polynomial rings are flat extensions; hence they are t-compatible.
Moreover, if I ⊆ R is any divisorial ideal (respectively a t-ideal, a
w-ideal) its extension I[X] is still a divisorial ideal (respectively a t′-
ideal, a w′-ideal) of R[X] [26, Proposition 4.3].

(4) The ring Int(R) := {f(X) ∈ K[X] ; f(R) ⊆ R} of the integer valued
polynomials over R is t-compatible [9, Lemma 4.1]. But the extension
of a divisorial ideal of R is not necessarily divisorial [9, Example 4.2].

1.4 ∗-invertibility

The set F∗(R) of ∗-ideals of R is a semigroup (with unity R) with respect
to the ∗-multiplication, defined by

(I∗, J∗) −→ (IJ)∗
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and the set f∗(R) of ∗-finite ∗-ideals is a subsemigroup of F∗(R).
We say that an ideal I ∈ F (R) is ∗-invertible if I∗ is invertible in the

semigroup F∗(R). It is easy to check that in this case the ∗-inverse of I∗

in F∗(R) is (R : I). Hence I ∈ F (R) is ∗-invertible if and only if (I(R :
I))∗ = R. It follows that if ∗ = ∗f is of finite type, I is ∗-invertible if and
only if I(R : I) is not contained in any ∗-maximal ideal of R. When ∗ = d
is the identity, we obtain the usual notion of invertible ideal. The group of
∗-invertible ∗-ideals will be denoted by Inv∗(R). It is easy to see that when
∗1 ≤ ∗2, a ∗1-invertible ideal is also ∗2-invertible.

Proposition 1.14 An invertible ideal is divisorial.

Proof. If I(R : I) = R, the inverse of (R : I) is I = (R : (R : I)) = Iv. �

We are particularly interested in v-invertibility and t-invertibility: a suit-
able reference for these notions is [43].

Proposition 1.15 A nonzero ideal I of R is v-invertible if and only if (Iv :
Iv) = R.

Proof. It is enough to note that (Iv : Iv) = (R : I(R : I)). �

It is well known that a nonzero ideal is invertible if and only if it is finitely
generated and locally principal. This characterization can be extended to
t-invertible ideals in the following way.

Proposition 1.16 The following conditions are equivalent for a nonzero
ideal I of R.

(i) I is t-invertible;

(ii) I is t-finite and ItRM is principal, for each M ∈ t -Max(R);

(iii) I is v-invertible and I, (R : I) are t-finite.

Proof. (i) ⇒ (iii) Since t ≤ v, I is v-invertible. If (I(R : I))t = R, 1 ∈ Hv

for some finitely generated ideal H ⊆ I(R : I). Let H := x1R + · · · +
xsR and write xi =

∑ni
j=1 aijbij , with aij ∈ I and bij ∈ (R : I). Letting

F :=
∑
aijR ⊆ I and G :=

∑
bijR ⊆ (R : I), where i = 1, . . . , s and

j = 1, . . . ns, we have R = Hv ⊆ (FG)v ⊆ (IG)v ⊆ (I(R : I))v = R. Thus
(FG)v = (IG)v = R and it follows that Gv = (R : I) and Fv = (R : G) = Iv.

(iii) ⇒ (ii) Let Iv = Jv and (R : I) = Hv, with J , H finitely generated.
Since (JH)t = (JH)v = R, JH * M for each M ∈ t -Max(R). Hence
(JH)RM = (JRM )(HRM ) = RM . It follows that JRM is invertible and
finitely generated, hence principal. Finally It = Jt by Proposition 1.2 and
ItRM = JtRM = (JRM )tM = JRM by Proposition 1.12 (d).
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(ii)⇒ (i) Let It = Jt with J ⊆ I finitely generated (Proposition 1.2). By
(ii) and Proposition 1.12 (c), ItRM = (ItRM )tM = (JtRM )tM = (JRM )tM is
principal, for each M ∈ t -Max(R). Hence

RM ⊇(I(R : I))tRM = (It(R : I))tRM

⊇(It(R : J))RM = ItRM (RM : JRM ) = RM .

It follows that (I(R : I))tRM = RM , for each M ∈ t -Max(R), and so
(I(R : I))t = R (Proposition 1.3). �

Corollary 1.17 A t-invertible t-ideal is divisorial and v-finite.

Proof. If I = It is t-invertible it is strictly v-finite by Proposition 1.16.
Hence I = Iv by Proposition 1.2. �

If the intersection R = ∩M∈∗f -Max(R)RM has finite character, that is
each nonzero noninvertible element of R is contained only in finitely many
∗f -maximal ideals, we say that R has ∗f -finite character.

The following result holds more in general for any star operation of finite
type (in particular for the identity); we give a proof for the t-operation.

Proposition 1.18 Assume that R has t-finite character. Then a nonzero
ideal I of R is t-invertible if and only if ItRM is principal, for each M ∈
t -Max(R).

Proof. By Proposition 1.16 we have only to prove that if R has t-finite
character and ItRM is principal, for each M ∈ t -Max(R), then I is t-finite.
It is enough to consider integral ideals.

Let M1, . . . ,Mn be the t-maximal ideals containing I and let ItRMi =
xiRMi , xi ∈ I, i = 1, . . . , n. Set J := x1R + · · · + xnR. If Jt  It,
let M1, . . . ,Mn, N1, . . . , Nh be the t-maximal ideals containing J , take y ∈
I \ (N1 ∪ · · · ∪Nh) and set H := J + yR. Then we have xiRMi ⊆ HtRMi ⊆
ItRMi = xiRMi , so that HtRMi = ItRMi for i = 1, . . . , n and moreover
HtRN = ItRN = RN for each t-maximal ideal N 6= Mi. It follows that
Ht = It with H ⊆ I. �

1.5 t-invertible t-prime ideals

We now study t-invertibility of t-prime ideals.

Proposition 1.19 A proper integral divisorial ideal M of R is a v-maximal
ideal if and only if M = x−1R ∩R, for each x ∈ (R : M) \R.

Proof. If I ⊆ R is a proper divisorial ideal, then I ⊆ x−1R ∩ R 6= R, for
each x ∈ (R : I) \R.
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Since an ideal of type zR ∩ R is divisorial, If M ∈ v -Max(R) we have
M = x−1R ∩ R, for each x ∈ (R : M) \ R. Conversely, assume that I =
x−1R∩R, for each x ∈ (R : I) \R. If I ⊆ J for some proper divisorial ideal
J ⊆ R, we have I ⊆ J ⊆ y−1R∩R 6= R, for each y ∈ (R : J)\R ⊆ (R : I)\R.
It follows that I = y−1R ∩R = J is a v-maximal ideal. �

Proposition 1.20 A v-invertible v-prime ideal is a v-maximal ideal.

Proof. Let P be a v-invertible v-prime ideal and let y ∈ (R : P ) \ R. If
P  y−1R ∩R, then xy−1 ∈ R \ P for some x ∈ R. So that x−1y ∈ RP and
y ∈ xRP ⊆ RP . Let z ∈ R \ P be such that zy ∈ R. Then zyP ⊆ P and,
since yP ⊆ R and z /∈ P , we get yP ⊆ P , that is y ∈ (P : P ). Since P is
divisorial and v-invertible, by Proposition 1.15 we have (P : P ) = R; thus
y ∈ R. This contradiction shows that P = y−1R∩R for each y ∈ (R : P )\R
and thus P is a v-maximal ideal (Proposition 1.19). �

Proposition 1.21 The following conditions are equivalent for a prime ideal
P of R:

(i) P is a t-invertible t-ideal;

(ii) P is a t-invertible t-maximal ideal;

(iii) P is a v-finite v-invertible v-prime ideal;

(iv) P is a v-finite v-invertible v-maximal ideal.

Proof. (i) ⇒ (iii) follows from Proposition 1.16.
(iii) ⇒ (iv) follows from Proposition 1.20.
(iv) ⇒ (ii) P is t-maximal by Proposition 1.9. We have P ⊆ P (R :

P ) ⊆ (P (R : P ))t ⊆ R. If P is not t-invertible, then P = P (R : P ) and
(P : P ) = (R : P ). It follows that (P (R : P ))v = (P (P : P ))v = P , while P
is v-invertible.

(ii) ⇒ (i) is clear. �

Remark 1.22 (1) A v-finite v-invertible ideal I of R need not be t-
invertible; in fact (R : I) need not be v-finite (see the next Remark
2.13).

(2) A v-invertible v-maximal ideal need not be t-maximal; in fact it need
not be v-finite (see the next Remark 2.10).

(3) If M ∈ t -Max(R), MRM need not be a tM -ideal of RM [43]. How-
ever, MRM is a tM -ideal when M is t-invertible (in this case MRM
is principal by Proposition 1.16) or when M is divisorial (in this case
M = yR ∩ R for some y ∈ K by Proposition 1.19 and, by flatness,
MRM = yRM ∩RM is divisorial in RM ).
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(4) If IRM is tM -invertible, for each M ∈ t -Max(R), the ideal I of R need
not be t-invertible. In fact, when M ∈ t -Max(R) and MRM is not a
tM -ideal of RM , M is not t-invertible and (MRN )tN = RN is clearly
tN -invertible, for each N ∈ t -Max(R).

(5) If M is an height-one t-invertible ideal, then RM is a DV R. In fact it
is a local one-dimensional domain with principal maximal ideal.

2 Relevant classes of domains

In this section we introduce the main classes of domains we need to know
in order to study arithmetical properties.

2.1 Completely integrally closed domains

Dealing with non-Noetherian domains, it is useful to weaken the notion of
integral dependence by considering almost integral elements. A nonzero
element x of K is said to be almost integral over R if there exists a nonzero
element d of R such that dxi ∈ R, for i ≥ 0.

Proposition 2.1 The following conditions are equivalent:

(i) x ∈ K is almost integral over R;

(ii) The sub-R-module R[x] of K is a fractional ideal of R;

(iii) R[x] ⊆ 1
dR, for some d ∈ R;

(iv) R[x] is contained in a finitely generated sub-R-module of K;

(v) R[x] is contained in a fractional ideal of R;

(vi) x ∈ (I : I) for some fractional ideal I of R.

Proof. (i)⇔ (ii) by definition, since R[x] is generated over R by the powers
of x.

(ii) ⇒ (iii) ⇒ (iv) ⇒ (v) ⇒ (ii) are clear.
(ii) ⇒ (vi) Take I := R[x].
(vi) ⇒ (ii) Since (I : I) is an overring of R, R[x] ⊆ (I : I). But (I : I) is

also a fractional ideal of R. Hence R[x] too is a fractional ideal of R. �

Corollary 2.2 If x1, . . . , xn ∈ K are quasi integral over R, then R[x1, . . . , xn]
is contained in a finitely generated sub-R-module of K.
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Proof. If Mi := mi1R+· · ·+mikiR is a finite sub-R-module of K containing
R[xi] (Proposition 2.1), then R[x1, . . . , xn] is contained in the finite sub-R-
module M1 . . .Mn of K, generated by all the products m1j1 . . .mnjn , 1 ≤
ji ≤ ki. �

We recall that an element x ∈ K is integral over R if and only if R[x] is
a finitely generated sub-R-module of K, if and only if x ∈ (J : J) for some
finitely generated ideal J . Hence integral elements are almost integral and
the converse holds when R is Noetherian.

The complete integral closure of R in K, here denoted by R̃, is the set of
the elements of K that are almost integral over R. It follows from Corollary
2.2 that R̃ is an overring of R. One says that R is completely integrally
closed if R = R̃.

Denoting by R′ the integral closure of R, one has R ⊆ R′ ⊆ R̃ and
R′ = R̃ when R is Noetherian.

Proposition 2.3 The complete integral closure of a domain R is an inte-
grally closed domain.

Proof. Let x ∈ K be integral over R̃ and xn + an−1x
n−1 + · · · + a0 = 0

be an equation of integral dependance for x over R̃. Then x is integral over
the subring S := R[an−1, . . . , a0] of R̃ and S[x] = S + xS + · · · + xn−1S
is an S-module finitely generated. On the other hand, S is contained in
a finite sub-R-module M = y1R + · · · + yhR of K (Corollary 2.2). Hence
S[x] = S + xS + · · · + xn−1S is also contained in a finite sub-R-module
of K, namely S[x] ⊆ M + xM + · · · + xn−1M =

∑n−1
i=0

∑h
j=1 x

imjR. By

Proposition 2.1, we conclude that x is almost integral over R and so x ∈ R̃.
�

Remark 2.4 (1) The complete integral closure is not a proper closure
operation. In fact many examples have been given to show that the
complete integral closure of a domain might not be completely inte-
grally closed [21, 27, 30, 34, 40].

(2) A localization of a completely integrally closed domain is not neces-
sarily completely integrally closed; an example is given by the ring of
entire functions over the complex field [29].

Proposition 2.5 For any domain R,

R̃ = ∪{(I : I); I ∈ F (R)} = ∪{(Iv : Iv); I ∈ F (R)}.

Proof. By Proposition 2.1, (i) ⇔ (vi), R̃ = ∪{(I : I); I ∈ F (R)}. Now
observe that (I : I) ⊆ (Iv : I) = (Iv : Iv) ⊆ R̃. �

Proposition 2.6 The following conditions are equivalent for a domain R.
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(i) R is completely integrally closed;

(ii) R = (I : I), for each ideal I of R;

(iii) Each nonzero ideal of R is v-invertible.

Proof. It follows from Proposition 2.5 and Proposition 1.15. �

If each finitely generated ideal of R is v-invertible we say that R is a
v-domain. A recent nice survey on v-domains is [14].

Proposition 2.7 A completely integrally closed domain is a v-domain and
a v-domain is integrally closed.

Proof. A completely integrally closed domain is a v-domain by Proposition
2.6. Assume that R is a v-domain and let J be a finitely generated ideal
of R. Since J is v-invertible, we have (Jv : Jv) = R (Proposition 1.15) and
since R ⊆ (J : J) ⊆ (Jv : Jv) = R, we also have (J : J) = R. It follows that
a v-domain is integrally closed. �

Proposition 2.8 A valuation domain is completely integrally closed if and
only if it has dimension one.

Proof. We apply Proposition 2.6. Let V be a valuation domain. If V is
one-dimensional, then V does not have proper overrings [20, Theorem 17.6].
Hence V = (I : I), for each ideal I of R, and V is completely integrally
closed.

Conversely, let P a nonzero nonmaximal prime ideal of V . Then VP =
(P : P ) is a proper overring of R (Remark 1.8) and V is not completely
integrally closed. �

Proposition 2.9 Let R be a completely integrally closed domain and P a
divisorial prime ideal of R. Then P is a v-maximal ideal and RP is a DV R,
in particular P has height one.

Proof. Since P is v-invertible (Proposition 2.6), P is v-maximal by Propo-
sition 1.20. Let Q be a nonzero prime ideal such that Q  P and let
x ∈ P \Q. Then x(R : P ) ⊆ R and xQ(R : P ) ⊆ Q; whence Q(R : P ) ⊆ Q
and (R : P ) ⊆ (Q : Q) ⊆ R̃ = R (Proposition 2.5). This is a contra-
diction since P is divisorial. It follows that P has height one. To show
that RP is a DV R, it is enough to show that PRP is principal. Since
(P : P ) ⊆ R̃ = R  (R : P ), there exists x ∈ (R : P ) \ (P : P ). Then
xPRP ⊆ RP and xPRP * PRP ; whence xPRP = RP and PRP = x−1RP
is principal. �
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Remark 2.10 (1) A v-maximal ideal P of a completely integrally closed
domain need not be t-maximal; indeed, being v-invertible, P is t-
maximal if and only if it is v-finite if and only if it is t-invertible
(Proposition 1.21). An example is given in [19, Example 3.1].

(2) An height-one prime of a completely integrally closed domain need
not be divisorial. It is enough to consider the maximal ideal of a
non-discrete one-dimensional valuation domain (Proposition 2.8 and
Remark 1.8).

(3) It is easily seen that any intersection of completely integrally closed
domains with the same quotient field is a completely integrally closed
domain. However intersections of one-dimensional valuation domains
do not exhaust the class of completely integrally closed domains [35].

2.2 Prüfer v-multiplication domains

A domain whose localizations at maximal ideals are valuation domains is
called a Prüfer domain and a domain whose localizations at t-maximal ideals
are valuation domains is called a Prüfer v-multiplication domain, for short
a PvMD. Clearly a Prüfer domain is a PvMD.

In the next proposition, the equivalence (i) ⇔ (ii) is due to Griffin [24,
Theorem 5] and the equivalence (i) ⇔ (iii) is due to Kang [33].

If f(X) ∈ R[X] is a polynomial, we denote by cf the content of f(X),
that is the ideal of R generated by the coefficients of f(X). Given two
nonzero polynomials f(X), g(X) ∈ R[X] with d := deg f(X), the Dedekind-
Mertens formula says that cd+1

f cg = cdfcfg [20, Theorem 28.1].

Theorem 2.11 The following statements are equivalent for a domain R:

(i) R is a PvMD (i.e. RM is a valuation domain for each M ∈ t -Max(R));

(ii) Each finitely generated ideal of R is t-invertible;

(iii) R is integrally closed and each w-ideal is a t-ideal.

Proof. (i) ⇒ (ii) Let J be a finitely generated ideal of R and M ∈
t -Max(R). SinceRM is a valuation domain, JRM is a principal ideal. Hence,
denoting by tM the t-operation on RM , we have (JtRM )tM = (JRM )tM =
JRM . From this, we get that JtRM = JRM is principal and so Jt is t-
invertible (Proposition 1.16).

(ii) ⇒ (iii) Since t-invertible ideals are v-invertible (Proposition 1.16),
R is a v-domain and so is integrally closed (Proposition 2.7). To show that
w = t, let I ∈ F (R) and H ⊆ I be a finitely generated ideal. Since H is
t-invertible, there exists a finitely generated ideal L such that L ⊆ H(R : H)
and Lv = R. Now Hv(R : H) ⊆ R = (H : H) ⊆ (I : H), whence HvL ⊆
Hv((R : H)H) ⊆ I. Then Hv ⊆ (I : L) ⊆ Iw and so It = Iw.
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(iii)⇒ (i) Given a, b ∈ R\{0}, we have to show that the ideal aRM+bRM
is invertible, for each t-maximal ideal M .

Since R is integrally closed, for each nonzero finitely generated ideal J ,
we have (J : J) = R. Since in addition w = t, we also have R = (J : J)w =
(Jw : Jw) = (Jt : Jt) = (Jv : Jv). It follows that each J is v-invertible.

By applying the Dedekind-Mertens formula for the content to the poly-
nomials f := aX + b, g := aX − b ∈ R[X], we get

(aR+ bR)3 = c2fcg = cfcfg = (aR+ bR)(a2R+ b2R),

whence

((aR+ bR)2)t = ((aR+ bR)2)v = (a2R+ b2R)v = (a2R+ b2R)t,

because the ideal (aR+ bR) is v-invertible. Localizing at a t-maximal ideal
M , we get

(aR+ bR)2RM = (a2R+ b2R)RM ,

because w = t. It follows that ab ∈ a2RM + b2RM and this is enough to
conclude that the ideal aRM + bRM is principal. In fact, if ab = xa2 + yb2,
x, y ∈ R, multiplying by y/a2, we obtain that z := yb/a is integral over RM .
Then z ∈ RM and (aRM + bRM )(yRM + (1− z)RM ) = aRM . �

As a consequence, we recover some well known characterizations of Prüfer
domains.

Theorem 2.12 The following statements are equivalent for a domain R:

(i) R is a Prüfer domain (i.e. RM is a valuation domain for each maximal
ideal M);

(ii) R is a PvMD and each ideal is a t-ideal;

(iii) R is integrally closed and each ideal is a t-ideal;

(iv) Each finitely generated ideal of R is invertible.

Proof. (i)⇒ (ii) follows from the fact that each ideal of a valuation domain
is a t-ideal (Remark 1.8, (a)). Indeed, let I ⊆ R be an ideal and J ⊆ I any
finitely generated ideal. By t-compatibility (Proposition 1.12, (c)), for each
maximal ideal M we have JtRM ⊆ (JRM )tM = JRM ⊆ IRM . Hence Jt ⊆ I
and I is a t-ideal.

(ii) ⇒ (iii) ⇒ (iv) by Theorem 2.11.
(iv) ⇒ (ii) R is a PvMD by Theorem 2.11. To show that each ideal

is a t-ideal, it is enough to observe that each finitely generated ideal, being
invertible, is a t-ideal (Proposition 1.14).

(ii) ⇒ (i) is clear. �
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Remark 2.13 A v-domain is not necessarily a PvMD; indeed a v-invertible
finitely generated ideal J is t-invertible if and only if its v-inverse (R : J)
is v-finite (Proposition 1.16). The first example of a non-PvMD v-domain
was given by J. Dieudonné in 1941 [10].

A domain with the property that (R : J) is v-finite whenever J is finitely
generated was named in [12] a v-coherent domain. With this terminology, a
PvMD is precisely a v-coherent v-domain.

2.3 Mori domains

A Mori domain is a domain satisfying the ascending chain condition on
integral divisorial ideals (for short acc on divisorial ideals). Clearly the
class of Mori domains includes Noetherian domains. A good reference for
Mori domains is [4].

Theorem 2.14 The following statements are equivalent for a domain R:

(i) R is a Mori domain (i.e. R satisfies the acc on divisorial ideals);

(ii) Any descending chain of divisorial ideals {Iα} of R such that ∩Iα 6= (0)
stabilizes;

(iii) Each nonzero ideal of R is t-finite.

Proof. (i) ⇒ (ii) Let {Iα} be a descending chain of divisorial ideals of
R. Assume that I := ∩Iα 6= (0) and let x ∈ I be a nonzero element.
Then (R : Iα) ⊆ (R : I) ⊆ (R : xR) = x−1R and so {x(R : Iα)} is
an ascending chain of proper integral divisorial ideals of R. By the acc,
x(R : Iβ) = x(R : Iγ), that is Iβ = Iγ , for γ ≥ β.

(ii) ⇒ (i) Let {Iα} be an ascending chain of proper integral divisorial
ideals of R and I := ∪Iα. Since R ⊆ (R : I) ⊆ (R : Iα), we have ∩(R :
Iα) 6= (0). Hence the descending chain of ideals {(R : Iα)} stabilizes and,
by divisoriality, so does the chain {Iα}.

(i)⇒ (iii) It is enough to consider integral ideals. Let I ⊆ R be a nonzero
ideal and let Σ := {Hv ;H is a nonzero finitely generated ideal and H ⊆ I}.
By the acc on divisorial ideals, Σ has a maximal element Jv. We show that
Jv = Iv. Clearly Jv ⊆ Iv. If Jv 6= Iv, then also Jv  I. Let x ∈ I \ Jv and
consider the ideal F := J + xR. Then Fv ∈ Σ and Jv  Fv = (Jv + xR)v.
By this contradiction, Jv = Iv.

(iii) ⇒ (i) Let {Iα} be an ascending chain of proper integral divisorial
ideals of R and I := ∪Iα. Since I is t-finite, we have I = (x1R+ · · ·+xnR)v
with xj ∈ I, j = 1, . . . , n. Hence xj ∈ Iβ for some index β and all j and it
follows that Iβ = Iγ = I for γ ≥ β. �

Proposition 2.15 A valuation domain is a Mori domain if and only if it
is a DV R.
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Proof. Since each ideal of a valuation domain is a t-ideal, by Theorem
2.14, a valuation domain is Mori if and only if it is Noetherian, equivalently
a DV R. �

Proposition 2.16 A generalized ring of fractions of a Mori domain is a
Mori domain.

Proof. Let R be a Mori domain and let S be a multiplicative set of nonzero
integral ideals of R. We show that each nonzero ideal of RS is tS-finite. For
this it is enough to consider integral ideals. Let I ′ ⊆ RS be a nonzero ideal
and set I := I ′ ∩R. Then IRS ⊆ I ′ ⊆ IS . In fact, for the second inclusion,
if x ∈ I ′, we have xH ∈ I ′∩R = I for some H ∈ S. Hence x ∈ (I : H) ⊆ IS .

Since I is t-finite, Iv = Jv with J ⊆ I finitely generated. By applying
Proposition 1.12, we get

IS ⊆ (Iv)S = (Jv)S = (JRS)vS ⊆ (IRS)vS ⊆ (I ′)vS ⊆ (IS)vS ,

whence (I ′)vS = (JRS)vS . �

Proposition 2.17 An intersection with finite character of Mori domains
is Mori.

Proof. Let {Aλ} be a family of Mori domains such that R = ∩Aλ with
finite character. To prove that R is Mori, we show that each ascending chain
of integral divisorial ideals {Ij} of R stabilizes. Writing Ij = (R : Hj), we
have Ij = (∩Aλ : Hj) = ∩(Aλ : HjAλ). Since by finite character HjAλ = Aλ
for all indexes j and almost all indexes λ and since the ascending chain of
ideals {(Aλ : HjAλ)} stabilizes for each λ, we conclude that the chain {Ij}
stabilizes. �

In the study of Mori domains, it is useful to know their t-invertible t-
primes [5, 6].

Proposition 2.18 Let R be a Mori domain.

(1) Each t-ideal of R is divisorial.

(2) The following statements are equivalent for a divisorial prime P of R:

(i) P is t-invertible;

(ii) (P : P )  (R : P );

(iii) RP is a DV R.

Under these conditions, P is a t-maximal ideal of height one.
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Proof. (1) follows from Proposition 1.2, because each ideal of R is t-finite
(Theorem 2.14).

(2) (i) ⇒ (ii) (P : P )  (R : P ) because (P : P ) = R (Proposition 1.15)
while P (R : P ) = R.

(ii) ⇒ (iii) If x ∈ (R : P ) \ (P : P ), xPRP = RP and so PRP = x−1RP
is principal. Since RP is a Mori domain (Proposition 2.16), the strictly
decreasing chain of principal ideals {x−nRP }n≥0 ha zero intersection. It
follows that P has height one and then RP is a DV R.

(iii) ⇒ (i) P is t-finite because R is Mori. Since PRP is principal, P is
v-invertible by Proposition 1.16.

Condition (i) implies that P is a t-maximal ideal by Propositions 1.20
and part (1). �

By Proposition 2.16, each localization of a Mori domain is Mori. For a
converse we need the t-finite character.

Proposition 2.19 Each proper divisorial ideal of a Mori domain is con-
tained only in finitely many divisorial primes. In particular a Mori domain
has t-finite character.

Proof. Let F be the family of divisorial prime ideals containing the nonzero
ideal I. By the acc, we can choose a sequence of divisorial primes P1, P2, . . . , Pn, . . .
such that P1 is maximal in F and Pn is maximal in F \ {P1, . . . , Pn−1} for
n ≥ 2. Setting In = P1 ∩ · · · ∩ Pn, we obtain a strictly descending chain
of divisorial ideals {Ij}j≥1 whose intersection contains I. Hence the chain
stabilizes and it follows that F is finite. �

Proposition 2.20 The following statements are equivalent for a domain
R:

(i) R is Mori;

(ii) RM is Mori for each t-maximal ideal M and R has t-finite character.

Proof. (i) ⇒ (ii) by Propositions 2.16 and 2.19.
(ii) ⇒ (i) follows from Proposition 2.17. �

Remark 2.21 (1) If R is locally Noetherian and the intersection R =
∩{RM ;M ∈ Max(R)} has finite character, then R is Noetherian. How-
ever a locally Noetherian domain need not be Noetherian [28, Example
2.2] and a Noetherian domain need not have finite character (just take
the polynomial ring k[X,Y ], k a field).

(2) A finite intersection of Noetherian domains is Mori by Proposition
2.17, but need not be Noetherian. For example, let F be a field and
let X, Y be independent indeterminate over F . Then, by properties of
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the D+M construction [18, Theorem 4.6], R1 := F (X2)+Y F (X)[[Y ]]
and R2 := F (X + X2) + Y F (X)[[Y ]] are Noetherian domains, but
R := R1 ∩R2 = F + Y F (X)[[Y ]] is not Noetherian.

(3) A Mori domain such that RM is Noetherian for each t-maximal ideal
M is called a strong Mori domain. These domains were firstly studied
in [41, 42]; they are precisely the domains satisfying the acc on w-
ideals. A polynomial ring in infinitely many indeterminates over a
Strong Mori domain is a Strong Mori domain that is not Noetherian
[36].

2.4 Krull domains

A Krull domain is classically defined as an intersection of DV Rs with finite
character. We denote by X1(R) the set of the height-one prime ideals of R.

Theorem 2.22 The following statements are equivalent for a domain R:

(i) R is a Krull domain (i.e. R is an intersection of DV Rs with finite
character);

(ii) RP is a DV R for each P ∈ X1(R) and R = ∩P∈X1(R)RP with finite
character;

(iii) RM is a DV R for each M ∈ t -Max(R) and R has t-finite character;

(iv) R is a completely integrally closed Mori domain;

(v) R is completely integrally closed and each t-maximal ideal is divisorial;

(vi) R is a PvMD and a Mori domain;

(vii) Each nonzero ideal of R is t-invertible.

Proof. (i)⇒ (iv) Since DV Rs are completely integrally closed (Proposition
2.8) and Noetherian, R is completely integrally closed and Mori (Proposition
2.17).

(iv)⇒ (iii) R has t-finite character and each M ∈ t -Max(R) is divisorial,
because R is a Mori domain. Since R is completely integrally closed, RM is
a DV R by Proposition 2.9.

(iii) ⇒ (ii) It is enough to observe that X1(R) = t -Max(R). In fact,
height-one primes are t-ideals by Proposition 1.7. Conversely, if RM is a
DV R for each M ∈ t -Max(R), each M has height one.

(ii) ⇒ (i) is clear.
(iv) ⇒ (v) Because in Mori domains t = v (Proposition 2.18).
(v)⇒ (vii) If I is not t-invertible, I(R : I) ⊆M for some t-maximal ideal

M of R. Thus (R : M) ⊆ (R : I(R : I)) = ((R : I) : (R : I)) = R, where the
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last equality holds because R is completely integrally closed (Proposition
2.6). Then Mv = R, which is a contradiction.

(vii) ⇒ (iv) Since t-invertible ideals are v-invertible and t-finite (Propo-
sition 1.16), R is completely integrally closed by Proposition 2.6 and is Mori
by Proposition 2.14.

(iii) ⇒ (vi) R is a PvMD by Theorem 2.11 and is Mori by Proposition
2.17.

(vi) ⇒ (vii) Since R is a PvMD each finitely generated ideal is t-
invertible and since R is Mori each ideal is t-finite, hence t-invertible. �

Proposition 2.23 Noetherian integrally closed domains are Krull domains.

Proof. Since for Noetherian domains the integral closure and the complete
integral closure coincide (Section 2.1), we can apply Theorem 2.22. �

A celebrated theorem of Mori-Nagata, proved in the middle fifties, asserts
that more generally the integral closure of a Noetherian domain is Krull. A
proof can be found in [15, Theorem 4.3].

An integrally closed Noetherian domain of dimension one is called a
Dedekind domain.

Theorem 2.24 The following statements are equivalent for a domain R:

(i) R is a Dedekind domain (i.e. R is an integrally closed Noetherian
domain of dimension one);

(ii) R is a one-dimensional Krull domain;

(iii) RM is a DV R for each M ∈ Max(R) and R = ∩M∈Max(R)RM with
finite character;

(iv) R is a Prüfer and a Mori domain;

(v) R is a Prüfer and a Krull domain;

(vi) Each nonzero ideal of R is invertible.

Proof. It follows from Theorem 2.22, recalling that each ideal of a Prüfer
domain is a t-ideal and that a Mori valuation domain is a DV R (Proposition
2.15). �

Remark 2.25 (1) An integrally closed Mori domain need not be Krull,
in fact it need not be completely integrally closed. For example we
can take R := Q+XC[[X]], where Q is the field of algebraic numbers
[18, Theorems 1.2 and 4.11].
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(2) The complete integral closure R̃ of a Mori domain R is not always a
Krull domain. In fact there are examples of Mori domains R such that
R̃ is not Mori or is not completely integrally closed [37]. On the other
hand, if R is seminormal or (R : R̃) 6= (0), then R̃ is a Krull domain
[4, Section 7].

(3) If R is a completely integrally closed domain (i.e. each nonzero ideal is
v-invertible), to check that R is a Krull domain (i.e. each nonzero ideal
is t-invertible) it is enough to check that each divisorial prime is t-finite.
However in general a domain whose divisorial primes are all t-finite is
not necessarily a Mori domain, for example consider R := Z+XQ[[X]]
[4, Section 2].

By Theorem 2.22 a domain R is a Krull domain if and only if the semi-
group Ft(R) of its t-ideals is a group. We now show that this is equivalent
to say that the semigroup Fv(R) of divisorial ideals is a free abelian group,
generated by the height-one prime ideals. Recall that, for a prime ideal P
and an integer e ≥ 1, P (e) := P eRP ∩R.

Proposition 2.26 Let R be a Krull domain and I ⊆ R a nonzero integral

ideal. Then I is divisorial if and only if I = (P e11 . . . P enn )v = P
(e1)
1 ∩ · · · ∩

P
(en)
n , where P1, . . . , Pn ∈ X1(R) and e1, . . . , en ≥ 0 are uniquely deter-

mined.

Proof. Since R is a Krull domain, the t-operation and the v-operation
coincide, X1(R) = t -Max(R) and R = ∩P∈X1(R)RP with finite character
(Theorem 2.22). Hence an integral divisorial ideal I of R is contained at
most in finitely many height-one primes P1, . . . , Pn. Since RPi is a DV R,
IRPi = P eii for some ei ≥ 0, i = 1, . . . , n, and

I = ∩P∈X1(R)IRP = P e11 ∩ · · · ∩ P
en
n ∩R = P

(e1)
1 ∩ · · · ∩ P (en)

n .

Conversely, by t-compatibility, P (e) := P eRP ∩R is a t-ideal, for each height-
one prime P and a finite intersection of divisorial ideals is a divisorial ideal.

Now let J := P e11 . . . P enn . Since J is strictly v-finite (being t-invertible),
we can write Jv = Hv, with H ⊆ J and H finitely generated. By t-
compatibility, applying Proposition 1.12 (c), we have JvRP = HvRP ⊆
(HRP )vP = HRP ⊆ JRP , because RP is a DV R for each P ∈ X1(R).
Whence JvRP = IRP for each P ∈ X1(R) = t -Max(R) and it follows that
Jv = I. Since I is t-invertible, the height-one prime ideals P1, . . . , Pn and
the exponents e1, . . . , en are uniquely determined. �

In the rest of this section, for an ideal I of R and n ≥ 0, we set I−n :=
(R : In).
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Theorem 2.27 The following statements are equivalent for a domain R:

(i) R is a Krull domain;

(ii) A nonzero ideal I of R is divisorial if and only if I = (P t11 . . . P tnn )v,
where P1, . . . , Pn ∈ X1(R) and t1, . . . , tn ∈ Z are uniquely determined.

Proof. (i)⇒ (ii) By Proposition 2.26 each integral divisorial ideal of R is of
the form (P e11 . . . P enn )v, where P1, . . . , Pn ∈ X1(R) and ei ≥ 1, i = 1, . . . , n
are uniquely determined.

Let J be any divisorial ideal and let d ∈ R\{0} be such that I := dJ ⊆ R.
Write the integral principal ideal dR as a v-product of height-one primes, say
dJ = (Qa11 . . . Qann )v, ai ≥ 1. Since Qi is v-invertible and the v-inverse of Qaii
is (R : Qaii ) = ((R : Qi)

ai)v = Q−aii , we have d−1R = (R : Qa11 . . . Qann ) =
(Q−a11 . . . Q−ann )v. Since J = (d−1R)dJ and the integral ideal dJ is also
a v-product of height-one primes, we get that J is uniquely expressible as
a v-product J = (P t11 . . . P tnn )v, where P1, . . . , Pn ∈ X1(R) and ti ∈ Z,
i = 1, . . . , n.

(ii)⇒ (i) For each x ∈ K\{0}, we have xR = (
∏
P∈X1(R) P

tP (x))v, where

tP (x) ∈ Z is uniquely determined and tP (x) = 0 for almost all P ∈ X1(R).
In addition xR ⊆ R if and only if tP (x) ≥ 0 for each P ∈ X1(R). It is easy
to check that the map

vP : K \ {0} −→ Z ; x 7→ tP (x)

is a discrete valuation for all P ∈ X1(R). Denoting by VP the valuation
domain associated to vP , we have xR ⊆ R if and only if x ∈ VP for all
P ∈ X1(R). Hence R = ∩P∈X1(R)VP with finite character and it follows
that R is a Krull domain. �

Proposition 2.28 R is a Dedekind domain if and only if each nonzero ideal
I of R can be written in the form I = P t11 . . . P tnn , where P1, . . . , Pn are prime
ideals and t1, . . . , tn ∈ Z are uniquely determined.

Remark 2.29 The abelian free group Z(X1(R)) :=
⊕

P∈X1(R) PZ is a lattice
ordered group with respect to the product order. In addition, each nonempty
set of positive elements has (at least) a minimal element and the set of the
minimal positive elements is precisely X1(R).

On the other hand, also the set of divisorial ideals Fv(R) can be endowed
with a structure of lattice ordered semigroup setting Jv ≤ Iv if J ⊆ I (with
inf(Iv, Jv) = Iv ∩ Jv and sup(Iv, Jv) = (I + J)v).

The previous theorem says that R is a Krull domain if and only if Fv(R)
is a group and there is an isomorphim of lattice groups Fv(R) −→ Z(X1(R))

which reverse the order, given by

Fv(R) −→ Z(X1(R)) :=
⊕

P∈X1(R)

PZ , (P t11 . . . P tnn )v 7→ t1P1 + · · ·+ tnPn.
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The additive group Z(X1(R)) is called the divisor group of the Krull do-
main R.

3 Arithmetical properties

In this section we show how some arithmetical properties of a domain R, like
the existence of a greatest common divisor or of a factorization into prime
elements, are reflected by the properties of the semigroup of t-ideals of R,
or more precisely by the properties of the Class Group of R.

The t-Class Group or simply the Class Group of a domain R is the
quotient group C(R) := Invt(R)/P (R) of the t-invertible t-ideals modulo
the principal ideals. If R is a Prüfer domain each ideal is a t-ideal and so
the Class Group coincides with the Class Group of the invertible ideals, also
called the Picard Group of R. If R is a Krull domain, since each t-ideal
is divisorial and v-invertible, the Class Group coincides with the classical
Divisor Class Group [15]. A recent survey on the Class Group is [2].

We recall some basic definitions. Given two elements x, y of a domain
R, we say that y divides x in R if there exists an element z ∈ R such that
x = yz; hence y divides x if and only if xR ⊆ yR. The zero element of R
does not divide any other element, but it is divided by any y ∈ R. Hence
we will consider nonzero elements.

The invertible elements of R (also called the units of R) are precisely
the divisors of 1; they form a multiplicative group, that we denote by U(R).
We say that y is associated to x in R if there exists u ∈ U(R) such that
y = ux. It is clear that this is an equivalence relation on R and that x and
y are associated if and only if x divides y and y divides x.

Any element x ∈ R is divided by all the units of R and by all its as-
sociated elements: in fact x = 1x = u(u−1x), for each u ∈ U(R). We say
that d is a proper divisor of x if d divides x and it is neither invertible nor
associated to x. A nonzero noninvertible element is called irreducible if it
has no proper divisors and it is called a prime element if it generates a prime
ideal. Hence p is a prime element if and only if, when p divides a product
xy, necessarily either p divides x or p divides y. By using this, it is easy to
check that any prime element is irreducible.

3.1 GCD-domains

Given two nonzero elements x, y of a domain R, we say that d is a greatest
common divisor, for short a GCD, of x and y and write d = (x, y) if

(a) d divides x and y; (b) if d′ divides x and y then d′ divides d.
Dually, we say that m is a lowest common multiple, for short an lcm, of

x and y and write m = [x, y] if
(a) x and y divide m; (b) if x and y divide m′, then m divides m′.
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It is clear that if d is a greatest common divisor of x and y (resp. m is a
lowest common multiple), then also ud is a greatest common divisor (resp.
um is a lowest common multiple), for each unit u ∈ U(R). If x and y have
no proper common divisors, we write (x, y) = 1 and say that x and y are
coprime.

If any two nonzero elements of R have a greatest common divisor (resp.
a lowest common multiple), we say that R is a GCD-domain (resp. an lcm-
domain). We will see soon that these two properties are equivalent. Recent
results on GCD-domains and their generalizations can be found in [1].

An important property of GCD-domains is that irreducible and prime
elements coincide.

Lemma 3.1 (Euclide) Let R be a GCD-domain and let x, y, z ∈ R be
nonzero elements. If x divides yz and (x, y) = 1, then x divides z.

Proof. (xz, yz) exists because R is a GCD domain and it is easy to see
that (xz, yz) = z(x, y). Then, if (x, y) = 1 and x divides yz, it follows that
x divides (xz, yz) = z(x, y) = z. �

Proposition 3.2 If R is a GCD-domain, then each irreducible element is
prime.

Proof. Let p ∈ R be an irreducible element and assume that p divides xy.
If p does not divide x, then (p, x) = 1 and so p divides y by Lemma 3.1. �

If d = (x, y) is a GCD of x and y and it is possible write d = ax + by,
for some a, b ∈ R, we say that this expression is a Bezout identity.

Proposition 3.3 Given two nonzero elements x, y of a domain R, the
following conditions are equivalent:

(i) xR+ yR = dR is a principal ideal;

(ii) (x, y) = d and d = ax + by, for some a, b ∈ R (i.e. there exists a
Bezout identity).

Proof. Recall that d divides x and y if and only if xR+ yR ⊆ dR.
(i) ⇒ (ii) If xR + yR = dR, d divides x, y and d = ax + by, for some

a, b ∈ R. Hence each d′ dividing x and y divides d and it follows that
(x, y) = d.

(ii)⇒ (i) If (x, y) = d, xR+yR ⊆ dR and if d = ax+by, dR ⊆ xR+yR.
�

A domain satisfying the equivalent conditions of Proposition 3.3 is called
a Bezout domain and if each ideal of R is a principal ideal, R is called a
principal ideal domain, for short a PID.

28



Proposition 3.4 The following conditions are equivalent for a domain R:

(i) R is a PID;

(ii) R is a Noetherian Bezout domain.

Proof. By induction, it follows directly from Proposition 3.3. �

We now characterize GCD-domains by means of t-ideals.

Proposition 3.5 Given two nonzero elements x, y of a domain R, the
following conditions are equivalent:

(i) x and y have a lowest common multiple and [x, y] = m;

(ii) xR ∩ yR = mR is a principal ideal;

(iii) (xR+ yR)v = dR is a principal ideal.

In addition, under (any of) these conditions, (x, y) = d and dm = xy.

Proof. (i) ⇔ (ii) follows directly from the definition of lcm.
(ii) ⇔ (iii) We have (R : xR+ yR) = x−1R ∩ y−1R and so xy(R : xR+

yR) = xR∩yR. It follows that (xR+yR)v is principal if and only if xR∩yR
is principal. In addition, xR ∩ yR = mR if and only if (xR + yR)v = dR,
with d = xy/m.

To finish, d′ divides x and y if and only if xR+ yR ⊆ (xR+ yR)v ⊆ d′R.
Thus, if (xR + yR)v = dR, we have dR ⊆ d′R. It follows that d′ divides d
and so (x, y) = d. �

Remark 3.6 By Proposition 3.5, the existence of a lowest common multiple
of two elements implies the existence of a greatest common divisor. But the
converse is not true. Thus (x, y) = d does not necessarily imply (xR+yR)v =
dR. For example, in R := k[X2, X3], k a field and X an indeterminate over
k, we have (X2, X3) = 1, but X2, X3 do not have a lowest common multiple.
In fact, up to units, the lcm of X2 and X3 in k[X] is X5, but X5 does not
divide any other common multiple of X2 and X3 in R (for example does
not divide X6).

Proposition 3.7 The following conditions are equivalent for a domain R:

(i) R is an lcm-domain;

(ii) R is a GCD-domain;

(iii) xR ∩ yR is a principal ideal, for any x, y ∈ R \ {0};

(iv) (xR+ yR)v = dR is a principal ideal, for any x, y ∈ R \ {0}.
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Proof. (i) ⇔ (iii) ⇔ (iv) ⇒ (ii) follow from Proposition 3.5.
(ii) ⇒ (i) Let x, y ∈ R \ {0} and (x, y) = d. Set m := xy/d. Clearly x

and y divide m. We prove that [x, y] = m by using Euclide’s Lemma. We
have x = da and y = db, with a, b ∈ R and (a, b) = 1. If x and y divide an
element m′, then m′ = xa′ = yb′. Whence daa′ = dbb′ and aa′ = bb′. Since a
divides bb′ and (a, b) = 1, by Lemma 3.1 a divides b′. Hence m = xy/d = ya
divides m′ = yb′. �

The following theorem for PvMDs is due to Bouvier and Zafrullah [8,
Corollary 1.5].

Theorem 3.8 The following conditions are equivalent for a domain R:

(i) R is a GCD-domain (resp. a Bezout domain);

(ii) R is a PvMD (resp. a Prüfer domain) with trivial Class Group.

Proof. By induction, it follows from Proposition 3.7, recalling that R is a
PvMD if and only if each finitely generated ideal is t-invertible (Theorem
2.11) and a Prüfer domain is a PvMD such that d = t (Theorem 2.12). �

3.2 Unique factorization domains

A domain R is called atomic if any nonzero noninvertible element x ∈ R is a
product of irreducible elements. This property is granted by the ascending
chain condition on integral principal ideals (for short accp).

Proposition 3.9 If R is a domain satisfying accp, then R is atomic.

Proof. Let S be the set of principal proper ideals xR of R such that x is
not a product of irreducible elements. If S is not empty, S has a maximal
element mR (by the accp). Since m is not irreducible, m has proper divisors.
Hence we can write m = xy with mR  xR  R and mR  yR  R. By
the maximality of mR, x and y can be factorized into irreducible elements;
but then also m can be factorized. This contradiction shows that S must
be empty. �

Remark 3.10 (1) By the proposition above, any Mori (in particular Noethe-
rian) domain is atomic.

(2) There exist atomic domains not satisfying accp [23].

We say that R is a unique factorization domain, for short a UFD, if

(a) R is atomic; (b) If x = p1 . . . pn = q1 . . . qm are two factorizations of
x in irreducible elements, then n = m and, after a reordering, pi is associated
to qi, for i = 1, . . . , n.
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Proposition 3.11 A UFD is a GCD-domain.

Proof. If either x or y is invertibile, we have (x, y) = 1. Otherwise we
can write x = pa11 . . . pann , y = pb11 . . . pbnn , where p1, . . . , pn are distinct prime
elements of R and ai, bi ≥ 0, for i = 1, . . . , n. Then it is easy to check that
(x, y) = pm1

1 . . . pmn
n , where mi := min{ai, bi}, i = 1, . . . , n. �

Proposition 3.12 Let R be an atomic domain. The following conditions
are equivalent:

(i) R is a UFD;

(ii) Each irreducible element of R is prime;

(iii) R is a GCD-domain.

Proof. (i) ⇒ (iii) by Proposition 3.11.
(iii) ⇒ (ii) by Proposition 3.2.
(ii) ⇒ (i) Let x = p1 . . . pn = q1 . . . qm be two factorizations of x into ir-

reducible elements. Since p1 is prime, it divides one of the qi. By reordering,
we can assume that p1 divides q1 and so, since also q1 is prime, p1 = u1q1,
with u1 ∈ U(R). Canceling p1, we get p2 . . . pn = q2 . . . qm. Repeating this
process, we obtain that, after a reordering, n = m and pi is associated to qi,
for i = 1, . . . , n. �

Corollary 3.13 A domain R is a UFD if and only if each nonzero nonin-
vertible element of R is a product of finitely many prime elements.

We end by the theorem of Samuel [39].

Theorem 3.14 The following conditions are equivalent for a domain R:

(i) R is a UFD;

(ii) R is Krull domain with trivial Class Group;

(iii) R is Krull domain and each height-one prime ideal is principal.

Proof. (i) ⇒ (iii) Let x ∈ R be a nonzero element and let P be a minimal
prime of xR. Then P contains a prime p dividing x and xR ⊆ pR ⊆ P . It
follows that pR = P . Since an height-one prime is minimal over a principal
ideal, we get that each height-one prime is principal. Hence the localizations
of R at the height-one prime ideals are DV Rs. In addition each nonzero
x ∈ R is contained at most in finitely many height-one primes because it
has at most finitely many prime divisors. We conclude that R is a Krull
domain (Theorem 2.22).
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(iii)⇒ (ii) By Theorem 2.27, each t-ideal of R can be written in the form
It = (P e11 . . . P enn )t, where P1, . . . , Pn are height-one primes and e1, . . . , en ≥
0 are uniquely determined. If Pi = piR, with pi a prime element, we get
that It = pe11 . . . penn R is principal.

(ii) ⇒ (i) Each height-one prime ideal of a Krull domain is a t-invertible
t-prime, hence it is principal. By Theorem 2.27, each nonzero principal ideal
of R can be written in the form xR = (P e11 . . . P enn )t, where P1, . . . , Pn are
height one primes and e1, . . . , en ≥ 0 are uniquely determined. If Pi = piR,
with pi a prime element, we get that xR = pe11 . . . penn R and x = upe11 . . . penn ,
u ∈ U(R), is a factorization of x into prime elements. �

As a consequence, we get a classical characterization of principal ideal
domains.

Theorem 3.15 The following conditions are equivalent for a domain R:

(i) R is a PID;

(ii) R is a one-dimensional UFD;

(iii) R is a Dedekind UFD;

(iv) R is a Dedekind domain with trivial Class Group.

Proof. (i)⇒ (ii) R is atomic by Proposition 3.9, because a PID is Noethe-
rian. In addition R is a Bezout domain, hence a GCD-domain (Proposition
3.3). We conclude that R is a UFD by Proposition 3.12.

(ii) ⇒ (iii) ⇒ (iv) by Theorem 3.14, because a one-dimensional Krull
domain is Dedekind (Theorem 2.24).

(iv) ⇒ (i) because each ideal of a Dedekind domain is invertible (Theo-
rem 2.24). �

4 Extension theorems

In general, if R ⊆ T is an extension of domains, there is no way of comparing
the Class Groups of R and T , unless the extension is t-compatible. We
denote by v′ (resp. t′) the v-operation (resp. t-operation) on T .

Proposition 4.1 Let R ⊆ T be a t-compatible extension of domains. If I
is a v-invertible (respectively t-invertible) ideal of R, IT is a v′-invertible
(respectively t′-invertible) ideal of T .

Proof. If I is v-invertible, the ideal (I(R : I))v = R is clearly v-finite.
Hence, by Proposition 1.10,

T = (I(R : I))vT ⊆ (I(R : I)T )v′ ⊆ (IT (T : IT ))v′ ⊆ T

and so (IT (T : IT ))v′ = T . The proof for the t-operation is the same. �
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Proposition 4.2 Let R ⊆ T be a t-compatible extension of domains. Then
the map

θ : Invt(R) −→ Invt′(T ) ; I 7→ (IT )t′

is a homomorphism of groups which induces a homomorphism of Class
Groups

θ : C(R) −→ C(T ) ; I 7→ (IT )t′ .

Proof. It follows directly from Proposition 4.1, noting that if I is principal,
also θ(I) is principal. �

Remark 4.3 An extension R ⊆ T of Krull domains is t-compatible if and
only if T satisfies the so called Condition PDE (for pas d’eclatement): if Q
is an height-one prime of T , either Q ∩ R = (0) or Q ∩ R is an height-one
prime of R.

We are interested in the two classical cases where T = RS is a generalized
ring of fractions or T = R[X] is a polynomial ring. Note that if I ∈ Invt(R),
since I and (R : I) are t-finite, we have (IRS)t′ = IS (Proposition 1.12 (c))
and (IR[X])t′ = I[X] (Proposition 1.11).

4.1 Generalized rings of fractions

We start by showing that a generalized ring of fractions of a PvMD is still a
PvMD. It is interesting to observe that, if R is a PvMD, a generalized ring
of fractions of R is an intersection of localizations; the converse is always
true (Remark 1.13 (2)).

Proposition 4.4 Let R be a PvMD (resp. a Krull domain) and let S be
a multiplicative system of nonzero ideals of R. Then:

(1) RS = ∩{R(N∩R) ; N ∈ t′ -Max(RS)}.

(2) RS is a PvMD (resp. a Krull domain).

Proof. Set T := RS .
(1) Let N be a t′-maximal ideal of T . Then by t-compatibility P :=

N ∩ R is a t-prime ideal of R (Proposition 1.10) and RP ⊆ TN . Since
R is a PvMD, RP is a valuation domain. Hence TN = RP and finally
T := ∩{TN ; N ∈ t′ -Max(RS)} = ∩{R(N∩R) ; N ∈ t′ -Max(T )}.

(2) As in (1), if R is a PvMD, TN is a valuation domain, for each
N ∈ t′ -Max(T ). Hence T is a PvMD.

By Theorem 2.22, a Krull domain is precisely a Mori PvMD. If R is
Krull, T is a PvMD and is also a Mori domain by Proposition 2.16. Hence
T is a Krull domain. �
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In general the canonical homomorphism C(R) −→ C(RS), I 7→ IS , is
neither injective nor surjective, even when S is particularly good [2, Section
6]. However we will show soon that it does be surjective when R is a PvMD,
in particular a Krull domain. Before, we consider the interesting case where
each t-ideal in S is t-invertible. This condition is always satisfied when R is
a Krull domain.

Proposition 4.5 Let S be a saturated multiplicative system of nonzero ide-
als of R. Then the following conditions are equivalent:

(i) S ∩ Ft(R) ⊆ Invt(R);

(ii) S ∩ t -Spec(R) ⊆ Invt(R);

(iii) S∩Ft(R) = {(M e1
1 . . .M en

n )t; Mi ∈ S is a t-invertible t-prime ideal, ei ≥
0, i = 1, . . . , n}.

Proof. (i) ⇒ (ii) and (iii) ⇒ (i) are clear.
(ii) ⇒ (iii) Since S is saturated, if I 6= R is a t-ideal in S, any t-prime P

containing I is in S; thus P is t-invertible and hence t-maximal. In addition
P is minimal over I, because a minimal prime of a t-ideal is a t-prime.

We now show that I is contained in finitely many t-primes. By satura-
tion, given any chain of ideals I0 ⊆ I1 ⊆ · · · ⊆ Is ⊆ · · · in S, their union
I :=

⋃
{Ij ; j ≥ 0} is an ideal in S. Since (Ij)t and It are t-invertible (being

in S), they are t-finite. Hence any chain of t-ideals in S stabilizes and any
nonempty subset of t-ideals of S has a maximal element. Assume that the
set of proper t-ideals of S contained in infinitely many t-primes is not empty
and let J be a maximal element of this set. Let P be a t-prime containing
J . Since P 6= J and P is t-invertible, we have that J ( ((R : P )J)t ( R.
The ideal J ′ := ((R : P )J)t is in S and, by the maximality of J , is contained
in finitely many t-primes. Hence the ideal J = (PJ ′)t is also contained in
finitely many t-primes, which is a contradiction.

Let M be a t-maximal ideal containing I. Since M is minimal over I,
IRM isMRM -primary and sinceM is t-invertibleMRM = xRM is principal.
Hence IRM = xeRM = M eRM for some e ≥ 1 [20, Theorem 7.6].

To finish, if M1, · · · ,Mn are the t-maximal ideals containing I, then

I =
⋂
{IRM ;M ∈ t -Max(R))} =

⋂
{IRMi∩R; I ⊆Mi} = M

(e1)
1 ∩· · ·∩M (en)

n .

Like in the proof of Proposition 2.26, we conclude that

I = M
(e1)
1 ∩ · · · ∩M (en)

n = (M
(e1)
1 · · ·M (en)

n )t

and that S∩Ft(R) ⊆ {(M e1
1 . . .M en

n )t;Mi ∈ S t-invertible t-maximal ideals, ei ≥
0}.

The other inclusion is clear. �
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Theorem 4.6 Let R be a PvMD and let S be a saturated multiplicative
system of nonzero ideals of R. Then:

(1) The canonical homomorphism θ : Invt(R) −→ Invt′(RS), I 7→ IS , is
surjective;

(2) Ker θ = Invt(R) ∩ S;

(3) If R is a Krull domain, Ker θ is the free abelian group generated by
the height-one primes in S.

Proof. (1) Let I ′ := x1RS + · · · + xnRS , xi ∈ K, be a t′-invertible ideal
of RS . Setting I := x1R + · · · + xnR, we have that I is t-invertible and
I ′ = IRS . Hence (I ′)t′ = (IRS)t′ = (It)S = θ(It).

(2) holds because IS = RS if and only if I ∈ S (Proposition 1.12 (a)).
(3) holds by (2), Proposition 4.5 ((i) ⇒ (iii)) and Theorem 2.27. �

Remark 4.7 If each t-prime in the saturation S of S is principal, by Propo-
sition 4.5 ((ii) ⇒ (iii)) each t-ideal I ∈ S is a product of principal prime
ideals, in particular it is principal. In this case, since (R : I) = (R : It),
RS is a ring of fractions of R with respect to a multiplicative part S ⊆ R
generated by prime elements.

Conversely, let S ⊆ R be a multiplicative part generated by a set of
prime elements {pα} and S = {xR ; x ∈ S} be the correspondent system of
principal ideals. Then the t-primes in S are precisely the principal primes
{pαR}. In fact, if x ∈ S and P is a t-prime containing x, P contains a prime
factor p of x and, since pR is t-maximal, we have that P = pR ∈ S. From
Proposition 4.5 ((ii) ⇒ (iii)), it follows that each t-ideal in S is principal,
generated by a product pα1 . . . pαn , and so S ∩ Ft(R) = S.

Theorem 4.8 Let R be a PvMD and let S ⊆ R be a multiplicative part gen-
erated by prime elements. Then the canonical homomorphism θ : C(R) −→
C(RS), I 7→ IS, is bijective.

Proof. Setting S = {xR ; x ∈ S}, we have RS = RS . By Theorem 4.6,
the homomorphism θ : Invt(R) −→ Invt′(RS) is surjective and Ker θ =
Invt(R)∩S. But, as in Remark 4.7, Ker θ = S ⊆ P (R). Hence θ is bijective.
�

Theorem 4.9 Assume that R is a PvMD (resp. a Krull domain).

(1) For any multiplicative system of ideals S of R, if R is a GCD-domain
(resp. a UFD) then RS is a GCD-domain (resp. a UFD).

(2) [Nagata’s Theorem] If S ⊆ R is a multiplicative part generated by
prime elements, R is a GCD-domain (resp. a UFD) if and only if
RS is a GCD-domain (resp. a UFD).
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Proof. It follows from Theorems 4.4 and 4.8, recalling that a GCD-domain
(resp. a UFD) is a PvMD (resp. a Krull domain) with trivial class group
(Theorem 3.8). �

4.2 Polynomial extensions

We recall that I[X] ∩ R = I, for any integral ideal I of a domain R. We
will use repeatedly the following properties.

Lemma 4.10 Let R be a domain. Then:

(1) (J : I)[X] = (J [X] : I[X]), for any nonzero ideals I, J of R. In
particular Iv[X] = (I[X])v′.

(2) There is an inclusion preserving injective correspondence I 7→ I[X]
between the set of integral t-ideals of R and the set of integral t′-ideals
of R[X], whose left inverse is the intersection. In addition, I is t-
invertible if and only if I[X] is t′-invertible.

(3) Let N be a t′-maximal ideal of R[X]. Then either N = M [X], with
M := N ∩R ∈ t -Max(R) or N = fK[X] ∩R[X] for some irreducible
polynomial f ∈ K[X]. In the second case, R[X]N = K[X]fK[X] is a
DV R.

Proof. (1) It is enough to consider integral ideals. First note that if u ∈
K(X) is such that uI ⊆ J [X] ⊆ R[X], then u ∈ K[X]. Let cu be the
content of u. Then u ∈ (J [X] : I[X]) if and only if cu ∈ (J : I), if and only
if u ∈ (J : I)[X].

(2) If I is a t-ideal, I[X] is a t′-ideal by part (1). In fact, let J ′ ⊆ I[X] be a
finitely generated ideal and J := J ′∩R. Then J ′v′ = J [X]v′ = Jv[X] ⊆ I[X].
In addition θ is injective because I = I[X] ∩ R. If I is t-invertible, I[X] is
t′-invertible by Proposition 4.1. Conversely, if R[X] = (R[X] : (R[X] :
I[X]))t′ = (R : (R : I))t[X], then R = (R : (R : I))t by the injectivity.

(3) If N ∩R := M 6= (0), N is t′-maximal if and only if M is t-maximal
because the map I 7→ I[X] is inclusion preserving. If N ∩ R = (0), since
K[X] = R[X]S is a ring of fractions of R[X], with S := R \ {0}, NK[X] =
NS is a prime ideal of K[X]. Hence NK[X] = NS = fK[X], with f ∈
K[X] irreducible and N = NS ∩ R[X] = fK[X] ∩ R[X]. Finally, R[X]N =
(R[X]S)NS

= K[X]fK[X] is DV R, because K[X] is a Dedekind domain
(being a PID). �

Proposition 4.11 The following conditions are equivalent for a domain R.

(i) R is a PvMD (resp. a Krull domain);

(ii) The polynomial ring R[X] is a PvMD (resp. a Krull domain).
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Proof. (i)⇒ (ii) Assume that R is a PvMD and let N ∈ t′ -Max(R[X]). If
N = M [X], with M ∈ t -Max(R), let vM be the valuation on K associated
to the valuation domain RM . Then vM can be extended to K(X) by setting
v′M (

∑
aiX

i) = inf{vM (ai)}, for each polynomial
∑
aiX

i ∈ K[X]. It is
easy to verify that the valuation domain associated to v′M is R[X]N . If
N ∩R = (0), R[X]N is a DV R. It follows that R[X]N is a valuation domain
for each N ∈ t -Max(R[X]) and so R[X] is a PvMD.

If R is a Krull domain, RM is a DV R, for each M ∈ t -Max(R), and
so also R[X]M [X] is a DV R. Since the intersections R = ∩{RM ; M ∈
t -Max(R)} and K[X] = ∩{K[X]fK[X] ; f ∈ K[X] irreducible} have finite
character, also the intersection R[X] = ∩{R[X]N ; N ∈ t -Max(R[X])} has
finite character. We conclude that R[X] is a Krull domain.

(ii) ⇒ (i) If M is a t-maximal ideal of R, M [X] is a t′-maximal ideal
of R[X]. If R[X] is a PvMD, then R[X]M [X] is a valuation domain and
so RM = R[X]M [X] ∩ K is a valuation domain too. It follows that R is a
PvMD.

In addition, if R[X] is a Mori domain, R = R[X] ∩K is a Mori domain
by Proposition 2.17. Hence, if R[X] is a Krull domain, also R is a Krull
domain. �

Remark 4.12 If R is a Mori domain, R[X] need not be Mori [38]. However
R[X] is Mori when R is Mori integrally closed [4, Section 6].

Theorem 4.13 Let θ : C(R) −→ C(R[X]), I 7→ I[X] be the canonical
homomorphism of Class Groups. Then

(1) θ is injective.

(2) If R is integrally closed, θ is bijective.

Proof. It is enough to consider integral ideals.
(1) If I ⊆ R is an integral divisorial ideal such that I[X] = fR[X] is

principal, then I = I[X] ∩R = fR[X] ∩R = f(0)R is principal.
(2) Let I ′ ⊆ R[X] be a t′-invertible t′-ideal. If I ′ ∩ R = I 6= (0), then

I is a t-invertible t-ideal and I ′ = I[X]. If I ′ ∩ R = (0), then I ′K[X]
is a proper ideal of K[X]. Hence I ′K[X] = fK[X] is principal, because
K[X] is a PID. Since R is integrally closed, choosing f ∈ R[X], we have
fK[X] ∩ R[X] = f(R : cf )[X], where cf denotes the content of f [20,
Corollary 34.9]. Hence I ′ ⊆ fK[X] ∩ R[X] = f(R : cf )[X]. If d ∈ R is
such that d(R : cf ) ⊆ R, we have H ′ := df−1I ′ ⊆ d(R : cf )[X] ⊆ R[X] and
H ′K[X] = dK[X] = K[X]. Hence H ′ ∩ R := H 6= (0) and H ′ = HR[X].
Finally I ′ = d−1fH ′ = d−1fH[X] and I ′ = θ(H). �

Corollary 4.14 (Gauss’ Lemma) R is a GCD-domain (resp. a UFD)
if and only if R[X] is a GCD-domain (resp. a UFD).
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Proof. It follows from Proposition 4.11 and Theorems 3.8, 3.14 and 4.13.
�

Remark 4.15 (1) The converse of Theorem 4.13 (2) is also true, that is,
if θ : C(R) −→ C(R[X]) is surjective then R is integrally closed [16,
Theorem 3.6].

(2) By induction on n, we get that if R is a GCD-domain (resp. a UFD)
the polynomial ring R[X1, . . . , Xn] is a GCD-domain (resp. a UFD).
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