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Introduction

Stability of ideals was explicitly introduced by J. Lipman in 1971, in order to study
Arf rings [30]. Even though this notion was already known and widely used in the
context of one-dimensional Noetherian rings, in particular in relation with reflexive
rings and decomposition of torsion free modules [5, 31].

A stable ideal of a Noetherian ring is defined as an ideal that is projective over
its ring of endomorphisms [51, 52]; extending this definition to arbitrary integral
domains, one says that a nonzero ideal I of a domain R is stable if I is invertible
in the overring E(I) := (I : I) of R [1]. If each nonzero ideal (respectively, finitely
generated ideal) of R is stable, one says that R itself is stable (respectively, finitely
stable).

Since 1998, stability of domains has been thoroughly investigated by B. Olberd-
ing. In [39] he illustrated several ideal-theoretic and module-theoretic applications
of this concept and announced some new results, then published in [40, 41, 42].

Invertible ideals are clearly stable, thus stability finds interesting applications in
the setting of Prüfer domains (i. e., domains in which nonzero finitely generated ide-
als are invertible). Stable Noetherian domains are one-dimensional [52]. However,
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as showed by Olberding, a stable domain need not be coherent, nor one-dimensional,
nor integrally closed [41, Section 3].

Weakening the notion of stability, in more recent years, there were introduced
other classes of domains, like Rutliff-Rush domains [33], quasi-stable domains [46]
and Clifford regular domains [6]. All these notions coincide with stability in the
Noetherian case, but not in general.

In this short survey, leaving aside the module-theoretic point of view, we focus
on some ideal-theoretic aspects of stability and discuss some unresolved problems.

All the rings considered are commutative rings with unity that are not fields. A
local ring is a ring with a unique maximal ideal and a semilocal ring is a ring with
finitely many maximal ideals, not necessarily Noetherian.

If R is a ring with total quotient ring K, an overring of R is a ring between
R and K. If I, J are R-submodules of K, we set (I : J) := {x ∈ K ; xJ ⊆ I} and
(I :R J) := {x ∈ R ; xJ ⊆ I}.

1 Stable Notherian rings

Stable ideals were introduced in 1971 by J. Lipman, in his paper [30] on Arf rings,
which are local Noetherian rings satisfying certain conditions studied by Arf in [3].

Lipman worked in the setting of semilocal one-dimensional Macaulay rings, that
is, semilocal one-dimensional Noetherian rings whose Jacobson radical contains a
regular element. If R is such a ring, Lipman defined a regular ideal I ⊆ R to be stable
if IRI = I, or, equivalently, RI = (I : I) [30, Definition 1.3], where RI :=

⋃
n≥1(I

n : In)
is the ring obtained by blowing up I.

The main motivation for introducing this notion is that it furnishes a useful char-
acterization of Arf rings.

Recall that if I is an ideal of the ring R, an element x ∈ R is said to be integral
over I if there exist a positive integer n and elements ak ∈ Ik, k = 1, . . . ,n, such that

xn +a1xn−1 +a2xn−2 + · · ·+an−1x+an = 0.

The ideal I is called integrally closed if all the elements of R which are integral over
I belong to I.

Theorem 1.1. [30, Theorem 2.2] A local one-dimensional Macaulay ring is an Arf
ring if and only if each integrally closed regular ideal of R is stable.

To the extent of proving this result, Lipman gave several characterizations of
stable ideals. In particular, he proved the following:

Proposition 1.2. [30, Lemma 1.11] Let R be a semilocal one-dimensional Macaulay
ring and I ⊆ R a regular ideal. The following conditions are equivalent:

(i) I is stable (i.e., IRI = I);
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(ii) There exists an element x ∈ I such that I2 = xI;
(iii) There exists a regular element x ∈ I such that I = xRI;
(iv) There exists a regular element x ∈ I such that I = x(I : I).

In order to solve a problem posed by Bass, the notion of stability was then ex-
tended to Noetherian rings by J. Sally and W. Vasconcelos, in a paper appeared in
1973. They called an ideal I of a Noetherian ring R stable if I is projective over its
endomorphism ring EndR(I) and called R stable if each ideal is stable [51, Section
1], [52, Section 2].

Note that when I is a regular ideal of the ring R, EndR(I) is isomorphic to the
overring E(I) := (I : I) of R and so I is stable if and only if it is an invertible ideal of
E(I). In particular, when R is a semilocal Noetherian ring, I is stable if and only if I
is principal in E(I). It follows from Proposition 1.2 that this more general notion of
stability coincides with the one introduced by Lipman for regular ideals of semilocal
one-dimensional Macaulay ring [52, Proposition 2.2].

Nevertheless, a local one-dimensional Noetherian ring which is stable according
to Sally-Vaconcelos need not be a Macaulay ring. For example, one can take R :=
k[[X ,Y ]]/〈X2,XY 〉, where k is a field and X , Y are indeterminates over k [52, page
324].

Proposition 1.3. [52, Proposition 2.1] Let R be a Noetherian ring. If R is stable (i.e.,
each ideal is projective over its endomorphism ring), R has dimension at most one.

Stability is related to the 2-generator property. An ideal of R is 2-generated if it
is generated by 2 elements and R is 2-generated, or it has the 2-generator property,
if each finitely generated ideal is 2-generated. The 2-generator property plays an
important part in the decomposition of torsion-free modules [32].

Bass proved that if R is a one-dimensional reduced Noetherian ring whose in-
tegral closure is a finitely generated R-module, the 2-generator property implies
stability [5, Proposition 7.1 and Corollary 7.3]. Sally and Vasconcelos showed that,
as conjectured by Bass, also the converse holds.

Theorem 1.4. Let R be a Noetherian ring.

(1) [52, Theorem 3.4] Assume that R is a one-dimensional Macaulay ring whose
maximal ideals are not minimal primes. If each regular ideal is 2-generated,
then R is stable.

(2) [51, Theorem 2.4] Assume that R is one-dimensional reduced and that its integral
closure is a finitely generated R-module. If R is stable, then R is 2-generated.

However, even for Noetherian domains, the 2-generator property is strictly
stronger than stability. The first example of a local Noetherian domain that is sta-
ble and not 2-generated was given in [52, Example 5.4]; several other examples are
collected in [44, Section 3].

The relationships among the 2-generator property, stability of finitely generated
regular ideals and decomposition of finitely generated torsion free modules were
further investigated by D. Rush in two papers of 1991 and 1995 [49, 50]. In partic-
ular he extended Bass’ result to local rings.
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Theorem 1.5. [50, Proposition 2.5] Let R be a local ring. If R is 2-generated, each
finitely generated regular ideal is stable.

Rush gave also the following characterization of stability for Noetherian rings.

Theorem 1.6. [49, Theorem 2.4] Let R be a one-dimensional Noetherian ring with
integral closure R′. Then each regular ideal of R is stable if and only if the following
conditions hold:

(a) Each (or each finitely generated) R-submodule of R′ containing R is a ring;
(b) Each maximal ideal of R has at most two maximal ideals of R′ lying over it.

Together with other results of Rush, the last two theorems were later extended
to general integral domains by B. Olberding in [40]. For an extension to rings, see
Olberding’s paper in this volume.

A notion weaker than stability, still useful to bound the number of generators of
ideals, was introduced by P. Eakin and P. Sathaye in 1976. They observed that part
of the Lipman’s result given in Proposition 1.2 can be extended in the following
way:

Proposition 1.7. [15, Lemma, page 447] Let R be a local ring and I a finitely gen-
erated regular ideal of R. The following conditions are equivalent:

(i) There exists an element x ∈ I such that I2 = xI;
(ii) There exists a regular element x ∈ I such that I = x(I : I).

Thus Eakin and Sathaye defined an ideal I of a semilocal ring to be stable if there
is an element x ∈ I such that I2 = xI and say that I is prestable if some power of I is
stable, that is, for some k ≥ 1 there is an x ∈ I such that I2k = xIk [15, Section 3].

Proposition 1.8. [15, Corollary 1, page 446] Let R be a local ring and I a finitely
generated ideal. The following conditions are equivalent:

(i) I is prestable (i.e., I2k = xIk, for some k ≥ 1);
(ii) There is a positive integer b := b(I)such that In has b generators, for each n≥ 1;

(iii) There is a positive integer n such that In has n generators, for some n≥ 1.

Moreover, if I is regular and In has n generators, then I2(n−1) = xIn−1, for some
x ∈ I.

2 Stable domains

In a note of 1987, D.D. Anderson, J. Huckaba and I. Papick considered the notion
of stability for arbitrary integral domains [1]. Given a nonzero ideal I of a domain
R, they say that I is Lipman-stable (for short, L-stable), if RI = (I : I) and say that
I is stable according to Sally-Vasconcelos, or is SV-stable, if I is invertible in the
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overring E(I) := (I : I). The domain R is called L-stable (respectively, SV-stable) if
each nonzero ideal of R is L-stable (respectively, SV-stable).

As in [14, Section 7.4], one can also say that I is stable according to Eakin-
Sathaye, or that I is ES-stable, if I2 = JI for some invertible ideal J contained in I.
The ideal I is called ES-prestable (respectively, SV-prestable) if some power of I is
ES-stable (respectively, SV-stable).

Proposition 2.1. [1, Lemmas 2.1 and 2.2] Let R be a domain and I a nonzero ideal.
Then:

I ES-stable ⇒ I SV-stable⇒ I L-stable .

If I is finitely generated, often all these notions coincide.

Proposition 2.2. [14, Corollary 7.4.2 and Proposition 7.4.3] Let R be a domain and
I a nonzero finitely generated ideal. The following conditions are equivalent:

(i) I is SV-stable;
(ii) IRM is SV-stable, for each maximal ideal M ⊆ R;

(iii) IRM is ES-stable, for each maximal ideal M ⊆ R.

In particular, if R is local, I is SV-stable if and only if I is ES-stable

A domain R is integrally closed if and only if R = (I : I) for each nonzero finitely
generated ideal I. If R = (I : I) for each nonzero ideal I, R is called completely
integrally closed. Hence, if R is completely integrally closed, R = (I : I) = RI , for
each nonzero ideal; similarly, if R is integrally closed, R = (I : I) = RI , for each
nonzero finitely generated ideal. This shows that for completely integrally closed
domains L-stability is a trivial concept.

Proposition 2.3.(1) Let R be a completely integrally closed domain and I a nonzero
ideal of R. Then I is L-stable; in addition,

I is invertible ⇔ I is SV-stable.

(2) [14, Proposition 7.4.4] Let R be an integrally closed domain and I a nonzero
finitely generated ideal of R. Then I is L-stable; in addition,

I is invertible ⇔ I is ES-(pre)stable ⇔ I is SV-(pre)stable.

SV-stability implies L-stability (Proposition 2.1). The converse is not true, even
in the Noetherian case. In fact, by the proposition above, any Noetherian integrally
closed domain is L-stable, but is SV-stable only if it is Dedekind. More generally,
we have:

Proposition 2.4. [1, Proposition 2.4] A Noetherian domain is SV-stable if and only
if it is L-stable and one-dimensional.
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Proposition 2.3(2) furnishes also a characterization of Prüfer domains in terms
of SV-stability. Recall that a domain R is called a Prüfer domain if RP is a valuation
domain, for each nonzero prime ideal P; this is equivalent to say that each nonzero
finitely generated ideal is invertible. A Prüfer domain such that PRP is a principal
ideal, for each nonzero prime ideal P, is called strongly discrete.

Proposition 2.5.(1) R is a Prüfer domain if and only if R is integrally closed and
each finitely generated nonzero ideal of R is SV-stable (equivalently, ES-stable).

(2) [1, Lemma 2.7] Each Prüfer domain is L-stable.
(3) [1, Proposition 2.10] A semilocal Prüfer domain (in particular, a valuation do-

main) is SV-stable if and only it is strongly discrete.

If the integral closure of R is a Prüfer domain, R is called quasi-Prüfer [14,
Corollary 6.5.14]. Quasi-Prüfer domains can be characterized by the property that
each nonzero finitely generated ideal is locally ES-prestable.

Theorem 2.6. [15, Theorem 2] Let R be a local domain with integral closure R′.
The following conditions are equivalent:

(i) R′ is a Prüfer domain;
(ii) Each nonzero finitely generated ideal of R is ES-prestable.

A global version of Theorem 2.6 is the following.

Theorem 2.7. [14, Theorem 7.4.6] Let R be a domain with integral closure R′. The
following conditions are equivalent:

(i) R′ is a Prüfer domain;
(ii) Each nonzero finitely generated ideal of R is SV-prestable;

(iii) Each nonzero 2-generated ideal of R is SV-prestable.

Since 1998, SV-stable domains have been thoroughly investigated by B. Olberd-
ing in a series of papers [38, 40, 41, 42]. Olberding calls an SV-stable ideal of a
domain R simply a stable ideal and he says that R is stable (respectively, finitely
stable) if each nonzero ideal (respectively, finitely generated ideal) of R is stable.
We keep this notation; thus from now on “stable” means “SV-stable”.

Stability and finite stability transfer to overrings. In addition, their study can be
reduced to the local case.

Proposition 2.8. [42, Lemma 2.4 and Theorem 5.1] Let S be an overring of R. If R
is (finitely) stable, then S is (finitely) stable.

By the result above and Proposition 2.5, we get that finitely stable domains are
quasi-Prüfer.

Corollary 2.9. [50, Proposition 2.1] If R is finitely stable (respectively, stable), its
integral closure is a Prüfer domain (respectively, a strongly discrete Prüfer domain).

Theorem 2.10. Let R be a domain.
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(1) [42, Theorem 3.3] R is stable if and only if RM is stable, for each maximal ideal
M, and R has finite character (i.e., each nonzero element is contained at most in
finitely many maximal ideals).

(2) [14, Proposition 7.3.4] R is finitely stable if and only if RM is finitely stable.

Since any Prüfer domain is finitely stable, finitely stable domains need not have
finite character. Also, finitely stable domains with finite character need not be sta-
ble. For example, any valuation domain with nonprincipal maximal ideal is finitely
stable but not stable (Proposition 2.5).

Theorem 2.11. [41, Theorem 2.3] A domain R is stable if and only if the following
conditions hold: (a) R is finitely stable; (b) PRP is a stable ideal of RP, for each
nonzero prime P; (c) RP is a valuation domain for each nonzero nonmaximal prime
P, and (d) R has finite character.

Thus the semilocal case given in [1] (Proposition 2.5(3)) can be generalized in
the following:

Proposition 2.12. [38, Theorem 4.6] Let R be an integrally closed domain. Then R
is stable if and only if it is a strongly discrete Prüfer domain with finite character.

A strongly discrete Prüfer domain such that each noninvertible element has
finitely many minimal primes is called a generalized Dedekind domain. These do-
mains were introduced by N. Popescu in [47] and have very good ring-theoretic and
ideal-theoretic properties; an overview is given in [18].

By the previous proposition, integrally closed stable domains are generalized
Dedekind. More precisely, we have:

Corollary 2.13. The following conditions are equivalent for a domain R:

(i) R is a generalized Dedekind domain with finite character;
(ii) R is integrally closed and stable.

It is also interesting to observe that stability of nonzero prime ideals forces a
Prüfer domain to be generalized Dedekind.

Theorem 2.14. [17, Theorem 5], [38, Theorem 4.7] The following conditions are
equivalent for a domain R:

(i) R is a generalized Dedekind domain;
(ii) R is a Prüfer domain and each nonzero prime ideal of R is stable.

However, a domain whose nonzero prime ideals are all stable need not be stable,
as [41, Example 3.4] shows. An example of generalized Dedekind domain that is
not stable is R := Z+XQ[[X ]]; in fact R does not have finite character.

Olberding gave a complete characterization of stable domains [41]. In particular,
he proved that each local stable domain is a suitable pullback of a local stable ring
of dimension at most one.
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Theorem 2.15. [41, Corollary 2.7], [43] A local domain R is stable if and only if
one of the following conditions is satisfied (a) R is one-dimensional stable; (b) R is
a strongly discrete valuation domain; (c) R arises from a pullback diagram of type:

R −−−−→ Dy y
V

ϕ−−−−→ V
I

where V is a strongly discrete valuation domain, I is an ideal of V , D is a local
stable ring of dimension at most one having a prime ideal P such that P contains
all the zero-divisors of D and P2 = (0), and V/I is isomorphic to the total quotient
ring of D.

For example, let W be a one-dimensional discrete valuation domain with quotient
field F and X be an indeterminate over F . With the notations of Theorem 2.15(c),
setting V := F [[X ]], I := X2V and D := W [[X ]]/X2W [[X ]], we get that R = W +
XW +X2F [[X ]] is a stable domain [43].

A stable Noetherian ring is one-dimensional (Proposition 1.3). An example of a
local one-dimensional domain which is stable and not Noetherian was constructed
by Olberding in [41, Proposition 5.2]. Generalizing this construction, Olberding
then exhibited a whole class of examples, as a particular class of one-dimensional
domains whose integral closure is not a finitely generated module [45, Theorems
4.1 and 4.4] (see also [44, Theorem 3.10]). In fact Theorem 1.4(2) can be extended
in the following way:

Theorem 2.16. Let R be a stable domain with integral closure R′.

(1) [41, Proposition 4.5] If R is one-dimensional and (R : R′) 6= (0), R is Noetherian
2-generated and R′ is a finitely generated R-module.

(2) [42, Corollary 4.17] If R is local and (R : R′) = (0), R′ is a one-dimensional
discrete valuation ring (in particular R is one-dimensional).

On the other hand, it is also possible for stable Noetherian domains, even Noethe-
rian 2-generated domains, to have (R : R′) = (0) [44, Section 3].

By using Theorem 2.16, M. Roitman and the author of this paper recently proved
that a stable one-dimensional domain is Mori and is precisely a Mori finitely stable
domain.

Recall that if I is a nonzero ideal of the domain R, the divisorial closure of I is
the ideal Iv := (R : (R : I)) and that I is called divisorial if I = Iv. A Mori domain
is a domain satisfying the ascending chain condition on divisorial ideals. Clearly
Noetherian domains are Mori. For the main properties of Mori domains the reader
is referred to [4].

Theorem 2.17. [24] The following conditions are equivalent for a domain R:

(i) R is stable and one-dimensional;
(ii) R is Mori and stable;
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(iii) R is Mori and finitely stable.

In addition, under the previous conditions, for each nonzero ideal I of R, Iv = 〈x,y〉v,
for some x,y ∈ I.

This result shows that the local one-dimensional domains that are stable and not
Noetherian constructed by Olberding in [45] are new examples of Mori domains.

It also shows that a one-dimensional stable domain R cannot arise a pullback like
in Theorem 2.15, unless R =V is a discrete valuation domain. In fact, in a pullback
of that type, R is Mori if and only if V is a one-dimensional discrete valuation
domain and D is a field [35, Theorem 9].

3 Divisorial domains

The class of domains in which each ideal is divisorial has been investigated in the
sixties of the last century by several authors and with different methods. Following
S. Bazzoni and L. Salce, these domains are now called divisorial domains. If each
overring of R is divisorial, R is called totally divisorial [12].

As for (finite) stability, the study of divisorial domains can be reduced to the local
case. We recall that, with a terminology introduced by Matlis, a domain is called h-
local if it has finite character and each nonzero prime ideal is contained in a unique
maximal ideal.

Proposition 3.1. [12, Proposition 5.4] A domain R is divisorial if and only if it is
h-local and RM is divisorial, for each maximal ideal M.

The local Noetherian case was independently studied by H. Bass [5] and E.
Matlis [31].

Theorem 3.2. [5, Theorems 6.2, 6.3], [31, Theorem 3.8] Let R be a local Noethe-
rian domain, with maximal ideal M. Then R is divisorial if and only if R is one-
dimensional and (R : M) is a 2-generated R-module.

It was already known to W. Krull that an integrally closed domain such that each
nonzero finitely generated ideal is divisorial is Prüfer. The following characteriza-
tion of integrally closed divisorial domains was given by W. Heinzer in [25].

Theorem 3.3. [25, Theorem 5.1] Let R be an integrally closed domain. Then R is
divisorial if and only if R is an h-local Prüfer domain with invertible maximal ideals.

In the general case, local divisorial domains were studied in [12, Section 5], [7,
Section 2], [20, Section 1]. Recall that a nonzero ideal I of a domain R is called
m-canonical if (I : (I : J)) = J, for each nonzero ideal J of R. With this terminology,
the domain R is divisorial if and only if R itself is an m-canonical ideal.

Theorem 3.4. Let R be a local domain, with maximal ideal M. Then:
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(1) [12, Lemma 5.5] If M is principal, R is divisorial if and only if it is a valuation
domain.

(2) [20, Theorem 1.2] If M is not principal and R is not a valuation domain, R is
divisorial if and only if (R : M) = (M : M) is a 2-generated R-module and M is
an m-canonical ideal of (M : M).

Divisoriality and stability are strictly related.

Theorem 3.5. [40, Theorem 3.12 and Corollary 3.13] The following conditions are
equivalent for a domain R:

(i) R is stable and divisorial;
(ii) R is totally divisorial;

(iii) R is h-local and RM is totally divisorial, for each maximal ideal M.

As always, the Noetherian case and the integrally closed case are of particular
interest.

Theorem 3.6. [12, Proposition 7.1 and Theorem 7.3] Let R be a Noetherian domain.
The following conditions are equivalent:

(i) R is stable and divisorial;
(ii) R is totally divisorial and one-dimensional;

(iii) R is 2-generated.

Thus a Noetherian stable domain is divisorial if and only if it is 2-generated. It
follows from Theorem 2.16 that:

Corollary 3.7. Assume that R is a one-dimensional stable domain whose integral
closure is a finitely generated R-module. Then R is (totally) divisorial.

By Proposition 2.5(3) and Theorem 3.3, a stable valuation domain is (totally)
divisorial. Globalizing we obtain:

Theorem 3.8. [40, Theorem 3.1], [12, Proposition 7.6] Let R be an integrally closed
domain. The following conditions are equivalent:

(i) R is stable and divisorial;
(ii) R is an h-local strongly discrete Prüfer domain;

(iii) R is a divisorial generalized Dedekind domain.

In the local case, totally divisorial domains can be completely classified by using
Theorem 2.15: they are either Noetherian 2-generated domains, or strongly discrete
valuation domains, or arise from a suitable pullback diagram [40, Corollary 3.16].
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4 Ratliff-Rush domains

In a paper of 1978, L. Ratliff and D. Rush associated to a regular ideal I of a Noethe-
rian ring, the ideal Ĩ :=

⋃
n≥0(I

n+1 :R In) [48]. W. Heinzer, D. Lantz and K. Shah
called Ĩ the Ratliff-Rush ideal associated to I [27]. If I = Ĩ, I is called a Ratliff-Rush
ideal and we can say that R is a Ratliff-Rush ring if each regular ideal is Ratliff-Rush.

Among other results, Ratliff and Rush proved that, for any regular ideal I of a
Noetherian ring, there is a positive integer n such that, for k ≥ n, Ĩk = Ik; so that all
sufficiently hight powers of I are Rutliff-Rush. Indeed, if R is local with maximal
ideal M and I is an M-primary ideal, Ĩ is the unique largest ideal containing I and
having the same Hilbert polynomial as I [48]. Stable ideals and integrally closed
ideals of Noetherian rings are Ratliff-Rush [27].

An early survey on Ratliff-Rush ideals is [28]. In the setting of integral domains,
Ratliff-Rush ideals were studied by A. Mimouni in 2009 [33, 34].

Proposition 4.1. [33, Proposition 2.3 and Theorem 2.5] Let R be a domain. Then:

R stable ⇒ R Ratliff-Rush ⇒ R L-stable.

In addition:

Proposition 4.2. [27, Proposition 3.1 and Theorem 2.9], [33, Corollary 2.8] A
Noetherian domain is Ratliff-Rush if and only if it is stable.

Ratliff-Rush domains are quasi-Prüfer.

Proposition 4.3. [33, Lemma 2.4] Let R be a domain. If each nonzero finitely gen-
erated ideal of R is Rutliff-Rush, R′ is a Prüfer domain.

Theorem 4.4. [33, Theorem 2.6] Let R be an integrally closed domain. The follow-
ing conditions are equivalent:

(i) I = Ĩ for each finitely generated nonzero ideal (respectively, each nonzero ideal)
I of R;

(ii) R is a Prüfer domain (respectively, a strongly discrete Prüfer domain).

Since any Prüfer domain is L-stable (Proposition 2.5(2)), an L-stable domain
need not be Ratliff-Rush. Also, by Theorems 2.12 and 4.4, we get:

Proposition 4.5. An integrally closed Rutliff-Rush domain is stable if and only if it
has finite character.

5 Quasi-stable domains

G. Picozza and F. Tartarone weakened the notion of stability in the following way.
Observing that an invertible ideal of a domain is flat, they define a nonzero ideal I
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of a domain R to be quasi-stable if I is flat in its endomorphism ring E(I) := (I : I)
and they say that R is quasi-stable if each nonzero ideal is quasi-stable [46, Section
2].

A stable domain is clearly quasi-stable. In addition, quasi-stable domains are
finitely stable. More precisely:

Proposition 5.1. [46, Proposition 2.4] A domain R is finitely stable if and only if
each nonzero finitely generated ideal of R is quasi-stable.

Thus (finite) stability and quasi-stability coincide for Mori domains (Theorem
2.17). The next result says that if R is integrally closed, quasi-stability is equivalent
to R being Prüfer, so that a quasi-stable domain need not be stable (Proposition
2.5(3)).

Proposition 5.2. [46, Proposition 2.7] The following conditions are equivalent for
an integrally closed domain R.

(i) R is quasi-stable;
(ii) R is finitely stable

(iii) R is Prüfer.

A very tricky example of a finitely stable domain that is not quasi-stable is given
in [46, Example 2.8]. Examples of local quasi-stable domains that are not integrally
closed nor stable are constructed as pseudo-valuation domains in [46, Example
2.6(2)]. Precisely, let R be a pseudo-valuation domain with maximal ideal M and
associated valuation domain V := (M : M) = (R : M) and assume that R 6= V . If V
is a 2-generated R-module, then R is quasi-stable and not integrally closed. If, in
addition, M is not principal in V , then R is not stable.

By Theorem 2.16, a one-dimensional stable domain such that (R : R′) 6= (0) is
Noetherian. This result cannot be extended to quasi-stable domains. Indeed, let R be
a one-dimensional pseudo-valuation domain that is quasi-stable and not stable, as
above. Then R is necessarily not Noetherian (nor Mori), but V = R′ and (R : V ) =
M 6= (0).

It is not clear whether quasi-stability passes to overrings. However this happens
in several cases: for example quasi-stability transfers to localizations, fractional, flat
and Noetherian overrings. More generally:

Proposition 5.3. [46, Corollary 3.7] Let S be an overring of R and assume that
each ideal of S is extended from a fractional ideal of R. If R is quasi-stable, then S
is quasi-stable.

Proposition 5.4. [46, Corollary 3.8] Let R be a quasi-stable domain with integral
closure R′. If (R : R′) 6= (0), each overring of R is quasi-stable.
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6 Clifford regular domains

Let S be a multiplicative commutative semigroup. An element x ∈ S is called von
Neuman regular (for short, vN-regular), if there exists an element a∈ S such that x=
x2a. Idempotent and invertible elements are vN-regular. By a well-known theorem
of Clifford, S is a disjoint union of groups if and only if all its elements are vN-
regular: in this case, S is called a Clifford semigroup.

The set F (R) of nonzero fractional ideals of a domain R form a multiplicative
semigroup, with unity R. The class semigroup of R is defined as the quotient semi-
group of F (R) by the subgroup of nonzero principal ideals. A domain R is called a
Clifford regular domain if its class semigroup is Clifford regular; this is equivalent
to say that each nonzero fractional ideal is vN-regular in the semigroup F (R).

Dedekind domains are trivial examples of Clifford regular domains. S. Bazzoni
and L. Salce showed that all valuation domains are Clifford regular and gave a com-
plete description of the structure of the class semigroup in that case [11]. P. Zanardo
and U. Zannier investigated the class semigroups of orders in number fields and
showed that all orders in quadratic fields are Clifford regular domains [55]. The
study of Clifford regular domains was then carried on by S. Bazzoni [6, 8, 9, 10].

Clifford regular domains are between stable and finitely stable domains.

Proposition 6.1. [9, Proposition 2.3] A stable domain is Clifford regular and a Clif-
ford regular domain is finitely stable.

Hence, Clifford regularity and (finite) stability are equivalent for Mori domains
(Theorem 2.17). Also, an integrally closed Clifford regular domain is Prüfer (Propo-
sition 2.5(1)).

S. Bazzoni proved that a Clifford regular domain has finite character [10, Theo-
rem 4.7]. This property characterizes Clifford regularity inside Prüfer domains and
allows to show that the integral closure of a Clifford regular domain is still Clifford
regular.

Theorem 6.2. [9, Theorem 4.5] An integrally closed domain is Clifford regular if
and only if it is a Prüfer domain with finite character.

Proposition 6.3. [10, Corollary 4.8] If R is a Clifford regular domain, its integral
closure is Clifford regular.

Even in the local case, Clifford regularity may not coincide with stability or finite
stability. In fact, any valuation domain is Clifford regular [11, Theorem 3] but need
not be stable (Proposition 2.5(3)). A local finitely stable domain that is not Clifford
regular is exhibited in [9, Example 6.6].

The following result puts in relation stability and Clifford regularity.

Proposition 6.4. [53, Theorem 2.6] Let R be a domain. The following conditions
are equivalent:

(i) R is stable;
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(ii) R is Clifford regular and each nonzero idempotent fractional ideal of R is a ring.

Clifford regularity of overrings was investigated by L. Sega in [53]. Since ideals
extended from vN-regular ideals are still vN-regular, the situation is similar to the
one of quasi-stability.

Proposition 6.5. [53, Proposition 4.1] Let S be an overring of R and assume that
each ideal of S is extended from a fractional ideal of R. If R is Clifford regular, then
S is Clifford regular.

Proposition 6.6. [53, Theorem 4.6] Let R be a Clifford regular domain with integral
closure R′. If (R : R′) 6= (0), each overring of R is Clifford regular.

7 Problems

As we summarize in the two tables below, all the stability conditions introduced in
this paper are well understood when R is integrally closed or Noetherian. But in
general there are several questions still unanswered; in this last section we illustrate
some of them.

Table 1 The integrally closed case

Stable ⇔ Prüfer strongly discrete with finite character
⇓ ⇓

Clifford regular ⇔ Prüfer with finite character
⇓ ⇓

Quasi-stable ⇔ Prüfer
m m

Finitely stable ⇔ Prüfer

Stable ⇔ Prüfer strongly discrete with finite character
⇓ ⇓

Ratliff-Rush ⇔ Prüfer strongly discrete
⇓ ⇓

Finitely stable ⇔ Prüfer
⇓

L-stable

Problem 7.1 A domain R is Archimedean, if
⋂

n≥0 rnR = (0), for each nonunit r ∈
R. Since Mori domains satisfy the ascending chain condition on principal ideals,
they are Archimedean. The class of Archimedean domains includes also completely
integrally closed domains and one-dimensional domains.
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Table 2 The Noetherian case

Stable ⇔ Clifford regular ⇔ Quasi-stable ⇔ Finitely stable
⇔ Ratliff-Rush ⇔ L-stable one-dimensional

Question. Is a stable Archimedean domain one-dimensional?
The answer is positive in the semilocal case [24], so that a semilocal stable

Archimedean domain is Mori (Theorem 2.17). However, in general the Archimedean
property does not pass to localizations. For example, the ring of entire functions is an
infinite-dimensional completely integrally closed (hence Archimedean) Bezout do-
main [14, Section 8.1] which is not locally Archimedean, because an Archimedean
valuation domain is one-dimensional. Hence, a way of approaching this problem is
trying to understand if the Archimedean property localizes under the hypothesis of
stability.

Problem 7.2 A (one-dimensional) Mori domain whose nonzero finitely generated
ideals are L-stable is not necessarily (finitely) stable. In fact if R is a local one-
dimensional integrally closed Mori domain, each nonzero finitely generated ideal I
of R is L-stable (Proposition 2.3(2)); but if R is (finitely) stable it must be a discrete
valuation domain (Proposition 2.5(1)). Example of local one-dimensional integrally
closed Mori domains that are not valuation domains can be constructed by means of
pullbacks [4, Theorem 2.2]. Does Proposition 2.4 extend to Mori domains? That is

Question. Is a one-dimensional L-stable Mori domain stable?

Problem 7.3 For Noetherian domains, the Ratliff-Rush property is equivalent to
(finite) stability and in the one-dimensional case also to L-stability (Propositions
2.4 and 4.2). Since stable domains are Ratliff-Rush, a Mori Ratliff-Rush domain
need not be Noetherian (Section 1.2).

Question. Is a Mori Ratliff-Rush domain one-dimensional?
Apart from the Noetherian case, the answer is positive if either (R : R′) 6= (0) or

R is seminormal [33, Corollary 2.10].

Problem 7.4 If R is a Mori stable domain (equivalently, a one-dimensional stable
domain) and I is a nonzero ideal of R, we have Iv = 〈x,y〉v, for some x,y ∈ I (The-
orem 2.17); thus we can say that in a stable Mori domain each divisorial ideal is
2-v-generated. Since a divisorial Mori domain is Noetherian, this result generalizes
(i)⇒ (iii) of Theorem 3.6.

Question. Assume that R is a one-dimensional Mori domain such that each divi-
sorial ideal is 2-v-generated. Is it true that each divisorial ideal is stable?

Note that the answer to this question is negative if R has dimension greater than
one. For example, let R be a Krull domain. Then each divisorial ideal of R is 2-v-
generated [37, Proposition 1.2] and stability coincides with invertibility (Proposition
2.3(1)). Hence each divisorial ideal of R is stable (i.e., invertible) if and only if R is
locally factorial [13, Lemma 1.1].
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Recall that a nonzero ideal I of a domain R is v-invertible if (I(R : I))v = R and
that I is called v-stable if Iv is v-invertible as an ideal of E(Iv), that is (Iv(E(Iv) :
Iv))v = E(Iv). Clearly, v-invertibility implies v-stability. If each nonzero ideal of R
is v-stable, we say that R is v-stable [21].

Each nonzero ideal of a Krull domain is v-invertible, thus a Krull domain is v-
stable. However, a Krull domain is stable if and only if it is a Dedekind domain, that
is it has dimension one (Proposition 2.3(1)). An example of a one-dimensional Mori
domain that is v-stable but not stable is given in [22, Example 2.6].

Question. Assume that R is a Mori domain such that each divisorial ideal is
2-v-generated. Is it true that R is v-stable?

Problem 7.5 The t-closure of a nonzero ideal I is defined by setting

It :=
⋃
{Jv; J finitely generated and J ⊆ I},

for each nonzero ideal I of R. If I = It , I is called a t-ideal. Invertible ideals are
divisorial and divisorial ideals are t-ideals.

Olberding proved that R is a stable domain if and only if each nonzero ideal
I is divisorial in E(I) [42, Theorem 3.5]. When R is finitely stable, each finitely
generated nonzero ideal I is a t-ideal of E(I), being invertible. Does the converse
hold?

Question. [46, Question 2.5] Assume that each (finitely generated) nonzero ideal
I is a t-ideal of E(I). Is it true that R is finitely stable?

The answer is positive when, for each finitely generated nonzero ideal I, the ideal
(E(I) : I) is finitely generated in E(I) [46, Proposition 2.4].

Problem 7.6 It is well known that if R has finite character, a locally invertible ideal
is invertible. Conversely, if each locally invertible ideal is invertible R need not have
finite character (for example, a Noetherian domain need not have finite character).
However, a Prüfer domain such that each locally invertible ideal is invertible does
have finite character. This fact was conjectured by S. Bazzoni [6, p. 630] and proved
by W. Holland, J. Martinez, W. McGovern and M. Tesemma in [29]. (A simplified
proof is in [36]). F. Halter-Koch gave independently another proof, in the more gen-
eral context of ideal systems [26]. Other contributions were given by M. Zafrullah
in [54] and by C.A. Finocchiaro, G. Picozza and F. Tartarone in [16].

Following D.D. Anderson and M. Zafrullah, for short we call R an LPI-domain
if each locally principal nonzero ideal of R is invertible [2].

Since a Prüfer domain is precisely a finitely stable integrally closed domain, one
is lead to ask the following more general question.

Question. [10, Question 4.6] Assume that R is a finitely stable LPI-domain. Is it
true that R has finite character?

The answer is positive if and only if the LPI-property extends to fractional over-
rings [18, Corollary 15], in particular when R is Mori or integrally closed. For an
exhaustive discussion of this problem see [18].
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Problem 7.7 By Proposition 5.3, a quasi-stable domain is locally quasi-stable.
What about the converse? Note that a locally quasi-stable domain, being locally
finitely stable, is finitely stable.

Question. [46, Section 3] Is it true that a domain which is locally quasi-stable is
quasi-stable?

The answer is positive for integrally closed or Mori domains. Other than that,
also when R is h-local [46, Corollary 3.13].

Problem 7.8 A similar question can be addressed for Clifford regular domains.
Bazzoni proved that any localization of a Clifford regular domain is Clifford reg-
ular [9, Proposition 2.8] (Proposition 6.5) and that a Clifford regular domain has
finite character [10, Theorem 4.7]. But it is not known if the converse is true in
general.

Question. [9, Question 6.8] Is it true that a domain which is locally Clifford
regular and has finite character is Clifford regular?

We know that the answer is positive in the following cases: (a) When R is inte-
grally closed. (This follows from Theorem 6.2.) (b) When R is Mori. In this case,
each localization of R is Mori and Clifford regular, hence (finitely) stable. Thus
R is locally stable and the finite character implies that R is stable. (c) When each
nonzero prime ideal of R is contained in a unique maximal ideal, for example if R is
one-dimensional [23, Proposition 5.5].

Problem 7.9 A quasi-stable domain need not have finite character; thus a quasi-
stable domain need not be Clifford regular.

Question. Is a Clifford regular domain quasi-stable?

The answer is positive when R is integrally closed or Mori.

Problem 7.10 It is easy to see that a vN-regular ideal is L-stable [9, Lemma 2.6],
so that Clifford regular domains are L-stable. However, an L-stable domain need
not be finitely stable; thus neither quasi-stable nor Clifford regular. For example, a
Noetherian integrally closed domain is always L-stable, but it is stable if and only if
it is a Dedekind domain (Proposition 2.3(2)).

Question. Is a finitely stable domain, or a quasi-stable domain, L-stable?

Again, the answer is positive when R is integrally closed or Mori.
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47. N. Popescu, On a class of Prüfer domains, Rev. Roumanie Math. Pures Appl. 29 (1984),

777-786.
48. L.J. Ratliff, Jr., and D.E. Rush, Two notes on reductions of ideals, Indiana Univ. Math. J., 27

(1978), 929–934.
49. D.E. Rush, Rings with two-generated ideals J. Pure Appl. Algebra 73 (1991), 257–275.
50. D.E. Rush, Two-generated ideals and representations of abelian groups over valuation rings,

J. Algebra 177 (1995), 77–101.
51. J.D. Sally and W.V. Vasconcelos, Stable rings and a problem of Bass, Bull. AMS 79 (1973),

574–576.
52. J.D. Sally and W.V. Vasconcelos, Stable rings, J. Pure Appl. Algebra 4 (1974), 319–336.
53. L. Sega, Ideal class semigroups of overrings, J. Algebra 311 (2007), 702–713.
54. M. Zafrullah, t-Invertibility and Bazzoni-like statements, J. Pure Appl. Algebra 214 (2010),

654–657.
55. P. Zanardo and U. Zannier, The class semigroup of orders in number fields, Math. Proc. Cam-

bridge Philos. Soc. 115 (1994), 379–391.


