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ABSTRACT. We prove that an integral domain R is
stable and one-dimensional if and only if R is finitely stable
and Mori. If R satisfies these two equivalent conditions,
then each overring of R also satisfies these conditions
and it is 2-v-generated. We also prove that if R is an
Archimedean stable domain such that R′ is local, then R
is one-dimensional and so Mori.

1. Introduction. In this introduction we start with a short remain-
der of finitely stable and stable rings, recall the definitions of other
classes of rings that we use here, as Mori, Archimedean, etc., and fi-
nally summarize our main results. By a ring we mean a commutative
ring with unity. A local ring is a ring with a unique maximal ideal,
not necessarily Noetherian. A semilocal ring is a ring with just finitely
many maximal ideals.

Motivated by earlier work of H. Bass [3] and J. Lipman [11] on the
number of generators of an ideal, in 1972 J. Sally and W. Vasconcelos
defined an ideal I of a ring R to be stable if I is projective over its
endomorphism ring; they called R a stable ring if each nonzero ideal
of R is stable [24, 25]. Stability of rings is often determined by the
stability of regular ideals, that is, ideals containing a nonzero divisor.
D. Rush studied the rings such that each finitely generated regular ideal
is stable, in particular in connection with properties of their integral
closure and to the 2-generator property [22, 23]. These rings are now
called finitely stable.

In a note of 1987, D.D. Anderson, J. Huckaba and I. Papick consid-
ered the notion of stability for integral domains [1]. If I is a nonzero
ideal of a domain R, then the endomorphism ring of I coincides with
the overring E(I) = (I : I) of R; also, I is projective over E(I) if and
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only if I is invertible as an ideal of E(I). We use here notations like
(I : I) in a more general context: If R and T are domains with the
same field of fractions K, I is an ideal of R and S is a subset of K,
we set (I :T S) = {t ∈ T | tS ⊆ I} and (I : S) = (I :K S). The
stability property of a nonzero ideal I does not depend on the domain
containing I: more precisely, if I is a common nonzero ideal of two
domains A and B, then I is stable as an ideal of A if and only if I is
stable as an ideal of B since FracA = FracB.

Since 1998, finitely stable and stable domains have been thoroughly
investigated by Bruce Olberding in a series of papers [14]-[19]. In [20],
he also studied finitely stable rings in the spirit of Rush, extending
several results known for stable domains. Our paper heavily relies on
Olberding’s work. We thank B. Olberding for his valuable help. Also,
as he communicated to us, his articles [15, 16, 17] contain some errors.

Of course, when R is a Noetherian ring, stability and finite stability
coincide, but in general these two classes of rings are distinct, even if
R is an integrally closed domain: in this case R is finitely stable if
and only if it is Prüfer, that is, each nonzero finitely generated ideal
of R is invertible. Indeed, a domain R is integrally closed if and only
if R = E(I) for each nonzero finitely generated ideal I. However, a
valuation domain is stable if and only if it is strongly discrete, that is,
each nonzero prime ideal is not idempotent [4, Proposition 7.6]. Thus
a valuation domain that is not strongly discrete is finitely stable, but
not stable.

A domain R is finitely stable if and only if it is locally finitely stable
[6, Proposition 7.3.4]. Actually, if I is a stable ideal of R, then IS is a
stable ideal of RS for each multiplicative part S ⊆ R.

Recall that a domain R has finite character if each nonzero element
of R is contained at most in finitely many maximal ideals. A finitely
stable domain need not have finite character, since any Prüfer domain
is finitely stable. On the other hand, a domain is stable if and only if
it is locally stable and has finite character [17, Theorem 3.3].

We denote by R′ the integral closure of a domain R.

Olberding characterized finitely stable domains as follows:

Theorem 1.1. [20, Corollary 5.11] A domain R is finitely stable if
and only if it satisfies the following conditions:
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(1) R′ is a quadratic extension of R;
(2) R′ is a Prüfer domain;
(3) Each maximal ideal of R has at most 2 maximal ideals of R′

lying over it.

Recall that a domain D is a quadratic extension of a domain R if
for each x, y ∈ D we have xy ∈ xR + yR + R. Olberding also proved
that, in the local one-dimensional case, stability and finite stability are
equivalent provided the maximal ideal is stable:

Proposition 1.2. [21, Theorem 4.2] Let R be a local one-dimensional
domain. The following conditions are equivalent:

(i) R is stable;
(ii) R is finitely stable with stable maximal ideal;
(iii) R′ is a quadratic extension of R and R′ is a Dedekind domain

with at most two maximal ideals.

Stability is related to divisoriality and to the 2-generator property.
Recall that an ideal I of a domain R is divisorial if I 6= (0) and
I = Iv = (R : (R : I)). A domain R is called divisorial if each
nonzero ideal of R is divisorial, and it is called totally divisorial if each
overring of R is divisorial. An ideal I of R is called 2-generated if I
can be generated by two elements. The domain R is 2-generated if each
finitely generated ideal of R is 2-generated.

A domain R is stable and divisorial if and only if it is totally
divisorial [18, Theorem 3.12]. Also, any stable Noetherian domain
is one-dimensional [25, Proposition 2.1], and a Noetherian domain
is stable and divisorial (i.e., totally divisorial) if and only if it is 2-
generated ([15, Theorem 3.1] and [4, Theorem 7.3]). The 2-generator
property for Noetherian domains is strictly stronger than stability. The
first example of a stable Noetherian domain that is not 2-generated
(equivalently, it is not divisorial) was given in [25, Example 5.4].
Several other examples can be found in [18, Section 3].

A Mori domain is a domain with the ascending chain condition on
divisorial ideals. This is equivalent to the property that each nonzero
ideal I of R contains a finitely generated nonzero ideal J such that
(R : I) = (R : J), that is, Iv = Jv [2, Theorem 2.1]. Clearly Noetherian
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domains are Mori. For the main properties of Mori domains, see the
survey [2] and the references there. A nonzero ideal I of an integral
domain R is 2-v-generated if I contains a 2-generated ideal J such that
(R : I) = (R : J), and R is 2-v-generated if each nonzero ideal of R is
2-v-generated. Of course, a 2-v-generated domain is Mori. However, if
each divisorial ideal of R is principal (hence 2-v-generated), then R is
not necessarily Mori (see [12, page 561]). Clearly, a Mori 2-generated
domain is 2-v-generated.

A Mori domain R satisfies the ascending chain condition on prin-
cipal ideals (for short, accp), and so it is Archimedean, that is,⋂

n≥0 r
nR = (0), for each nonunit r ∈ R. Indeed, a domain R satisfies

accp if and only if
⋂

n≥1(
∏n

i=1 riR) = (0) for any nonunits ri ∈ R,

equivalently
⋂

n≥1 anR = (0) if the sequence of principal ideals anR
is strictly decreasing. Besides accp domains, the class of Archimedean
domains includes also one-dimensional domains [13, Corollary 1.4] and
completely integrally closed domains [10, Corollary 13.4]. We recall
that a domain R is completely integrally closed if and only if R = E(I)
for each nonzero ideal I. Hence completely integrally closed domains
are integrally closed and the converse holds in the Noetherian case. A
completely integrally closed stable domain is Dedekind.

Here are our main results:

(1) If R is an Archimedean stable domain such that R′ is local,
then R is one-dimensional (Corollary 2.9).

(2) A domain R is stable and one-dimensional if and only if it
is finitely stable and Mori (Theorem 4.8). If R satisfies these
two equivalent conditions, then each overring of R also satisfies
these conditions and it is 2-v-generated.

If R′ is not local, an Archimedean local stable domain R need not be
one-dimensional. Indeed, in a forthcoming paper we will give examples
of Archimedean local stable domains of dimension n, for each n ≥ 1;
see [8, Section 6].

A class of one-dimensional local domains that are stable and not
Noetherian was constructed by Olberding in [19, Theorems 4.1 and
4.4] (see also [18, Theorem 3.10]). By our results, all these domains
are new examples of one-dimensional Mori domains.

We thank T. Dumitrescu for pointing out some errors in previous



ON FINITELY STABLE DOMAINS, I 5

versions of this paper.

2. The one-dimensional case. In the following, R is an integral
domain that is not a field. By an ideal we mean an integral ideal.

The following construction, due to Olberding, is basic for our paper.

Construction 2.1. [17, Section 4] Let (R,M) be a local domain.
Set Ri = {0} for i < 0, R0 = R and M0 = M . Define inductively
for n > 0: Rn = Rn−1 if Rn−1 is not local, and Rn = E(Mn−1) =
(Mn−1 : Mn−1) if Rn−1 is local with maximal ideal denoted by Mn−1.
Set T =

⋃
n≥0 Rn.

Thus we have:

(a) If there exists an integer k > 0 such that Rk is not local, but
Ri is local for 0 ≤ i < k, then Rn = Rk for all n ≥ k, and
T = Rk.

(b) If Rn ( Rn+1 for all n ≥ 0, all the rings Rn are local.

We will use repeatedly the following theorem of Olberding.

Theorem 2.2. [17, Corollary 4.3, Theorem 4.8] and its proof, and
[20, Theorem 5.4] Let R be a finitely stable local domain with stable
maximal ideal M . With the notation of 2.1 we have:

(1) Each Rn is finitely stable with stable maximal ideals, and there
exists an element m ∈ M such that M = mR1. Moreover,
for k ≥ 1, if Rk is local with maximal ideal Mk, then Mk =
mRk+1 = MRk+1, and if T is local, then its maximal ideal is
mT = MT .

(2) Each Rn is a finitely generated R-module, thus T is an integral
extension of R.

We also have:

(a) If T = Rn for some n ≥ 0, then T is a finitely generated R-
module, and T has at most two maximal ideals.

(b) If T 6= Rn for all n ≥ 0, then T is local.
(c) The maximal ideals of T are principal, and the Jacobson radical

of T is equal to mT = MT , where mR1 = M .
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In addition, if R is a stable domain, then T is equal to the integral
closure R′ of R, and R′ is a strongly discrete Prüfer domain.

In the one-dimensional case we have:

Corollary 2.3. Let R be a one-dimensional finitely stable local domain
with stable maximal ideal M . Then R is stable, and in the setting of
Theorem 2.2, T = R′ is a principal ideal domain with at most two
maximal ideals. Hence, if T is local, in particular, if T 6= Rn for each
n ≥ 0, T is a DVR.

Proof. R is stable by Proposition 1.2, so T = R′. Since R′ is
one-dimensional with principal maximal ideals, R′ is a principal ideal
domain by [10, Corollary 37.9]. �

Proposition 2.4. In the setting of Theorem 2.2, T 6= Rn for each
n ≥ 0 if and only if T is a finite R-extension (that is, T is a finitely
generated R-module). Hence T = Rn for some n ≥ 0 if and only if T
is not a finite R-extension. (Recall that if R is stable, then T = R′.)

Proof. If T = Rn for some n ≥ 0, then T is a finitely generated
R-module by Theorem 2.2 (a). Conversely, assume that T is generated
as an R-module by a finite subset F of T . Then there exists an integer
n ≥ 0 such that F ⊆ Rn, implying that T = Rn. �

Denote by U(A) the set of units of a domain A.

Remark 2.5. In the setting of Theorem 2.2, for any integer n ≥ 0 we
have U(T ) ∩Rn = U(Rn), since T is an integral extension of Rn.

Lemma 2.6. Let R be a finitely stable local domain with stable maximal
ideal. In the setting of Theorem 2.2, if T is local, in particular, if
condition (b) holds, we have:

(1) For each n ≥ 0, (R :T mn) = (R :T Mn) = Rn; equivalently,
Tmn ∩R = Rnm

n (here M0 = R).
(2) Let r = umn be a nonzero element of R, where u ∈ U(T ), and

n ≥ 0. Then (R :T r) = Rn.
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Proof. (1) We prove the equality (R :T mn) = Rn by induction on
n starting with n = 0. Let n > 0. Since M = R1m, by applying the
induction assumption to R1 replacing R we obtain that:

(R :T mn) = (M :T mn) = (R1m :T mn) = (R1 :T mn−1) = Rn.

Also Mn = (R1m)n = R1m
n. Since Rn = (R :T mn) and R1 ⊆ Rn, we

obtain

Rn ⊆ (R :T R1m
n) = (R :T Mn) ⊆ (R :T mn) = Rn,

so (R :T Mn) = Rn.

(2) By item (1) we have u ∈ Rn, and also:

(R :T r) = (R :T umn) = ((R :T mn) : u) = (Rn :K u) = Rn,

where K = FracR, since u ∈ U(Rn). �

Lemma 2.7. Let (R,M) be a finitely stable local domain with stable
maximal ideal. In the notation of 2.1 assume that T is local. Then(⋂

n≥0

mnT
)2
⊆
⋂
n≥0

mnR.

Proof. By Lemma 2.6 (1), we have for all n ≥ 0:(
R ∩

⋂
k≥0

mkT
)2
⊆ (R ∩mnT )2 = (mnRn)2 = mn(mnRn) ⊆ mnR,

so
(
R ∩

⋂
k≥0 m

kT
)2
⊆
⋂

n≥0 m
nR.

Now let s, t ∈
⋂

n≥0 m
nT . Again by Lemma 2.6 (1), we have

sme, tme ∈ R for a sufficiently large integer e. Thus (sme)(tme) ∈(
R ∩

⋂
n≥0 m

nT
)2
⊆
⋂

n≥0 m
nR. It follows that st = (sme)(tme)

m2e ∈⋂
n≥0 m

nR. Hence
(⋂

n≥0 m
nT
)2
⊆
⋂

n≥0 m
nR. �

Theorem 2.8. Let R be an Archimedean finitely stable local domain
with stable maximal ideal. In the notation of 2.1, if T is local, in
particular, if condition (b) of Theorem 2.2 holds, then R is one-
dimensional.
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Proof. By Theorem 2.2, the maximal ideal of T is mT , m ∈ M .
Let Q =

⋂
n≥0 m

nT . By Lemma 2.7, Q2 ⊆
⋂

n≥0 m
nR = (0). Hence

Q = (0). By [10, Theorem 7.6 (a) and (c)], Q is the largest non-
maximal prime contained in mT . Thus T is one-dimensional, and so is
R, as T is an integral extension of R. �

Corollary 2.9. Let R be an Archimedean stable domain satisfying one
of the following two conditions:

(a) R is local and R′ is not a finitely generated R-module;
(b) R′ is local.

Then R is one-dimensional.

Proof. (a) Since R is local and stable, we have T = R′. By
Proposition 2.4, condition (a) here is equivalent to condition (b) of
Theorem 2.2. Thus T = R′ is local and so R is one-dimensional by
Theorem 2.8.

(b) Since R′ is local, also R is local. As in (a), since R is also stable,
we have T = R′, and again R is one-dimensional by Theorem 2.8. �

If R′ is not local, an Archimedean local stable domain R need not be
one-dimensional. Indeed, in a forthcoming paper we will give examples
of Archimedean local stable domains of dimension n, for each n ≥ 1;
see [8, Section 6].

3. The 2-v-generator property. In the Noetherian case, the next
theorem was proved by Sally and Vasconcelos [24, Theorem 2.4]. Ol-
berding proved that the hypotheses of the theorem imply Noetherianity.

Theorem 3.1. [16, Proposition 4.5] Let R be a one-dimensional stable
domain. If R′ is a finite R-extension, then each ideal of R is 2-
generated.

In Proposition 3.13 below, we state that a stable one-dimensional
domain R is 2-v-generated, that is, for each nonzero ideal I there are
two elements x, y ∈ I such that Iv = 〈x, y〉v; thus R is Mori. We start
with the following notation:
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Notation 3.2. In the setting of Theorem 2.2, assume that the domain
R is one-dimensional and that T is local (in particular, T is local if
condition (b) holds). As T is a DVR (Corollary 2.3) with maximal ideal
mT , we denote by v the discrete valuation of T such that v(m) = 1.

Lemma 3.3. In the setting of Theorem 2.2, assume that the domain
R is one-dimensional and that T is local. Then, by using Notation 3.2,
we have:

(1) Let r be a nonzero element of R. Then:

(R :T r) = Rv(r).

(2) Let I be a nonzero ideal of R, and let a be an element of
minimal value v(a) = k in I. Then:

(R :T I) = Rk.

Proof. (1) This follows from Lemma 2.6 (2).

(2) By item (1), we have

(R :T I) =
⋂

r∈I\{0}

(R :T r) =
⋂

r∈I\{0}

Rv(r) = Rk.

�

From Lemma 2.6 (1) we obtain:

Lemma 3.4. In the setting of Theorem 2.2, assume that the domain
R is one-dimensional and that T is local. Then, in the notation 3.2,
we have for all k ≥ 0:

{r ∈ R | v(r) ≥ k} = R ∩mkT = Rkm
k.

Proposition 3.5. A one-dimensional local stable domain R is 2-v-
generated; hence R is a Mori domain.

Proof. In case (a) of Theorem 2.2, every ideal of R is 2-generated by
Theorem 3.1.

Assume condition (b) of Theorem 2.2, and use Notation 3.2. Let
I 6= R be a nonzero ideal of R. Since T is a DVR, there exists a
nonzero element t ∈ T of maximal value v(t) such that 1

t I ⊆ R. Let
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J = 1
t I, so (R : J) ⊆ T . Since 1

m /∈ T , there exists a nonzero element
a1 ∈ J such that a1

m /∈ R. Let a2 be an element of minimal value k
in J . If a2

m /∈ R, set a = a2. Assume that a2

m ∈ R. If v(a1) = v(a2),
set a = a1. Otherwise v(a1) > v(a2), so v(a1 + a2) = v(a2) and
a1+a2

m /∈ R. In this case we set a = a1 +a2. In each case, a is a nonzero

element of minimal value k in J such that a
m /∈ R. Thus a = umk,

where u ∈ U(Rk) \Rk−1, by Lemma 2.6 (1).

Since (R : J) ⊆ T and 1
um /∈ T , there exists an element b ∈ J such

that b
um /∈ R. We show that (R : {a, b}) ⊆ T .

If x is an element in (R : {a, b})\T , we have x = 1
vmi , where v ∈ U(T )

and i > 0. Thus 1
vma, 1

vmb ∈ R. Since 1
vma = u

vm
k−1 ∈ R, we have

u
v ∈ U(Rk−1) by Lemma 2.6 (1). Since v(b) ≥ k, we have v( b

vm ) ≥ k−1.

As b
vm ∈ R, we obtain by Lemma 3.4 that b

vm ∈ Rk−1m
k−1. Hence,

b
um = v

u
b

vm ∈ Rk−1m
k−1 ⊆ R, a contradiction. It follows that

(R : {a, b}) ⊆ T .

Since a is of minimal value in J , by Lemma 3.3 (1)-(2), we have
(R :T J) = (R :T a).

Hence (R : J) ⊆ (R : {a, b}) = (R :T {a, b}) = (R :T J) ⊆ (R : J),
so (R : J) = (R : {a, b}). Thus J is 2-v-generated and so is I = tJ . We
conclude that R is 2-v-generated. �

Corollary 3.6. Let R be an Archimedean stable domain such that R′

is local (in particular, assume that condition (b) of Theorem 2.2 holds).
Then R is a one-dimensional Mori domain.

Proof. R is local and one-dimensional by Corollary 2.9. Hence R is
Mori by Proposition 3.5. �

In Proposition 3.13 below we globalize Proposition 3.5.

Lemma 3.7. Let S be a multiplicative subset of an integral domain R.
If I is a 2-v-generated nonzero ideal of R, then the ideal IRS of RS is
2-v-generated. Hence, if R is 2-v-generated, also RS is 2-v-generated.

Proof. There exists a 2-generated subideal J of I such that (R : J) = (R : I).
Since (R : J)RS = (RS : JRS), we have (RS : IRS) = (RS : JRS) and
so the ideal IRS of RS is 2-v-generated. �
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Lemma 3.8. Let (R,M) be a local one-dimensional domain, and let
a, b ∈ M be two nonzero elements. Then each element in a + Rbk is
associated with a for all sufficiently large integers k.

Proof. Since R is local and one-dimensional, we have M =
√
aM ,

so bk ∈ aM for each sufficiently large integer k. Hence for all r ∈ R

we have a + rbk = a(1 + r( bk

a )), where 1 + r bk

a is a unit in R since
bk

a ∈M . �

Proposition 3.9. Let R be a one-dimensional domain of finite char-
acter. The following conditions are equivalent:

(i) R is 2-v-generated;
(ii) R is locally 2-v-generated.

Proof. (i)⇒ (ii) If R is 2-v-generated, then R is locally 2-v-generated
by Lemma 3.7.

(ii) ⇒ (i) Assume that R is locally 2-v-generated. We prove that
each nonzero ideal I 6= R of R is 2-v-generated. Since R has finite
character there are just finitely many maximal ideals containing I, say
M1, . . . ,Me, which we assume to be distinct. For each 1 ≤ i ≤ e, the
domain RMi

is 2-v-generated, so there exist nonzero elements ai, bi in I
such that (RMi

: I) = (RMi
: {ai, bi}). There exist pairwise comaximal

elements mi ∈Mi, for 1 ≤ i ≤ e. By the Chinese Remainder Theorem,
for each positive integer k there exists an element a ∈ I such that we
have in R:

a ≡ ai mod Imk
i

for 1 ≤ i ≤ e. By Lemma 3.8, we may choose k sufficiently large
such that for each i the elements a and ai are associated in RMi

, so
(RMi : I) = (RMi : {ai, bi}) = (RMi : {a, bi}).

Let Nq (q = 1, 2, . . . , f) be the maximal ideals containing a but not
I. There exist pairwise comaximal elements ni ∈ Mi, for 1 ≤ i ≤ e
that belong to no maximal ideal Nq. Also there exists an element c ∈ I
that belongs to no ideal Nq. By the Chinese Remainder theorem, for
each positive integer j there exists an element b ∈ I such that b ≡ bi
mod Inj

i for each 1 ≤ i ≤ e, and b ≡ c mod INq for each ideal Nq.
Hence b /∈ Nq for all 1 ≤ q ≤ f . By Lemma 3.8, for a sufficiently large
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integer j and for each i, the elements b and bi are associated in RMi
,

so (RMi : I) = (RMi : {a, b}) for all 1 ≤ i ≤ e.

Let M be a maximal ideal of R. If M contains I, thus M = Mi for
some integer 1 ≤ i ≤ e, then (RMi

: I) = (RMi
: {a, b}). If M contains

a but not I, then M = Nq for some integer 1 ≤ q ≤ f , so b /∈M . Thus
(RM : I) = RM = (RM : {a, b}). If M does not contain a, then again
(RM : I) = RM = (RM : {a, b}). Thus for each maximal ideal M of R
we have (RM : I) = (RM : {a, b}). Hence

(R : I) =
⋂
M

(RM : I) =
⋂
M

(RM : {a, b}) = (R : {a, b}),

where M runs over all the maximal ideals of R. We conclude that I is
2-v-generated, so the domain R is 2-v-generated. �

Corollary 3.10. A one-dimensional stable domain is 2-v-generated if
and only if it is locally 2-v-generated

Proof. Indeed, a stable domain has finite character. �

A locally 2-v-generated domain R is not necessarily 2-v-generated
even if R is one-dimensional. For example, if R is an almost Dedekind
domain that is not Dedekind, then R is locally a DVR, but R is not
Mori since an almost Dedekind and Mori domain is Dedekind. For a
positive result, see Proposition 3.12 below.

Lemma 3.11. A one-dimensional Mori domain has finite character.

Proof. If R is Mori and one-dimensional, every maximal ideal of R
is divisorial [2, Theorem 3.1]. By [2, Theorem 3.3 (c)], a Mori domain
is an intersection of finite character of the localizations at its maximal
divisorial ideals. It follows that R has finite character. �

Proposition 3.12. Let R be a one-dimensional domain. The following
conditions are equivalent:

(i) R is 2-v-generated;
(ii) R is locally 2-v-generated and R has finite character.
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Proof. (i) ⇒ (ii) R is locally 2-v-generated by Lemma 3.7 and has
finite character by Lemma 3.11.

(ii) ⇒ (i) See Proposition 3.9. �

Proposition 3.13. A one-dimensional stable domain R is 2-v-generated;
hence R is Mori.

Proof. Since R is locally stable, R is locally 2-v-generated by Propo-
sition 3.5. Thus R is 2-v-generated by Corollary 3.10. �

The stability assumption in Propositions 3.5 and 3.13 cannot be re-
laxed to finite stability. Indeed, let R be a one-dimensional valuation
domain that is not a DVR. Thus R is finitely stable, but R is neither
Mori, nor stable (the maximal ideal of R is not stable); see [16, Ex-
ample 3.3]. On the other hand, we prove below that a one-dimensional
finitely stable Mori domain is stable (Proposition 4.4).

4. The Mori case. In this section, we give a characterization of
one-dimensional stable domains. We need a few preliminary results.

Proposition 4.1. Let I be a stable ideal of an integral domain R.
Then Iv = I(Iv : Iv) is stable, and (Iv)2 ⊆ I.

Proof. Let D = (Iv : Iv). Thus (I : I) ⊆ (Iv : I) = (Iv : Iv) = D.
Since I is an invertible ideal of (I : I) and (I : I) ⊆ D, it follows that
ID is an invertible ideal of D. As D is a fractional divisorial ideal
of R, we obtain that ID is a fractional divisorial ideal of R. Hence
Iv ⊆ ID, so Iv = ID since Iv is an ideal of D. Thus Iv = ID is
invertible in D = (Iv : Iv), that is, Iv is a stable ideal of R. Also
(Iv)2 = Iv(ID) = (IvD)I = IvI ⊆ I. �

Corollary 4.2. [7, Lemma 2.7] In a finitely stable domain all the v-
finite divisorial ideals are stable. In particular, all the divisorial ideals
of a finitely stable Mori domain are stable.

A nonzero ideal I of a domain is called a t-ideal if I =
⋃
Jv, where

J runs over all finitely generated subideals of I. Divisorial ideals are
t-ideals, and in a Mori domain each t-ideal is divisorial.



14 STEFANIA GABELLI AND MOSHE ROITMAN

Corollary 4.3.

(1) A stable radical ideal is divisorial.
(Cf. [17, Corollary 4.13]. Here we do not assume that the

domain R is stable).
(2) If I is a radical ideal and each finitely generated subideal of I

is stable, then I is a t-ideal.
(3) Each nonzero radical ideal of a finitely stable domain is a t-

ideal.
(4) All the nonzero radical ideals of a finitely stable Mori domain

are divisorial and stable.

Proof. (1) Let I be a stable radical ideal of R. By Proposition
4.1, we have (Iv)2 ⊆ I, so Iv ⊆ I as the ideal I is radical. Hence
I = Iv is a divisorial ideal.

(2) If J is a nonzero finitely generated subideal of I, then (Jv)2 ⊆
J ⊆ I by Proposition 4.1. Since the ideal I is radical, we obtain
Jv ⊆ I, so I is a t-ideal.

(3) follows from (2).
(4) All the radical ideals of a Mori domain are divisorial by item

(2), so they are also stable by Corollary 4.2.

�

Proposition 4.4. A one-dimensional finitely stable Mori domain is
stable.

Proof. For each maximal ideal M of R, RM is Mori and finitely
stable. Hence MRM is divisorial (Corollary 4.3 (3)) and so stable
(Corollary 4.2). By Proposition 1.2, RM is stable. Since R has finite
character (Lemma 3.11), R is stable by [17, Theorem 3.3]. �

Actually, as shown in Theorem 4.8 below, a finitely stable Mori do-
main is one-dimensional, so it is stable and 2-v-generated (Propositions
4.4 and 3.13).

The following lemma is known; we give a proof for lack of a reference.

Lemma 4.5. Let I be a divisorial ideal of a Mori domain R. Then the
domain (I : I) is Mori.



ON FINITELY STABLE DOMAINS, I 15

Proof. Let J1 ⊆ J2 ⊆ . . . an infinite increasing sequence of divisorial
ideals of the domain (I : I). Since I is a divisorial ideal of R, the
domain (I : I) is a fractional divisorial ideal of R, so J1, J2, . . . are
fractional divisorial ideals of R. Let c be a nonzero element of I. Then
cJ1 ⊆ cJ2 ⊆ . . . is a an increasing sequence of divisorial ideals of R, so
cJn = cJn+1 for n � 0. Thus the sequence J1 ⊆ J2 ⊆ . . . stabilizes,
implying that (I : I) is Mori. �

Proposition 4.6. Let (R,M) be a finitely stable local Mori domain.
If T is a finite extension of R, then R is one-dimensional, stable and
every ideal of R is 2-generated, thus the domain R is Noetherian. (see
2.1 for the definition of T ).

Proof. By Corollary 4.3 (4), the maximal ideal M of R is divisorial
and stable. We use the setting of Theorem 2.2. By Proposition
2.4, T = Rn for some integer n ≥ 0. By Lemma 4.5, the domain
R1 = (M : M) is Mori. By induction, Rk is Mori for all k ≥ 0,
so T = Rn is a Mori domain. Since T has principal maximal ideals
(Theorem 2.2 (c)), T is one-dimensional [2, Theorem 3.4]. So R is
one-dimensional. By Proposition 4.4, R is stable. By Theorem 3.1,
every ideal of R is 2-generated. �

Proposition 4.7. Let (R,M) be a local domain. The following condi-
tions are equivalent:

(i) R is one-dimensional and stable.
(ii) R is finitely stable and Mori.

Proof. (i) ⇒ (ii) See Proposition 3.5.

(ii) ⇒ (i) By Corollary 4.3 (4), the maximal ideal M of R is stable.
By Proposition 4.6, we have to consider just the case (b) of Theorem
2.2. In this case, by Theorem 2.8, R is one-dimensional. By Proposition
4.4, R is stable. �

In the next theorem we globalize Proposition 4.7:

Theorem 4.8. Let R be an integral domain. The following two
conditions are equivalent:

(i) R is one-dimensional and stable.
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(ii) R is finitely stable and Mori.

Moreover, if R satisfies these two equivalent conditions, then every
overring of R also satisfies the two conditions, every overring of R
is 2-v-generated, and R′ is a Dedekind domain.

Proof. (i)⇒ (ii) Since R is locally stable, we obtain that R is locally
Mori by Proposition 4.7. Since R has finite character, it follows that R
is Mori [2, Theorem 2.4].

(ii)⇒ (i) Since R is locally finitely stable and locally Mori, it follows
from Proposition 4.7 that R is one-dimensional and locally stable. Since
R has finite character (Lemma 3.11), R is stable.

Assume that R satisfies the two conditions. Let D be an overring
of R. Since R is one-dimensional and R′ is Prüfer (as R is stable), it
follows that each overring of R is is one-dimensional by [9, Theorem 6].
Since R is stable, each overring of R is stable. A one-dimensional stable
domain is 2-v-generated by Proposition 3.13. Finally, R′ is Prüfer and
Mori, so it is Dedekind (alternatively, this follows from that a stable
one-dimensional Prüfer domain is Dedekind). �

In connection with Theorem 4.8, recall that an integral domain is
Noetherian 2-generated if and only if it is one-dimensional, stable and
divisorial ([15, Theorem 3.1] and [4, Theorem 7.3]).

However, if we assume just that R is a 2-v-generated domain, then
R is not necessarily one-dimensional, and so also not finitely stable.
Indeed, any Krull domain is 2-v-generated [12, Proposition 1.2]. In
addition, it is not true that in a 2-v-generated domain each divisorial
ideal is stable. In fact, if R is a Krull domain, stability coincides with
invertibility. Thus each divisorial ideal of a Krull domain R is stable
(i.e., invertible) if and only if R is locally factorial [5, Lemma 1.1]. On
the other hand, a one-dimensional Krull domain is Dedekind and so
each nonzero ideal is divisorial and stable.

In view of this example and of the 2-generated case, we ask:

Question 4.9. Let R be a 2-v-generated domain R. Are the divisorial
ideals of R v-stable? If R is one-dimensional, are the divisorial ideals
of R stable?
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Recall that an ideal I of a domain R is v-invertible if (I(R : I))v = R
and that a divisorial ideal I of R is v-stable if I is v-invertible in the
ring (I : I), that is (I(I : I2))v = (I : I).
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