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ABSTRACT. Among other results, we prove the follow-
ing:

(1) A locally Archimedean stable domain satisfies accp.
(2) A stable domain R is Archimedean if and only if every

nonunit of R belongs to a height-one prime ideal of
R′ (this result is related to Ohm’s Theorem for Prüfer
domains).

(3) An Archimedean stable domain R is one-dimensional
if and only if R′ is equidimensional (generally, an
Archimedean stable local domain is not necessarily one-
dimensional).

(4) An Archimedean finitely stable semilocal domain with
stable maximal ideals is locally Archimedean, but
generally, neither Archimedean stable domains, nor
Archimedean semilocal domains are necessarily locally
Archimedean.

1. Introduction. In the following, R is an integral domain with
quotient field K and R 6= K. An overring of R is a domain T such that
R ⊆ T ⊆ K. We denote by R′ the integral closure of R. By an ideal
we mean an integral ideal.

This paper deals with Archimedean finitely stable domains and is a
sequel of [7].

We recall that a nonzero ideal I of R is called stable if I is invertible
in its endomorphism ring E(I) := (I : I). R is finitely stable if each
nonzero finitely generated ideal is stable and is stable if each ideal is
stable.

Since 1998, finitely stable and stable domains have been thoroughly
investigated by Bruce Olberding in a series of papers [16]-[21]. Our
paper heavily relies on Olberding’s work. We thank B. Olberding for his
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valuable help. Also, as he communicated to us, his articles [17, 18, 19]
contain some errors.

Of course, when R is a Noetherian domain, stability and finite
stability coincide, but in general these two classes of rings are distinct,
even if R is integrally closed: in this case R is finitely stable if and only
if it is Prüfer, that is, each nonzero finitely generated ideal is invertible.
Indeed, a domain R is integrally closed if and only if R = E(I) for each
nonzero finitely generated ideal I. However, a valuation domain is
stable if and only if it is strongly discrete, that is, each nonzero prime
ideal is not idempotent [3, Proposition 7.6]. Thus a valuation domain
that is not strongly discrete is finitely stable, but not stable.

A domain R is finitely stable if and only if RM is finitely stable, for
each maximal ideal M [4, Proposition 7.3.4]. Actually, if I is a stable
ideal of R, then IS is a stable ideal of RS for each multiplicative part
S ⊆ R.

A domain has finite character if each nonzero element is contained
at most in finitely many maximal ideals. A finitely stable domain need
not have finite character, since any Prüfer domain is finitely stable. On
the other hand, a domain is stable if and only if it is locally stable and
has finite character [19, Theorem 3.3].

We recall that a domain R is called Archimedean if
⋂

n≥0 r
nR = (0),

for each nonunit r ∈ R. If R satisfies the ascending chain condition
on principal ideals (for short, accp), then R is Archimedean. Indeed,
the domain R satisfies accp if and only if

⋂
n≥1(

∏n
i=1 riR) = (0) for

any nonunits ri ∈ R, equivalently
⋂

n≥1 anR = (0) if the sequence
of principal ideals anR is strictly decreasing. A Mori domain is a
domain satisfying the ascending chain condition on divisorial ideals,
so a Mori domain is Archimedean. Besides accp domains, the class
of Archimedean domains includes also one-dimensional domains [15,
Corollary 1.4] and completely integrally closed domains [8, Corollary
13.4]. We recall that a domain R is completely integrally closed if
and only if R = E(I) for each nonzero ideal I. Hence completely
integrally closed domains are integrally closed and the converse holds
in the Noetherian case. A completely integrally closed stable domain
is Dedekind.

In [7, Theorem 4.8] we proved that a domain is stable and one-
dimensional if and only if it is Mori and finitely stable. Here, among
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other results, we show that an Archimedean stable domain is one-
dimensional if and only if R′ is equidimensional (Proposition 4.1). The
assumption that R′ is equidimensional is essential, as shown in Example
5.17.

As usual, if P is a property of rings, then a ring R is locally P if
RM is P for each maximal ideal M of R. Generally, this does not
imply that RP is P for every prime ideal P even for a local domain
(see Example 5.8 for the Archimedean property). The property P
localizes if every ring satisfying P is locally P. The following properties
localize: stability, finite stability, Mori. However, as it is well-known,
the Archimedean property, the accp and the c.i.c. property do not
localize (see Section 5 below).

When studying the Archimedean property, we use Corollary 3.13:
a stable domain R is Archimedean if and only if each nonunit of R
belongs to a height-one prime ideal of R′ (this result is related to Ohm’s
Theorem for Prüfer domains [15, Corollary 1.2]). We also prove that
a stable domain is locally Archimedean if and only if

⋂
n≥1 M

n = (0)

for each maximal ideal M (Proposition 2.16); this condition implies
accp (Proposition 2.18). So that a stable locally Archimedean domain
satisfies accp (Corollary 2.19).

By Example 5.13, a stable Archimedean domain need not be locally
Archimedean, and by Example 5.9 a semilocal Archimedean domain
(even completely integrally closed) need not be locally Archimedean.
On the positive side we show that an Archimedean finitely stable
semilocal domain with stable maximal ideals is locally Archimedean
(Proposition 3.14).

We thank T. Dumitrescu for pointing out some errors in previous
versions of this paper.

The following results (1.1-1.4), due to Olberding, are basic for our
paper.

Theorem 1.1. [22, Corollary 5.11] A domain R is finitely stable if
and only if it satisfies the following conditions:

(1) R′ is a quadratic extension of R;
(2) R′ is a Prüfer domain;
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(3) Each maximal ideal of R has at most 2 maximal ideals of R′

lying over it.

Recall that a domain D is a quadratic extension of a domain R if
for each x, y ∈ D we have xy ∈ xR + yR + R. Olberding also proved
that, in the local one-dimensional case, stability and finite stability are
equivalent provided the maximal ideal is stable:

Proposition 1.2. [23, Theorem 4.2] Let R be a local one-dimensional
domain. The following conditions are equivalent:

(i) R is stable;
(ii) R is finitely stable with stable maximal ideal;
(iii) R′ is a quadratic extension of R and R′ is a Dedekind domain

with at most two maximal ideals.

Construction 1.3. [19, Section 4] Let (R,M) be a local domain.
Set Ri = {0} for i < 0, R0 = R and M0 = M . Define inductively
for n > 0: Rn = Rn−1 if Rn−1 is not local, and Rn = E(Mn−1) =
(Mn−1 : Mn−1) if Rn−1 is local with maximal ideal denoted by Mn−1.
Set T =

⋃
n≥0 Rn.

Thus we have:

(a) If there exists an integer k > 0 such that Rk is not local, but
Ri is local for 0 ≤ i < k, then Rn = Rk for all n ≥ k, and
T = Rk.

(b) If Rn ( Rn+1 for all n ≥ 0, all the rings Rn are local.

We will use repeatedly the following theorem of Olberding.

Theorem 1.4. [19, Corollary 4.3, Theorem 4.8] and its proof, and
[22, Theorem 5.4] Let R be a finitely stable local domain with stable
maximal ideal M . With the notation of 1.3 we have:

(1) Each Rn is finitely stable with stable maximal ideals, and there
exists an element m ∈ M such that M = mR1. Moreover,
for k ≥ 1, if Rk is local with maximal ideal Mk, then Mk =
mRk+1 = MRk+1, and if T is local, then its maximal ideal is
mT = MT .
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(2) Each Rn is a finitely generated R-module, thus T is an integral
extension of R.

We also have:

(a) If T = Rn for some n ≥ 0, then T is a finitely generated R-
module, and T has at most two maximal ideals.

(b) If T 6= Rn for all n ≥ 0, then T is local.
(c) The maximal ideals of T are principal, and the Jacobson radical

of T is equal to mT = MT , where mR1 = M .

In addition, if R is a stable domain, then T is equal to the integral
closure R′ of R, and R′ is a strongly discrete Prüfer domain.

2. On the Archimedean property. We start with some generali-
ties on the Archimedean property. Then we prove that a finitely stable
domain R with stable maximal ideals is locally Archimedean if and only
if
⋂

n≥1 M
n = (0) for each maximal ideal M of R (Proposition 2.16).

We deduce from this result that a locally Archimedean stable domain
satisfies accp (Corollary 2.19).

Many results in this section are related to the following theorem of
J. Ohm, which will be extended in Theorem 3.12 below.

Theorem 2.1. [15, Corollary 1.6]. Let R be a Prüfer domain. We
have:

(1) If a is a nonunit of R belonging to just finitely many maximal
ideals, then

⋂
n≥1 a

nR = (0) if and only if a belongs to a height-one
prime ideal.

Hence:

(2) If R has finite character, then R is Archimedean if and only if
each nonunit of R belongs to a height-one prime ideal.

Corollary 2.2. An Archimedean Prüfer domain of finite character and
with just finitely many height-one prime ideals is one-dimensional. In
particular, an Archimedean Prüfer semilocal domain is one-dimensional.

Proof. Let M be a maximal ideal of R. By Ohm’s Theorem 2.1 (2),
M is contained in the finite union of the height-one prime ideals of R.
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Hence M has height one, so R is one-dimensional.

If R is Prüfer and semilocal, then R has just finitely many height-one
prime ideals. Hence, if R is Archimedean, then R is one-dimensional.

�

Remark 2.3. An integral domain R is Archimedean if and only if
for each nonzero nonunit r of R there is an Archimedean domain D
(depending on r) containing R such that r is a nonunit in D. Moreover,
replacing D by D ∩ Frac(R), we may assume that D is an overring of
R.

In particular, an intersection of Archimedean domains is Archimedean.
Hence a locally Archimedean domain is Archimedean.

Corollary 2.4. A domain R is Archimedean if and only if R has an
Archimedean integral extension overring.

Corollary 2.5. Let A ⊆ B be an extension of domains. If every
nonzero nonunit of A belongs to a height-one prime ideal of B, then A
is Archimedean.

Proof. Let a be a nonzero nonunit of A. If Q is an height-one prime
ideal of B containing a, then a is a nonunit in the one-dimensional (so
Archimedean) domain BQ. By Remark 2.3, A is Archimedean. �

Corollary 2.6. Let (R,M) be a local domain. If some integral exten-
sion of R has a height-one maximal ideal, then R is Archimedean.

Proof. If Q is a height-one maximal ideal of an integral extension D
of R, then Q∩R = M . Hence R is Archimedean by Corollary 2.5. �

Proposition 2.7. Let R be an integral domain, and let a be a nonunit
of R that belongs to just finitely many maximal ideals.

Then
⋂

n≥1 a
nR = (0) if and only if a belongs to a maximal ideal M

such that
⋂

n≥1 a
nRM = (0).
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Proof. Let F be the set of maximal ideals containing a. We have⋂
n≥1

anR = R∩
⋂
n≥1

(
⋂

M∈F

anRM ) = R∩
⋂

M∈F

(
⋂
n≥1

anRM ) =
⋂

M∈F

R∩(
⋂
n≥1

anRM ).

Since the set F is finite it follows that
⋂

n≥1 a
nR = (0) if and only if

R ∩
⋂

n≥1(anRM ) = (0) for some M ∈ F, equivalently
⋂

n≥1 a
nRM =

(0) for some M ∈ F �

Proposition 2.8. If R is an Archimedean domain and P is a principal
prime ideal of R, then RP is a DVR.

Proof. If P = rR, then by [8, Theorem 7.6 (a) and (c)]
⋂

n≥0 P
n =⋂

n≥0 r
nR = (0) is the largest prime ideal of R properly contained in

P . It follows that RP is a one-dimensional local domain with principal
maximal ideal, and so RP is a DVR. �

Corollary 2.9. Let R be an integral domain.

(1) If R is Archimedean with principal maximal ideals, then R is a
principal ideal domain.

(2) If R is locally Archimedean with invertible maximal ideals, then
R is a Dedekind domain.

Proof. (1) By Proposition 2.8, R is one-dimensional. Since every
nonzero prime ideal of R is principal, R is a principal ideal domain by
[8, Corollary 37.9].

(2) By Proposition 2.8, R is locally a DVR (i.e., R is almost
Dedekind); in particular R is one-dimensional. It follows that R is
a Dedekind domain by [8, Theorem 37.8 (1)⇔ (4)]. �

However, an Archimedean domain R with invertible maximal ideals
is not necessarily one-dimensional, even if R is Prüfer and stable: see
Example 5.13 below.

Corollary 2.10. An Archimedean Bézout domain R with stable max-
imal ideals is a principal ideal domain.

Proof. As mentioned at the end of the proof of [19, Lemma 4.5],
a stable maximal ideal M of a Prüfer domain R is invertible since
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(M : M) = R. Thus the maximal ideals of R are finitely generated, so
they are principal. Hence R is a principal ideal domain by Corollary
2.9. �

None of the two conditions on the Bézout domain R in Corollary 2.10
to be a principal ideal domain can be omitted. Indeed, R = Z+XQ[X]
is a two-dimensional Bézout domain with principal maximal ideals. On
the other hand, the ring of entire functions is an infinite-dimensional
completely integrally closed Bézout domain. Thus R is Archimedean;
see also Remark 2.11 below. Hence R has non-principal maximal ideals:
these are the free maximal ideals: see [4, Ch. VIII, §8.1] and [24, Ch.6,
§3].

Remark 2.11. By [25, Corollary 2.4], a GCD domain (in particular, a
Bézout) domain is Archimedean if and only if it is completely integrally
closed.

Lemma 2.12. Let I and J be two ideals of a ring R. If I contains a
power of J , then ⋂

n≥1

Jn ⊆
⋂
n≥1

In.

Hence, if J ⊆
√
I and the ideal J is finitely generated, then⋂

n≥1

Jn ⊆
⋂
n≥1

In.

Proof. Let Jk ⊆ I for some k ≥ 1. Then
⋂

n≥1 J
n =

⋂
n≥1(Jk)n ⊆⋂

n≥1 I
n. If J ⊆

√
I and J is finitely generated, then I contains a

power of J . �

Corollary 2.13. Let I be an ideal of an integral domain R. If⋂
n≥1 a

nR = (0) for all a ∈ I, then
⋂

n≥1 a
nR = (0) for all a ∈

√
I.

Lemma 2.14. [22, Corollary 5.7] Let R be a finitely stable local
domain. Then a stable ideal I of R is principal in (I : I). Moreover, if
I = x(I : I), then I2 = xI.
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Lemma 2.15. Let R be a finitely stable local domain with stable
maximal ideal M . Then M is the radical of a principal ideal and⋂

n≥0

Mn =
⋂
n≥0

anR

for each element a ∈ R such that
√
aR = M .

Proof. By Lemma 2.14, there exists an element m ∈ M such that
M2 = mM . Clearly

⋂
n≥0 M

n =
⋂

n≥0 m
nR, and M =

√
mR. If√

aR = M , then
√
aR =

√
mR, so⋂

n≥0

anR =
⋂
n≥0

mnR =
⋂
n≥0

Mn,

by Lemma 2.12. �

Proposition 2.16. Let R be a finitely stable domain with stable maxi-
mal ideals. Then R is locally Archimedean if and only if

⋂
n≥1 M

n = (0)
for each maximal ideal M .

Proof. By Lemma 2.15, R is locally Archimedean if and only if⋂
n≥1 M

nRM = (0) for every maximal ideal M . On the other hand,
for every maximal ideal M we have

⋂
n≥1

Mn =
⋂
n≥1

(MnRM ∩R) =

⋂
n≥1

MnRM

 ∩R,

so RM is Archimedean if and only if
⋂

n≥1 M
n = (0). The proposition

follows. �

Remark 2.17. For any integral domain R, the following two condi-
tions are equivalent:

(i)
⋂

n≥1 I
n = (0) for each ideal I;

(ii)
⋂

n≥1 M
n = (0) for each maximal ideal M .

If R satisfies these conditions, then R is locally Archimedean by Propo-
sition 2.16.
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Proposition 2.18. Let R be an integral domain of finite character
such that

⋂
n≥1 M

n = (0) for each maximal ideal M of R. Then R
satisfies accp.

Proof. Assume that R does not satisfy accp. Then there exists an
infinite sequence of nonunits rn in R such that

⋂
n≥1(

∏n
i=1 riR) 6= (0).

Let c be an element in this intersection. For all n ≥ 1, each maximal
ideal containing rn contains also c, since c ∈ rnR. As c belongs to just
finitely many maximal ideals, there exists a maximal ideal M containing
c such that rn ∈M for infinitely many n’s. Thus for each n ≥ 1, there
exist integers 1 ≤ i1 < i2 < . . . < in such that rik ∈ M for all

1 ≤ k ≤ n. We have c ∈
∏in

j=1 rjR ⊆ Mn. Hence c ∈
⋂

n≥1 M
n, a

contradiction. �

From Proposition 2.18 we obtain, by using Proposition 2.16:

Corollary 2.19. A locally Archimedean finitely stable domain with
stable maximal ideals and of finite character (in particular, a locally
Archimedean stable domain) satisfies accp.

However a domain R of finite character satisfying accp is not necesar-
ily locally Archimedean, even if R is stable (see Example 5.13 below).

3. An extension of Ohm’s Theorem to finitely stable do-
mains. By using the fact that an integral extension overring of a
finitely stable domain is quadratic (Theorem 1.1), so algebraically
bounded, as defined in 3.1 below, we extend Ohm’s Theorem from
Prüfer domains to finitely stable domains (Theorem 3.12). We present
a criterion for the locally Archimedean property of a stable domain in
Proposition 3.8. As an application, we prove that a semilocal finitely
stable Archimedean domain is locally Archimedean (Proposition 3.14).

Definition 3.1. Let A ⊆ B be an extension of integral domains. The
domain B is a bounded algebraic extension of A if there exist a nonzero
element d ∈ A and an integer e ≥ 1 such that for each element b ∈ B
there exists a monic polynomial f(X) of degree e in A[X] satisfying
f(db) = 0. The domain B is called a bounded integral extension of A if
this property holds for d = 1.



ON FINITELY STABLE DOMAINS, II 11

Remark 3.2. Let A ⊆ B be an extension of integral domains. Then:

(1) B is a bounded algebraic extension of A if and only if there
exists a nonzero element d ∈ B such that A + dB is a bounded
integral extension of A.

(2) If (A : B) 6= (0), then B is a bounded algebraic extension of A.

Proposition 3.3. Let A be an integral domain, let B be a bounded
algebraic overring of A, and let a be an element of A. Then⋂

n≥1

anA = (0)⇔
⋂
n≥1

anB = (0).

Hence, if B is Archimedean, also A is Archimedean.

Proof. Assume that
⋂

n≥1 a
nA = (0). Let b be an element in⋂

n≥1 a
nB. Since B is a bounded algebraic extension of A, there exist

a nonzero element d ∈ A and an integer e ≥ 1 such that for each x ∈ B,
the element dx is a root of a monic polynomial of degree e in A[X].
Thus, for each b ∈ B and n ≥ 1, by taking x = b

an , there exist elements
a0, . . . , ae−1 ∈ A (depending on b and on n) such that we have:

(1)

(
db

an

)e

+ ae−1

(
db

an

)e−1

+ · · ·+ a0 = 0.

Since B is an overring of A, there exists a nonzero element c ∈ A
(depending just on b) such that c(db)i ∈ A for all 1 ≤ i ≤ e. Multiplying

the equation (1) by can(e−1) we obtain that c(db)e

an ∈ A for all n ≥ 1.
Hence b = 0. We conclude that

⋂
n≥1 a

nB = (0). The proposition
follows. �

Corollary 3.4. Let A be a finitely stable domain, let a be a nonzero
element of A, and let B be an integral extension overring of A. Then:⋂

n≥1

anA = (0)⇔
⋂
n≥1

anB = (0).

Proof. By Theorem 1.1, B is a quadratic extension of A, so B
is a bounded integral extension of A. The corollary follows from
Proposition 3.3. �
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Proposition 3.5. Let (R,M) be a finitely stable local domain with
stable maximal ideal, and let D be an integral extension overring of R.

Then R is Archimedean if and only if D has a maximal ideal N such
that DN is Archimedean.

Proof. Assume that R is Archimedean. Let M = m(M : M), m ∈M
(Lemma 2.14 or Theorem 1.4). By Corollary 3.4,

⋂
n≥1 m

nD = (0). By
Theorem 1.1, D has at most two maximal ideals. By Proposition 2.7,
there exists a maximal ideal N of D such that

⋂
n≥1 m

nDN = (0).

Since M2 = mM , we see that
⋂

n≥1 M
nDN = (0). Since D is an

integral extension of R and R is local, it follows that a prime ideal of
D contains M if and only if it is a maximal ideal of D. Hence the only
prime ideal of DN containing MDN is NDN , so NDN =

√
MDN . By

Corollary 2.13, DN is Archimedean.

Conversely, if DN is Archimedean, then R is Archimedean by Re-
mark 2.3 since R ⊆ DN and N ∩R = M . �

Corollary 3.6. Let (R,M) be a finitely stable local domain with
stable maximal ideal, and let D be an integral extension overring of
R. Assume that if N is a maximal ideal of D such that the domain DN

is Archimedean, then DN is one-dimensional. Then R is Archimedean
if and only D has a height-one maximal ideal.

Proposition 3.7. Let (R,M) be a local domain.

(1) If some integral extension of R has a height-one maximal ideal,
then R is Archimedean.

(2) Conversely, we have:
(a) If R is Archimedean and finitely stable, then R′ has a

height-one maximal ideal.
(b) If R is Archimedean, finitely stable and the ideal M is

stable, then T has a height-one maximal ideal (T is defined
in Construction 1.3).

Proof. (1) is Corollary 2.6.

(2, a) By Theorem 1.1, R′ has at most two maximal ideals. Since R′

is Prüfer, R′ has at most two height-one prime ideals: Q1 and Q2 (not
necessarily distinct). Let Pi = Qi∩R, i = 1, 2. Since R is Archimedean,
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by Corollary 3.4 we have
⋂

n≥1 a
nR′ = (0) for all a ∈ R. By Theorem

2.1, M ⊆ P1∪P2. We may assume that M ⊆ P1, so M = P1 = Q1∩R.
Hence Q1 is a height-one maximal ideal of R′.

(2, b) By Proposition 3.5, T has a maximal ideal N such that the
domain TN is Archimedean. Hence TN is a DVR by Proposition 2.8 as
N is a principal ideal. Thus N is a height-one maximal ideal of T . �

Proposition 3.8. Let R be a finitely stable domain. The following
conditions are equivalent:

(i) R is locally Archimedean;
(ii) Each maximal ideal of R is contained in a height-one prime

ideal of R′ (which is necessarily maximal);
(iii) Each proper ideal of R is contained in a height-one maximal

ideal of R′.

Proof. (i) ⇒ (ii) If R is local, then (ii) follows from Proposition
3.7(2)(a).

In the general case, let M be a maximal ideal of R. By the local
case, the ideal MRM of RM is contained in a height-one prime Q of
(RM )′ = R′M , where R′M is the localization of R′ at the multiplicative
subset R \M . Thus Q∩R′ is a height-one prime ideal of R′ containing
M .

(ii) ⇒ (i) Let M be a maximal ideal of R. Let Q be a height-one
prime ideal of R′ containing M . Thus QR′M is a height-one prime ideal
of R′M = (RM )′ containing M . By Corollary 2.6, RM is Archimedean,
so R is locally Archimedean.

(ii) ⇔ (iii) Clear. �

In the notation of 1.3, if Rk is one-dimensional for some k ≥ 0, then
all the rings Rn, as well as T , are one-dimensional since T is an integral
extension of Rn, for all n ≥ 0. For the Archimedean property we have:

Corollary 3.9. Let (R,M) be a finitely stable local domain with stable
maximal ideal. Set R∞ = T =

⋃
n≥0 Rn (see Construction 1.3).

Assume that Rk is Archimedean for some 0 ≤ k ≤ ∞. Then Rn is
Archimedean for each n such that Rn is local. Thus Rn is Archimedean
at least for each Rn 6= T .
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Proof. For all 0 ≤ n ≤ ∞ we have (Rn)′ = R′, so the corollary
follows from Proposition 3.7. �

Corollary 3.9 might fail when T is not local, so T = Rn for some
integer n. Indeed, in Example 5.17, R is a stable local Archimedean
domain, but T = R′ = R1 is not Archimedean. Moreover, we have:

Proposition 3.10. Let R be a finitely stable local domain with stable
maximal ideal. In the notation of 2.1, T is Archimedean if and only if
R is one-dimensional.

Proof. If R is one-dimensional, then T is one-dimensional, and so
Archimedean, since T is an integral extension of R. Conversely, if T is
Archimedean, then T , and so also R, is one-dimensional by Corollary
2.9, as the maximal ideals of T are principal. �

Corollary 3.11. [7, Theorem 2.8] Let R be a finitely stable local
domain with stable maximal ideal. If R is Archimedean and T is local,
then R is one-dimensional.

Proof. If T is local, T is Archimedean by Corollary 3.9 and so R is
one-dimensional by Proposition 3.10. �

We now state the promised generalization of Ohm’s Theorem 2.1.

Theorem 3.12. Let R be a finitely stable domain, and let a be a
nonzero nonunit of R belonging to just finitely many maximal ideals
of R. The following conditions are equivalent:

(i)
⋂

n≥1 a
nR = (0);

(ii) a belongs to a height-one prime ideal of R′;
(iii) a belongs to a prime ideal P of R such that the domain RP is

Archimedean.

Proof. (i) ⇒ (ii) By Corollary 3.4,
⋂

n≥1 a
nR′ = (0). If N is a

maximal ideal of R′ containing a, then N ∩R is a maximal ideal of R
containing a. Since each maximal ideal of R is contained in at most
two maximal ideals of R′ (Theorem 1.1), it follows that a belongs to
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just finitely many maximal ideals of R′. Since R′ is Prüfer, a belongs
to a height-one prime ideal of R′ (Theorem 2.1).

(ii)⇒ (iii) Let Q be a height-one prime ideal of R′ containing a, and
let P = Q ∩ R. By Corollary 2.5 for A = RP and B = R′Q, we obtain
that RP is Archimedean.

(iii) ⇒ (i) follows from Remark 2.3. �

Corollary 3.13. Let R be a finitely stable domain of finite charac-
ter (this holds, in particular, if R is a stable domain). Then R is
Archimedean if and only if every nonzero nonunit in R belongs to a
height-one prime ideal of R′.

In the next proposition we extend Corollary 2.2 to finitely stable
domains:

Proposition 3.14. An Archimedean finitely stable domain of finite
character such that its integral closure has just finitely many height-
one prime ideals is locally Archimedean. In particular, an Archimedean
finitely stable semilocal domain is locally Archimedean.

Proof. Let M be a maximal ideal of R. As R is Archimedean, by
Theorem 3.12, M is contained in the finite union of the height-one
primes of R′. Thus the ideal MR′ of R′ is contained in one of these
primes. By Proposition 3.8, R is locally Archimedean.

If R is an Archimedean finitely stable semilocal domain, then R′ is
Prüfer and semilocal. Thus R′ has just finitely many height-one prime
ideals. It follows that R is locally Archimedean. �

In connection with Proposition 3.14, by Example 5.13, a stable
Archimedean domain need not be locally Archimedean, and by Ex-
ample 5.9 a semilocal Archimedean (even completely integrally closed)
domain need not be locally Archimedean.

Question 3.15. By Proposition 3.8, if a finitely stable domain R
is locally Archimedean, then each nonzero nonunit of R belongs to a
height-one maximal ideal of R′. Is the converse true? Cf. Corollary
3.13.
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4. One-dimensionality of Archimedean stable domains. In
[7, Theorem 4.8], we proved that a finitely stable Mori domain is one-
dimensional. In this section, we illustrate a general method for con-
structing local Archimedean stable domains of any dimension (Propo-
sitions 4.7 and 4.8); see also Example 5.17 below.

First we state a criterion for one-dimensionality of an Archimedean
stable domain. We say that a domain R is equidimensional if dimR =
dimRM , for each maximal ideal M .

Proposition 4.1. Let R be an Archimedean finitely stable domain
of finite character (this includes the case that R is Archimedean and
stable). The following conditions are equivalent:

(i) R is one-dimensional;
(ii) Every integral extension of R is equidimensional;
(iii) R′ is equidimensional;
(iv) The pair (R,R′) satisfies GD (the going down property) and R

is equidimensional.

Proof. (i) ⇒ (ii) Every integral extension of R is one-dimensional,
so also equidimensional.

(ii) ⇒ (iii) Obvious.

(iii) ⇒ (i) By Corollary 3.13, R′ has a height-one maximal ideal.
Thus R′ is one-dimensional, and so is R.

(i) ⇒ (iv) Clear.

(iv) ⇒ (iii) Indeed, if B is any ring extension of an equidimensional
(in particular, local) ring A such that the pair (A,B) satisfies GD, then
B is equidimensional and dimB = dimA. �

Proposition 4.2. Let R be an Archimedean finitely stable local domain
with stable maximal ideal. The following conditions are equivalent:

(i) R is one-dimensional;
(ii) R is Mori;
(iii) T is Archimedean;
(iv) T is equidimensional;
(v) The pair (R, T ) satifies GD.
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(See 1.3 for the notation T .)

Proof. (i) ⇒ (ii) R is stable by Proposition 1.2. Thus R is Mori by
[7, Proposition 3.13].

(ii) ⇒ (i) by [7, Proposition 4.7].

(i) ⇔ (iii) is Proposition 3.10.

(i) ⇒ (iv) because T is one-dimensional.

(iv)⇒ (i) T has a height-one maximal ideal by Proposition 3.7 (2,b).
Thus T is one-dimensional, and so is R.

(i) ⇒ (v) This follows from that both R and T are one-dimensional.

(v) ⇒ (iv) Since R is local, we may use the proof of the implication
(iv) ⇒ (iii) in Theorem 4.1. �

Proposition 4.3. Let R be an Archimedean finitely stable semilocal
domain. Then R is one-dimensional if and only if the pair (R,R′)
satisfies GD.

Proof. Assume that the pair (R,R′) satisfies GD. Let M be a
maximal ideal of R. By Corollary 3.13, M is contained in the union of
the height-one maximal ideals of R′. Since R′ is semilocal (Theorem
1.1), it follows that M is contained in a height-one maximal ideal N
of R′. As the pair (R,R′) satisfies GD, this implies that M has height
one, so R is one-dimensional. �

We now turn to the question how to obtain an Archimedean stable
local domain (R,M) of dimension greater than one. Here we use again
B. Olberding’s work, and also a useful suggestion of W. Heinzer.

If R is such a domain, with the usual notation 1.3, by Corollary
3.11, T is not local and so R must satisfy condition (a) of Theorem 1.4,
that is, T = Rn for some n ≥ 0. Since R is stable, T = R′ is a Prüfer
domain and T has exactly 2 maximal ideals, which we denote by N1

and N2. Since R is Archimedean, T has a height-one maximal ideal by
Proposition 3.7. We may assume that heightN1 = 1 and heightN2 > 1.
Let T = Rk with minimal k ≥ 0, so k > 0 since T is not local. Thus
Rk−1 is local and, since any overring of a stable domain is stable [19,
Theorem 5.1], Rk−1 is stable. By Corollary 3.9, Rk−1 is Archimedean.
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Also, dimRk−1 = dimR > 1. Replacing R by Rk−1, we may assume
that R1 = T .

We have canonical isomorphisms R/M ∼= T/Ni for i = 1, 2, so
T = R+N1 = R+N2. In Example 5.17, k is a subfield of R canonically
identified with R/M , so T = k + N1 = k + N2 and M = N1 ∩N2.

Lemma 4.4. Let D be an integral domain. The following conditions
are equivalent:

(i) D is Prüfer and it has exactly two maximal ideals.
(ii) D is an intersection of two valuation domains.

Proof. (i) ⇒ (ii) Let Q1 and Q2 be the maximal ideals of D. Then
D = DQ1

∩DQ2
is an intersection of two valuation domains.

(ii) ⇒ (i) See [14, Theorem 12.2]. �

Lemma 4.5. Let R ⊆ D be an extension of domains such that
D = R+xR for some element x ∈ D. Then D is a quadratic extension
of R.

Proof. Let s = s0 + s1x, t = t0 + t1x be two elements in D, where
si, ti ∈ R for i = 1, 2. Let I be the ideal s1R + t1R of R. Thus
R + sR + tR = R + xI. We have

st ∈ (R + xI)2 = (R + xI)R + (R + xI)xI ⊆ R + xI + (R + xR)I =
R + xI, implying that D is a quadratic extension of R. �

We use the following lemma of Olberding:

Lemma 4.6. Let R be a finitely stable domain. If I is a nonzero
ideal of R such that IR′ is principal, then I is principal in (I : I), in
particular I is stable.

Proof. By Theorem 1.1, R′ is a quadratic extension of R and has
at most two maximal ideals. Hence we can apply [22, Proposition
3.6]. �
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For the next proposition cf. [12, Theorem 14]. (The statement in
the proof of [12, Theorem 14], that u−u2 ∈ R for each nonunit u ∈ A,
is false in general, but this error can be easily corrected.)

Proposition 4.7. Let (V1, Q1) and (V2, Q2) be two valuation domains
with no inclusion relation among them, with principal maximal ideals,
with the same field of fractions L, containing a field k, and such that
Vi = k + Qi, for i = 1, 2. Let D = V1 ∩ V2, Ni = Qi ∩D, for i = 1, 2,
M = N1 ∩N2, R = k + M , and R1 = (M : M). Then:

(1) N1, N2 are the only maximal ideals of D, N1 6= N2, and N1,
N2 are principal. We have DNi = Vi for i = 1, 2, so D is
Prüfer, FracD = L, and D = k + Ni for i = 1, 2.

(2) If N1 = xD, then D = R+xR, so D is a 2-generated R-module.
Moreover, M is a principal ideal of D and a 2-generated ideal
of R. Also D is a quadratic extension of R and D = R′ = R1.

(3) R = k + M is a local domain with maximal ideal M .
(4) The domain R is finitely stable with stable maximal ideal M .
(5) R is stable if and only D is stable, equivalently D is strongly

discrete.
(6) R is Archimedean if and only if one of the two valuation

domains V1, V2 is one-dimensional, and so a DVR.
(7) dimR > 1 if and only if dimVi > 1 for some i = 1, 2.

Proof. (1) By [14, Theorem 12.2], N1 and N2 are the only maximal
ideals of D, N1 6= N2, and DNi

= Vi for i = 1, 2. For i = 1, 2, the
maximal ideal Ni of D is locally principal, and so it is principal since
D is semilocal.

For i = 1, 2 we have natural isomorphisms D/Ni
∼= DNi/NiDNi =

Vi/Qi
∼= k, implying that D = k + Ni.

(2) Since the ideals N1, N2 of D are principal, we deduce that also
M = N1N2 is a principal ideal of D. Thus D is an overring of R, and
D = (M : M) = R1.

Since xN2 ⊆ N1N2 = M , we have:

D = k + N1 = k + xD = k + x(k + N2) = k + xN2 + xk ⊆ R + kx.

Hence D = R + xR, implying by Lemma 4.5 that D is a quadratic
extension of R. Since D is a Prüfer domain, and D is a quadratic, so
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integral, overring of R, it follows that D = R′.

As M is a principal ideal of D and D = R + Rx is a 2-generated
R-module, it follows that M is a 2-generated ideal of R.

(3) By definition, R = k + M , so M is a maximal ideal of R. If P
is a maximal ideal of R then P = Ni ∩ R for some integer i = 1, 2,
because D = R′ by (2). Thus M = (N1 ∩R)∩ (N2 ∩R) ⊆ P , implying
that M = P . Thus (R,M) is a local domain.

(4) By item (1), D = R′ is Prüfer with two maximal ideals and by
item (2), D is a quadratic extension of R. By Olberding’s characteri-
zation 1.1, R is finitely stable. Since M is a principal, so stable, ideal
of D and FracR = FracD, it follows that M is a stable ideal of R.

(5) If R is stable then D is stable, since each overring of a stable
domain is stable.

Conversely, assume that D is stable. By item (2), we have D = R′ =
R1 and M = mR′, where m ∈M .

Let I be a nonzero ideal of R, and let A = (I : I).

The domain D is Prüfer, and, as shown at the end of the proof of
[19, Theorem 4.2], D = R1 is a minimal overring of R. Hence by [10,
Proposition 2.4 and Terminology on page 137], D is contained in every
overring of R that is different from R. Hence, either A = R, or D ⊆ A.
If D ⊆ A, then A = (I : I) is a stable domain, so the ideal I of A is
invertible in (I : I), implying that I is a stable ideal of R.

Now assume that A = R. Since M is a principal ideal of R′, it
follows that (IR′ : IR′) = (IM : IM). Also (IM : IM)MI ⊆ IM ⊆ I,
so (IM : IM)M ⊆ (I : I) = R. Hence (IR′ : IR′) ⊆ (R : M). If
(R : M) 6= (M : M), then the maximal ideal M of the local domain
R is invertible, so principal, implying that R = R1 = (M : M), a
contradiction. If (R : M) = (M : M), then (IR′ : IR′) = R′. Hence
IR′ is an invertible, so principal, ideal of R′ since R′ is stable and
semilocal. By Lemma 4.6, I is a stable ideal.

(6) Since R is local finitely stable, and D = R′, this follows from
Proposition 3.7.

(7) Indeed, dimR = dimD = max(dimV1,dimV2). �

Corollary 4.8. Let (V1, Q1) and (V2, Q2) be two strongly discrete val-
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uation domains with no inclusion relation among them, with principal
maximal ideals, with the same field of fractions L, containing a field
k, and such such that Vi = k + Qi, for i = 1, 2. Let dimV1 = 1 and
dimV2 = n, where 2 ≤ n ≤ ∞. Let D = V1 ∩ V2, Ni = Qi ∩ D, for
i = 1, 2, M = N1 ∩N2, and R = k + M .

Then R is an n-dimensional Archimedean stable local domain.

Moreover, we have:

(1) R satisfies accp, but R′ is not Archimedean.
(2) The pair (R,D) does not satisfy GD (the going down property).

Proof. By Proposition 4.7, R is an n-dimensional Archimedean
stable local domain since D is a strongly discrete Prüfer domain.

(1) By Corollary 2.19, any Archimedean stable domain satisfies
accp. By Corollary 2.2, R′ is not Archimedean since R′ is semilocal
of dimension greater than 1.

(2) R does not satisfy GD by Proposition 4.3. �

5. Examples. It is well-known that the accp and the Archimedean
properties do not localize. In [11, Example 2] Anne Grams constructs
a one-dimensional Prüfer domain of finite character which satisfies
accp (the ascending chain condition on principal ideals) and each of
its localizations but one is a DVR, while the other one is a valuation
domain that is not a DVR, so it does not satisfy accp (see comments
and more examples in [1] and its references). Also, [11] (page 328)
provides a general construction of an almost Dedekind domain A with
accp whose Nagata ring A(X) is not an accp domain (so that A[X] is
accp, while its localization A(X) is not accp). This example as well as
[11, Example 2] is one-dimensional, so it is locally Archimedean.

The ring of entire functions E is an infinite-dimensional completely
integrally closed (hence Archimedean) Bézout domain [4, Section 8.1],
but it is not locally Archimedean since the localizations at maximal
ideals are valuation domains, and a valuation domain that is not a field
is Archimedean if and only if it is one-dimensional. The ring E does
not satisfy accp and it does not have finite character: for example,
if f is a nonzero entire function with infinitely many zeros c1, c2, . . .
(e.g., sin z), then f ∈

⋂∞
n=1

∏n
i=1(Z − ci), so the domain E does not
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satisfy accp, and E does not have finite character since f belongs to
the maximal ideals (Z − ci)E for all i. .

We construct in Example 5.9 below a completely integrally closed
(for short, c.i.c.) domain R satisfying accp with only two maximal
ideals such that, for each maximal ideal M , RM is not Archimedean;
thus RM does not satisfy accp. Of course, R is Archimedean and has
finite character. We construct first a c.i.c. local domain A with accp
such that AP is not Archimedean for some prime ideal P (Example
5.8). Then we “double” this construction to obtain Example 5.9 (see
Remark 5.10).

We also construct a stable Prüfer domain R with accp that is not
locally Archimedean (Example 5.13), thus the converse of Corollary
2.19 is false.

In Example 5.14 we give an example of a local one-dimensional
domain R such that R′ is a finite extension of R, the ring R′ is a
PID, so stable, but R is not even finitely stable (cf. Proposition 4.7 (5)
and Lemma 4.6).

Finally, following Olberding ([16, Proposition 5.4]), in Example 5.15
we construct a stable valuation domain with prime spectrum consisting
of an infinite descending chain of prime ideals. We use this example
in the last Example 5.17, where we present a stable Archimedean local
domain of arbitrary dimension.

Recall that a set of subrings S of a ring R is directed if for each
A,B ∈ S there exists C ∈ S such that both A and B are contained in
C.

Lemma 5.1. Let R be an integral domain that is a directed union of
a set S of c.i.c. subrings. Assume A = R ∩ Frac(A) for each A ∈ S.
Then R is c.i.c..

Proof. Assume for f ∈ R \ {0} and g ∈ Frac(R) that fgn ∈ R
for all n ≥ 1. Since the union of the subrings in S is directed, there
exists a domain A ∈ S such that f ∈ A and g ∈ Frac(A). Hence
fgn ∈ R ∩ Frac(A) = A, for all n ≥ 1. Since A is c.i.c., we obtain that
g ∈ A ⊆ R. Thus R is c.i.c. �
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Lemma 5.2. Let R be an integral domain that is a directed union of
a set S of accp subrings. Assume that for each A ∈ S there exists a
retraction ϕA : R→ A mapping nonunits of R to nonunits of A. Then
R satisfies accp.

Proof. Assume that R does not satisfy accp. Hence there exists a
strictly increasing infinite sequence of nonzero principal ideals in R:

r1R ( r2R ( r3R ( . . .

We have r1 ∈ A for some domain A ∈ S. Let ϕ = ϕA. Since r1 6= 0,
there is an increasing sequence of nonzero principal ideals in the ring
A:

r1A = ϕ(r1)A ⊆ ϕ(r2)A ⊆ ϕ(r3)A ⊆ . . .

For each n ≥ 1, we have rn
rn+1

∈ R \ U(R); hence ϕ
(

rn
rn+1

)
=

ϕ(rn)
ϕ(rn+1)

∈ A \ U(A). It follows that all the inclusions in the sequence

ϕ(r1)A ⊆ ϕ(r2)A ⊆ ϕ(r3)A ⊆ . . .

are strict, contradicting the assumption that A satisfies accp. �

Proposition 5.3. Let if ϕ : A → B be an homomorphism of rings.
Consider the following two conditions:,

(1) ϕ maps nonunits to nonunits.
(2) kerϕ ⊆ Jac(A).

Then (1) ⇒ (2). If ϕ is surjective, then the two conditions are equiv-
alent. In particular, if A is local, then any surjective homomorphism
ϕ : A � B maps nonunits to nonunits.

Proof. (1)⇒ (2) Let c ∈ kerϕ. Assume that c /∈ Jac(A). Since ϕ is
surjective, there exists an element a ∈ A such that 1 + ac is not a unit
in A, although ϕ(1 + ac) = 1, a contradiction.

(2) ⇒ (1) assuming that ϕ is surjective. Assume that for some
nonunit c ∈ A, the element ϕ(c) is invertible in B. Since ϕ is
surjective, there exists an element a ∈ A such that ϕ(c)ϕ(a) = 1.
Hence ϕ(1 − ca) = 0, so 1 − ca ∈ J(A), implying that ca is invertible
in A. Thus c is invertible in A, a contradiction. �
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Proposition 5.4. Let R be an integral domain that is a directed union
of a set S of c.i.c. subrings satisfying accp. Assume that for every
A ∈ S there exists a retraction ϕA : R → A mapping nonunits of R to
nonunits of A. Then R is c.i.c. and it satisfies accp.

Proof. The domain R satisfies accp by Lemma 5.2.

For A ∈ S we have A = R∩Frac(A), since A is a retract of R. Thus
R is c.i.c. by Lemma 5.1. �

Corollary 5.5. Let R be an integral domain that is a directed union of
a set S of integrally closed Noetherian subrings. Assume that for every
A ∈ S there exists a retraction ϕA : R → A mapping nonunits of R to
nonunits of A. Then R is c.i.c. and it satisfies accp.

Proof. Indeed, a Noetherian ring satisfies accp, and an integrally
closed Noetherian domain is c.i.c. Hence the corollary follows from
Proposition 5.4. �

Lemma 5.6. Let A be an integrally closed domain, let n ≥ 1 and let
X,Y, Zi (1 ≤ i ≤ n) be independent indeterminates over A. Then the
domain

D = A[X,Y, Zi,
XZi

Y i
(1 ≤ i ≤ n)]

is integrally closed.

Proof. Let S be the multiplicative monoid generated by X,Y, Zi,
XZi

Y i

(1 ≤ i ≤ n). We show that the monoid S is integrally closed. Let G
be the group of fractions of S, that is, G is the multiplicative group
generated by X,Y, Zi (1 ≤ i ≤ n). Let g be an element of G such
that gk ∈ S for some integer k ≥ 1. Since the monoid generated by
X,Y, 1

Y , Zi (1 ≤ i ≤ n) is integrally closed, it follows that g belongs to
this monoid. Thus

g = XfY m
n∏

i=1

Zri
i ,

where f, ri are nonnegative integers for all i, and m is an integer. We
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have

(2) gk = XkfY km
n∏

i=1

Zkri
i = XaY b

n∏
i=1

Zci
i

n∏
i=1

(
XZi

Y i

)ei

,

where a, b, ci, ei are nonnegative integers for all i. We may assume that
the sum a +

∑n
i=1 ici is minimal.

First assume that ci = 0 for all i. Comparing exponents of the
indeterminates Zi on the two sides of (2), we obtain that ei = kri for
all i, so a and b are divisible by k. It follows that g ∈ S.

Now assume that ci0 > 0 for some index i0. If a > 0, then

gk = Xa−1Y b+i0

Z
ci0−1

i0

∏
i6=i0

Zci
i

(XZi0

Y i0

n∏
i=1

XeiZei
i

Y iei

)
,

contradicting the minimality of a +
∑n

i=1 ici. Thus a = 0.

Let j, q be integers such that cj > 0 and eq > 0. If j > q, we
interchange Zj and Zq as follows:

gk = Y b+j−q

ZqZ
cj−1
j

∏
i:i 6=j

Zci
i

XZj

Y j

(
XZq

Y q

)eq−1 n∏
i:i6=q

(
XZi

Y i

)ei

 ,

contradicting the minimality assumption on a+
∑n

i=1 ici. Hence j ≤ q
for all j and q such that cj and eq do not vanish. We have

(3) gk = XkfY km
n∏

i=1

Zkri
i = Y b

n∏
i=1

Zci
i

n∏
i=1

(
XZi

Y i

)ei

.

Let 1 ≤ q ≤ n be an integer such that q 6= q0 = minei>0 i. Since either
cq = 0 or eq = 0, and since by (3) we have cq + eq = krq, it follows
that both cq and eq are divisible by k. Comparing the exponents of X
on both sides of (3), since all ci, ei for i 6= q0 are divisible by k, we see
that also eq0 is divisible by k. Clearly, also cq0 and b are divisible by
k. Thus g ∈ S, so the monoid S is integrally closed. By [9, Corollary
12.11 (2)], the domain D is integrally closed. �

Remark 5.7. The domain D in Lemma 5.6 is isomorphic to a subring
of a polynomial ring over the domain A in n+2 indeterminates. Indeed,
for Ui = Zi

Y i (0 ≤ i ≤ n) we have D = A[X,Y,XUi, Y
iUi (1 ≤ i ≤ n)] ⊆
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k[X,Y, Ui (0 ≤ i ≤ n)]. Similarly, the domains D of Example 5.8 and
A of Example 5.9 below may be viewed as subrings of a polynomial ring
over k in infinitely many indeterminates.

Example 5.8. A completely integrally closed local domain R with accp
such that RP is not Archimedean for some prime ideal P .

Let k be a field and let

D = k[X,Y, Zn,
XZn

Y n
(n ≥ 1)],

where X,Y, Zn (n ≥ 1) are independent indeterminates over k. Let M
be the maximal ideal of D generated by the elements X,Y, Zn,

XZn

Y n (n ≥
1). Set

R = DM and P = 〈X,Y,
XZn

Y n
(n ≥ 1)〉R.

For each n ≥ 1, let Dn = k[X,Y, Zi,
XZi

Y i (1 ≤ i ≤ n)] and
Rn = (Dn)Mn , where Mn is the maximal ideal of Dn generated by
X,Y, Zi,

XZi

Y i (1 ≤ i ≤ n), thus Mn = M ∩Dn.

Clearly R1 ⊆ R2 ⊆ . . . and R =
⋃

n Rn. For each n, there exists
a retraction ϕn : R → Rn that maps to 0 each indeterminate Zi, for
i > n. Clearly ϕn(MR) ⊆MnRn. By Lemma 5.6, the domains Rn are
integrally closed. Since the domains Rn are Noetherian, from Corollary
5.5 it follows that R is c.i.c. and R satisfies accp.

The ideal P is prime since P is the set of all rational functions in R
vanishing when plugging in first X = 0, and then Y = 0 (thus these
rational functions are defined for X = 0, and after plugging in X = 0,
we obtain a function defined for Y = 0). For all n ≥ 1, the elements
Zn are invertible in RP , so X

Y n ∈ RP . Since Y is not invertible in RP ,
we see that the domain RP is not Archimedean. �

Example 5.9. A completely integrally closed domain R satisfying accp
with just two maximal ideals such that, for each maximal ideal M , the
domain RM is not Archimedean.
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Let k be a field and let

A = k[X1, Y1, Z1,n,
X1Z1,n

Y n
1

; X2, Y2, Z2,n,
X2Z2,n

Y n
2

(n ≥ 1)],

where Xi, Yi, Zi,n(i = 1, 2, n ≥ 1) are independent indeterminates over
k.

Let

P1 = 〈X1, Y1,
X1Z1,n

Y n
1

, Z2,n,
X2Z2,n

Y n
2

(n ≥ 1)〉A and

P2 = 〈X2, Y2,
X2Z2,n

Y n
2

, Z1,n,
X1Z1,n

Y n
1

(n ≥ 1)〉A.

The ideal P1 is prime since it is the set of all rational functions in A
vanishing when plugging in first X1 = Z2,n = 0 for all n, and then
Y1 = 0. Similarly, the ideal P2 is prime.

For all n ≥ 1, the elements Z1,n are invertible in AP1 , so X1

Y n
1
∈ AP1 .

Since Y1 is not invertible in AP1
, we see that the domain AP1

is not
Archimedean. Similarly, the domain AP2

is not Archimedean.

Let S = A\(P1∪P2), and R = AS , thus R = AP1
∩AP2

. Hence R has
just two maximal ideals, namely M1 = P1AP1∩R and M2 = P2AP2∩R.
We have RMi = APi for i = 1, 2, so the domains RM1 and RM2 are not
Archimedean.

For each n ≥ 1, let

An = k[X1, Y1, Z1,j ,
X1Z1,j

Y j
1

; X2, Y2, Z2,j ,
X2Z2,j

Y j
2

(1 ≤ j ≤ n)]

and Rn = (An)Sn
, where Sn = S ∩An.

By Lemma 5.6, the domains

Dn = k[X1, Y1, Z1,j ,
Z1,jX1

Y j
1

(1 ≤ j ≤ n)]

and An = Dn[X2, Y2, Z2,j ,
X2Z2,j

Y j
2

(1 ≤ j ≤ n)] are integrally closed.

Hence Rn is integrally closed.

Clearly R1 ⊆ R2 ⊆ . . . and R =
⋃

n Rn. For each n ≥ 1 we have a
retraction ϕn : R = AS → Rn that maps to 0 each indeterminate Zi,j

for i = 1, 2 and j > n since the elements Z1,j and Z2,j do not belong
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to S. Clearly the elements in ϕn(M1 ∪M2) are nonunits in Rn. Since
the domains Rn are Noetherian and integrally closed, it follows from
Corollary 5.5 that R is c.i.c. and R satisfies accp. �

Of course, the domain R in Example 5.9 is not Mori, since any
localization of a Mori domain is Mori and so Archimedean.

Remark 5.10. If D and A are the domains defined in Examples 5.8
and 5.9, respectively, then A ∼= D ⊗k D.

The next example 5.13 shows that a stable Archimedean domain
may not be locally Archimedean. We will use below the following well-
known facts:

Lemma 5.11. (see [4, Lemma 1.1.4 and Proposition 5.3.3]) Let U
be a valuation domain (possibly a field), let K = Frac(U), and let X
be an indeterminate over U . Then V = U + XK[X]〈X〉 is a valuation
domain. If U is strongly discrete, then also V is strongly discrete. The
prime ideals of V are all the ideals P +XK[X]〈X〉, where P is a prime
ideal of U . Moreover, if P is nonzero, then P + XK[X]〈X〉 = PV and
(P + XK[X]〈X〉) ∩ U = P . For P = (0) the ideal XK[X]〈X〉 is the
least nonzero prime ideal of V . Thus, if U is finite dimensional, then
dimV = dimU + 1.

Corollary 5.12. Let X and Y be two independent indeterminates over
a field k, let C = k[Y, X

Y n (n ≥ 1)], and let P be the maximal ideal

Y C = 〈X, X
Y n (n ≥ 1)〉 of C. Then V = CP is a strongly discrete

2-dimensional valuation domain.

Proof. Clearly, V = k[Y ]〈Y 〉 + Xk(Y )[X]〈X〉. By Lemma 5.11, V is
a strongly valuation domain of dimension 2. �

Example 5.13. A stable 2-dimensional Prüfer domain R satisfying
accp with just two maximal ideals of height 2. Thus for each maximal
ideal M of R, except the two maximal ideals of height 2, the domain
RM is a DVR. Also R is Archimedean, but not locally Archimedean:
RM is not Archimedean if M is a maximal ideal of R of height 2.
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Let X and Y be two independent indeterminates over a field k. Set

R = k[X,Y,
X(1−X)n

Y n
,

Y n+1

(1−X)n
(n ≥ 1)]S ,

where S = k[Y ] \ Y k[Y ].

Let T = 1−X
Y . We have X = 1− Y T , so

R = k[Y, Y T, (1− Y T )Tn,
Y

Tn
(n ≥ 1)]S

(as shown in item (1) below, R satisfies accp, thus R is Archimedean,
although Y

Tn ∈ R for all n ≥ 1. This is not a contradiction since T /∈ R).

(1) R satisfies accp.
Let f and gn (n ≥ 1) be nonzero elements of R such that
f∏n

i=1 gi
∈ R for all n ≥ 1. To prove that gi is a unit for i� 0, we

may assume that gi ∈ k[Y, Y T, (1− Y T )Tn, Y
Tn (n ≥ 1)], for all

i ≥ 1.
Since the elements Y and T are algebraically independent

over k, we may view the ring k[Y, Y T, (1− Y T )Tn, Y
Tn (n ≥ 1)]

as a subring of the polynomial ring k(T )[Y ]. Thus for i � 0
we have degY (gi) = 0, that is, gi ∈ k(T ) .

For i � 0, since gi ∈ k[Y, Y T, (1 − Y T )Tn, Y
Tn (n ≥ 1)], by

plugging in Y = 0, we obtain that gi ∈ k[T ]; by plugging in
Y = 1

T , we obtain that gi ∈ k[ 1T ], so gi ∈ k[T ] ∩ k[ 1T ] = k. We
conclude that R satisfies accp.

(2) R is a stable 2-dimensional Prüfer domain with just two max-
imal ideals of height 2.

Let M be a maximal ideal of R.
(3) Assume that Y /∈M . Then:

• RM is a DVR, so heightM = 1.
• Each nonzero element of R belongs to just finitely many

maximal ideals of R not containing Y .
Clearly R ⊆ D = k(Y )[X, 1

1−X ] ⊆ RM , and RM is a ring of
fractions of D. Hence RM is a local PID, that is, a DVR.

For each maximal ideal M of R not containing Y we have
MRM = PDP for P = M ∩ D, and since D is a PID, each
nonzero element of R belongs to just finitely many prime ideals
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of D, and so it belongs to just finitely many maximal ideals of
R not containing Y .

(4) Assume that Y ∈ M . Then RM is a stable 2-dimensional
valuation domain, in particular heightM = 2.

Since X(1−X) ∈ RY ⊆M it follows that either X ∈M or
1−X ∈M .
(a) Assume that Y,X ∈M .

Clearly, C = k[Y, X
Y n (n ≥ 1)] ⊆ RM . Since the maximal

ideal P = 〈Y, X
Y n (n ≥ 1)〉 of C is contained in MRM ,

it follows that P = MRM ∩ C. Since R ⊆ C[ 1
1−X ] ⊆

CP ⊆ RM , it follows that CP = RM . By Corollary 5.12,
RM = CP is a 2-dimensional strongly discrete, and so
stable, valuation domain. Also M is uniquely determined
by the requirement Y,X ∈M , namely M = PCP ∩R.

(b) Assume that Y, 1−X ∈M .

Recall that T = 1−X
Y . Since XT = X(1−X)

Y ∈ R and X is
a unit in RM , we see that T ∈ RM . Hence

C̃ = k[T,
Y

Tn
(n ≥ 1)] ⊆ RM ,

the maximal ideal P̃ = 〈T, Y
Tn (n ≥ 1)〉 of the ring C̃ is

contained in MRM , and R ⊆ C̃P̃ ⊆ RM . As in item (b)

(i), we conclude that RM = C̃P̃ is a 2-dimensional strongly
discrete, and so stable, valuation domain and that M is
uniquely determined by the requirement Y, 1 − X ∈M .

Thus R has finite character and each localization of R at a maximal
ideal is a stable valuation domain. Hence R is a stable Prüfer domain
[19, Theorem 3.3].

We have also proved that R is 2-dimensional with exactly 2 maximal
ideals of height 2. The localizations at these two maximal ideals are
not Archimedean, as seen directly from the above proof. Actually, as
it is well-known, a valuation domain is Archimedean if and only if it
is one-dimensional. The maximal ideals of R are invertible since R is
stable and Prüfer. Thus in Corollary 2.9 (2) we may not assume just
that R is Archimedean rather than locally Archimedean.

Example 5.13 shows that the converse of Corollary 2.19 is false: a
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stable domain R which satisfies accp need not be locally Archimedean,
even if R is Prüfer and 2-dimensional.

Example 5.14. A local integral domain (R,M) with the following
properties:

(1) R is one-dimensional, Noetherian, not (finitely) stable, but with
stable maximal ideal.

(2) R′ = (M : M) is a finitely generated R-module.
(3) R′ is a principal ideal local domain, so R′ is stable and Prüfer.

Let K = Q( 3
√

2) and R = Q + XK[[X]]. Thus R′ = K[[X]] is a
principal ideal local domain with maximal ideal M = XK[[X]]; so R is
one-dimensional, and R′ is a 3-generated R-module. By the Eakin-
Nagata Theorem, R is Noetherian. Clearly, R′ is not a quadratic
extension of R, so R is not finitely stable. Explicitly, the fractional
ideal I = 〈1, 3

√
2〉 of R is not stable (equivalently, the ideal 〈X,X 3

√
2〉

of R is not stable). Indeed, I2 = 〈1, 3
√

2, 3
√

4〉 and (I : I2) = XR, so
I(I : I2) = XR 6= R. It follows that I is not stable. The maximal ideal
M of R is stable, since M is an ideal of the stable domain R′ which is
an overring of R. �

In the next example we present a well-known construction which is
related to the construction in the proof of the Kaplansky-Jaffard-Ohm
Theorem [5, Ch.III, Theorem 5.3]. This example illustrates explicitly
a particular case of Olberding’s Theorem [16, Proposition 5.4], and
will be also used for Example 5.17.

Example 5.15. For each 1 ≤ n ≤ ∞ and for a field k, a strongly
discrete, so stable, n-dimensional valuation domain V containing k. In
particular, if n =∞, the nonzero prime ideals of V form a descending
infinite sequence, so the height of every nonzero prime ideal of V
is infinite. Moreover, for all n, FracV is a purely transcendental
extension of k of transcendence degree ℵ0.

First let n =∞. Let V = AQ, where

A = k[Xn,
Xn+1

Xi
n

(n ≥ 1, i ≥ 1)],
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k is a field, Xn (n ≥ 1) are independent indeterminates over k, and

Q = X1A = 〈Xn,
Xn+1

Xi
n

(n ≥ 1)〉A is a maximal ideal of A.

It is easy to show that V =
⋃∞

n=1 Vn (an ascending union), where
Vn are subrings of V defined inductively as follows: V0 = k, and for
n ≥ 1, we let Vn = Vn−1 + Xn (k(X1, . . . , Xn−1[Xn])〈Xn〉.

By induction, Frac(Vn) = k(X1, . . . , Xn) for n ≥ 1. Thus Vn =
Vn−1 + Xn

(
Frac(Vn−1)[Xn]〈Xn〉

)
for n ≥ 1. Hence by Corollary 5.12,

we obtain inductively that Vn is a strongly discrete valuation domain
of dimension n, with maximal ideal Mn = X1Vn, and that the nonzero
prime ideals of Vn form a descending chain

Mn = Pn,n ) Pn,n−1 ) · · · ) Pn,1.

It follows that the domain V =
⋃∞

n=1 Vn is a strongly discrete, so stable,
valuation domain with maximal ideal M = X1V . Let P be a nonzero
prime ideal of V . Since P =

⋃∞
n=1(P ∩ Vn), we have P ∩ Vn 6= (0) for

some integer n ≥ 1. By Lemma 5.11, P = (P ∩ Vn)V = Pn,iV for an
integer 1 ≤ i ≤ n. If n is minimal, then Pn,i is the least nonzero prime
ideal of Vn, so i = 1. Hence the nonzero prime ideals of V form an
infinite descending chain M = P1 ) P2 ) . . . , where Pn = Pn,1V for
all n ≥ 1.

Thus for all n ≥ 1, Pn is the ideal of V generated by the
one-dimensional subspace Xnk(X1, X2, . . . , Xn−1) of V over the field
k(X1, X2, . . . , Xn−1).

Explicitly, for all n ≥ 1 we have

Pn =

∞∑
i=n

Xi

(
k(X1, . . . , Xi−1)[Xi]〈Xi〉

)
.

If n is finite, similarly to the definition of V above, we define
Vn = AQn

, where

A = k[Xj ,
Xj+1

Xi
j

(1 ≤ 1 < n, i ≥ 1)],

and Q = X1A is a maximal ideal of A. (if n = 1, then A = k[X1]). �

In the last example we exhibit an n-dimensional Archimedean stable
local domain, for each n ≥ 2; thus answering in the negative the
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question posed in [6, Problem 7.1]. (For details concerning this
example, see Propositions 4.7 and 4.8 above.)

We need the following lemma:

Lemma 5.16. Let k be a field, and let L 6= k be a purely transcendental
field extension of k with tr.d. L/k ≤ ℵ0. Then there exists a DVR
(V,N) such that FracV = L and V/N = k.

Proof. Let L = k(B), where B is a set of algebraically independent
elements over k. Since tr.d. L/k ≤ ℵ0 ≤ tr.d. k((X))/k [13, Lemma
1, Section 3], there exists a subset B0 of k((X)) containing X such
that |B0| = |B|. Thus there exists an isomorphism over k of the
fields L and k(B0) mapping B onto B0. Hence we may assume that
L = k(B) ⊆ k((X)) and that X ∈ B. Define V = k[[X]] ∩ L.
Thus V is a DVR with maximal ideal XV , and V/XV ∼= k. Since
k[B] ⊆ V ⊆ L = k(B), it follows that Frac(V ) = L. �

Example 5.17. For 1 ≤ n ≤ ∞, a stable n-dimensional Archimedean
local domain (R,M).

By Example 5.15, for any field k, there exists a stable n-dimensional
valuation domain (V2, Q2) containing k such that FracV2 = L is a
purely transcendental extension of k and V2/Q2 = k. By Lemma 5.16,
there exists a DVR (V1, Q1) containing k such that Frac(V1) = L,
and V1/Q1 = k. By Proposition 4.7, there exists a local Archimedean
finitely stable domain R such that R′ = V1 ∩V2 and by Proposition 4.8
such a domain is stable. �

By Example 5.17 and by Proposition 4.8 (1), the integral closure
of an Archimedean domain, or even an accp stable domain, is not
necessarily Archimedean. The domain Z + XZ[X], where Z is the
ring of all algebraic integers, satisfies accp while R′ = Z[X] does not,
although R′ is Archimedean [2, Example 5.1].
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