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Abstract. We investigate the transfer of w-stability and Clifford w-regularity from a domain D
to the polynomial ring D[X]. We show that these two properties pass from D to D[X] when D is
either integrally closed or it is Mori and w-divisorial.

1. Introduction

The transfer of properties from a ring D to the polynomial ring D[X] is an important subject of
study in commutative algebra. A basic result in this direction is Hilbert’s Basis Theorem, which
states that a polynomial ring over a Noetherian ring is still Noetherian. However, several good
properties of classical domains of the ideal theory do not pass to the polynomial ring. For example,
the ring Z of the integers is a principal ideal domain (for short, a PID), so it is a Dedekind domain,
a Bezout domain and a Prüfer domain. But it is easily seen that the ring Z[X] has none of these
properties.

More recently, several other classes of domains have been studied in mutiplicative ideal theory;
for example, divisorial domains, stable domains and Clifford regular domains. Again, Z has all of
these properties but none of them passes to Z[X].

In fact, something much stronger is true: a polynomial ring over a domain that is not a field
is never a PID, Dedekind, Bezout, Prüfer, divisorial, stable or Clifford regular domain. The main
obstruction is that all these classes of domains are in the class of DW-domains.

A DW-domain is a domain in which each nonzero ideal is a w-ideal (i.e., a semidivisorial ideal,
following Glaz and Vasconcelos [21]) or, equivalently, a domain in which every maximal ideal is a
t-ideal (see for example [31, Proposition 2.2]). Houston and Zafrullah proved that the t-maximal
ideals of D[X] are either uppers to zero or are extended from ideals of D [24, Proposition 1.1].
Since in polynomial rings over domains that are not fields, there are always maximal ideals that
are neither uppers to zero nor extended, then the polynomial ring D[X] is never a DW-domain.
That is, as shown with a direct proof by Mimouni, the following theorem holds:

Theorem 1.1. [31, Proposition 2.12] Let D be an integral domain. Then D[X] is a DW-domain
if and only if D is a field.

All classes of domains mentioned above have been generalized, by requiring that the ideal the-
oretic properties that define these domains hold on w-ideals and not necessarily on the set of all
nonzero ideals. For example, a Prüfer v-multiplication domain (for short, a PvMD) is a domain
in which every localization at a w-maximal ideal is a valuation domain; thus we can say that a
PvMD is the w-version of a Prüfer domain. A strong Mori domain is a domain which satisfies the
ascending chain condition on w-ideals; hence, it is the w-version of a Noetherian domain. Similarly,
a Krull domain is a strong Mori PvMD and so it is the w-version of a Dedekind domain.
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Moreover, a w-principal domain is a domain in which every w-ideal is principal, and a w-Bezout
domain is a domain in which every w-finite ideal (i.e., an ideal that is the w-closure of a finitely
generated ideal) is principal [10]: these two notions respectively generalize the notions of principal
and Bezout domain. It is easy to see that the class of w-Bezout domains coincides with the class
of domains with the greatest common divisor (for short, GCD-domains) [10, Theorem 3.3], while
the class of w-principal domains coincides with the class of unique factorization domains (for short,
UFDs) [10, Theorem 2.5]. Summarizing, we have the following:

Theorem 1.2. Let D be an integral domain. Then:

(1) D is a Prüfer domain if and only if it is a PvMD and a DW-domain.
(2) D is a Dedekind domain if and only if it is a Krull DW-domain.
(3) D is a Bezout domain if and only if it is a w-Bezout DW-domain (i.e., a GCD-domain and

a DW-domain).
(4) D is a PID if and only if it is a w-PID and a DW-domain (i.e., a UFD and a DW-domain).

What is interesting is that, at least for these classical domains (PIDs, Dedekind, Bezout and
Prüfer domains), the fact of being a DW-domain is the “only” obstruction to the transfer of the
property to the polynomial ring. Indeed, it is well known that the properties of being a UFD, a
Krull domain, a GCD-domain and a PvMD extend to polynomial rings.

So, roughly speaking, we can say that things go well, for “classical rings”, when one removes the
DW-property from the definition.

It is natural to ask whether the same happens for the classes of domains introduced more recently,
such as divisorial, stable and Clifford regular domains.

All these three notions have been generalized by using the w-operation. For example, recall that
a divisorial domain is a domain in which all nonzero ideals are divisorial [8]. A w-divisorial domain
was defined by El Baghdadi and Gabelli as a domain in which the w-operation coincides with
the v-operation [11]. Again, w-divisorial domains can be considered as the w-version of divisorial
domains. The transfer of w-divisoriality to polynomial rings was studied in [15] by the authors
of this paper and E. Houston. We showed that with good hypotheses on D (for example, if D
is integrally closed or Mori), w-divisoriality passes to polynomial rings. The general case is still
open and it is somehow linked with Heinzer’s old conjecture about the integral closure of divisorial
domains.

Recently, we have defined w-stable domains and Clifford w-regular domains as natural general-
izations of stable and Clifford regular domains [16, 17]. In the present paper, we start a study of
polynomial rings over w-stable and Clifford w-regular domains.

First, we observe that the w-stability (resp., Clifford w-regularity) of D is a necessary condition
for the w-stability (resp., Clifford w-regularity) of D[X] and we show that determining whether
this condition is also sufficient depends only on the ideals of D[X] that are not extended from D.
Moreover, by using the local characterization of w-stable domains, we prove that the w-stability
of D[X] is equivalent to the stability of the v-Nagata ring of D. An analogous result for Clifford
w-regularity needs some additional hypotheses. Finally, we give two positive results. Namely, we
show that if D is integrally closed, then D is w-stable (resp., Clifford w-regular) if and only if
D[X] is w-stable (resp., Clifford w-regular), if and only if the v-Nagata ring over D is stable (resp.,
Clifford regular). We also prove that w-stability and Clifford w-regularity are equivalent for Mori
domains and that if D is Mori, D is w-stable and w-divisorial if and only if D[X] is w-stable and
w-divisorial if and only if the v-Nagata ring over D is totally divisorial.
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2. Preliminaries

Throughout this paper, D will be an integral domain and K its field of fractions. To avoid
trivialities, we will assume that D 6= K. A local domain is a domain with a unique maximal ideal,
not necessarily Noetherian. An overring of D is a domain T such that D ⊆ T ⊆ K. If I is a
fractional ideal of D, we call I simply an ideal and if I ⊆ D we say that I is an integral ideal.

2.1. Star operations. Divisorial ideals, t-ideals and w-ideals are examples of star ideals, that is
ideals closed under a star operation [20, Section 32].

A star operation is a map I → I∗ from the set F(D) of nonzero ideals of D to itself such that:
(1) D∗ = D and (aI)∗ = aI∗, for all a ∈ K r {0};
(2) I ⊆ I∗ and I ⊆ J ⇒ I∗ ⊆ J∗;
(3) I∗∗ = I∗.
A nonzero ideal I such that I = I∗ is called a ∗-ideal. Nonzero principal ideals are ∗-ideals.
A star operation ∗ is of finite type if I∗ =

⋃
{J∗ ; J ⊆ I and J is finitely generated}, for each

I ∈ F(D). To any star operation ∗, we can associate a star operation ∗f of finite type by defining
I∗f =

⋃
J∗, with the union taken over all finitely generated ideals J contained in I. Clearly

I∗f ⊆ I∗ and J∗f = J∗ if J is finitely generated.
If I∗ = J∗ for some finitely generated ideal J , we say that I is ∗-finite .
A prime ideal which is also a ∗-ideal is called a ∗-prime; a ∗-maximal ideal is a ∗-ideal maximal

in the set of proper integral ∗-ideals of D. A ∗-maximal ideal is prime. We denote by ∗ -Max(D)
the set of ∗-maximal ideals of D. If ∗ is a star operation of finite type, by Zorn’s lemma each ∗-ideal
is contained in a ∗-maximal ideal and we have D =

⋂
{DM ; M ∈ ∗ -Max(D)}. We say that D has

∗-finite character if each nonzero element of D is contained in at most finitely many ∗-maximal
ideals.

When ∗ is of finite type, a minimal prime of a ∗-ideal is a ∗-prime. So, any minimal prime over
a nonzero principal ideal (in particular any height-one prime) is a ∗-prime, for any star operation
∗ of finite type. We say that D has ∗-dimension one if each ∗-prime ideal has height one.

The identity is a star operation denoted by d, Id := I for each I ∈ F(D).
The v-operation, or divisorial closure, of I ∈ F(D) is defined by setting

Iv := (D : (D : I)),

where for any I, J ∈ F(D) we set (J : I) := {x ∈ K ; xI ⊆ J}. A v-ideal of D is also called a
divisorial ideal. It is not difficult to check that

Iv =
⋂
{yD ; y ∈ K , I ⊆ yD}.

The t-operation is the star operation of finite type associated to v and is therefore defined by
setting

It :=
⋃
{Jv ; J ∈ F(D) finitely generated and J ⊆ I}.

Another star operation of finite type associated to a star operation ∗, often denoted by ∗̃, is
defined by setting Ie∗ :=

⋂
{IDM ; M ∈ ∗f -Max(D)}. It follows easily from the definition that

∗̃ = ∗̃f and ∗̃-Max(D) = ∗f -Max(D).
The star operation ṽ = t̃ is usually denoted by w; thus the w-operation is defined by setting

Iw :=
⋂
{IDM ; M ∈ t-Max(D)}

for each nonzero ideal I.
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An equivalent definition of the w-operation is obtained by setting

Iw :=
⋃
{(I : J); J is finitely generated and (D : J) = D}.

By using the latter definition, one can see that the notion of w-ideal coincides with the notion of
semi-divisorial ideal introduced by Glaz and Vasconcelos in 1977 [21].

As a star-operation, the w-operation was first considered by Hedstrom and Houston in 1980
under the name of F∞-operation [23].

It is well known that Iw ⊆ It ⊆ Iv, for each nonzero ideal I.
For any star operation ∗, the set of ∗-ideals of D, denoted by F∗(D), is a semigroup under

∗-multiplication, defined by (I, J) 7→ (IJ)∗, with unit D. An ideal I ∈ F(D) is called ∗-invertible
if I∗ is invertible in F∗(D), equivalently (I(D : I))∗ = D.

The quotient semigroup S∗(D) := F∗(D)/P(D), where P(D) is the group of nonzero principal
ideals of D, is called the ∗-class semigroup of D.

2.2. Polynomial rings and Nagata rings. If X is an indeterminate over D and I is an ideal of
D, we set I[X] := ID[X]. We will use repeatedly the following well-known properties.

Lemma 2.1. Let D be an integral domain and ∗ = w, t, v. Denote by ∗′ the respective star operation
in D[X]. Then:

(1) (J : I)[X] = (J [X] : I[X]), for any nonzero ideals I, J of D. In particular I∗[X] = (I[X])∗
′
.

(2) There is an inclusion preserving injective correspondence I 7→ I[X] between the set of
integral ∗-ideals of D and the set of integral ∗′-ideals of D[X], whose left inverse is the
intersection. In addition, I is ∗-invertible if and only if I[X] is ∗′-invertible.

(3) Let N be a t′-maximal ideal of D[X]. Then either N = M [X], with M := N∩D ∈ t -Max(D)
or N = fK[X] ∩ D[X] for some irreducible polynomial f ∈ K[X]. In the second case,
D[X]N = K[X]fK[X] is a DV R.

Proof. (1) The proof of the first statement is exactly as the proof given in [23, Proposition 4.1] for
J = D. The second statement is [23, Proposition 4.3].

(2) The correspondence I 7→ I[X] is injective because I = I[X] ∩ D. If I is ∗-invertible, its
extension I[X] is ∗′-invertible. Conversely, if D[X] = (I[X](D[X] : I[X]))∗

′
, then by item (1)

D[X] = (I(D : I))∗[X] and D = (I(D : I))∗ by the injectivity.
(3) If N ∩ D := M 6= (0), N = M [X] by [24, Proposition 1.1] and M is t-maximal by [12,

Lemma 2.1]. Assume that N ∩D = (0). Since K[X] = D[X]S is a ring of fractions of D[X], with
S := D\{0}, then NK[X] = NS is a prime ideal of K[X]. Hence NK[X] = fK[X], with f ∈ K[X]
irreducible and N = NS ∩D[X] = fK[X] ∩D[X]. Finally, D[X]N = (D[X]S)NS

= K[X]fK[X] is
DV R. �

A tool very useful in the study of polynomial ring is given by the so-called Nagata rings of D,
which are particular rings of fractions of D[X]. As in [30], for a star operation ∗ on D, we set
N(∗) := {h(X) ∈ D[X] | h(X) 6= 0 and c(h)∗ = D}, where c(f) is the content of the polynomial
f(X), that is the ideal of D generated by the coefficients of f(X). Since c(h)∗ = D if and only if
c(h) * M , for each M ∈ ∗f -Max(D), we see that N(∗) = N(∗f ) = N(∗̃) = D[X]\

⋃
M∈∗f -Max(D) M .

The domain Na(D, ∗) := D[X]N(∗) is called the Nagata ring of D with respect to ∗. For ∗ = d,
Na(D, d) =: D(X) is the usual Nagata ring of D [20, Section 33].

Proposition 2.2. Let D be an integral domain. Then:
(1) Na(D, v) = Na(D, t) = Na(D,w).
(2) Max(Na(D, v)) = {M Na(D, v) |M ∈ t -Max(D)}.
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(3) If Q = P Na(D, v), with P ∈ Spec(D), then Na(D, v)Q = D[X]PD[X] = DP (X).
(4) Na(D, v) =

⋂
{D[X]MD[X], M ∈ t -Max(D)} =

⋂
{DM (X), M ∈ t -Max(D)}.

(5) Na(D, v) is a DW-domain.

Proof. (1) is [14, Corollary 3.5]. (2) is [30, Proposition 2.1 (2)]. (3) is clear, since Na(D, v) is a ring
of fraction of D[X] and Q = P Na(D, v) = P [X] Na(D, v). (4) is [14, Proposition 3.1]. (5) Because
each maximal ideal of Na(D, v) is a t-ideal [30, Proposition 2.1 and Corollary 2.3]. �

The Nagata ring D(X) inherits from D more properties than D[X] and has a better behavior,
as the next result shows.

Proposition 2.3. Let D be an integral domain. Then:

(1) D is Noetherian if and only if D(X) is Noetherian;
(2) D is Prüfer if and only if D(X) is a Bezout domain;
(3) D is Dedekind if and only if D(X) is a PID.

Proof. (1) see for example [38, p.430]. (2) is [20, Theorem 33.4]. (3) is [20, Proposition 38.7]. �

3. w-Stability and Clifford w-regularity of polynomial rings

Let S be a commutative multiplicative semigroup. An element x ∈ S is called von Neuman
regular (for short, vN-regular) if there exists an element a ∈ S such that x = x2a. Idempotent and
invertible elements are vN-regular. By a well-known theorem of Clifford, S is a disjoint union of
groups if and only if all its elements are vN-regular: in this case, S is called a Clifford semigroup.

A domain D is called a Clifford regular domain if its class semigroup S(D) is Clifford regular.
Dedekind domains are trivial examples of Clifford regular domains. Bazzoni and Salce showed

that all valuation domains are Clifford regular and gave a complete description of the structure of
S(D) in that case [7]. Zanardo and Zannier investigated the class semigroups of orders in number
fields and showed that all orders in quadratic fields are Clifford regular domains [42]. The study of
Clifford regularity was then carried on by Bazzoni [3, 4, 5, 6].

A particular class of Clifford regular domains is given by stable domains.
We recall that a nonzero ideal I of D is said to be stable if it is invertible in the overring

E(I) := (I : I) of D, which is the endomorphism ring of I. A domain is (finitely) stable if
each (finitely generated) ideal is invertible in its endomorphism ring. Stable domains have been
thoroughly investigated by Olberding [32, 33, 34, 35].

When I is stable, we have I(E(I) : I) = E(I), so that I = IE(I) = I2(E(I) : I) is vN-regular.
It follows that stable domains are Clifford regular. Conversely, not all Clifford regular domains
are stable: in fact, a valuation domain is always Clifford regular [7], but it is stable if and only if
P 6= P 2, for each nonzero prime ideal P [32, Proposition 4.1]. On the other hand, Clifford regular
domains are finitely stable, so that in the Noetherian case Clifford regularity coincides with stability
[5, Theorem 3.1].

Stability with respect to star operations (and more generally to semistar operations) was intro-
duced and studied by the authors of this paper in [16].

The first attempt to extend the notion of Clifford regularity in the setting of star operations is
due to Kabbaj and Mimouni, who considered the t-operation [26, 27, 28, 29]. Then Halter-Koch, in
the language of ideal systems, introduced Clifford ∗-regularity for star operations of finite type [22].
Finally, we deepened the study of stability and Clifford regularity with respect to star operations
in [17, 18].
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We note that Clifford w-regularity implies Clifford t-regularity, but it is a stronger property. For
example, while any Noetherian Clifford w-regular domain has t-dimension one, there are Noetherian
t-regular domains of t-dimension greater than two [18, Section 3].

Stability and Clifford regularity with respect to the w-operation are defined in the following way.
Set as usual E(J) := (J : J), for each J ∈ F(D). It is easy to see that E(Iw)w = E(Iw), for each
I ∈ F(D). Thus the restriction of w to the set of nonzero ideals of E(Iw) is a star operation on
E(Iw), denoted by ẇ := w|E .

We say that a nonzero ideal I of D is w-stable if Iw is ẇ-invertible in E(Iw) and that D is
w-stable if each ideal of D is w-stable.

We also say that D is Clifford w-regular if the w-class semigroup Sw(D) := Fw(D)/P(D) is a
Clifford semigroup, i.e., for each nonzero ideal I, the class [Iw] ∈ Sw(D) is vN-regular. This is
equivalent to saying that Iw is vN-regular in Fw(D), that is Iw = (I2J)w, for some nonzero ideal
J of D; in this case, we also have Iw = (I2(E(Iw) : I))w = (I2(Iw : I2))w [17, Lemma 1.2]. If Iw

is vN-regular in Fw(D), we say for short that I is w-regular. Clearly, a w-stable ideal is w-regular
and so a w-stable domain is Clifford w-regular.

Finally, recall that stable and Clifford regular domains are DW-domains [16, Corollary 1.11],
[17, Corollary 1.7]; thus polynomial rings over a domain that is not a field are never stable or
Clifford regular (Theorem 1.1). Here we are interested in the transfer of w-stability and Clifford
w-regularity to polynomial rings and Nagata rings.

We start by observing that a necessary condition for D[X] being Clifford w-regular or w-stable
is that D has the same property.

Proposition 3.1. If D[X] is a Clifford w-regular (resp., w-stable) domain, then D is a Clifford
w-regular (resp., w-stable) domain.

Proof. It is an easy application of Lemma 2.1, (1) and (2). �

The following proposition shows that Clifford w-regularity and w-stability of polynomial rings
and Nagata rings depend on the non-extended ideals. On the other hand, recall that each integral
ideal of Na(D, v) is extended from D if and only if D is a PvMD [30, Theorem 3.1].

Lemma 3.2. Let D ⊆ T be a flat extension of domains. If I is a w-regular (resp., w-stable) ideal
of D, IT is a w-regular (resp., w-stable) ideal of T .

Proof. This follows from [17, Lemma 2.4], because a flat extension is w-compatible. �

Proposition 3.3. If D is a Clifford w-regular (resp., w-stable) domain, each extended ideal of D[X]
is w-regular (resp., w-stable) and each extended ideal of Na(D, v) is vN-regular (resp., stable).

Proof. It follows from Lemma 3.2, because polynomial rings and localizations are flat extensions,
and from the fact that Na(D, v) is a DW-domain (Proposition 2.2). �

The study of (w-)stability can be reduced to the local case. In fact a domain D is (w-)stable if
and only if DM is stable, for each (t-)maximal ideal M , and D has (t-)finite character [16, Corollary
1.10]. If D is Clifford (w-)regular, then DM is Clifford regular for each (t-)maximal ideal M [17,
Corollary 2.13] and D has (t-)finite character [17, Theorem 5.2], but it is not known if the converse
is true in general. However, the converse holds if D is integrally closed or if each nonzero (t-)prime
ideal of D is contained in a unique (t-)maximal ideal (e.g., D has (t-)dimension one). This follows
from more general results proved in [17] in the setting of star operations spectral and of finite type.
We give below a direct proof.

Recall that a Prüfer domain (resp., a PvMD) is called strongly discrete if P 6= P 2 for each prime
(resp., t-prime) ideal P . A domain is integrally closed and Clifford w-regular (resp., w-stable) if
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and only if it is a PvMD (resp., a strongly discrete PvMD) with t-finite character [17, Corollary
4.5], [16, Therem 2.9]. Thus, for w = d, an integrally closed Clifford regular (resp., stable) domain
is precisely a Prüfer domain (resp., a strongly discrete Prüfer domain) with finite character [5,
Theorem 4.5], [32, Theorem 4.6].

If each prime ideal of D is contained in a unique (t-)maximal ideal and D has (t-)finite character,
D is called h-local (weakly Matlis).

Theorem 3.4. [17, Proposition 5.4 and Theorem 5.6] Let D be an integral domain. Assume that (a)
D is integrally closed or (b) each nonzero (t-)prime ideal of D is contained in a unique (t-)maximal
ideal (e.g., D has (t-)dimension one). The following conditions are equivalent:

(i) D is Clifford (w-)regular;
(ii) DM is Clifford regular for each M ∈ (t -)Max(D), and D has (t-)finite character.

Proof. It is enough to prove the theorem for Clifford w-regularity.
(i) ⇒ (ii) is always true. In fact, when D is Clifford w-regular, DM is Clifford regular for each

M ∈ (t -)Max(D) by [5, Proposition 2.8], and D has t-finite character by [17, Theorem 5.2].
(ii)⇒ (i) Assume (a). Since DM is integrally closed and Clifford regular, it is a valuation domain

[7, Theorem 3]. Thus D is Clifford w-regular by [17, Corollary 4.5].
Assume (b). By definition, D is weakly Matlis. Hence (I : I2)M = (IM : I2

M ), for each w-ideal I
and t-maximal ideal M [1, Corollary 5.2]. Then, since D is t-locally Clifford regular,

(I2(I : I2))w =
⋂

M∈t -Max(D)

I2(I : I2)M =
⋂

M∈t -Max(D)

I2
M (IM : I2

M ) =
⋂

M∈t -Max(D)

IM = I.

We conclude that each nonzero ideal of D is Clifford w-regular. �

Corollary 3.5. [17, Corollaries 2.16 and 2.17] Assume that D is an h-local (resp., weakly Matlis)
domain. Then D is Clifford (w-)regular if and only if DM is Clifford regular, for each (t-)maximal
ideal M of D.

Remark 3.6. In the proof of (ii) ⇒ (i) of Theorem 3.4, the fact that D is h-local (resp., weakly
Matlis) is used only because this implies that (I : I2)M = (IM : I2

M ) for every (w-)ideal I and
(t-)maximal ideal M . But this is true also in other cases, for example when I2 is finitely generated
(resp., w-finite).

By a standard argument, the condition that each w-ideal is w-finite is equivalent to the ascending
chain condition on integral w-ideals: a domain with this condition is called a strong Mori domain.
Clearly Noetherian domains are strong Mori. More precisely, a domain is strong Mori if and only
if DM is Noetherian, for each M ∈ t -Max(D) and D has t-finite character [41, Theorem 1.9].

It follows that a strong Mori domain D is Clifford w-regular if and only if DM is Clifford regular,
for each M ∈ t -Max(D) [18, Proposition 2.5(2)].

Taking in account Theorem 3.4 and Corollary 3.5, to reduce ourselves to consider the local case,
we now want to establish when a polynomial ring over a Clifford w-regular domain has t-finite
character or is weakly Matlis.

Lemma 3.7. [15, Lemma 2.1] Let D be an integral domain. The following conditions are equivalent:
(i) D has t-finite character;
(ii) D[X] has t-finite character;

(iii) Na(D, v) has finite character.

By Lemmas 2.1 and 3.7, when D is weakly Matlis, D[X] is weakly Matlis if and only if each
upper to zero is contained in a unique t-maximal ideal [15, Proposition 2.2]. This condition is
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certainly satisfied if D is a local domain whose maximal ideal is a t-ideal or if each upper to zero
is a t-maximal ideal. A domain such that each upper to zero is a t-maximal ideal is called a
UMT-domain [24].

Proposition 3.8. [15, Corollary 2.3] Assume that (a) D is a local domain whose maximal ideal is
a t-ideal or (b) D is a UMT-domain. The following conditions are equivalent:

(i) D is weakly Matlis;
(ii) D[X] is weakly Matlis;

(iii) Na(D, v) is h-local.

It is worth noting that the hypotheses (a) and (b) are not necessary to prove the equivalence of
conditions (ii) and (iii) of Proposition 3.8. Examples of weakly Matlis domains D such that D[X]
is not weakly Matlis were given in [15, Examples 2.5 and 2.6].

Proposition 3.9. A Clifford w-regular domain is a UMT-domain.

Proof. If D is Clifford w-regular, DM is Clifford regular for each M ∈ t -Max(D) [17, Corollary
2.13]. Thus DM has Prüfer integral closure [26, Proposition 2.3] and hence D is a UMT-domain
by [12, Theorem 1.5]. �

Corollary 3.10. Let D be a Clifford w-regular domain. Then:
(1) If D is weakly Matlis, the polynomial ring D[X] is weakly Matlis.
(2) If D has t-dimension one, D is weakly Matlis and the polynomial ring D[X] is weakly Matlis

of t-dimension one.

Proof. (1) Since a Clifford w-regular domain is a UMT-domain (Proposition 3.9), D[X] is weakly
Matlis by Proposition 3.8.

(2) Let D be of t-dimension one. Since a Clifford w-regular domain has t-finite character [17,
Theorem 5.2], D is weakly Matlis and so D[X] is weakly Matlis by item (1). Besides, each upper
to zero of D[X] is t-maximal (of height one). Thus each extended prime t-ideal has height one and
we conclude that D[X] has t-dimension one. �

Remark 3.11. A domain is called quasi-Prüfer if its integral closure is a Prüfer domain [13,
Corollary 6.5.14]. Clearly, the quasi-Prüfer property does not pass to polynomial rings, since the
integral closure of a polynomial ring is a polynomial ring and so it is not Prüfer. However, it
is known that a domain is quasi-Prüfer if and only if it is a UMT DW-domain [9, Theorem 2.4]
and that the UMT-property transfers to polynomial rings [12, Theorem 2.4]. This is still another
example of a class of domains whose “non-DW” part passes to polynomials.

The following result, due to Olberding, is useful to understand what happens when D is local
and stable.

Theorem 3.12. [34, Theorem 2.3] A domain D is stable if and only if (a) D is finitely stable; (b)
QDQ is a stable ideal of DQ, for each nonzero prime ideal Q; (c) DQ is a valuation domain, for
each nonzero nonmaximal prime ideal Q; (d) D has finite character.

Proposition 3.13. Let D be a local stable domain. The following conditions are equivalent:
(i) D(X) is stable;
(ii) D(X) is Clifford regular;

(iii) D(X) is finitely stable;
(iv) Each non-extended finitely generated ideal of D(X) is stable.
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Proof. (i) ⇒ (ii) and (iii) ⇒ (iv) are clear. (ii) ⇒ (iii) by [4, Proposition 2.3].
(iv) ⇒ (i) We apply Theorem 3.12. Let M be the maximal ideal of D. The domain R :=

D(X) := Na(D, v) is local, with maximal ideal M(X). Since D is a UMT-domain (Lemma 3.9),
each prime ideal of R, is extended from D [24, Theorem 3.1]. Also, since D is stable, by Proposition
3.3, each extended ideal of R is stable. Hence, each nonzero prime ideal Q of R is stable and so
QRQ is stable. In addition, if the prime ideal Q := P (X) of R is not maximal, P is not maximal.
Hence DP is a valuation domain and RQ = DP (X) is also a valuation domain. In conclusion, if
each non-extended finitely generated ideal of R is stable, R is finitely stable and R satisfies all the
conditions of Theorem 3.12. Thus R is stable. �

By applying Proposition 3.13, we now show that the w-stability of polynomial rings depends on
the stability of certain local Nagata rings.

Proposition 3.14. Let D be an integral domain. The following conditions are equivalent:

(i) D[X] is w-stable;
(ii) Na(D, v) is stable;

(iii) D[X] has t-finite character and DM (X) is stable for each M ∈ t -Max(D).

Under (any one of) these conditions, D is w-stable.

Proof. (i) ⇒ (ii) Since Na(D, v) is a ring of fractions of D[X], every ideal of Na(D, v) is extended
from D[X]. Hence Na(D, v) is w-stable by Proposition 3.3. Moreover, Na(D, v) is a DW-domain
by Proposition 2.2, so it is stable.

(ii) ⇒ (iii) The t-maximal ideals of D[X] are either uppers to zero or extended from D (Lemma
2.1). If N is an upper to zero, D[X]N is a DVR. Otherwise, N = MD[X] with M ∈ t -Max(D). By
Proposition 2.2, M Na(D, v) is a maximal ideal of Na(D, v) and Na(D, v)M Na(D,v) = D[X]MD[X] =
DM (X) is stable. Thus D[X] is t-locally stable. In addition, since Na(D, v) has finite character,
D[X] has t-finite character (Lemma 3.7).

(iii) ⇒ (i) We apply the t-local characterization [16, Corollary 1.10].
Under condition (i), D is w-stable by Proposition 3.1. �

Theorem 3.15. Assume that D is a w-stable domain. The following conditions are equivalent:

(i) D[X] is w-stable;
(ii) Na(D, v) is stable;

(iii) DM (X) is stable for each M ∈ t -Max(D);
(iv) DM (X) is Clifford regular for each M ∈ t -Max(D).

Proof. (i) ⇔ (ii) ⇔ (iii) Since w-stable domains have t-finite character [16, Corollary 1.10], D[X]
has t-finite character (Lemma 3.7). Hence we can apply Proposition 3.14.

(iii) ⇔ (iv) by Proposition 3.13, because DM is stable [16, Corollary 1.10]. �

In order to get a similar result for Clifford w-regularity, we need some additional hypotheses.

Proposition 3.16. Let D be an integral domain and consider the following conditions:

(1) D[X] is Clifford w-regular;
(2) Na(D, v) is Clifford regular;
(3) D[X] has t-finite character and DM (X) is Clifford regular for each M ∈ t -Max(D).

Then (1) ⇒ (2) ⇒ (3). Moreover, if D is integrally closed or D[X] is weakly Matlis, then (3) ⇒
(1) and D is Clifford w-regular.
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Proof. The proofs of (1) ⇒ (2) and of (2) ⇒ (3) are exactly the same as the proofs of Proposition
3.14 ((i)⇒ (ii) and (ii) ⇒ (iii) respectively) with Clifford (w-)regular instead of w-stable.

If (3) holds, we cannot conclude in general that D[X] is Clifford w-regular. However, under the
additional hypothesis that D (and so D[X]) is integrally closed or D[X] is weakly Matlis, we can
apply Theorem 3.4 and obtain that D[X] is Clifford w-regular.

Finally, under condition (1), D is Clifford w-regular by Proposition 3.1. �

Theorem 3.17. Assume that the domain D is Clifford w-regular and weakly Matlis. The following
conditions are equivalent:

(i) D[X] is Clifford w-regular;
(ii) Na(D, v) is Clifford regular;

(iii) DM (X) is Clifford regular for each M ∈ t -Max(D).

Proof. D[X] is weakly Matlis by Corollary 3.10(1), in particular it has t-finite character. Hence we
can apply Proposition 3.16. �

Putting together Theorems 3.15 and 3.17, we immediately get that if D is w-stable and weakly
Matlis, w-stability and Clifford w-regularity of polynomial rings are equivalent.

Theorem 3.18. Let D be a w-stable weakly Matlis domain. The following conditions are equivalent:
(i) D[X] is w-stable;
(ii) D[X] is Clifford w-regular;

(iii) Na(D, v) is stable;
(iv) Na(D, v) is Clifford regular;
(v) DM (X) is stable for each M ∈ t -Max(D);

(vi) DM (X) is Clifford regular for each M ∈ t -Max(D).

Proof. (i) ⇔ (iii) ⇔ (v) ⇔ (vi) follow from Theorem 3.15.
(ii) ⇔ (iv) ⇔ (vi) by Theorem 3.17. �

A class of weakly Matlis domains is given by w-divisorial domains, that is, domains in which
each w-ideal is divisorial [11]. In fact, D is w-divisorial if and only if D is weakly Matlis and DM is
divisorial, for each t-maximal ideal M [11, Theorem 1.5]. (A divisorial domain is a domain whose
ideals are all divisorial.) The transfer of w-divisoriality to polynomial rings was studied in [15].

A domain D that is at the same time w-stable and w-divisorial is precisely a weakly Matlis
domain such that DM is totally divisorial, for each t-maximal ideal M [16, Corollary 3.2]. (A
totally divisorial domain is a domain whose overrings are all divisorial.)

4. Two positive results

We are now able to show that Clifford w-regularity and w-stability pass to polynomial rings in
two cases. The first one is when D is integrally closed, the second case is when D is a w-stable
w-divisorial Mori domain.

Theorem 4.1. Let D be an integrally closed domain. The following conditions are equivalent:
(i) D is Clifford w-regular (resp., w-stable);

(ii) D[X] is Clifford w-regular (resp., w-stable);
(iii) Na(D, v) is Clifford regular (resp., stable).

Proof. (i) ⇒ (iii) Since an integrally closed Clifford w-regular domain is a PvMD [17, Corollary
4.5], each ideal of Na(D, v) is extended from D [30, Theorem 3.1]. So, by Proposition 3.3, if D is
Clifford w-regular (resp., w-stable), Na(D, v) is Clifford regular (resp., stable).
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(iii) ⇒ (ii) It is always true for stability (Proposition 3.14) and it is true under the “integrally
closed” hypothesis for Clifford regularity (Proposition 3.16).

(ii) ⇒ (i) is Proposition 3.1. �

Recall that a Mori domain is a domain with the ascending chain condition on integral divisorial
ideals. For the main properties of Mori domains, one can see the survey [2] and the references
there.

Since divisorial ideals are w-ideals, strong Mori domains (i.e., domains satisfying the ascending
chain condition on integral w-ideals) are Mori. More precisely, it follows from [41, Theorem 1.9]
that D is strong Mori if and only if D is Mori and DM is Noetherian for each M ∈ t -Max(D).

Stability and Clifford regularity of Mori domains were studied in [18], in the more general setting
of star operations; in particular, it was proved there that w-stability and Clifford w-regularity
coincide for strong Mori domains [18, Corollary 3.11]. But these two notions are indeed equivalent
for all Mori domains; this follows from a recent result in [19].

Theorem 4.2. [19] Let D be an integral domain. The following conditions are equivalent:
(i) D is stable and one-dimensional;
(ii) D is Mori and stable;

(iii) D is Mori and finitely stable.

A class of examples of local one-dimensional domains which are stable and not Noetherian has
been constructed by Olberding [37, Theorems 4.1 and 4.4] (see also [36, Theorem 3.10]); by Theorem
4.2, all these domains must be Mori.

Theorem 4.3. Let D be an integral domain. The following conditions are equivalent:
(i) D is w-stable of t-dimension one;
(ii) D is Mori and w-stable;

(iii) D is Mori and Clifford w-regular.

Proof. (i) ⇒ (ii) For each M ∈ t -Max(D), DM is stable and one-dimensional; hence it is Mori by
Theorem 4.2. By w-stability, D has t-finite character [16, Corollary 1.10] and this implies that D
is Mori [2, Theorem 2.4].

(ii) ⇒ (iii) is clear.
(iii) ⇒ (i) For each M ∈ t -Max(D), DM is Mori and Clifford regular; hence finitely stable [5,

Proposition 2.3]. By Theorem 4.2, DM is stable. Since a Mori domain has t-finite character [2,
Theorem 3.3], D is w-stable [16, Corollary 1.10]. �

Since w-stable domains of t-dimension one are weakly Matlis (Corollary 3.10(2)), Theorem 3.18
can be restated for Mori domains.

Theorem 4.4. Let D be a w-stable Mori domain. The following conditions are equivalent:
(i) D[X] is w-stable;
(ii) D[X] is Clifford w-regular;

(iii) DM (X) is stable for each M ∈ t -Max(D).
In addition, under (any one of) these conditions, D[X] is a Mori domain.

Proof. A w-stable Mori domain has t-dimension one (Theorem 4.3) and so it is weakly Matlis by
Corollary 3.10(2). Hence Theorem 3.18 holds for w-stable Mori domains.

In addition, if D is w-stable of t-dimension one, also D[X] has t-dimension one (Corollary
3.10(2)). Thus, if D[X] is w-stable, D[X] is Mori by Theorem 4.3. �
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Hence, when D is Mori, a necessary condition for D[X] being w-stable is that D[X] is Mori.
Even though a polynomial ring over a Mori domain need not be Mori [2, Section 6], we do not
know what happens in t-dimension one. However, if D is strong Mori (i.e., Mori and t-locally
Noetherian), also D[X] is strong Mori [41, Theorem 1.13]. Thus, in view of Theorem 4.4, we ask:

Problem 1. Let D be a stable local Noetherian domain. Is D(X) stable?

The answer to this question is positive under the additional hypothesis that D is divisorial (i.e.,
each nonzero ideal is divisorial). It follows from the definitions that a Mori divisorial domain is
Noetherian.

We recall that a domain D is stable and divisorial if and only if it is totally divisorial (i.e.,
each overring of D is divisorial) [33, Theorem 3.12]. When D is Mori, D is stable and divisorial
(equivalently, totally divisorial) if and only it is Noetherian 2-generated, that is, each ideal can
be generated by two elements [33, Theorem 3.1]. There are several examples of stable Noetherian
domain that are not 2-generated [36, Section 3]; a first example was given in [40, Example 5.4].

Proposition 4.5. Let D be a local Noetherian domain. The following conditions are equivalent:
(i) D is totally divisorial;
(ii) D is 2-generated;

(iii) D(X) is 2-generated;
(iv) D(X) is totally divisorial.

Proof. Note that D(X) is Noetherian by Proposition 2.3.
(i) ⇔ (ii) and (iii) ⇔ (iv) by [33, Theorem 3.1].
(ii) ⇔ (iii) D and D(X) have the same multiplicity [25, p.214 and Lemma 8.4.2(6)] and a local

one-dimensional Noetherian domain has multiplicity 2 if and only if it is 2-generated [40, Lemma
3.1]. �

When D is Mori, D is w-stable and w-divisorial if and only DM is Noetherian and totally
divisorial, for each M ∈ t -Max(D) [17, Corollary 3.6]. In particular, a w-divisorial w-stable Mori
domain is strong Mori.

By [15, Proposition 3.6], if D is Mori and w-divisorial, D[X] is w-divisorial. We now show that,
if in addition D is w-stable, D[X] is also w-stable.

Theorem 4.6. Let D be a Mori domain. The following conditions are equivalent:
(i) D is w-stable and w-divisorial;
(ii) D[X] is w-stable and w-divisorial;

(iii) Na(D, v) is totally divisorial;
(iv) DM (X) is 2-generated (equivalently, Noetherian totally divisorial), for each M ∈ t -Max(D).

Proof. (i) ⇔ (iv) D is w-stable and w-divisorial if and only if, for every t-maximal ideal M of D,
DM is Noetherian and totally divisorial [17, Corollary 3.6], if and only if DM (X) is 2-generated for
every t-maximal ideal M of D (Proposition 4.5).

(iv)+(i) ⇒ (ii) D[X] is w-divisorial by [15, Proposition 3.6] and it is w-stable by Theorem 4.4.
(ii) ⇒ (i) D is w-stable by Proposition 3.1 and w-divisorial by [15, Proposition 3.6].
(ii) ⇔ (iii) It follows from Proposition 3.14, [13, Proposition 3.2] and [33, Theorem 3.12]. �

The problem of establishing whether more generally w-stability of Mori domains transfers to
polynomial rings can be similarly reduced to the local case (Theorem 4.4); that is, it can be reduced
to investigate the stability of D(X) when D is a local stable Mori domain, equivalently, a local
stable one-dimensional domain (Theorem 4.2). Our previous results and a theorem of Olberding
show that one has only to consider the case when the conductor of the integral closure D′ is zero.
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Theorem 4.7. [34, Proposition 4.5] Let D be a one-dimensional stable domain. If (D : D′) 6= (0),
D is 2-generated and D′ is a finitely generated R-module.

Corollary 4.8. Let D be a Mori w-stable domain. If (D : D′) 6= (0), D is w-divisorial and D[X]
is w-stable and w-divisorial.

Proof. For each M ∈ t -Max(D), DM is one-dimensional stable (Theorem 4.2) and its integral
closure has nonzero conductor. Hence DM is 2-generated (Theorem 4.7), that is DM is totally
divisorial [33, Theorem 3.1]. By [11, Theorem 4.5], D is w-divisorial and so D[X] is w-stable and
w-divisorial (Theorem 4.6). �

Explicit examples of local one-dimensional stable or 2-generated domains such that (D : D′) = (0)
can be found in [36, Section 3].
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[13] M. Fontana, J. Huckaba and I. Papick, Prüfer domains, Monographs and Textbooks in Pure and Applied

Mathematics, 203, Marcel Dekker, Inc., New York, 1997.
[14] M. Fontana and K. A. Loper, Nagata rings, Kronecker function rings and related semistar operations, Comm.

Algebra 3 (2003), 4775–4805.
[15] S. Gabelli, E. Houston and G. Picozza, w-Divisoriality in polynomial rings, Comm. Algebra 37 (2009), 1117–

1127.
[16] S. Gabelli and G. Picozza, Star-stable domains, J. Pure Appl. Algebra 208 (2007), 853–866.
[17] S. Gabelli and G. Picozza, Stability and Clifford regularity with respect to star operations, Comm. Algebra 40

(2012), 3558–3582.
[18] S. Gabelli and G. Picozza, Star stability and star regularity for Mori domains, Rend. Semin. Mat. Padova, 126

(2011), 107–125.
[19] S. Gabelli and M. Roitman, On finitely stable domains, manuscript.
[20] R. Gilmer, Multiplicative ideal theory, Pure and Applied Mathematics, No. 12. Marcel Dekker, Inc., New York,

1972.
[21] S. Glaz and W. Vasconcelos, Flat ideals, II, Manuscripta Math. 22 (1977), 325–341.
[22] F. Halter-Koch, Clifford semigroups of ideals in monoids and domains, Forum Math. 21 (2009), 1001–1020.
[23] J. R. Hedstrom and E. G. Houston, Some remarks on star-operations, J. Pure Appl. Algebra 18 (1980), 37–44.
[24] E. Houston and M. Zafrullah, On t-invertibility. II., Comm. Algebra 17 (1989), 1955–1969.
[25] C. Huneke and I. Swanson, Integral closure of ideals, rings, and modules, London Mathematical Society Lecture

Note Series, 336, Cambridge University Press, Cambridge, 2006.
[26] S. Kabbaj and A. Mimouni, Class semigroups of integral domains, J. Algebra 264 (2003), 620–640.
[27] S. Kabbaj and A. Mimouni, t-Class semigroups of integral domains, J. reine angew. Math. 612 (2007), 213–229.



14 STEFANIA GABELLI AND GIAMPAOLO PICOZZA

[28] S. Kabbaj and A. Mimouni, Constituent groups of Clifford semigroups arising from t-closure, J. Algebra 321
(2009), 1443–1452.

[29] S. Kabbaj and A. Mimouni, t-Class semigroups of Noetherian domains, Commutative Algebra and its applica-
tions, de Gruyter (2009), 283–290.
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