Corso di laurea in Matematica - Anno Accademico 2005/2006 FM1 - Equazioni differenziali e meccanica

Tutorato IX - Livia Corsi (Soluzioni degli esercizi)

Esercizio 1.

(1.1) Equazioni di Newton. Poiché m=1, il potenziale efficace è dato da

$$V_{\text{eff}}(\rho) = -\rho^2 + 4 \ln \rho + \frac{L^2}{2\rho^2}, \qquad L \neq 0$$

e quindi l'equazione di Newton è

$$\ddot{\rho} = -\frac{\mathrm{d}V_{\text{eff}}}{\mathrm{d}\rho} = 2\rho - \frac{4}{\rho} + \frac{L^2}{\rho^3}$$

Sistema dinamico associato.

$$\begin{cases} \dot{\rho} = y \\ \dot{y} = -\frac{\mathrm{d}V_{\mbox{eff}}}{\mathrm{d}\rho} = 2\rho - \frac{4}{\rho} + \frac{L^2}{\rho^3} \end{cases}$$

(1.2)**Punti d'equilibrio.** Considerato il sistema dinamico associato, i punti in cui si annulla il campo vettoriale sono tutti e soli i punti della forma $(\rho_0, 0)$ con ρ_0 punto critico del potenziale efficace; pertanto dobbiamo risolvere l'equazione

$$-2\rho - \frac{4}{\rho} - \frac{L^2}{\rho^3} = 0$$

e questa ha soluzione se e solo se

$$2\rho^4 - 4\rho^2 + L^2 = 0$$

che ha soluzione se e solo se $L^2 \leq 2$. In particolare avremo

- per $L^2 > 2$ nessun punto d'equilibrio.
- per $L^2 = 2$ un solo punto d'equilibrio in (1,0).
- per $L^2 \leq 2$ due punti d'equilibrio:

$$P_1 = (\rho_1, 0) = \left(\sqrt{1 - \sqrt{1 - \frac{1}{2}L^2}}, 0\right)$$
 $P_2 = (\rho_2, 0) = \left(\sqrt{1 + \sqrt{1 - \frac{1}{2}L^2}}, 0\right)$

Stabilità dei punti d'equilibrio. Derivando ulteriormente il potenziale otteniamo

$$\frac{\mathrm{d}^2 V_{\text{eff}}}{\mathrm{d}\rho^2} = -2 - \frac{4}{\rho^2} + \frac{3L^2}{\rho^4}$$

quindi, se $L^2=2$ avremo che $[\mathrm{d}^2V_{\mathrm{eff}}/\mathrm{d}\rho^2](1)=0$ e $[\mathrm{d}V_{\mathrm{eff}}/\mathrm{d}\rho]<0$ per ogni valore di $\rho\neq 1$ perciò $\rho=1$ è un punto di sella del potenziale efficace e quindi il punto d'equilibrio (1,0) è instabile. Per $L^2\leq 2$ invece, si ha $[\mathrm{d}^2V_{\mathrm{eff}}/\mathrm{d}\rho^2](\rho_1)>0$ quindi $\rho=\rho_1$ è un punto di minimo del potenziale, pertanto P_1 sarà un punto d'equilibrio stabile per il sistema. Vicecersa $[\mathrm{d}^2V_{\mathrm{eff}}/\mathrm{d}\rho^2](\rho_2)<0$ quindi $\rho=\rho_2$ è un punto di massimo per il potenziale, quindi P_2 sarà un punto d'equilibrio instabile.

(1.3) Andamento all'infinito.

$$\lim_{\rho \to +\infty} V_{\text{eff}}(\rho) = -\infty \qquad \text{e} \qquad \lim_{\rho \to 0} V_{\text{eff}}(\rho) = +\infty$$

indipendentemente dal valore di ρ

Grafico del potenziale.

300 200 100 2 4 6 8 10

20 2 4 6 8 10

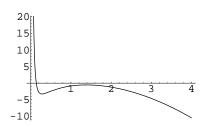


Figura 1: Grafico del potenziale per $L^2 > 2$

Figura 2: Grafico del potenziale per $L^2 = 2$

Figura 3: Grafico del potenziale per $L^2 < 2$

(1.4) Piano delle fasi. Da $E=y^2/2+V_{\mbox{eff}}(\rho)$ otteniamo $y=\pm\sqrt{2(E-V_{\mbox{eff}}(\rho))}$. Perciò nel piano delle fasi avremo curve simmetriche rispetto all'asse ρ . Inoltre, poiché il potenziale efficace non è limitato dal basso, il moto sarà possibile per ogni valore di energia. Suddividiamo dunque il problema in tre casi.

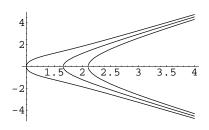
Caso 1. $L^2 > 2$. Per ogni valore di E avremo una curva aperta con $\lim_{\rho \to +\infty} y(\rho) = \pm \infty$.

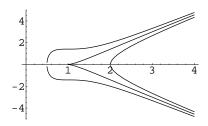
Caso 2. $L^2 = 2$.

- Per $E < V_{\mbox{eff}}(1) = 0$ una traiettoria aperta con $\lim_{\rho \to +\infty} y(\rho) = \pm \infty$.
- Per E=0 due traiettorie aperte con $\lim_{\rho\to+\infty}y(\rho)=\pm\infty$ rispettivamente e con $\lim_{\rho\to 1}y(\rho)=0$ con tangenza orizzontale e il punto d'equilibrio instabile (1,0)
- Per E > 0 una traiettoria aperta con $\lim_{\rho \to +\infty} y(\rho) = \pm \infty$.

Caso 3. $L^2 < 2$

- Per $E < V_{\text{eff}}(\rho_1)$ una traiettoria aperta con $\lim_{\rho \to +\infty} y(\rho) = \pm \infty$.
- Per $E = V_{\text{eff}}(\rho_1)$ una triettoria aperta con $\lim_{\rho \to +\infty} y(\rho) = \pm \infty$ e il punto stabile P_1 .
- Per $V_{\text{eff}}(\rho_1)E < V_{\text{eff}}(\rho_2)$ una traiettoria aperta con $\lim_{\rho \to +\infty} y(\rho) = \pm \infty$ e una periodica intorno al punto stabile P_1
- Per $E = V_{\text{eff}}(\rho_2)$ due traiettorie aperte con $\lim_{\rho \to +\infty} y(\rho) = \pm \infty$ rispettivamente, il punto instabile P_2 e una traiettoria omoclina che interseca le due aperte nel punto instabile con tangenti oblique.
- Per $E > V_{\text{eff}}(\rho_2)$ una traiettoria aperta con $\lim_{\rho \to +\infty} y(\rho) = \pm \infty$





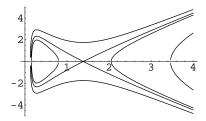


Figura 4: Piano delle fasi per $L^2 > 2$

Figura 5: Piano delle fasi per $L^2 = 2$

Figura 6: Piano delle fasi per $L^2 < 2$

(1.5) **Traiettorie periodiche.** Per quanto visto al punto precedente, avremo traiettorie periodiche solo nel caso $L^2 < 2$. In particolare ciò avverrà per $V_{\text{eff}}(\rho_1) < E < V_{\text{eff}}(\rho_2)$ e $\rho < \rho_2$.

Esercizio 2.

(2.1) Equazione di Newton. Essendo m=1, il potenziale efficace è dato da

$$V_{\text{eff}}(\rho) = -\ln \rho - \frac{2}{\rho} + \frac{L^2}{2\rho^2}$$
 $L^2 \neq 0$

2

e quindi l'equazione di newton del sistema è

$$\ddot{\rho} = -\frac{\mathrm{d}V_{\text{eff}}}{\mathrm{d}\rho} = \frac{1}{\rho} - \frac{2}{\rho^2} + \frac{L^2}{\rho^3}$$

Sistema dinamico associato. Avendo posto $y = \dot{\rho}$, otteniamo il sistema dinamico

$$\left\{ \begin{aligned} \dot{\rho} &= y \\ \dot{y} &= \frac{1}{\rho} - \frac{2}{\rho^2} + \frac{L^2}{\rho^3} \end{aligned} \right.$$

(2.2) Andamento all'infinito.

$$\lim_{\rho \to +\infty} V_{\text{eff}}(\rho) = -\infty \qquad \text{e} \qquad \lim_{\rho \to 0} V_{\text{eff}}(\rho) = +\infty$$

indipendentemente dal valore di ρ

Punti critici. Si tratta di risolvere l'equazione

$$-\frac{1}{\rho} + \frac{2}{\rho^2} - \frac{L^2}{\rho^3} = 0$$

che ha soluzione se e solo se

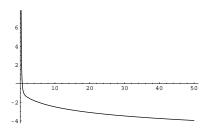
$$\rho^2 - 2\rho + L^2 = 0$$

e questa ammette soluzione se e solo se $L^2 < 1$. Quindi avremo

- Per $L^2 > 1$ nessun punto critico
- Per $L^2=1$ un solo punto critico in $\rho_0=1$
- Per $L^2 < 1$ due punti critici in $\rho_{\pm} = 1 \pm \sqrt{1 L^2}$.

Inoltre, se $L^2=1$ notiamo che $[\mathrm{d}V_{\mathrm{eff}}/\mathrm{d}\rho]<0$ per ogni valore di $\rho\neq 1$ e quindi il valore $\rho=1$ è un punto di sella per il potenziale efficace. Per $L^2\leq 1$ invece, si ha $[\mathrm{d}^2V_{\mathrm{eff}}/\mathrm{d}\rho^2](\rho_-)>0$ quindi $\rho=\rho_-$ è un punto di minimo del potenziale. Vicecersa $[\mathrm{d}^2V_{\mathrm{eff}}/\mathrm{d}\rho^2](\rho_+)<0$ quindi $\rho=\rho_+$ è un punto di massimo per il potenziale.

Grafico del potenziale.



1 2 4 6 8 10 12 14 -1 -2

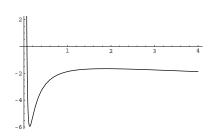


Figura 7: Potenziale per $L^2 > 1$

Figura 8: Potenziale per $L^2 = 1$

Figura 9: Potenziale per $L^2 < 1$

(2.3) **Punti d'equilibrio e stabilità.** In generale i punti d'equilibrio sono tutti e soli della forma $(\rho_0, 0)$ con ρ_0 punto critico del potenziale, quindi suddividiamo nei tre casi. Se $L^2 > 1$ il sistema non ammette punti critici. Se $L^2 = 1$, esiste un solo punto d'equilibrio $P_0 = (1,0)$ instabile. Infine se $L^2 < 1$ il sistema ammette due punti d'equilibrio

$$P_{-} = (\rho_{-}, 0) = \left(1 - \sqrt{1 - L^2}, 0\right)$$
 $P_{+} = (\rho_{+}, 0) = \left(1 + \sqrt{1 + L^2}, 0\right)$

e P_+ è instabile mentre P_- è stabile.

(2.4) Piano delle fasi. Da $E=y^2/2+V_{\mbox{eff}}(\rho)$ otteniamo $y=\pm\sqrt{2(E-V_{\mbox{eff}}(\rho))}$. Perciò nel piano delle fasi avremo curve simmetriche rispetto all'asse ρ . Inoltre, poiché il potenziale efficace non è limitato dal basso, il moto sarà possibile per ogni valore di energia. Suddividiamo dunque il problema in tre casi.

Caso 1. $L^2 > 1$. Per ogni valore di E avremo una curva aperta con $\lim_{\rho \to +\infty} y(\rho) = \pm \infty$.

Caso 2. $L^2 = 1$.

- Per $E < V_{\text{eff}}(1) = -3/2$ una traiettoria aperta con $\lim_{\rho \to +\infty} y(\rho) = \pm \infty$.
- Per E = -3/2 due traiettorie aperte con $\lim_{\rho \to +\infty} y(\rho) = \pm \infty$ rispettivamente e con $\lim_{\rho \to 1} y(\rho) = 0$ con tangenza orizzontale e il punto d'equilibrio instabile (1,0)
- Per E > 0 una traiettoria aperta con $\lim_{\rho \to +\infty} y(\rho) = \pm \infty$.

Caso 3. $L^2 < 2$

- Per $E < V_{\text{eff}}(\rho_{-})$ una traiettoria aperta con $\lim_{\rho \to +\infty} y(\rho) = \pm \infty$.
- Per $E = V_{\text{eff}}(\rho_-)$ una triettoria aperta con $\lim_{\rho \to +\infty} y(\rho) = \pm \infty$ e il punto stabile P_- .
- Per $V_{\text{eff}}(\rho_{-})E < V_{\text{eff}}(\rho_{+})$ una traiettoria aperta con $\lim_{\rho \to +\infty} y(\rho) = \pm \infty$ e una periodica intorno al punto stabile P_{-}
- Per $E = V_{\text{eff}}(\rho_+)$ due traiettorie aperte con $\lim_{\rho \to +\infty} y(\rho) = \pm \infty$ rispettivamente, il punto instabile P_2 e una traiettoria omoclina che interseca le due aperte nel punto instabile con tangenti oblique.
- Per $E > V_{\text{eff}}(\rho_+)$ una traiettoria aperta con $\lim_{\rho \to +\infty} y(\rho) = \pm \infty$

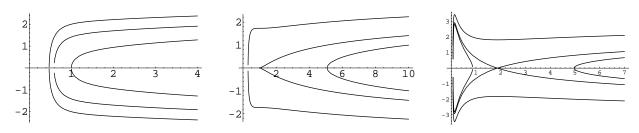


Figura 10: Piano delle fasi per $L^2 > 1$ Figura 11: Piano delle fasi per $L^2 = 1$ Figura 12: Piano delle fasi per $L^2 < 1$

- (2.5) **Traiettorie periodiche.** Per quanto visto al punto precedente, avremo traiettorie periodiche solo nel caso $L^2 < 1$. In particolare ciò avverrà per $V_{\text{eff}}(\rho_-) < E < V_{\text{eff}}(\rho_+)$ e $\rho < \rho_+$.
- (2.6) **Moto complessivo.** Avremo moto complessivo periodico in accordo con le condizioni date al punto precedente, e per $\rho = \rho_-$. Inoltre, essendo

$$\Delta\theta = 2 \int_{\rho_1}^{\rho_2} \frac{\mathrm{d}\rho}{\rho^2 \sqrt{2L^{-2} \left(E - V_{\text{eff}}(\rho)\right)}} \qquad \{\rho_1, \rho_2\} \subset V_{\text{eff}}^{-1}(E)$$

dovrà valere anche $\Delta \theta = 2\pi q$ per qualche $q \in \mathbb{Q}$.

Esercizio 3.

(3.1) Equazioni di Newton. Poiché m=1, il potenziale efficace è dato da

$$V_{\text{eff}}(\rho) = \frac{1}{\rho^4} + \frac{2}{\rho^3} + \frac{L^2}{2\rho^2}, \qquad L \neq 0$$

e quindi l'equazione di Newton è

$$\ddot{\rho} = -\frac{\mathrm{d}V_{\text{eff}}}{\mathrm{d}\rho} = \frac{4}{\rho^5} + \frac{6}{\rho^4} + \frac{L^2}{\rho^3}$$

Sistema dinamico associato.

$$\begin{cases} \dot{\rho} = y \\ \dot{y} = -\frac{\mathrm{d}V_{\mbox{eff}}}{\mathrm{d}\rho} = \frac{4}{\rho^5} + \frac{6}{\rho^4} + \frac{L^2}{\rho^3} \end{cases}$$

(3.2) Andamento all'infinito.

$$\lim_{\rho \to +\infty} V_{\text{eff}}(\rho) = 0$$
 e $\lim_{\rho \to 0} V_{\text{eff}}(\rho) = +\infty$

indipendentemente dal valore di L

Punti critici. Si tratta di risolvere l'equazione

$$-\frac{4}{\rho^5} - \frac{6}{\rho^4} - \frac{L^2}{\rho^3} = 0$$

che ha soluzione se e solo se

$$L^2 \rho^2 + 6\rho + 4 = 0$$

e questa ammette soluzione se e solo se $L^2 < 9/4$. In ogni caso le eventuali suluzioni di tale equazione sono tutte negative mentre e quindi il potenziale efficace non ammette punti critici. Grafico del potenziale.

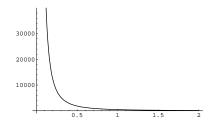


Figura 13: Potenziale efficace del sistema.

(3.3) **Punti d'equilibrio e stabilità.** In generale i punti d'equilibrio sono tutti e soli della forma $(\rho_0, 0)$ con ρ_0 punto critico del potenziale. D'altra parte, per quanto visto al punto precedente, il potenziale efficace non ammette punti critici; pertanto il sistema non ammette punti d'equilibrio.

(3.4) Piano delle fasi. Da $E=y^2/2+V_{\rm eff}(\rho)$ otteniamo $y=\pm\sqrt{2(E-V_{\rm eff}(\rho))}$. Perciò nel piano delle fasi avremo curve simmetriche rispetto all'asse ρ . Inoltre, poiché il potenziale efficace è limitato dal basso, il moto sarà possibile solo per $E>\min V_{\rm eff}(\rho)$. Per tali livelli di energia avremo una traiettoria aperta con $\lim_{\rho\to+\infty}y(\rho)=\pm\sqrt{2E}$.

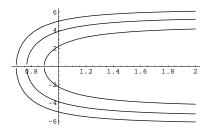


Figura 14: Potenziale efficace del sistema.

(1.5) **Traiettorie periodiche.** Per quanto visto al punto precedente, il sistema non ammette traiettorie periodiche.