Corso di laurea in Matematica - Anno Accademico 2006/2007

FM1 - Equazioni differenziali e meccanica

Prova Scritta (16-07-2007)

CORREZIONE

ESERCIZIO 1. Nel sistema di riferimento mobile un osservatore che occupi la posizione \mathbf{Q} risente sia della forza esterna che agisce sul sistema sia delle forze apparenti. Si ha infatti

$$m\ddot{Q} = \mathbf{F} + \mathbf{F}_1 + \mathbf{F}_2 + \mathbf{F}_3,$$

dove $\mathbf{F}_1 = -m[\dot{\boldsymbol{\Omega}}, \mathbf{Q}]$ è la forza d'inerziale di rotazione, $\mathbf{F}_2 = -2m[\boldsymbol{\Omega}, \dot{\mathbf{Q}}]$ è la forza di Coriolis e $\mathbf{F}_3 = -m[\boldsymbol{\Omega}, \dot{\mathbf{Q}}]$ la forza centrifuga. Cfr. Cap. 8, §34, teorema 34.6 e paragrafo 34.7 per la dimostrazione.

Se il sistema mobile ruota con velocità angolare costante (cioè la rotazione del sistema è la rotazione intorno a un asse fisso con velocità di rotazione costante) si ha $\dot{\Omega} = \mathbf{0}$, quindi $\mathbf{F}_1 = \mathbf{0}$, e se l'osservatore è fermo in tale sistema di riferimento si ha anche $\dot{\mathbf{Q}} = 0$, quindi $\mathbf{F}_2 = \mathbf{0}$. Sotto tali condizioni le forze apparenti si riducono alla sola forza centrifuga \mathbf{F}_3 .

La forza centrifuga si annullerà anch'essa qualora risulti $[\Omega, \mathbf{Q}] = \mathbf{0}$, ovvero il vettore \mathbf{Q} sia parallelo al vettore Ω . Fisicamente questo significa che l'osservatore si trova lungo l'asse fisso di rotazione.

ESERCIZIO 2. Cfr. Cap. 4, §18, paragrafi 18.20 e 18.21.

Esercizio 3.

3.1. Per il sistema (A) si ha

$$\begin{cases} \dot{x} = 3y^3, \\ \dot{y} = -x, \end{cases}$$

così che (x,y)=(0,0) rappresenta un punto d'equilibrio. Consideriamo la funzione W(x,y)=H(x,y). Si ha W(0,0)=0 e W(x,y)>0 per ogni $(x,y)\neq (0,0)$, e inoltre

$$\dot{W} = \frac{\partial H}{\partial x}\dot{x} + \frac{\partial H}{\partial y}\dot{y} = 4xy^3 - 4y^3x = 0,$$

quindi possiamo applicare il teorema di Ljapunov prendendo W(x,y) come funzione di Ljapunov, e concludere che (0,0) è un punto d'equilibrio stabile.

3.2. Il sistema (A) ammette una costante del moto H(x, y) di classe C^1 che ha punti stazionari isolati (ovvero che non è identicamente costante su alcun aperto di \mathbb{R}^2).

Esiste un teorema che afferma che sotto tali condizioni il sistema non può avere né punti d'equilibrio asintoticamente stabile né cicli limiti. Nel caso dei punti d'equilibrio (che è il caso che a noi interressa) la dimostrazione è la seguente. Supponiamo per assurdo che esista un punto d'equilibrio asintoticamente stabile $z_0 = (x_0, y_0)$. Allora z_0 è attrattivo e quindi esiste un intorno $B(z_0)$ del punto tale che per ogni $z \in B(z_0)$ la traiettoria $\varphi(t, z)$ tende a z_0 per $t \to \infty$. Poiché H è continua si ha $\lim_{t\to\infty} H(\varphi(t,z)) = H(z_0)$, e poiché H è una costante del moto si ha $H(z) = H(\varphi(t,z))$, e quindi si trova $H(z) = H(z_0)$ per ogni $z \in B(z_0)$. Ma allora H sarebbe identicamente costante in $B(z_0)$, contro l'ipotesi.

Quindi l'origine non può essere un punto d'equilibrio asintoticamente stabile.

3.3. Per il sistema (B) si ha

$$\begin{cases} \dot{x} = -x, \\ \dot{y} = -4y^3, \end{cases}$$

così che (x,y) = (0,0) rappresenta nuovamente un punto d'equilibrio. Il sistema considerato è un sistema gradiente. Il punto (0,0) è un punto di minimo isolato per H(x,y), quindi è un punto d'equilibrio asintoticamente

stabile. Questo segue sempre dal teorema di Ljapunov, prendendo come fuznione di Ljapunov W(x,y) = H(x,y), e notando che W(0,0) = 0 e W(x,y) > 0 per ogni $(x,y) \neq (0,0)$, e

$$\dot{W} = \frac{\partial H}{\partial x}\dot{x} + \frac{\partial H}{\partial y}\dot{y} = -x^2 - 16y^4,$$

così che $\dot{W} \leq 0$ e $\dot{W} = 0$ se e solo se (x, y) = (0, 0).

3.4. Per ogni E > 0 consideriamo la curva di livello

$$\Gamma_E = \{(x, y) \in \mathbb{R}^2 : x^2 + y^4 = E\}.$$

Tale curva è una curva chiusa regolare che contiene l'origine al suo interno. Inoltre, se A denota la regione racchiusa da Γ_E , l'insieme \bar{A} è positivamente invariante. Infatti, in un sistema gradiente $\dot{z}=g(z)=-\nabla H(z)$, le traiettorie sono ortogonali alle curve di livello della funzione H, e attraversano la curva di livello Γ_E entrando nella regione A poiché $\dot{H}=-|\nabla H|^2\leq 0$, e H diminuisce avvicinandosi all'origine. Inoltre $\dot{H}(z)=0$ se e solo se z=0, e $\dot{H}(z)<0$ per ogni $z\neq 0$ (cfr. il punto 3.3). Quindi l'insieme $\bar{A}\setminus\{0\}$ non contiene traiettorie in cui $\dot{H}=0$ identicamente. Sono quindi soddisfatte le ipotesi sotto le quali possiamo applicare il teorema di Barbašin-Krasovskij, il cui enunciato è il seguente.

Sia x_0 un punto d'equilibrio per il sistema $\dot{x} = f(x)$. Supponiamo che esista una funzione $W \colon \mathbb{R}^n \to \mathbb{R}$ definita in un intorno $B(x_0)$ di x_0 e di classe C^1 , tale che

- (1) $W(x_0) = 0$, $e W(x) > 0 \ \forall x \in B(x_0) \setminus \{x_0\}$;
- (2) $\dot{W}(x) \leq 0 \ \forall x \in B(x_0).$
- (3) Supponiamo anche che esista un insieme compatto P, chiusura di un aperto, tale che: (3.1) $x_0 \in P$, (3.2) P è positivamente invariante, e (3.3) non esistono in $P \setminus \{x_0\}$ traiettorie costituite unicamente da punti z in cui $\dot{W}(z) = 0$.

Allora x_0 è un punto d'equilibrio asintoticamente stabile e P è contenuto nel suo bacino d'attrazione.

Poiché $E \ge 0$ può essere scelto arbitrariamente, possiamo concludere che tutto il piano costituisce il bacino d'attrazione dell'origine: quindi l'origine è un punto attrattivo globale.

Esercizio 4.

4.1. Grafico dell'energia potenziale. Data l'energia potenziale

$$V(x) = \frac{\alpha}{2n} x^{2n}, \qquad n \in \mathbb{N},$$

si ha

$$V'(x) = \alpha x^{2n-1},$$

$$V''(x) = \alpha (2n-1)x^{2n-2},$$

così che per $\alpha \neq 0$ si ha V'(x) = 0 se e solo se x = 0.

Inoltre, per $\alpha \neq 0$, la derivata seconda V''(x) si annulla solo per x = 0 se $n \geq 2$ mentre non si annulla mai per n = 1. Quindi per n = 1 V''(x) > 0 per $\alpha > 0$ e V''(x) < 0 per $\alpha < 0$, mentre per $n \geq 2$ si ha V''(0) = 0 e, per $\alpha \neq 0$, si ha V''(x) > 0 per $\alpha > 0$ e V''(x) < 0 per $\alpha < 0$.

Il caso $\alpha = 0$ va discusso a parte perché in tal caso l'energia potenziale è identicamente nulla.

Quindi la funzione V(x) è convessa per $\alpha > 0$ ed è concava per $\alpha < 0$. In particolare x = 0 è un punto di minimo (isolato) per $\alpha > 0$ e un punto di massimo per $\alpha < 0$.

Inoltre V(x) è pari, e si ha $\lim_{x\to\pm\infty}V(x)=\infty$ per $\alpha>0$ e $\lim_{x\to\pm\infty}V(x)=-\infty$ per $\alpha<0$.

Il grafico dell'energia potenziale è quindi come rappresentato in Figura 1 per $\alpha > 0$ e come rappresentato in Figura 2 per $\alpha < 0$. Per $\alpha = 0$ si ha banalemente V(x) = 0 per ogni $x \in \mathbb{R}$.

4.2. Punti d'equilibrio. Il sistema dinamico associato al sistema meccanico unidimensionale dato è

$$\begin{cases} \dot{x} = y, \\ \dot{y} = -V'(x) = -\alpha x^{2n-1}, \end{cases}$$

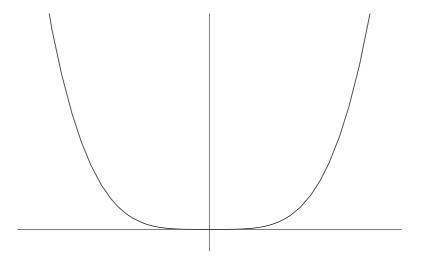


Figura 1. Grafico dell'energia potenziale V(x) per $\alpha > 0$.

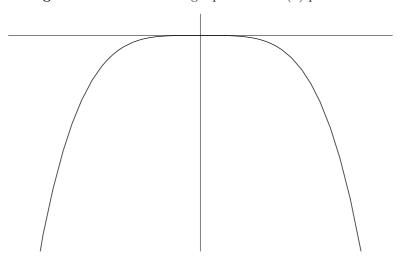


Figura 2. Grafico dell'energia potenziale V(x) per $\alpha < 0$.

quindi se $\alpha \neq 0$ l'unico punto d'equilibrio è (0,0), mentre se $\alpha = 0$ ogni punto (x,0), con $x \in \mathbb{R}$, è un punto d'equilibrio.

4.3. Stabilità dei punti d'equilibrio. Se $\alpha > 0$ il punto x = 0 è un punto di minimo isolato per l'energia potenziale, quindi per il teorema di Dirichlet costituisce un punto d'equilibrio stabile.

Per $\alpha < 0$ il punto x = 0 è un punto di massimo, quindi è un punto d'equilibrio instabile: questo sarà verificato a posteriori anche dalla forma delle curve di livello nello spazio delle fasi vicino al punto (x, y) = (0, 0).

Per $\alpha = 0$ i punti (x, y) = (x, 0), con $x \in \mathbb{R}$, sono punti d'equilibrio instabile. Infatti per $\alpha = 0$ l'equazione del moto diventa $\ddot{x} = 0$, che può essere integrata immediatamente e dà $x(t) = x_0 + v_0 t$, dove $x_0 = x(0)$ e $v_0 = \dot{x}(0)$. Quindi, per ogni punto d'equilibrio $(x_0, 0)$ lungo l'asse delle x, si può prendere un dato iniziale (x_0, v_0) arbitrariamente vicino (i.e. con v_0 arbitrariamente piccolo) tale che la corrispondente traiettoria $x(t) = x_0 + v_0 t$ si allontani indefinitivamente al crescere di t.

4.4. Analisi qualitativa. Studiamo le curve di livello

$$\Gamma_E = \left\{ (x, y) \in \mathbb{R}^2 : \frac{1}{2}y^2 + V(x) = E \right\}$$

dell'energia del sistema. Definiamo

$$F(x) = \sqrt{2\left(E - V(x)\right)} = \sqrt{2\left(E - \frac{\alpha}{2n}x^{2n}\right)},$$

in modo da poter riscrivere

$$\Gamma_E = \left\{ (x, y) \in \mathbb{R}^2 : y = \pm F(x) \right\}.$$

Dal grafico della Figura 1 vediamo che, per ogni $n \in \mathbb{N}$, se $\alpha > 0$ si ha $\Gamma_E \neq \emptyset$ per ogni valore di $E \geq 0$. Inoltre per ogni valore di E la curva Γ_E è simmetrica sia rispetto all'asse x sia rispetto all'asse y. Poiché $\dot{x} = y$, i versi di percorrenza delle orbite saranno sempre da sinistra a destra nel semipiano superiore e da destra a sinistra nel semipiano inferiore.

Per E = 0 si ha $\Gamma_0 = \{(0,0)\}$, mentre per ogni E > 0, se indichiamo con $x_{\pm}(E)$ le due radici dell'equazione $x^{2n} - 2nE/\alpha$, i.e.

$$x_{-}(E) = -\left(\frac{2nE}{\alpha}\right)^{1/2n}, \qquad x_{+}(E) = \left(\frac{2nE}{\alpha}\right)^{1/2n},$$

la curva di livello Γ_E risulta essere una curva chiusa regolare che interseca l'asse delle x nei punti $x_{\pm}(E)$. Le curve di livello sono quindi come rappresentate in Figura 3. Si noti in particolare che per n=1 le curve di livello diventano due ellissi di semiassi di lunghezza $\sqrt{2E}$ e $\sqrt{2E/\alpha}$.

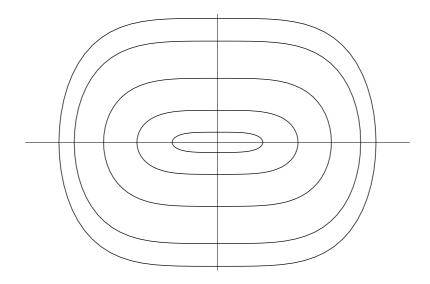


Figura 3. Piano delle fasi per $\alpha > 0$.

Per $\alpha < 0$ si ha $\Gamma_E \neq \emptyset$ per ogni $E \in \mathbb{R}$, poiché V(x) non è limitato inferiormente. Per E = 0 si ha

$$\Gamma_0 = \left\{ (x, y) \in \mathbb{R}^2 : y = \pm \sqrt{-2\alpha} \, x^n \right\},$$

e quindi Γ_0 contiene 5 orbite: il punto d'equilibrio instabile e 4 orbite asintotiche (o nel futuro o nel passato) al punto d'equilibrio. Si noti che tali orbite arrivano al punto d'equilibrio con tangenza orizzontale per n > 1 poiché V''(0) = 0, e con tangenza obliqua per n = 1 poiché $V''(0) = \alpha < 0$. Le altre orbite si ottengono utilizzando la continuità della funzione energia e la dipendenza continua dai dati iniziali. Cfr. la Figura 4 per n = 1 e la Figura 5 per $n \ge 2$.

Infine per $\alpha<0$ si ha

$$\Gamma_E = \left\{ (x, y) \in \mathbb{R}^2 : y = \pm \sqrt{2E} \right\},\,$$

purché $E \geq 0$. Cfr. la Figura 6.

4.5. Traiettorie periodiche. Per $\alpha \leq 0$ le Figure 4, 5 e 6 mostrano che non si hanno traiettorie periodiche. Al contrario per $\alpha > 0$ ogni dato iniziale con energia E > 0 genera una traiettoria periodica. Il corrispondente periodo è

$$T(E) = 2 \int_{-x_{-}(E)}^{x_{+}(E)} \frac{\mathrm{d}x}{\sqrt{2\left(E - \frac{\alpha}{2n}x^{2n}\right)}} = 4 \int_{0}^{x_{+}(E)} \frac{\mathrm{d}x}{\sqrt{2\left(E - \frac{\alpha}{2n}x^{2n}\right)}}.$$

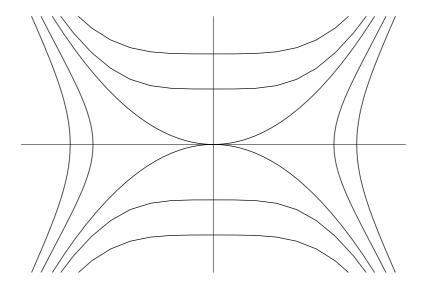


Figura 4. Piano delle fasi per $\alpha < 0$ e n = 1.

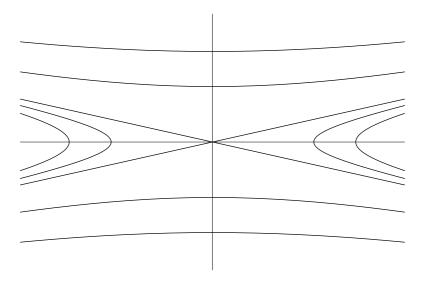


Figura 5. Piano delle fasi per $\alpha < 0$ e $n \ge 2$.

4.6. Dipendenza del periodo dall'energia. Per $\alpha>0$ ed E>0 si operi il cambio di variabile

$$x = \left(\frac{2nE}{\alpha}\right)^{1/2n} y \implies dx = \left(\frac{2nE}{\alpha}\right)^{1/2n} dy,$$

così che per $x=x_{\pm}(E)$ si ha $y=y_{\pm}(E)=\pm 1$. Quindi il periodo T(E) diventa

$$4\left(\frac{2nE}{\alpha}\right)^{1/2n} \int_0^1 \frac{\mathrm{d}y}{\sqrt{2E\left(1-y^{2n}\right)}} = 2\sqrt{2}\left(\frac{2n}{\alpha}\right)^{1/2n} I(n) E^{1/2n} E^{-1/2} = 2\sqrt{2}\left(\frac{2n}{\alpha}\right)^{1/2n} I(n) E^{-(n-1)/2n},$$

dove si è definito

$$I(n) = \int_0^1 \frac{\mathrm{d}y}{\sqrt{1 - y^{2n}}}.$$

Quindi se si pone

$$c(n, \alpha) = 2\sqrt{2} \left(\frac{2n}{\alpha}\right)^{1/2n} I(n),$$

·	
·	
	I .

Figura 6. Piano delle fasi per $\alpha = 0$.

si ottiene

$$T(E) = c(n, \alpha) E^{-(n-1)/2n}$$
.

4.7. Periodo independente da E. Dall'espressione di T(E) trovata al punto precedente si vede che T(E) non dipende da E per n=1. In tal caso si ha

$$T(E) = c(1, \alpha) = 2\sqrt{2} \left(\frac{2}{\alpha}\right)^{1/2} I_1 = \frac{4}{\sqrt{\alpha}} \int_0^1 \frac{\mathrm{d}y}{\sqrt{1 - y^2}}.$$

L'integrale si calcola esplicitamente operando il cambio di variabile

$$x = \sin \theta \implies dx = \cos \theta d\theta.$$

Inoltre per $x \in [0,1]$ la variable θ varia nell'intervallo $\theta \in [0,\pi/2]$, dove $\sqrt{1-\sin^2\theta} = \sqrt{\cos^2\theta} = \cos\theta$, così che

$$T(E) = \frac{4}{\sqrt{\alpha}} \int_0^{\pi/2} \frac{\cos \theta d\theta}{\cos \theta} = \frac{2\pi}{\sqrt{\alpha}}.$$

4.8. Equazione differenziale per la funzione T(E). Poiché risulta $T(E) = c(n, \alpha)E^{-(n-1)/2n}$ si ha

$$\frac{\mathrm{d}}{\mathrm{d}E}T(E) = -\frac{n-1}{2n}c(n,\alpha)\,E^{-((n-1)/2n)-1} = -\frac{n-1}{2n}c(n,\alpha)\,E^{-(3n-1)/2n},$$

e scrivendo

$$E^{-(3n-1)/2n} = \left(E^{-(n-1)/2n}\right)^{(3n-1)/(n-1)} = \left(c(n,\alpha)\right)^{-(3n-1)/(n-1)} \left(c(n,\alpha)E^{-(n-1)/2n}\right)^{(3n-1)/(n-1)}$$

$$= \left(c(n,\alpha)\right)^{-(3n-1)/(n-1)} \left(T(E)\right)^{(3n-1)/(n-1)},$$

otteniamo

$$\frac{\mathrm{d}}{\mathrm{d}E}T(E) = -\frac{n-1}{2n} \left(c(n,\alpha) \right)^{1-(3n-1)/(n-1)} \left(T(E) \right)^{((3n-1)/(n-1)}.$$

Si ha quindi, ponendo T' = dT/dE,

$$T' = \beta_n T^{(3n-1)/(n-1)}, \qquad \beta_n = \frac{n-1}{2n} \left(c(n,\alpha) \right)^{1-(3n-1)/(n-1)} = \frac{n-1}{2n} \left(c(n,\alpha) \right)^{-2n/(n-1)},$$

che rappresenta l'equazione differenziale cercata.

ESERCIZIO 5. Cfr. Cap. 4, §16, paragrafi 16.7 e 16.21.

ESERCIZIO 6. Cfr. Cap. 10, §42, paragrafo 42.33 ed esercizio 14.