Corso di laurea in Matematica - Anno Accademico 2006/2007 FM1 - Equazioni differenziali e meccanica

TUTORATO VII - LIVIA CORSI (SOLUZIONI DEGLI ESERCIZI)

Esercizio 1.

(1.1) Sistema dinamico associato. Posto $y = \dot{x}$ otteniamo il sistema

$$\begin{cases} \dot{x} = y \\ \dot{y} = -\frac{dV}{dx} = x^2(x^2 - 6x + 6)e^{-x} \end{cases}$$

(1.2) Intersezioni con gli assi. Si vede facilmente che V(x)=0 se e solo se $x=0,\,x=2$. Andamento all'infinito.

$$\lim_{x \to +\infty} V(x) = 0, \qquad \lim_{x \to -\infty} V(x) = +\infty$$

Punti critici. Risolvendo $[\mathrm{d}V/\mathrm{d}x](x)=0$ troviamo che i punti critici sono $x_0=0$ e $x_\pm=3\pm\sqrt{3}$. Inoltre si vede che il segno della derivata cambia solo nei punti x_\pm e in particolare V(x) cresce per $3-\sqrt{3} \le x \le 3+\sqrt{3}$ quindi x_0 è un punto di minimo, x_+ è un punto di massimo e x_- è una sella. **Grafico del potenziale.**

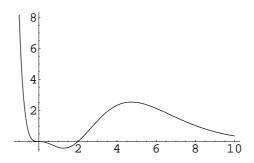


Figura 1: Grafico del potenziale V(x)

(1.3) **Punti d'equilibrio.** Sappiamo in generale che i punti d'equilibrio del sistema sono tutti e soli della forma $(\overline{x},0)$ dove \overline{x} è un punto critico del potenziale; quindi in particolare avremo che i punti d'equilibrio sono

$$P_0 = (0,0), \qquad P_- = (3 - \sqrt{3},0), \qquad P_+ = (3 + \sqrt{3},0)$$

Stabilità dei punti d'equilibrio. Dal teorema di Dirichlet sappiamo che i punti stabili sono tutti e soli i punti della forma $(\overline{x},0)$ con \overline{x} punto di minimo del potenziale, perciò avremo che P_- è stabile mentre P_0 e P_+ sono instabili.

- (1.4) **Piano delle fasi.** Da $E=y^2/2+V(x)$ otteniamo $y=\pm\sqrt{2(E-V(x))}$. Perciò nel piano delle fasi avremo curve simmetriche rispetto all'asse x; inoltre osserviamo che $x_-=3-\sqrt{3}$ è un minimo assoluto del potenziale, quindi il moto nel piano delle fasi sarà possibile solo per $E\geq V(3-\sqrt{3})$ e le traiettorie saranno definite per ogni tempo; in particolare avremo
 - Per $E = V(3 \sqrt{3})$ il solo punto d'equilibrio stabile P_- .
 - Per $V(3-\sqrt{3}) < E < 0$ una traiettoria periodica intorno al punto stabile P_- .
 - Per E=0 una traiettoria omoclina a cuspide intorno a P_- e lo stesso P_- .
 - Per $0 < E < V(3+\sqrt{3})$ una traiettoria periodica intorno a P_- e una aperta con $\lim_{x \to +\infty} y(x) = \pm \sqrt{2E}$.
 - Per $E=V(3+\sqrt{3})$ una traiettoria omoclina che si autointerseca trasversalmente in P_+ (si osservi che nel punto x_+ si ha $V''(3+\sqrt{3})=-12(3+2\sqrt{3})e^{-3-\sqrt{3}}\neq 0$), una traiettoria aperta con $\lim_{x\to+\infty}y(x)=\sqrt{2E}$, una speculare con $\lim_{x\to\infty}y(x)=-\sqrt{2E}$ e il punto instabile P_- .

1

• Per $E > V(3 + \sqrt{3})$ una traiettoria aperta con $\lim_{x \to +\infty} y(x) = \pm \sqrt{2E}$.

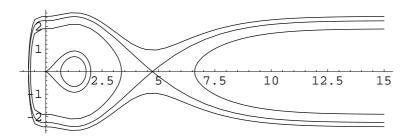


Figura 2: Piano delle fasi.

Versi di percorrenza. Da $y = \dot{x}$ sappiamo che il verso di percorrenza nella direzione x sarà positivo nel semipiano $\{y > 0\}$ e negativo altrimenti.

(1.5) **Traiettorie periodiche.** Per quanto visto al punto prencedente si hanno traiettorie periodiche in

$$\mathcal{A} = \{(x,y) \in \mathbb{R}^2 : x_m < x < 3 + \sqrt{3}, V(3 - \sqrt{3}) < E < V(3 + \sqrt{3}), E \neq 0\}$$

dove $x_m \neq 3 + \sqrt{3}$ è tale che $V(x_m) = V(3 + \sqrt{3})$

Esercizio 2.

(2.1) Sistema dinamico associato. Posto $y = \dot{x}$ otteniamo il sistema

$$\begin{cases} \dot{x} = y \\ \dot{y} = -\frac{\mathrm{d}V}{\mathrm{d}x} = -\sin 2x \end{cases}$$

(2.2) Notiamo subito che $V(x) \ge 0$ e V(x) = 0 se e solo se $x = 0, x = \pi$.

Punti critici. Risolvendo [dV/dx](x) = 0 troviamo che i punti critici sono $x_0 = 0$, $x_1 = \pi$ e $x_{\pm} = \pm \pi/2$. Derivando una seconda volta troviamo $V''(x) = 2\cos 2x$ e quindi x_0 e x_1 sono punti di minimo mentre x_{\pm} sono punti di massimo in cui vale $V''(x_{\pm}) \neq 0$.

Grafico del potenziale.

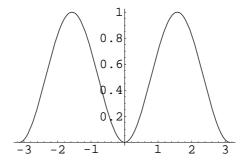


Figura 3: Grafico del potenziale V(x)

(2.3) **Punti d'equilibrio.** Sappiamo in generale che i punti d'equilibrio del sistema sono tutti e soli della forma $(\overline{x},0)$ dove \overline{x} è un punto critico del potenziale; quindi in particolare avremo che i punti d'equilibrio sono

$$P_0 = (0,0), \qquad P_1 = (\pi,0), \qquad P_+ = (\pi/2,0), \qquad P_- = (-\pi/2,0)$$

Stabilità dei punti d'equilibrio. Dal teorema di Dirichlet sappiamo che i punti stabili sono tutti e soli i punti della forma $(\overline{x},0)$ con \overline{x} punto di minimo del potenziale, perciò avremo che P_0 e P_1 sono stabili mentre P_{\pm} sono instabili.

(2.4) **Piano delle fasi.** Da $E = y^2/2 + V(x)$ otteniamo $y = \pm \sqrt{2(E - V(x))}$. Perciò nel piano delle fasi avremo curve simmetriche rispetto all'asse x; inoltre osserviamo che il potenziale è limitato dal basso,

2

quindi le traiettorie saranno definite per ogni tempo e in particolare il moto nel piano delle fasi sarà possibile solo per $E \geq 0$. Avremo quindi

- Per E = 0 i due punti stabili P_0 e P_1 .
- Per 0 < E < 1 una traiettoria periodica intorno a P_0 e una intorno a P_1 .
- \bullet Per E=1 quattro traiettorie eterocline che si intersecano trasversalmente e i punti instabili.
- Per E > 1 due traiettorie periodiche, una tutta contenuta in $\{y < 0\}$ e l'altra in $\{y > 0\}$.

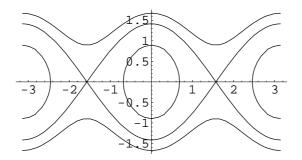


Figura 4: Piano delle fasi.

Versi di percorrenza. Da $y = \dot{x}$ sappiamo che il verso di percorrenza nella direzione x sarà positivo nel semipiano $\{y > 0\}$ e negativo altrimenti.

(2.5) **Traiettorie periodiche.** Per quanto visto al punto prencedente si hanno traiettorie periodiche per ogni dato iniziale eccetto i punti d'equilibrio e la separatrice, ovvero in

$$\mathcal{A} = \{(x, y) \in \mathbb{T} \times \mathbb{R} : E \neq 1, (x, y) \neq (0, 0), (x, y) \neq (\pi, 0)\}$$

(2.6) Soluzione esplicita. Sappiamo che deve valere $\dot{x}^2 = 2(1-\sin^2 x) = 2\cos^2 x$ dalla legge di conservazione dell'energia, e se ad esempio scegliegliamo la traiettoria contenuta in $\{y>0\}$ avremo $\dot{x}=\sqrt{2}|\cos x|$; Inoltre sappiamo che la soluzione dovrà essere contenuta in $(-\pi/2,\pi/2)$ e in tale intervallo si ha $|\cos x|=\cos x$. Si tratta quindi di risolvere il problema di Cauchy

$$\begin{cases} \dot{x} = \sqrt{2}\cos x \\ x(0) = 0 \end{cases}$$

Separando le variabili otteniamo

$$\int_0^x \frac{\mathrm{d}x}{\cos x} = \sqrt{2}t$$

Inoltre poiché sappiamo che il verso di percorrenza è positivo abbiamo anche $0 < x < \pi/2$. Calcolando l'integrale troviamo

$$\log\left(\frac{\cos(x/2) + \sin(x/2)}{\cos(x/2) - \sin(x/2)}\right) = \sqrt{2}t$$

dunque la soluzione è x(t) definita implicitamente dall'equazione sopra-

Esercizio 3.

(3.1) Sistema dinmico associato. Posto $y = \dot{x}$ otteniamo il sistema

$$\begin{cases} \dot{x} = y \\ \dot{y} = -\frac{\mathrm{d}V}{\mathrm{d}x} = 2x(x^2 - 2)e^{-x^2} \end{cases}$$

(3.2) Studiamo la funzione $W(x)=V(x)-1=(x^2-1)e^{-x^2}$ che si comporta qualitativamente come il potenziale. Vediamo subito che gli unici zeri di W(x) sono in $x=\pm 1$ e che W(x)<0 per |x|<1 e positiva altrimenti; notiamo inoltre che l'andamento all'infinito di W(x) è dato da

$$\lim_{x \to +\infty} (x^2 - 1)e^{-x^2} = 0$$

Punti critici. Risolvendo [dW/dx](x) = 0 troviamo che i punti critici sono $x_0 = 0$ e $x_{\pm} = \pm \sqrt{2}$. Derivando una seconda volta troviamo $W''(x) = 2(2x^4 - 7x^2 + 2)e^{-x^2}$ e quindi x_0 è un punto di minimo mentre x_{\pm} sono punti di massimo in cui vale $W''(x_{\pm}) = -8e^{-2} \neq 0$.

Grafico del potenziale.

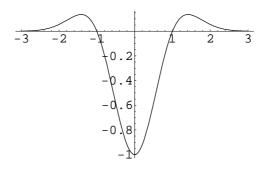


Figura 5: Grafico di W(x)

Otteniamo quindi il grafico del potenziale semplicemente considerando una traslazione verso l'alto:

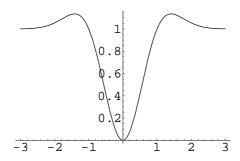


Figura 6: Grafico del potenziale V(x)

(3.3) **Punti d'equilibrio.** Sappiamo in generale che i punti d'equilibrio del sistema sono tutti e soli della forma $(\overline{x},0)$ dove \overline{x} è un punto critico del potenziale; quindi in particolare avremo che i punti d'equilibrio sono

$$P_0 = (0,0), \qquad P_+ = (\sqrt{2},0), \qquad P_- = (-\sqrt{2},0)$$

Stabilità dei punti d'equilibrio. Dal teorema di Dirichlet sappiamo che i punti stabili sono tutti e soli i punti della forma $(\overline{x},0)$ con \overline{x} punto di minimo del potenziale, perciò avremo che P_0 è stabile mentre P_{\pm} sono instabili.

- (3.4) Piano delle fasi. Da $E=y^2/2+V(x)$ otteniamo $y=\pm\sqrt{2(E-V(x))}$. Perciò nel piano delle fasi avremo curve simmetriche rispetto all'asse x; inoltre osserviamo che il potenziale è limitato dal basso, quindi le traiettorie saranno definite per ogni tempo e in particolare il moto nel piano delle fasi sarà possibile solo per $E\geq 0$. Avremo quindi
 - Per E=0 il punto stabile P_0 .
 - Per $0 < E \le 1$ una traiettoria periodica intorno a P_0 .
 - Per $1 < E < V(\sqrt{2})$ una traiettoria periodica intorno a P_0 , una aperta con $\lim_{x \to +\infty} y(x) = \pm \sqrt{2(E-1)}$ e una aperta con $\lim_{x \to -\infty} y(x) = \pm \sqrt{2(E-1)}$
 - Per $E=V(\sqrt{2})$ due traiettorie eterocline che si intersecano trasversalmente, quattro traiettorie aperte di cui una con $\lim_{x\to+\infty}y(x)=\sqrt{2(V(1)-1)}$, una con $\lim_{x\to-\infty}y(x)=-\sqrt{2(V(1)-1)}$, una con $\lim_{x\to-\infty}y(x)=-\sqrt{2(V(1)-1)}$, e i punti instabili.

• Per $E>V(\sqrt{2})$ due traiettorie aperte, una tutta contenuta in $\{y<0\}$ con $\lim_{x\to\pm\infty}y(x)=\sqrt{2(E-1)}$ e l'altra in $\{y>0\}$ con $\lim_{x\to\pm\infty}y(x)=-\sqrt{2(E-1)}$.

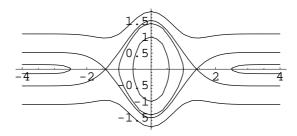


Figura 7: Piano delle fasi.

Versi di percorrenza. Da $y = \dot{x}$ sappiamo che il verso di percorrenza nella direzione x sarà positivo nel semipiano $\{y > 0\}$ e negativo altrimenti.

(3.5) **Traiettorie periodiche.** Per quanto visto al punto prencedente si hanno traiettorie periodiche in

$$\mathcal{A} = \{ (x, y) \in \mathbb{R} \times \mathbb{R} : -\sqrt{2} < x < \sqrt{2}, \ 0 < E < V(\sqrt{2}) \}$$

(3.6) Periodo come integrale deinito. Per quanto visto ai punti precendenti deve esistere una traiettoria periodica per E=1 e possiamo scrivere il periodo come

$$T = \sqrt{2} \int_{x_{-}}^{x_{+}} \frac{\mathrm{d}x}{\sqrt{1 - V(x)}}$$

dove x_-, x_+ sono le soluzioni di V(x) = 1 ovvero gli zeri della funzione W(x) usata precedentemente, quindi $x_{\pm} = \pm 1$. Avremo pertanto

$$T = \sqrt{2} \int_{-1}^{1} \frac{\mathrm{d}x}{\sqrt{(1-x^2)e^{-x^2}}}$$

Stima del periodo. Notiamo che $E-V(x)=-W(x)=(1-x^2)e^{-x^2}=(x+1)(1-x)e^{-x^2}$ che è quindi della forma $(x-x_-)(x_+-x)\Phi(x)$ con $\Phi(x)=e^{-x^2}$ e inoltre $e^{-1}\leq \Phi(x)\leq 1 \ \forall x\in [-1,1]$ perciò una stima del periodo è data da

$$\sqrt{2}\pi < T < \sqrt{2e}\pi$$

Si osservi che non si tratta certo di una stima ottimale dato che numericamente risulta del tipo

$$4,443 \leq T \leq 7,325$$