Corso di laurea in Matematica - Anno Accademico 2006/2007 FM1 - Equazioni differenziali e meccanica

Tutorato XI - Livia Corsi (23-05-07)

ESERCIZIO 1. Dato un sistema di riferimento $\kappa = Oxyz$ (sistema assoluto), si consideri un sistema di riferimento $K = O'\xi\eta\zeta$ (sistema relativo) che si muove di moto non puramente traslatorio, in modo tale che l'asse ζ si mantenga sempre parallelo all'asse z di κ . Dimostrare che se un punto P si muove in K su un piano orizzontale, allora la forza centrifuga è proporzionale alla proiezione sul piano $\{\zeta=0\}$ del vettore che individua P in K. Dimostrare che nel caso in cui la rotazione del sistema K abbia velocità angolare costante, la forza di Coriolis è proporzionale, con fattore di proporzionalità costante, alla proiezione sul piano $\{\zeta=0\}$ del vettore che individua P in K se e solo se P si muove con velocità angolare costante lungo una circonferenza il cui centro giace sull'asse z.

ESERCIZIO 2. Dato un sistema di riferimento $\kappa = Oxyz$ (sistema assoluto) si consideri un sistema di riferimento mobile $K = O'\xi\eta\zeta$ (sistema relativo), la cui origine si muove lungo la curva $\gamma(t) = (x(t),y(t),0)$ tale che le sue componenti verificano

$$\begin{cases} \dot{x} = 2y - x^2 + 1\\ \dot{y} = 2xy \end{cases}$$

L'asse ξ di K si mantiene tangente alla curva $\mathbf{q}_{O'}(t)$, mentre l'asse ζ si mantiene parallelo all'asse z di κ ; all'istante iniziale O' occupa la posizione $\mathbf{q}_{O'}(0)=(0,-1,0)$ e gli assi ξ e η sono diretti come gli assi x e y rispettivamente. Un punto P di massa m=1 si muove in K lungo l'asse ξ sotto l'azione di una forza conservativa di energia potenziale

$$V(\xi) = \xi^2 - 1$$

con dato iniziale $\xi(0) = 0$ ed energia meccanica E = 0.

- (2.1) Scrivere la trasformazione rigida $D:K\to\kappa$ come composizione di una traslazione con una rotazione $D=C\circ B$ e determinare la forma di C e B.
- (2.2) Scrivere la legge del moto nei sistemi K e κ .
- (2.3) Determinare la velocità assoluta \mathbf{v} e la velocità relativa \mathbf{v}' .
- (2.4) Scrivere la componente traslatoria della velocità di trascinamento \mathbf{v}_0 .
- (2.5) Scrivere la componente rotatoria della velocità di trascinamento \mathbf{v}_T .
- (2.6) Determinare la forza centrifuga e la forza di Coriolis che agiscono sul punto P.

ESERCIZIO 3. Dato un sistema di riferimento $\kappa = Oxyz$ (sistema assoluto) si consideri un sistema di riferimento mobile $K = O'\xi\eta\zeta$ che ruoti in senso antiorario intorno all'asse ζ con velocità angolare costante ω_0 mentre l'origine O' si muove sul piano Oxy lungo la spirale $r(t) = \theta(t) = t^2$; l'asse ζ di K si mantiene sempre parallelo all'asse z di κ e i due sistemi coincidono all'istante iniziale. Un punto P di massa m=1 si muove in K nel piano $O'\xi\eta$ lungo la parabola di equazione

$$\eta = \xi^2$$

secondo la legge $\xi(t) = e^t$.

- (3.1) Scrivere la trasformazione rigida $D:K\to\kappa$ come composizione di una traslazione con una rotazione $D=C\circ B$ e determinare la forma di C e B.
- (3.2) Scrivere la legge del moto nei sistemi $K \in \kappa$.
- (3.3) Determinare la velocità assoluta \mathbf{v} e la velocità relativa \mathbf{v}' .
- (3.4) Scrivere la componente traslatoria della velocità di trascinamento \mathbf{v}_0 .
- (3.5) Scrivere la componente rotatoria della velocità di trascinamento \mathbf{v}_T .
- (3.6) Determinare la forza centrifuga e la forza di Coriolis che agiscono sul punto P.