Corso di laurea in Matematica - Anno Accademico 2007/2008 FM1 - Equazioni differenziali e meccanica

Tutorato X - Livia Corsi (Soluzioni degli esercizi)

Esercizio 1.

 $\overline{(1.1) \text{ Equazioni di Newton.}}$ Poiché m=1 il potenziale efficace è dato da

$$V_{\text{eff}}(\rho) = -\frac{1}{\rho} - \frac{1}{3\rho^3} + \frac{L^2}{2\rho^2}, \qquad L \neq 0$$

e quindi l'equazione di Newton è

$$\ddot{\rho} = -\frac{\mathrm{dV_{eff}}}{\mathrm{d}\rho} = -\frac{1}{\rho^2} - \frac{1}{\rho^4} + \frac{L^2}{\rho^3}$$

Sistema dinamico associato.

$$\begin{cases} \dot{\rho} = y \\ \dot{y} = -\frac{\mathrm{dV_{eff}}}{\mathrm{d}\rho} = -\frac{1}{\rho^2} - \frac{1}{\rho^4} + \frac{L^2}{\rho^3} \end{cases}$$

(1.2) **Punti d'equilibrio.** Sappiamo che i punti in cui si annulla il campo vettoriale sono tutti e soli i punti della forma $(\rho_0, 0)$ con ρ_0 punto critico del potenziale efficace; pertanto risolvendo l'equazione $V'_{\text{eff}}(\rho) = 0$ vediamo che questa ha soluzione se e solo se $L^2 \geq 2$. In particolare avremo quindi

- per $L^2 < 2$ nessun punto d'equilibrio.
- per $L^2 = 2$ un solo punto d'equilibrio in $P_0 = (1,0)$.
- per $L^2 \geq 2$ due punti d'equilibrio in $P_{\pm} = (\rho_{\pm}, 0)$, con $\rho_{\pm} = \frac{1}{2} (L^2 \pm \sqrt{L^4 4})$

Staibilità dei punti d'equilibrio. Derivando ulteriormente il potenziale efficace otteniamo

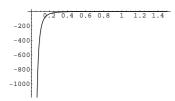
$$\frac{\mathrm{d}^2 V_{\text{eff}}}{\mathrm{d}\rho^2} = -\frac{4}{\rho^5} + \frac{3L^2}{\rho^4} - \frac{2}{\rho^3}$$

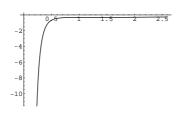
quindi se $L^2=2$ avremo che $[\mathrm{dV}_{\mathrm{eff}}/\mathrm{d}\rho]>0\ \forall \rho\neq1$ cioè $\rho=1$ è una sella del potenziale, dunque P_0 è instabile. Per $L^2>2$ invece si ha $[\mathrm{d}^2\mathrm{V}_{\mathrm{eff}}/\mathrm{d}\rho^2](\rho_-)<0$ quindi ρ_- è un massimo del potenziale e dunque P_- è instabile; viceversa $[\mathrm{d}^2\mathrm{V}_{\mathrm{eff}}/\mathrm{d}\rho^2](\rho_+)>0$ quindi ρ_+ è un minimo e perciò P_+ è stabile.

(1.3) Andamento all'infinito. Indipendentemente dal valore di L si ha

$$\lim_{\rho \to +\infty} V_{\text{eff}}(\rho) = 0 \quad \text{ e } \quad \lim_{\rho \to 0^+} V_{\text{eff}}(\rho) = -\infty$$

Grafico del potenziale efficace.





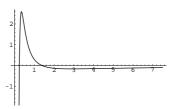


Figura 1: Grafico del potenziale per $L^2 < 2$

Figura 2: Grafico del potenziale per $L^2 = 2$

Figura 3: Grafico del potenziale per $L^2 > 2$

(1.4) **Piano delle fasi.** Da $E=y^2/2+V_{\mbox{eff}}(\rho)$ otteniamo $y=\pm\sqrt{2(E-V_{\mbox{eff}}(r))}$. Perciò nel piano delle fasi avremo curve simmetriche rispetto all'asse ρ . Suddividiamo il problema in tre casi. **Caso 1.** $L^2<2$.

- Per E < 0 avremo una curva aperta con $\lim_{\rho \to 0^+} y(\rho) = \pm \infty$.
- Per $E \geq 0$ due traiettorie aperte, una con $\lim_{\rho \to +\infty} y(r) = \sqrt{2E}$ e $\lim_{\rho \to 0^+} y(\rho) = +\infty$, l'altra simmetrica alla prima rispetto all'asse ρ

Caso 2. $L^2 = 2$.

- Per $E < V_{\mbox{eff}}(1)$ avremo una curva aperta con $\lim_{\rho \to 0^+} y(\rho) = \pm \infty$.
- Per $E = V_{\text{eff}}(1)$ due traiettorie aperte con $\lim_{\rho \to 0^+} y(\rho) = \pm \infty$, e con $\lim_{\rho \to 1} y(\rho) = 0$ con tangenza orizzontale e il punto d'equilibrio instabile (1,0).
- Per $V_{\text{eff}}(1) < E < 0$ una traiettoria aperta con $\lim_{\rho \to 0^+} y(\rho) = \pm \infty$.
- Per $E \geq 0$ due traiettorie aperte, una con $\lim_{\rho \to +\infty} y(r) = \sqrt{2E}$ e $\lim_{\rho \to 0^+} y(\rho) = +\infty$, l'altra simmetrica alla prima rispetto all'asse ρ



Figura 4: Piano $(\rho, \dot{\rho})$ per $L^2 < 2$

Figura 5: Piano $(\rho, \dot{\rho})$ per $L^2 = 2$

Caso 3. $L^2 > 2$. In questo caso dobbiamo considerare tre sottocasi; infatti risolvendo $V_{\text{eff}}(\rho_-) = 0$ rispetto al momento angolare L troviamo $L^2 = 4/\sqrt{3} > 2$ e questo farà variare il comportamento delle curve di livello per valori di energia maggiori di zero.

Caso 3a. $2 < L^2 < 4/\sqrt{3}$.

- Per $E < V_{\text{eff}}(\rho_+)$ una traiettoria aperta con $\lim_{\rho \to 0^+} y(\rho) = \pm \infty$.
- Per $E = V_{\text{eff}}(\rho_+)$ una traiettoria aperta con $\lim_{\rho \to 0^+} y(\rho) = \pm \infty$ e il punto stabile P_+ .
- per $V_{\mbox{eff}}(\rho_+) < E < V_{\mbox{eff}}(\rho_-)$ una traiettoria aperta con $\lim_{\rho \to 0^+} y(\rho) = \pm \infty$ e una periodica intorno al punto stabile P_1 .
- Per $E = V_{\text{eff}}(\rho_{-})$ il punto instabile P_{-} , due traiettorie aperte tali che $\lim_{\rho \to \rho_{-}} y(y) = 0$ e $\lim_{\rho \to 0^{+}} y(\rho) = \pm \infty$ rispettivamente, e una traiettoria omoclina al punto instabile con tangenza obliqua.
- Per $V_{\text{eff}}(\rho_{-}) < E < 0$ una traiettoria aperta con $\lim_{\rho \to 0^{+}} y(\rho) = +\infty$.
- Per $E \geq 0$ due traiettorie aperte, una con $\lim_{\rho \to +\infty} y(r) = \sqrt{2E}$ e $\lim_{\rho \to 0^+} y(\rho) = +\infty$, l'altra simmetrica alla prima rispetto all'asse ρ

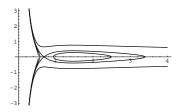
Caso 3b. $L^2 = 4/\sqrt{3}$

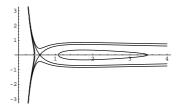
- Per $E < V_{\text{eff}}(\rho_+)$ una traiettoria aperta con $\lim_{\rho \to 0^+} y(\rho) = \pm \infty$.
- Per $E = V_{\text{eff}}(\rho_+)$ una traiettoria aperta con $\lim_{\rho \to 0^+} y(\rho) = \pm \infty$ e il punto stabile P_+ .
- per $V_{\text{eff}}(\rho_+) < E < 0$ una traiettoria aperta con $\lim_{\rho \to 0^+} y(\rho) = \pm \infty$ e una periodica intorno al punto stabile P_1 .
- Per E=0 il punto instabile P_- e quattro traiettorie aperte tali che $\lim_{\rho\to\rho_-}y(y)=0$; in particolare due di queste sono tali che $\lim_{\rho\to0^+}y(\rho)=\pm\infty$ rispettivamente, e le altre due sono tali che $\lim_{\rho\to+\infty}y(r)=0$ rispettivamente;

• Per E>0 due traiettorie aperte, una con $\lim_{\rho\to+\infty}y(r)=\sqrt{2E}$ e $\lim_{\rho\to0^+}y(\rho)=+\infty$, l'altra simmetrica alla prima rispetto all'asse ρ

Caso 3c $L^2 > 4\sqrt{3}$

- Per $E < V_{\text{eff}}(\rho_+)$ una traiettoria aperta con $\lim_{\rho \to 0^+} y(\rho) = \pm \infty$.
- Per $E = V_{\text{eff}}(\rho_+)$ una traiettoria aperta con $\lim_{\rho \to 0^+} y(\rho) = \pm \infty$ e il punto stabile P_+ .
- per $V_{\text{eff}}(\rho_+) < E < 0$ una traiettoria aperta con $\lim_{\rho \to 0^+} y(\rho) = \pm \infty$ e una periodica intorno al punto stabile P_1 .
- per $0 < E < V_{\text{eff}}(\rho_-)$ una traiettoria aperta con $\lim_{\rho \to 0^+} y(\rho) = \pm \infty$ e una, sempre aperta, con $\lim_{\rho \to +\infty} y(r) = \pm \sqrt{2E}$
- Per $E = V_{\text{eff}}(\rho_{-})$ il punto instabile P_{-} e quattro traiettorie aperte tali che $\lim_{\rho \to \rho_{-}} y(y) = 0$; in particolare due di queste sono tali che $\lim_{\rho \to 0^{+}} y(\rho) = \pm \infty$ rispettivamente, e le altre due sono tali che $\lim_{\rho \to +\infty} y(r) = \pm \sqrt{2E}$ rispettivamente;
- Per $E > V_{\text{eff}}(\rho_{-})$ due traiettorie aperte, una con $\lim_{\rho \to +\infty} y(r) = \sqrt{2E}$ e $\lim_{\rho \to 0^{+}} y(\rho) = +\infty$, l'altra simmetrica alla prima rispetto all'asse ρ





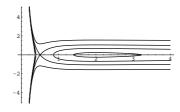


Figura 6: Piano delle fasi per $2 < L^2 < 4/\sqrt{3}$

Figura 7: Piano delle fasi per $L^2 = 4/\sqrt{3}$

Figura 8: Piano delle fasi per $L^2 > 4/\sqrt{3}$

- (1.5) **Traiettori periodiche.** Per quanto visto al punto precedente si hanno traiettorie periodiche solo nel caso $L^2>2$ e solo per dati iniziali $\rho_-<\rho<\rho_+$. In particolare, se $2< L^2<4/\sqrt{3}$ avremo traiettorie periodiche per valori di energia $V_{\rm eff}(\rho_+)< E< V_{\rm eff}(\rho_-)$, mentre se $L^2\geq 4/\sqrt{3}$ le traiettorie periodiche saranno possibili per valori di energia $V_{\rm eff}(\rho_+)< E<0$.
- (1.6) **Moto complessivo.** Avremo moto complessivo periodico in accordo con le condizioni date al punto precedente, e nei punti d'equilibrio. Inoltre se T_0 è il periodo della variabile ρ e

$$\Delta\theta = \int_0^{T_0} \mathrm{d}s \frac{L}{\rho^2(s)}$$

deve valere che $\Delta\theta$ è commensurabile con 2π . In particolare se N è l'intero minimo tale che $N\Delta\theta=2\pi M$ per qualche M intero, allora il periodo del moto complessivo è dato da NT_0 .

ESERCIZIO 2. (2.1) **Descrizione del moto.** Ricordiamo che nel sistema del centro di massa, il sistema si disaccoppia, in coordinate polari, nei due problemi

$$\mu \ddot{\rho} = -\frac{\mathrm{dV}_{\text{eff}}}{\mathrm{d}\rho}, \qquad \ddot{\theta} = \frac{L}{2\mu\rho^2}$$

e quindi, essendo $1/\mu = 1/m_1 + 1/m_2 = 1$, diventa

$$\ddot{\rho} = \frac{\alpha}{\rho^2} + \frac{1}{\rho} + \frac{L^2}{\rho^3}, \qquad \dot{\theta} = \frac{L}{2\rho^2}$$

Poiché la parte angolare dipende esclusivamente dalla parte radiale ci concentreremo solo sulla prima delle due equazioni, il cui sistema dinamico associato è

$$\begin{cases} \dot{\rho} = y \\ \dot{y} = \frac{\alpha}{\rho^2} + \frac{1}{\rho} + \frac{L^2}{\rho^3} \end{cases}$$

(2.2) **Punti d'equilibrio.** Sappiamo che i punti d'equilibrio del sistema dinamico associato sono tutti e soli i punti della forma $(\rho_0, 0)$ con ρ_0 punto critico del potenziale efficace, pertanto dobbiamo risolvere l'equazione $V'_{\text{eff}}(\rho) = 0$. Si verifica immediatamente che tale equazione ha soluzioni

$$\rho_{\pm} = -\frac{\alpha}{2} \pm \frac{\sqrt{\alpha^2 - 4L^2}}{2}$$

Si vede quindi che se $\alpha \geq 0$ l'equazione non ammette soluzioni reali positive (ricordiamo che ρ è un raggio e quindi non può essere un numero negativo). Se invece $\alpha < 0$ scriviamo $\alpha = -\beta$ con b > 0. In questo caso l'equazione ammette soluzioni se e solo se $|L| \leq \beta/2$. In particolare avremo quindi

- per $|L| > \beta/2$ nessun punto d'equibrio.
- per $|L| = \beta/2$ un solo punto d'equilibrio in $P_0 = (\beta/2, 0)$.
- per $|L| < \beta/2$ due punti d'equilibrio in $P_{\pm} = (\rho_{\pm}, 0)$ con $\rho_{\pm} = \frac{1}{2} \left(\beta \pm \sqrt{\beta^2 4L^2}\right)$.

Stabilità dei punti d'equilibrio. Innanzitutto osserviamo che $[dV_{\text{eff}}/d\rho] < 0 \ \forall \rho \neq \beta/2$, cioè $\rho = \beta/2$ è una sella del potenziale e quindi P_0 è instabile. Derivando ulteriormente il potenziale efficace otteniamo

$$\frac{d^2 V_{\text{eff}}}{d\rho^2} = -\frac{2\beta}{\rho^3} + \frac{1}{\rho^2} + \frac{3L^2}{\rho^4}$$

e quindi se $|L| < \beta/2$ avremo che $[\mathrm{d}^2 \mathrm{V}_{\mathrm{eff}}/\mathrm{d}\rho^2](\rho_-) > 0$ quindi ρ_- è un minimo del potenziale e dunque P_- è stabile; viceversa $[\mathrm{d}^2 \mathrm{V}_{\mathrm{eff}}/\mathrm{d}\rho^2](\rho_+) < 0$ quindi ρ_+ è un massimo, perciò P_+ è instabile.

(2.3) Andamento all'infinito del potenziale efficace. Osserviamo innanzitutto che

$$\lim_{\rho \to 0^+} V_{\mbox{eff}}(\rho) = +\infty, \qquad \lim_{\rho \to +\infty} V_{\mbox{eff}}(r) = -\infty$$

indipendentemente dalla scelta dei parametri.

Grafico del potenziale efficace.

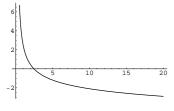


Figura 9: Grafico del potenziale per $\alpha \geq 0$ oppure $|L| > \beta/2$ Figura 10: Grafico del potenziale per $|L| = \beta/2$

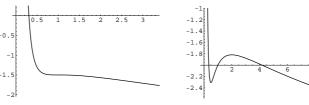


Figura 11: Grafico del potenziale per $|L| < \beta/2$

Piano delle fasi. Da $E=y^2/2+V_{\rm eff}(\rho)$ otteniamo $y=\pm\sqrt{2(E-V_{\rm eff}(\rho))}$. Perciò nel piano delle fasi avremo curve simmetriche rispetto all'asse ρ . Suddividiamo il problema in tre casi.

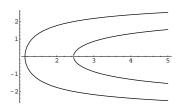
Caso 1. $\alpha > 0$ oppure $|L| > \beta/2$. Per ogni valore di E avremo una traiettoria aperta, simmetrica rispetto all'asse ρ , con $\lim_{\rho \to +\infty} y(\rho) = \pm \infty$.

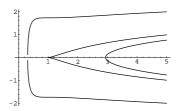
Caso 2. $|L| = \beta/2$.

- Per $E < V_{\text{eff}}(\beta/2)$ una traiettoria aperta con $\lim_{\rho \to +\infty} y(\rho) = \pm \infty$.
- Per $E = V_{\text{eff}}(\beta/2)$ due traiettorie aperte con $\lim_{\rho \to +\infty} y(\rho) = \pm \infty$, e con $\lim_{\rho \to \beta/2} y(\rho) = 0$ con tangenza orizzontale e il punto d'equilibrio instabile P_0 .
- Per $E > V_{\text{eff}}(\beta/2)$ una traiettoria aperta con $\lim_{\rho \to +\infty} y(\rho) = \pm \infty$.

Caso 3. $|L| < \beta/2$.

- Per $E < V_{\text{eff}}(\rho_{-})$ una traiettoria aperta con $\lim_{\rho \to +\infty} y(\rho) = \pm \infty$.
- Per $E = V_{\text{eff}}(\rho_{-})$ una traiettoria aperta con $\lim_{\rho \to +\infty} y(\rho) = \pm \infty$ e il punto stabile P_{-} .
- Per $V_{\text{eff}}(\rho_{-}) < E < V_{\text{eff}}(\rho_{+})$ una traiettoria aperta con $\lim_{\rho \to +\infty} y(\rho) = \pm \infty$ e il punto stabile P_{-} e una periodica intorno al punto stabile.





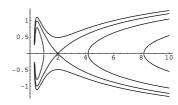


Figura 12: Piano delle fasi per $\alpha \geq 0$ oppure $|L| > \beta/2$

Figura 13: Piano delle fasi per |L|=eta/2

Figura 14: Piano delle fasi per $|L| < \beta/2$

- Per $E = V_{\text{eff}}(\rho_+)$ una traiettoria omoclina con $\lim_{\rho \to \rho_+} y(\rho) = 0$, due traiettorie aperte con $\lim_{\rho \to +\infty} y(\rho) = \pm \infty$ e il punto instabile P_+ .
- Per $E > V_{\text{eff}}(\rho_+)$ una traiettoria aperta con $\lim_{\rho \to +\infty} y(\rho) = \pm \infty$.

(2.4) Per quanto visto al punto precedente avremo traiettorie periodiche solo nel caso $|L| < \beta/2$ e solo per dati iniziali $\rho_- < \rho < \rho_+$ e valori di energia $V_{\rm eff}(\rho_-) < E < V_{\rm eff}(\rho_+)$.

(2.5) Variabile angolare. Come visto al punto (2.1) il moto della variabile angolare è dato da

$$\dot{\theta} = \frac{L}{2\rho^2}$$

Moto complessivo. Avremo moto complessivo periodico in accordo con le condizioni date al punto (2.4), e nei punti d'equilibrio. Inoltre se T_0 è il periodo della variabile ρ e

$$\Delta\theta = \int_0^{T_0} \mathrm{d}s \frac{L}{\rho^2(s)}$$

deve valere che $\Delta\theta$ è commensurabile con 2π . In particolare se N è l'intero minimo tale che $N\Delta\theta=2\pi M$ per qualche M intero, allora il periodo del moto complessivo è dato da NT_0 .

ESERCIZIO 3. (3.1) Equazione di Newton. Essendo m=1, il potenziale efficace è dato da

$$V_{\text{eff}}(\rho) = -\ln\rho - \frac{2}{\rho} + \frac{L^2}{2\rho^2} \qquad L^2 \neq 0$$

e quindi l'equazione di newton del sistema è

$$\ddot{\rho} = -\frac{\mathrm{dV_{eff}}}{\mathrm{d}\rho} = \frac{1}{\rho} - \frac{2}{\rho^2} + \frac{L^2}{\rho^3}$$

Sistema dinamico associato. Avendo posto $y = \dot{\rho}$, otteniamo il sistema dinamico

$$\begin{cases} \dot{\rho} = y \\ \dot{y} = \frac{1}{\rho} - \frac{2}{\rho^2} + \frac{L^2}{\rho^3} \end{cases}$$

(3.2) Andamento all'infinito.

$$\lim_{\rho \to +\infty} V_{\text{eff}}(\rho) = -\infty \qquad \text{e} \qquad \lim_{\rho \to 0} V_{\text{eff}}(\rho) = +\infty$$

indipendentemente dal valore di ρ

Punti critici. Si tratta di risolvere l'equazione

$$-\frac{1}{\rho} + \frac{2}{\rho^2} - \frac{L^2}{\rho^3} = 0$$

che ha soluzione se e solo se

$$\rho^2 - 2\rho + L^2 = 0$$

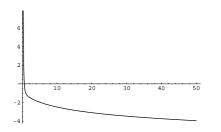
e questa ammette soluzione se e solo se $L^2 < 1$. Quindi avremo

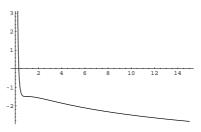
• Per $L^2 > 1$ nessun punto critico

- Per $L^2 = 1$ un solo punto critico in $\rho_0 = 1$
- Per $L^2 < 1$ due punti critici in $\rho_{\pm} = 1 \pm \sqrt{1 L^2}$.

Inoltre, se $L^2=1$ notiamo che $[\mathrm{dV}_{\mathrm{eff}}/\mathrm{d}\rho]<0$ per ogni valore di $\rho\neq 1$ e quindi il valore $\rho=1$ è un punto di sella per il potenziale efficace. Per $L^2\leq 1$ invece, si ha $[\mathrm{d}^2V_{\mathrm{eff}}/\mathrm{d}\rho^2](\rho_-)>0$ quindi $\rho=\rho_-$ è un punto di minimo del potenziale. Vicecersa $[\mathrm{d}^2V_{\mathrm{eff}}/\mathrm{d}\rho^2](\rho_+)<0$ quindi $\rho=\rho_+$ è un punto di massimo per il potenziale.

Grafico del potenziale.





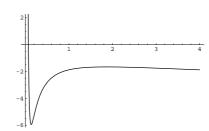


Figura 15: Potenziale per $L^2 > 1$

Figura 16: Potenziale per $L^2 = 1$

Figura 17: Potenziale per $L^2 < 1$

(3.3) **Punti d'equilibrio e stabilità.** In generale i punti d'equilibrio sono tutti e soli della forma $(\rho_0, 0)$ con ρ_0 punto critico del potenziale, quindi suddividiamo nei tre casi. Se $L^2 > 1$ il sistema non ammette punti critici. Se $L^2 = 1$, esiste un solo punto d'equilibrio $P_0 = (1,0)$ instabile. Infine se $L^2 < 1$ il sistema ammette due punti d'equilibrio

$$P_{-} = (\rho_{-}, 0) = \left(1 - \sqrt{1 - L^2}, 0\right)$$
 $P_{+} = (\rho_{+}, 0) = \left(1 + \sqrt{1 + L^2}, 0\right)$

e P_+ è instabile mentre P_- è stabile.

(3.4) Piano delle fasi. Da $E=y^2/2+V_{\rm eff}(\rho)$ otteniamo $y=\pm\sqrt{2(E-V_{\rm eff}(\rho))}$. Perciò nel piano delle fasi avremo curve simmetriche rispetto all'asse ρ . Inoltre, poiché il potenziale efficace non è limitato dal basso, il moto sarà possibile per ogni valore di energia. Suddividiamo dunque il problema in tre casi.

Caso 1. $L^2 > 1$. Per ogni valore di E avremo una curva aperta con $\lim_{\rho \to +\infty} y(\rho) = \pm \infty$. Caso 2. $L^2 = 1$.

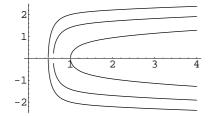
- Per $E < V_{\text{eff}}(1) = -3/2$ una traiettoria aperta con $\lim_{\rho \to +\infty} y(\rho) = \pm \infty$.
- Per E=-3/2 due traiettorie aperte con $\lim_{\rho\to+\infty}y(\rho)=\pm\infty$ rispettivamente e con $\lim_{\rho\to1}y(\rho)=0$ con tangenza orizzontale e il punto d'equilibrio instabile (1,0)
- Per E > 0 una traiettoria aperta con $\lim_{\rho \to +\infty} y(\rho) = \pm \infty$.

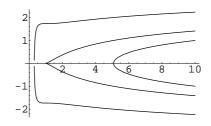
Caso 3. $L^2 < 2$

- Per $E < V_{\text{eff}}(\rho_{-})$ una traiettoria aperta con $\lim_{\rho \to +\infty} y(\rho) = \pm \infty$.
- Per $E = V_{\text{eff}}(\rho_-)$ una triettoria aperta con $\lim_{\rho \to +\infty} y(\rho) = \pm \infty$ e il punto stabile P_- .
- Per $V_{\text{eff}}(\rho_{-})E < V_{\text{eff}}(\rho_{+})$ una traiettoria aperta con $\lim_{\rho \to +\infty} y(\rho) = \pm \infty$ e una periodica intorno al punto stabile P_{-}
- Per $E = V_{\text{eff}}(\rho_+)$ due traiettorie aperte con $\lim_{\rho \to +\infty} y(\rho) = \pm \infty$ rispettivamente, il punto instabile P_2 e una traiettoria omoclina che interseca le due aperte nel punto instabile con tangenti oblique.
- Per $E>V_{\mbox{eff}}(\rho_+)$ una traiettoria aperta con $\lim_{\rho\to+\infty}y(\rho)=\pm\infty$
- (3.5) **Traiettorie periodiche.** Per quanto visto al punto precedente, avremo traiettorie periodiche solo nel caso $L^2 < 1$. In particolare ciò avverrà per $V_{\text{eff}}(\rho_-) < E < V_{\text{eff}}(\rho_+)$ e $\rho < \rho_+$.
- (3.6) **Moto complessivo.** Avremo moto complessivo periodico in accordo con le condizioni date al punto precedente, e per $\rho = \rho_-$. Inoltre, essendo

$$\Delta\theta = 2 \int_{\rho_1}^{\rho_2} \frac{\mathrm{d}\rho}{\rho^2 \sqrt{2L^{-2} \left(E - V_{\text{eff}}(\rho) \right)}} \qquad \{\rho_1, \rho_2\} \subset V_{\text{eff}}^{-1}(E)$$

dovrà valere anche $\Delta \theta = 2\pi q$ per qualche $q \in \mathbb{Q}$.





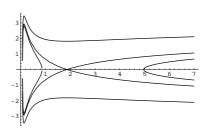


Figura 18: Piano delle fasi per $L^2>1$

Figura 19: Piano delle fasi per $L^2=1$

Figura 20: Piano delle fasi per $L^2 < 1$