$V'(q_{\pm}(\alpha)) \neq 0$, il segno in (78.23) andrà determinato nel modo seguente. Supponiamo per semplicità che sia $q(0) = q_{-}(\alpha)$ e p(0) = 0; scriveremo allora

$$\beta = t = \int_{q_0}^{q(t)} dq' \, \tilde{p}(q', \alpha), \qquad \tilde{p}(q, \alpha) = \sqrt{2a(q) \left(\alpha - V(q)\right)}, \tag{78.25}$$

dove si può scegliere, per esempio, $q_0 = q_-(\alpha)$, e potremo usare tale espressione fino al tempo T_1 in cui di nuovo $p(T_1) = 0$. Dopo tale tempo, per $t > T_1$, scriveremo

$$\beta = T_1 + \int_{q_+(\alpha)}^{q(t)} \mathrm{d}q' \left(-\tilde{p}(q', \alpha) \right) \tag{78.26}$$

e useremo tale espressione fino al tempo T_2 tale che $p(T_1 + T_2) = 0$ ancora una volta. Dopo tale tempo di nuovo avremo

$$\beta = T_1 + T_2 + \int_{q_0}^{q(t)} dq' \, \tilde{p}(q', \alpha). \tag{78.27}$$

Si vede che β è definito modulo $T = T_1 + T_2$, con T che rappresenta il periodo del moto. Se invece I è illimitato a destra, i.e $I = [q_{-}(\alpha), +\infty)$, se $p(0) \geq 0$ si ha p(t) > 0 per ogni $t \geq 0$, e quindi si prende sempre la determinazione positiva di p. Se invece p(0) < 0 si prende la determinazione negativa fino al tempo T_1 in cui si ha $p(T_1) = 0$; da quell'istante in poi si prenderà la determinazione positiva. In questo caso la variabile β è a un sol valore, e quindi non va interpretata come angolo. Analoghe considerazioni valgono se I è illimitato a sinistra.

§79 Separazione di variabili

Supponiamo che, ponendo $q=(q_1,q')$ e $p=(p_1,p')$, con $z'=(q',p')\in\mathbb{R}^{2(n-1)}$ e $z_1=(q_1,p_1)\in\mathbb{R}^2$, l'hamiltoniana si possa scrivere nella forma

$$\mathcal{H}(q,p) = \mathcal{F}_1(q',p',\mathcal{G}_1(q_1,p_1)),$$
 (79.1)

per opportune funzioni \mathcal{F}_1 e \mathcal{G}_1 (di classe C^2). Se poniamo $\mathcal{G}_1(q_1, p_1) = \alpha_1$, possiamo allora cercare una funzione caratteristica di Hamilton nella forma

$$W(q,\alpha) = W(q_1, q', \alpha) = W'(q', \alpha) + W_1(q_1, \alpha_1), \tag{79.2}$$

e riscrivere la (79.1) nella forma

$$\begin{cases}
\mathcal{G}_1\left(q_1, \frac{\partial W_1}{\partial q_1}\right) = \alpha_1, \\
\mathcal{F}_1\left(q', \frac{\partial W'}{\partial q'}, \alpha_1\right) = \alpha_n,
\end{cases}$$
(79.3)

dove si è usato il fatto che $\partial W/\partial q' = \partial W'/\partial q'$ e $\partial W/\partial q_1 = \partial W_1/\partial q_1$.

Si può allora risolvere la prima equazione in (79.3), procedendo come nel caso dei sistemi unidimensionali (con la funzione \mathcal{G}_1 che gioca il ruolo dell'hamiltoniana per i sistemi unidimensionali) per determinare la funzione caratteristica $W_1(q_1, \alpha_1)$, e, successivamente, studiare la seconda equazione in (79.3), che si può interpretare come equazione di Hamilton-Jacobi per un sistema con n-1 gradi di libertà (per il quale α_1 è un parametro fissato). Ci siamo quindi ricondotti a un sistema con un grado di libertà in meno.

Supponiamo che il procedimento si possa iterare, i.e. che la funzione \mathcal{F}_1 sia della forma

$$\mathcal{F}_1(q', p', \alpha_1) = \mathcal{F}_2(q'', p'', \mathcal{G}_2(q_2, p_2, \alpha_1), \alpha_1), \tag{79.4}$$

dove abbiamo posto $q'=(q_2,q'')$ e $p'=(p_2,p'')$, con $z''=(q'',p'')\in\mathbb{R}^{2(n-2)}$ e $z_2=(q_2,p_2)$.

Ragionando come nel caso precedente si può porre

$$W'(q', p') = W''(q'', \alpha) + W_2(q_2, \alpha_2, \alpha_1), \tag{79.5}$$

e riscrivere la (79.1) nella forma

$$\begin{cases}
\mathcal{G}_2\left(q_2, \frac{\partial W_2}{\partial q_2}, \alpha_1\right) = \alpha_2, \\
\mathcal{F}_2\left(q'', \frac{\partial W''}{\partial q''}, \alpha_2, \alpha_1\right) = \alpha_n,
\end{cases}$$
(79.6)

dove si è usato il fatto che $\partial W/\partial q'' = \partial W''/\partial q''$ e $\partial W/\partial q_2 = \partial W_2/\partial q_2$. La prima equazione in (79.6) si risolve di nuovo ragionando come per i sistemi unidimensionali e si determina così la funzione caratteristica $W_2(q_1, \alpha_1, \alpha_2)$.

E così via. A ogni passo k si studia l'equazione di Hamilton-Jacobi di un sistema unidimensionale e se ne trova la funzione caratteristica $W_k(q_k, \alpha_1, \ldots, \alpha_k)$, che, oltre che da (q_k, α_k) , dipende dai parmeri $\alpha_1, \ldots, \alpha_{k-1}$ introdotti nei passi precedenti.

Nel caso che il procedimento si possa iterare n volte alla fine avremo scritto la funzione caratteristica nella forma

$$W(q,\alpha) = \sum_{k=1}^{n} W_k(q_k, \alpha_1, \dots, \alpha_k), \qquad (79.7)$$

e applicando n volte l'analisi discussa nel caso dei sistemi unidimensionali riusciamo a risolvere completamente l'equazione di Hamilton-Jacobi.

Definizione 79.1 (SISTEMA SEPARABILE) Si definisce sistema separabile un sistema hamiltoniano per il quale l'equazione di Hamilton-Jacobi ammette una funzione caratteristica della forma

$$W(q,\alpha) = \sum_{k=1}^{n} W_k(q_k,\alpha), \tag{79.8}$$

dove $\alpha = (\alpha_1, \ldots, \alpha_n)$.

Osservazione 79.2 L'analisi sopra mostra che si ha un sistema separabile se l'hamiltoniana è della forma

$$\mathcal{H}(q,p) = h_n (h_1, h_2, \dots, h_{n-1}, z_n), \tag{79.9}$$

per opportune funzioni h_1, \ldots, h_n di classe C^2 tali che (cfr. l'esercizio 1)

$$h_1 = h_1(z_1), h_i = h_i(h_1, h_2, \dots, h_{i-1}, z_i), 2 \le i \le n;$$
 (79.10)

In tal caso la funzione caratteristica sarà della forma (79.7).

Definizione 79.3 (SEPARAZIONE DI VARIABILI) Nel caso di sistemi separabili il procedimento che porta a scrivere la funzione caratteristica di Hamilton nella forma (79.8) prende il nome di procedimento di separazione di variabili.

Osservazione 79.4 Se il procedimento descritto sopra non si riesce a iterare fino in fondo ma solo per r passi, con r < n, non avremo un sistema separabile. Tuttavia potremo scrivere la funzione caratteristica nella forma

$$W(q,\alpha) = W(q_{r+1}, \dots, q_n, \alpha) + \sum_{k=1}^{r} W_k(q_k, \alpha_1, \dots, \alpha_k),$$
 (79.11)

dove le funzioni W_1, \ldots, W_r sono le funzioni caratteristiche di r sistemi unidimensionali. In particolare questo implica che si sono trovati r integrali primi $\alpha_1, \ldots, \alpha_r$. Quindi nelle nuove variabili possiamo scrivere l'hamiltoniana come

$$\mathcal{K}(\alpha,\beta) = \mathcal{K}(\alpha_1, \dots, \alpha_n, \beta_{r+1}, \dots, \beta_n), \tag{79.12}$$

che può essere quindi utilizzata per studiare il sistema a n-r gradi di libertà descritto dalle variabili $(\alpha_{r+1}, \ldots, \alpha_n, \beta_{r+1}, \ldots, \beta_n)$; nelle corrispondenti equazioni di Hamilton le variabili $\alpha_1, \ldots, \alpha_r$ appaiono come parametri (cfr. la discussione nel §72 sul metodo di Routh nel formalismo hamiltoniano).

Osservazione 79.5 Nel caso dei sistemi unidimensionali si è visto che la variabile β può essere interpretata come angolo. Nel caso di sistemi a più gradi di libertà, anche nel caso in cui questi siano separabili, le variabili β si scrivono nella forma

$$\beta_k = \frac{\partial W}{\partial \alpha_k} = \sum_{i=1}^n \frac{\partial W_i}{\partial \alpha_k}.$$
 (79.13)

Per ogni i sono possibili due determinazioni, a seconda del segno che si sceglie (cfr. la corrispondente analisi dei sistemi unidimensionali). Tale segno dipenderà dal segno delle variabili p_i ; la determinazione di ciascuna delle β_k cambierà ogni volta che qualcuna delle variabili p_i si annulla. Quindi non è più possibile interpretare le variabili β_k come angoli, perché le variazioni dipendono non solo dai punti iniziali e finali, ma anche dalla traiettoria che li congiunge. In altre parole il moto in ciascuna β_k dipende dal moto delle altre variabili $\beta_{k'}$ con $k' \neq k$.

Esempio 79.6 Siano $V_1, V_2 \colon \mathbb{R} \to \mathbb{R}$ due funzioni di classe C^2 . Si consideri il sistema descritto dall'hamiltoniana

$$\mathcal{H}(q_1, q_2, p_1, p_2) = \frac{p_2^2}{2} + V_2(q_2) \left(\frac{p_1^2}{2} + V_1(q_1)\right)$$
(79.14)

e si dimostri che è separabile, indipendentemente dalla forma esatta di V_1 e V_2 .

Discussione dell'esempio. Possiamo scrivere l'hamiltoniana (79.14) nella forma (79.9), così da ottenere due equazioni della forma (79.3). Quindi la funzione caratteristica è data da

$$W(q_1, q_2, \alpha_1, \alpha_2) = W_2(q_2, \alpha_1, \alpha_2) + W_1(q_1, \alpha_1), \tag{79.15}$$

dove

$$W_1(q_1, \alpha_1) = \pm \int_{q_{01}}^{q_1} dq \sqrt{2(\alpha_1 - V_1(q))}, \qquad (79.16a)$$

$$W_2(q_2, \alpha_1, \alpha_2) = \pm \int_{q_{02}}^{q_1} dq \sqrt{2(\alpha_2 - \alpha_1 V_1(q))},$$
 (79.16b)

con q_{01} e q_{02} scelti in accordo con la discussione di pag. 301.

§80 Variabili azione-angolo

Consideriamo il sistema unidimensionale descritto dalla lagrangiana (78.21). Sia la (78.22) la corrispondente hamiltoniana. Supponiamo per semplicità che la funzione V(q) sia convessa e abbia in q=0 un punto di minimo assoluto. Un esempio è dato dall'oscillatore armonico (cfr. anche il §83.1)

$$\mathcal{H}(q,p) = \frac{1}{2m}p^2 + \frac{1}{2}m\omega^2 q^2. \tag{80.1}$$

Si può identificare un punto nello spazio delle fasi attraverso le coordinate (q, p) oppure attraverso il valore di energia E = H(q, p), che fissa la curva di livello, e l'angolo χ che il raggio vettore che individua il punto (q, p) forma con una direzione prefissata. La trasformazione $(q, p) \mapsto (\chi, E)$ è ben definita, ma non è in generale una trasformazione canonica; già nel caso (80.1), la trasformazione è canonica solo se $m = \omega = 1$ (cfr. l'esercizio 2).

Si può tuttavia costruire una trasformazione canonica, utilizzando la stessa idea di base, nel modo seguente. Ci proponiamo di costruire una trasformazione di coordinate $(q,p) \mapsto (\varphi,J)$ tale che J sia una costante del moto, φ sia un angolo e si abbia $\{\varphi,J\}=1$. In particolare deve risultare

$$\mathcal{H}(q,p) = \mathcal{K}(J) = E, \qquad \oint_{\gamma} d\varphi = 2\pi,$$
 (80.2)

dove K è una opportuna funzione di classe C^2 e γ è la curva di livello di energia E.