Definizione 59.5 (LAGRANGIANA RIDOTTA) Dato un sistema lagrangiano e un sistema di coordinate in cui la coordinata q_n sia ciclica, definiremo lagrangiana ridotta la funzione (59.3).

Osservazione 59.6 La dimostrazione del teorema 59.4 mostra che la sostituzione diretta della (59.4) nella lagrangiana \mathcal{L} , i.e.

$$\mathcal{L}'(q_1, \dots, q_{n-1}, \dot{q}_1, \dots, \dot{q}_{n-1}, t, p_n)$$

$$= \mathcal{L}(q_1, \dots, q_{n-1}, \dot{q}_1, \dots, \dot{q}_n, t) \Big|_{\dot{q}_n = f(q_1, \dots, q_{n-1}, \dot{q}_1, \dots, \dot{q}_{n-1}, t, p_n)},$$

produce una funzione \mathcal{L}' che non rappresenta la lagrangiana del sistema a n-1 gradi di libertà descritto dalle coordinate q_1, \ldots, q_{n-1} . Questo è dovuto al fatto che le derivate parziali rispetto alle q_k e rispetto alle \dot{q}_k entrano in modo diverso nelle equazioni di Eulero-Lagrange, a seconda di quali siano le altre coordinate che si mantengono costanti nel calcolare le derivate parziali.

Esempio 59.7 Sia \mathcal{L} la lagrangiana che descrive un punto di massa m che si muove in un piano per effetto di una forza centrale di energia potenziale V (cfr. la discussione del problema dei due corpi al capitolo 7). In coordinate polari, si ha (cfr. l'esercizio 11)

$$\mathcal{L}(\rho, \dot{\rho}, \dot{\theta}) = \frac{1}{2} m \left(\dot{\rho}^2 + \rho^2 \dot{\theta}^2 \right) - V(\rho)$$
(59.5)

e la coordinata θ è ciclica. La quantità

$$L := \frac{\partial \mathcal{L}}{\partial \dot{\theta}} = m\rho^2 \dot{\theta},\tag{59.6}$$

che definisce la componente del momento angolare ortogonale al piano, è una costante del moto (cfr. anche il §31). Per il teorema 59.4 il moto della coordinata ρ è determinato dalla lagrangiana ridotta

$$\mathcal{L}_{R}(\rho,\dot{\rho}) = \mathcal{L}(\rho,\dot{\rho},\dot{\theta}) - L\dot{\theta}\Big|_{\dot{\theta} = L/(m\rho^{2})} = \frac{1}{2}m\dot{\rho}^{2} - \left(V(\rho) + \frac{L^{2}}{2m\rho^{2}}\right),\tag{59.7}$$

mentre la sostituzione della (59.6) nella (59.5) avrebbe portato alla funzione

$$\mathcal{L}'(\rho,\dot{\rho}) = \frac{1}{2}m\dot{\rho}^2 - \left(V(\rho) - \frac{L^2}{2m\rho^2}\right),\,$$

che non rappresenta la lagrangiana che descrive il moto.

§60 Studio di un sistema lagrangiano

Vediamo un'applicazione della teoria dei sistemi lagrangiani sviluppata finora. Due punti materiali P_1 e P_2 , entrambi di massa m, sono vincolati a muoversi su una guida circolare di

raggio r=1 posta in un piano verticale π . Sia g l'accelerazione di gravità. Si scelga in π un sistema di coordinate (x,y) nel quale la circonferenza abbia equazione

$$x^2 + (y-1)^2 = 1. (60.1)$$

Due punti materiali P_3 e P_4 , anch'essi di massa m, possono scorrere lungo una guida orizzontale contenuta nel piano π , di equazione y=0. I punti P_1 e P_2 sono collegati tramite una molla, rispettivamente, ai punti P_3 e P_4 , i quali, a loro volta, sono collegati tramite una molla allo stesso punto materiale P_5 , di massa m, libero di scorrere lungo l'asse y; le molle hanno tutte lunghezza a riposo nulla e costante elastica k>0 (cfr. la figura 12.2).

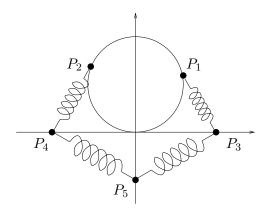


Figura 12.2: Sistema discusso nell'esempio del §60.

- (1) Si scrivano la lagrangiana del sistema e le corrispondenti equazioni di Eulero-Lagrange, utilizzando come coordinate lagrangiane le coordinate cartesiane non banali dei punti P_3 , P_4 e P_5 (i.e. le ascisse x_3 e x_4 di P_3 e di P_4 , rispettivamente, nonché l'ordinata di P_5) e gli angoli che i raggi vettori OP_1 e OP_2 formano con la verticale discendente, se O è il centro della guida circolare.
- (2) Si determinino le configurazioni di equilibrio del sistema e se ne discuta la stabilità al variare dei parametri m, k e g.
- (3) Si consideri la configurazione (cfr. la figura 12.3)

$$P_1 = (1,1), \quad P_2 = (-1,1), \quad P_3 = (1,0), \quad P_4 = (-1,0), \quad P_5 = (0,-mg/2k),$$
 (60.2)

e si fissino le velocità in modo che siano tutte nulle, i.e.

$$v_1 = v_2 = v_3 = v_4 = v_5 = (0,0),$$

dove $v_i \in \mathbb{R}^2$ è la velocità del punto P_i . Si determinino le forze vincolari che agiscono sul punto P_3 in corrispondenza della configurazione considerata.

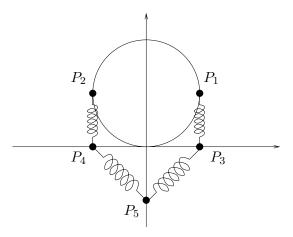


Figura 12.3: Configurazione considerata al punto (3).

(4) Siano i punti P_1 e P_2 fissati rigidamente nelle posizioni, rispettivamente,

$$P_1 = (1,1), \qquad P_2 = (-1,1).$$

Se il piano π ruota intorno all'asse y con velocità angolare costante ω (cfr. la figura 12.4), si determinino le configurazioni di equilibrio relativo, i.e. le configurazioni di equilibrio nel sistema di riferimento solidale con il piano π (cfr. la definizione 58.15) e se ne studi la stabilità.

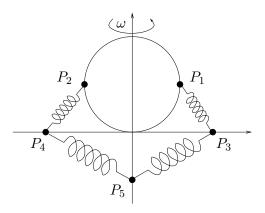


Figura 12.4: Sistema considerato al punto (4).

(5) Sotto le stesse ipotesi del punto precedente, si determinino le forze vincolari che agiscono sul punto P_3 , in corrispondenza di una generica configurazione compatibile con il moto.

60.1 Lagrangiana ed equazioni di Eulero-Lagrange

Indichiamo con (x_i, y_i) sono le coordinate del punto P_i , i = 1, ..., 5. L'energia cinetica del sistema è

$$T = \frac{1}{2} \sum_{i=1}^{5} m |v_i|^2 = \frac{1}{2} \sum_{i=1}^{5} m \left(\dot{x}_i^2 + y_i^2 \right), \tag{60.3}$$

dove $v_i = (\dot{x}_i, \dot{y}_i)$ è la velocità del punto P_i , mentre l'energia potenziale è $V = V_{\rm gr} + V_{\rm el}$, con

$$V_{gr} = \sum_{i=1}^{5} mgy_i,$$

$$V_{el} = \frac{1}{2}k \Big(((x_1 - x_3)^2 + (y_1 - y_3)^2) + ((x_2 - x_4)^2 + (y_2 - y_4)^2) + ((x_3 - x_5)^2 + (y_3 - y_5)^2) + ((x_4 - x_5)^2 + (y_4 - y_5)^2) \Big),$$
(60.4)

dove $V_{\rm gr}$ rappresenta l'energia gravitazionale (cfr. l'esercizio 12) e $V_{\rm el}$ è il contributo dovuto all'energia elastica delle molle (cfr. l'esercizio 13)

Si noti che il sistema può essere visto come un sistema di punti materiali in \mathbb{R}^3 con l'ulteriore vincolo che la coordinata z_i di ogni punto P_i sia identicamente nulla. Potremmo allora introdurre anche le coordinate z_i e \dot{z}_i nelle (60.3) e (60.4), ma i termini aggiuntivi scompaiono quando imponiamo il vincolo $z_i = \dot{z}_i = 0$ per $i = 1, \ldots, 5$.

In termini delle coordinate lagrangiane suggerite nel testo, le coordinate cartesiane dei punti P_1, P_2, P_3, P_4 e P_5 sono date da

$$P_1 = (\sin \theta_1, 1 - \cos \theta_1), \quad P_2 = (\sin \theta_2, 1 - \cos \theta_2),$$

$$P_3 = (x_3, 0), \quad P_4 = (x_4, 0), \quad P_5 = (0, y),$$
(60.5)

così che le corrispondenti velocità sono

$$v_1 = (\cos \theta_1 \,\dot{\theta}_1, \sin \theta_1 \,\dot{\theta}_1), \qquad v_2 = (\cos \theta_2 \,\dot{\theta}_2, \sin \theta_2 \,\dot{\theta}_2),$$

 $v_3 = (\dot{x}_3, 0), \qquad v_4 = (\dot{x}_4, 0), \qquad v_5 = (0, \dot{y}).$

L'energia cinetica (60.3) diventa quindi, per il sistema vincolato,

$$T = \frac{m}{2} \left(\dot{\theta}_1^2 + \dot{\theta}_2^2 + \dot{x}_3^2 + \dot{x}_4^2 + \dot{y}^2 \right)$$

e l'energia potenziale è

$$V = mg (1 - \cos \theta_1) + mg (1 - \cos \theta_2) + mgy + \frac{k}{2} \left\{ \left[x_3^2 + y^2 \right] + \left[x_4^2 + y^2 \right] + \left[(\sin \theta_1 - x_3)^2 + (1 - \cos \theta_1)^2 \right] + \left[(\sin \theta_2 - x_4)^2 + (1 - \cos \theta_2)^2 \right] \right\},$$

che si può riscrivere, trascurando i termini costanti (cfr. l'osservazione 51.21),

$$V = mg(y - \cos\theta_1 - \cos\theta_2) + k(x_3^2 + x_4^2 + y^2 - x_3\sin\theta_1 - \cos\theta_1 - x_4\sin\theta_2 - \cos\theta_2).$$

Quindi la lagrangiana del sistema è data da

$$\mathcal{L} = T - V = \frac{m}{2} \left(\dot{\theta}_1^2 + \dot{\theta}_2^2 + \dot{x}_3^2 + \dot{x}_4^2 + \dot{y}^2 \right) - mg \left(y - \cos \theta_1 - \cos \theta_2 \right) - k \left(x_3^2 + x_4^2 + y^2 - x_3 \sin \theta_1 - \cos \theta_1 - x_4 \sin \theta_2 - \cos \theta_2 \right).$$

Per ottenere le equazioni di Eulero-Lagrange, si calcolano le derivate parziali $\partial \mathcal{L}/\partial \dot{q}$ e $\partial \mathcal{L}/\partial q$ e si pone $d/dt[\partial \mathcal{L}/\partial \dot{q}] = \partial \mathcal{L}/\partial q$, se q denota la generica coordinata lagrangiana. Si ha

$$\begin{split} \frac{\partial \mathcal{L}}{\partial \dot{\theta}_{1}} &= m \dot{\theta}_{1}, & \frac{\partial \mathcal{L}}{\partial \dot{\theta}_{2}} &= m \dot{\theta}_{2}, \\ \frac{\partial \mathcal{L}}{\partial \dot{x}_{3}} &= m \dot{x}_{3}, & \frac{\partial \mathcal{L}}{\partial \dot{x}_{4}} &= m \dot{x}_{4}, \\ \frac{\partial \mathcal{L}}{\partial \dot{y}} &= m \dot{y}, \\ \frac{\partial \mathcal{L}}{\partial \theta_{1}} &= -m g \sin \theta_{1} + k x_{3} \cos \theta_{1} - k \sin \theta_{1}, \\ \frac{\partial \mathcal{L}}{\partial \theta_{2}} &= -m g \sin \theta_{2} + k x_{4} \cos \theta_{2} - k \sin \theta_{2}, \\ \frac{\partial \mathcal{L}}{\partial \theta_{2}} &= -2k x_{3} + k \sin \theta_{1}, & \frac{\partial \mathcal{L}}{\partial x_{4}} &= -2k x_{4} + k \sin \theta_{2}, \\ \frac{\partial \mathcal{L}}{\partial y} &= -2k y - m g, \end{split}$$

da cui si deduce

$$m\ddot{\theta}_1 = -mg\sin\theta_1 + kx_3\cos\theta_1 - k\sin\theta_1,\tag{60.6a}$$

$$m\ddot{\theta}_2 = -mg\sin\theta_2 + kx_4\cos\theta_2 - k\sin\theta_2,\tag{60.6b}$$

$$m\ddot{x}_3 = -2kx_3 + k\sin\theta_1,\tag{60.6c}$$

$$m\ddot{x}_4 = -2kx_4 + k\sin\theta_2,\tag{60.6d}$$

$$m\ddot{y} = -2ky - mg. \tag{60.6e}$$

60.2 Configurazioni di equilibrio

Le configurazioni di equilibrio sono i punti stazionari dell'energia potenziale (cfr. il teorema 58.6). Si devono quindi trovare i valori $(\theta_1, \theta_2, x_1, x_2, y)$ tali che siano nulle le derivate

dell'energia potenziale V. Imponiamo perciò

$$\frac{\partial V}{\partial \theta_1} = -\frac{\partial \mathcal{L}}{\partial \theta_1} = mg\sin\theta_1 - kx_3\cos\theta_1 + k\sin\theta_1 = 0, \tag{60.7a}$$

$$\frac{\partial V}{\partial \theta_2} = -\frac{\partial \mathcal{L}}{\partial \theta_2} = mg\sin\theta_2 - kx_4\cos\theta_2 + k\sin\theta_2 = 0,$$
(60.7b)

$$\frac{\partial V}{\partial x_3} = -\frac{\partial \mathcal{L}}{\partial x_3} = 2kx_3 - k\sin\theta_1 = 0,$$
(60.7c)

$$\frac{\partial V}{\partial x_4} = -\frac{\partial \mathcal{L}}{\partial x_4} = 2kx_4 - k\sin\theta_2 = 0,$$
(60.7d)

$$\frac{\partial V}{\partial y} = -\frac{\partial \mathcal{L}}{\partial y} = 2ky + mg = 0. \tag{60.7e}$$

La (60.7e) dà

$$y = -mg2k := -y_0,$$

mentre dalla (60.7c) e dalla (60.7d) si ricavano le relazioni

$$2x_3 = \sin \theta_1, \qquad 2x_4 = \sin \theta_2,$$

che, introdotte nelle prime due equazioni, dànno due equazioni chiuse, rispettivamente per θ_1 e per θ_2 . Le due equazioni sono uguali, a meno dello scambio di θ_1 con θ_2 : è quindi sufficiente studiarne una. Consideriamo, per esempio, l'equazione per θ_1 :

$$\frac{\partial V}{\partial \theta_1} = \frac{\sin \theta_1}{2} \left[2 \left(mg + k \right) - k \cos \theta_1 \right] = 0$$

che, per essere soddisfatta, richiede $\sin \theta_1 = 0$, dal momento che l'equazione

$$\cos \theta_1 = \frac{2(mg+k)}{k}$$

non ammette soluzione poiché 2(mg + k) > k. Quindi saranno possibili sono le soluzioni dell'equazione $\sin \theta_1 = 0$, che implica $\theta_1 = 0$ oppure $\theta_1 = \pi$. Analogamente la condizione di annullamento per la derivata di U rispetto a θ_2 porta a $\theta_2 = 0$ oppure $\theta_2 = \pi$.

In conclusione abbiamo quattro configurazioni di equilibrio:

$$(Q_1)$$
 $\theta_1 = 0, \ \theta_2 = 0, \quad x_3 = x_4 = 0, \quad y = -y_0,$ (60.8a)

$$(Q_3)$$
 $\theta_1 = 0, \ \theta_2 = \pi, \qquad x_3 = x_4 = 0, \qquad y = -y_0,$ (60.8b)

$$(Q_3)$$
 $\theta_1 = \pi, \ \theta_2 = 0, \qquad x_3 = x_4 = 0, \qquad y = -y_0,$ (60.8c)

$$(Q_4)$$
 $\theta_1 = \pi, \ \theta_2 = \pi, \qquad x_3 = x_4 = 0, \qquad y = -y_0,$ (60.8d)

che corrispondono ad avere il punto P_5 alla quota $-y_0$, i punti P_3 e P_4 nell'origine, mentre ciascuno dei i punti P_1 e P_2 può trovarsi o nell'origine o nel punto antipodale all'origine lungo la circonferenza.

60.3 Stabilità delle configurazioni di equilibrio

Per discutere la stabilità delle configurazioni di equilibrio trovate occorre studiare la matrice hessiana di V. Il sistema sotto studio è un sistema a 5 gradi di libertà. È tuttavia immediato notare che la lagrangiana si separa nella somma di tre lagrangiane indipendenti

$$\mathcal{L} := \mathcal{L}_1(\theta_1, x_3, \dot{\theta}_1, \dot{x}_3) + \mathcal{L}_2(\theta_2, x_4, \dot{\theta}_2, \dot{x}_4) + \mathcal{L}_3(y, \dot{y}), \tag{60.9}$$

dove

$$\mathcal{L}_1 = T_1 - V_1 = \frac{m}{2} \left(\dot{\theta}_1^2 + \dot{x}_3^2 \right) + mg \cos \theta_1 - k \left(x_3^2 - x_3 \sin \theta_1 - \cos \theta_1 \right), \tag{60.10a}$$

$$\mathcal{L}_2 = T_2 - V_2 = \frac{m}{2} \left(\dot{\theta}_2^2 + \dot{x}_4^2 \right) + mg \cos \theta_2 - k \left(x_4^2 - x_4 \sin \theta_2 - \cos \theta_2 \right), \tag{60.10b}$$

$$\mathcal{L}_3 = T_3 - V_3 = \frac{\bar{m}}{2}\dot{y}^2 - mgy - ky^2, \tag{60.10c}$$

con ovvio significato dei simboli. Quindi è sufficiente studiare i tre sistemi disaccoppiati così ottenuti e trovare i corrispondenti punti di equilibrio stabili e instabili. Inoltre, visto che la lagrangiana \mathcal{L}_2 si ottiene semplicemente da \mathcal{L}_1 per scambio di (θ_1, x_3) con (θ_2, x_4) , di fatto basta studiare le lagrangiane \mathcal{L}_1 e \mathcal{L}_3 .

Per \mathcal{L}_3 si ottiene

$$\frac{\partial^2 V_3}{\partial y^2} = 2k > 0,$$

da cui possiamo concludere che il punto $y = y_0$ è un punto di minimo per l'energia potenziale U_3 e quindi y_0 è una configurazione di equilibrio stabile per \mathcal{L}_3 .

Per \mathcal{L}_1 si ottiene

$$\mathcal{H}_{11}(\theta_1, x_3) := \frac{\partial^2 V_1}{\partial \theta_1^2} = mg \cos \theta_1 + k \cos \theta_1 + k x_3 \sin \theta_1,$$

$$\mathcal{H}_{12}(\theta_1, x_3) := \mathcal{H}_{21}(\theta_1, x_3) = \frac{\partial^2 V_1}{\partial \theta_1 \partial x_3} = -k \cos \theta_1,$$

$$\mathcal{H}_{22}(\theta_1, x_3) := \frac{\partial^2 V_1}{\partial x_3^2} = 2k,$$

e quindi la matrice hessiana corrispondente è

$$\mathcal{H}(\theta_1, x_3) = \begin{pmatrix} mg\cos\theta_1 + k\cos\theta_1 + kx_3\sin\theta_1 & -k\cos\theta_1 \\ -k\cos\theta_1 & 2k \end{pmatrix}.$$

Ne segue che

$$\mathcal{H}(0,0) = \begin{pmatrix} mg + k & -k \\ -k & 2k \end{pmatrix},$$

così che

$$\det \mathcal{H}(0,0) = 2mgk + k^2 > 0, \qquad \mathcal{H}_{11}(0,0) = mg + k > 0,$$

quindi $(\theta_1, x_3) = (0, 0)$ è un punto di minimo per l'energia potenziale potenziale V_1 . Allo stesso

$$\mathcal{H}(\pi,0) = \begin{pmatrix} -mg - k & -k \\ -k & 2k \end{pmatrix},$$

così che

$$\det \mathcal{H}(\pi, 0) = -2mgk - 3k^2 < 0,$$

quindi $(\theta_1, x_3) = (\pi, 0)$ è un punto di sella per l'energia potenziale.

Ragionando analogamente per \mathcal{L}_2 si trova che l'unica configurazione di equilibrio stabile per \mathcal{L} è quella in cui ognuno dei tre sistemi lagrangiani \mathcal{L}_1 , \mathcal{L}_2 e \mathcal{L}_3 ammette configurazioni di equilibrio stabili, i.e.

$$(Q_1) (\theta_1, x_3, \theta_2, x_4, y) = (0, 0, 0, 0, y_0), y_0 = -\frac{mg}{2k}, (60.11)$$

mentre le altre tre possibili configurazioni di equilibrio, date da

$$(Q_2) (\theta_1, x_3, \theta_2, x_4, y) = (\pi, 0, 0, 0, y_0), y_0 = -\frac{mg}{2k}, (60.12a)$$

$$(Q_3) (\theta_1, x_3, \theta_2, x_4, y) = (0, 0, \pi, 0, y_0), y_0 = -\frac{mg}{2k}, (60.12b)$$

$$(Q_4) (\theta_1, x_3, \theta_2, x_4, y) = (\pi, 0, \pi, 0, y_0), y_0 = -\frac{mg}{2k}, (60.12c)$$

$$(Q_3) (\theta_1, x_3, \theta_2, x_4, y) = (0, 0, \pi, 0, y_0), y_0 = -\frac{mg}{2k}, (60.12b)$$

$$(Q_4) (\theta_1, x_3, \theta_2, x_4, y) = (\pi, 0, \pi, 0, y_0), y_0 = -\frac{mg}{2k}, (60.12c)$$

sono instabili.

Determinazione delle forze vincolari. Caso I

Nella configurazione (60.2), per trovare le forze vincolari che agiscono sul punto $P_3 = (x_3, y_3)$, si considerano le equazioni

$$\begin{cases}
m\ddot{x}_3 = f_x^{(3)} + R_x^{(3)}, \\
m\ddot{y}_3 = f_y^{(3)} + R_y^{(3)},
\end{cases}$$

dove $f^{(3)} = (f_x^{(3)}, f_y^{(3)})$ e $R^{(3)} = (R_x^{(3)}, R_y^{(3)})$ sono la forza attiva e la forze vincolare, rispettivamente, che agiscono sul punto P_3 . Per il principio di d'Alembert si ha $R_x^{(3)} = 0$, dal momento che la forza vincolare è ortogonale alla superficie di vincolo.

Tenendo conto del vincolo (cfr. le (60.5)), che comporta $P_3 = (x_3, y_3) = (x_3, 0)$, e dell'equazione del moto (60.6c), si ottiene

$$\begin{cases}
 m\ddot{x}_3 = -2kx_3 + k\sin\theta_1, \\
 m\ddot{y}_3 = 0.
\end{cases}$$
(60.13)

In termini delle coordinate lagrangiane (60.5) la configurazione (60.2) è individuata da

$$\theta_1 = \frac{\pi}{2}, \qquad \theta_2 = -\frac{\pi}{2}, \qquad x_3 = 1, \qquad x_4 = -1, \qquad y = y_0,$$

corrispondente alla situazione rappresentata in figura 12.3. Per calcolare le forze che agiscono sul punto P_3 in tale configurazione, occorre considerare le forze attive $f^{(3)}$. Isolando il contributo all'energia potenziale in (60.4) che dipende esplicitamente da x_3 e y_3 , i.e.

$$V = \frac{1}{2}k\left[(1-x_3)^2 + (1-y_3)^2 + x_3^2 + (y_3-y_0)^2\right] + mgy_3 + \text{ termini indipendenti da } x_3, y_3,$$

e calcolandone il gradiente, cambiato di segno, si trova

$$f_x^{(3)} = -\frac{\partial V}{\partial x_3} = -k \left[-(1 - x_3) + x_3 \right],$$
 (60.14a)

$$f_y^{(3)} = -\frac{\partial V}{\partial y_3} = -k \left[-(1 - y_3) + (y_3 - y_0) \right] - mg, \tag{60.14b}$$

che, calcolato in $(x_3, y_3) = (1, 0)$ dà

$$f_x^{(3)} = -kx_3 = -k, (60.15a)$$

$$f_y^{(3)} = ky_0 + k - mg = -\frac{mg}{2} + k - mg = k - \frac{3mg}{2}$$
 (60.15b)

Sempre nella configurazione considerata si ha (cfr. la (60.13))

$$m\ddot{x}_3 = -2kx_3 + k\sin\theta_1 = -2k + k = -k,$$

così che risulta

$$R_x^{(3)} = -f_x^{(3)} + m\ddot{x}_3 = k - k = 0,$$

che era ovvio a priori, come già anticipato, e

$$R_y^{(3)} = -f_y^{(3)} + m\ddot{y}_3 = \frac{3mg}{2} - k,$$

che dunque esprime la componente non nulla della forza vincolare che agisce sul punto P_3 .

60.5 Piano rotante

Se i punti P_1 e P_2 sono fissati come indicato al punto (4), poiché si può tener conto della forza centrifuga che agisce sui punti P_3 e P_4 attraverso l'introduzione di un'energia potenziale centrifuga della forma (cfr. l'esercizio 15)

$$V_{\rm cf} = -\frac{1}{2}m\omega^2 \left(x_3^2 + x_4^2\right),\tag{60.16}$$

la lagrangiana che descrive il sistema diventa

$$\mathcal{L} = T - V = m2\left(\dot{x}_3^2 + \dot{x}_4^2 + \dot{y}^2\right) - \left[mgy + k\left(x_3^2 + x_4^2 + y^2 - x_3 + x_4\right) + V_{\text{cf}}\right], \quad (60.17)$$

così che si può scrivere

$$\mathcal{L} = \mathcal{L}(x_3, x_4, y, \dot{x}_3, \dot{x}_4, \dot{y}) = \mathcal{L}_1(x_3, \dot{x}_3) + \mathcal{L}_2(x_4, \dot{x}_4) + \mathcal{L}_3(y, \dot{y}), \tag{60.18}$$

dove

$$\mathcal{L}_1(x_3, \dot{x}_3) = \frac{m}{2}\dot{x}_3^2 - kx_3^2 + kx_3 + \frac{1}{2}m\omega^2 x_3^2,$$
 (60.19a)

$$\mathcal{L}_2(x_4, \dot{x}_4) = \frac{m}{2}\dot{x}_4^2 - kx_4^2 - kx_4 + \frac{1}{2}m\omega^2 x_4^2, \tag{60.19b}$$

$$\mathcal{L}_3(y, \dot{y}) = \frac{m}{2}\dot{y}^2 - mgy - ky^2.$$
 (60.19c)

Le configurazioni di equilibrio (relativo) sono date dalle soluzioni del sistema di equazioni

$$\frac{\partial V}{\partial x_3} = 2kx_3 - k - m\omega^2 x_3 = 0, \tag{60.20a}$$

$$\frac{\partial V}{\partial x_4} = 2kx_4 + k - m\omega^2 x_4 = 0, \tag{60.20b}$$

$$\frac{\partial V}{\partial y} = 2ky + mg = 0. ag{60.20c}$$

Si ha quindi una sola configurazione di equilibrio, data da

(Q)
$$x_3 = \frac{k}{\alpha}, \quad x_4 = -\frac{k}{\alpha}, \quad y = y_0 = -\frac{mg}{2k},$$
 (60.21)

purché

$$\alpha = 2k - m\omega^2 \neq 0.$$

Per discutere la stabilità occorre considerare le derivate seconde dell'energia potenziale dei tre sistemi lagrangiani indipendenti ottenuti. Si ha, rispettivamente,

$$\frac{\partial V^2}{\partial x_3^2} = 2k - m\omega^2,\tag{60.22a}$$

$$\frac{\partial V^2}{\partial x_4^2} = 2k - m\omega^2,\tag{60.22b}$$

$$\frac{\partial V^2}{\partial y^2} = 2k,\tag{60.22c}$$

dove 2k>0. Si vede che la configurazione di equilibrio trovata è stabile se $\alpha>0$, i.e. se $2k>m\omega^2$, e instabile se $\alpha<0$, i.e. se $2k< m\omega^2$.

Il caso $\alpha = 0$ va discusso a parte. Se $\alpha = 0$, l'energia potenziale diventa

$$V = -kx_3 + kx_4 + mgy + ky^2,$$

e quindi $\partial V/\partial x_3 = -k$ e $\partial V/\partial x_4 = k$, così che il sistema non ammette alcuna configurazione di equilibrio.

In conclusione, per $\alpha \neq 0$ esiste la configurazione di equilibrio (Q), instabile per $\alpha < 0$ e stabile per $\alpha > 0$, mentre per $\alpha = 0$ non esistono configurazioni di equilibrio.

60.6 Determinazione delle forze vincolari. Caso II

Per determinare le forze vincolari che agiscono sul punto P_3 , si considera, come nel $\S60.4$,

$$\begin{cases}
m\ddot{x}_3 = f_x^{(3)} + R_x^{(3)}, \\
m\ddot{y}_3 = f_y^{(3)} + R_y^{(3)},
\end{cases}$$

dove, tenendo conto del vincolo, si ha $P_3 = (x_3, y_3) = (x_3, 0)$, con le notazioni (60.5).

Quello che cambia rispetto al caso precedente è che la forza ha ora anche un contributo $m\omega^2x_3$ alla componente orizzontale (i.e. lungo l'asse x) dovuto alla forza centrifuga e la posizione del punto P_5 non è fissata a quota y_0 . Poiché per il principio di d'Alembert la forza vincolare è ortogonale al vincolo e la componente della forza nella direzione verticale non è modificata dalla forza centrifuga, ne concludiamo che, nella configurazione che stiamo considerando, la forza vincolare si calcola esattamente come nel §60.4.

Se inoltre notiamo che la componente $f_y^{(3)}$ della forza non dipende dalla posizione x_3 , otteniamo che la forza vincolare è, per ogni valore di x_3 , data da

$$R^{(3)} = (R_x^{(3)}, R_y^{(3)}) = (0, k - ky - mg).$$

Questo in ogni caso si può verificare esplicitamente notando che

aso si puo verincare espircitamente notando che
$$\begin{cases} m\ddot{x}_3 = \frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial \mathcal{L}}{\partial x_3} = \frac{\partial \mathcal{L}}{\partial x_3} = -\frac{\partial V}{\partial x_3} = -2kx_3 + k + m\omega^2 x_3, \\ m\ddot{y}_3 = 0, \end{cases}$$

poiché y_3 è identicamente nullo, mentre, per le forze attive, derivando la (60.17) rispetto a x_3 e y_3 , rispettivamente, abbiamo

$$f_x^{(3)} = -kx_3 + m\omega^2 x_3 - k(x_3 - 1) = -2kx_3 + m\omega^2 x_3 + k,$$

$$f_y^{(3)} = ky + k - mg,$$

così che il valore di $f_x^{(3)}$ dipende da x_3 ma non contribuisce alla forza vincolare, poiché $f_x^{(3)} = m\ddot{x}_3$, mentre

$$R_y^{(3)} = -f_y^{(3)} + m\ddot{y}_3 = mg - k - ky,$$

che è indipendente da x_3 .