Esempio 21.24 Consideriamo il sistema dinamico planare

$$\begin{cases} \dot{x} = e^x y^2, \\ \dot{y} = -e^x xy. \end{cases}$$
 (21.18)

Si vede immediatamente che $H(x,y)=x^2+y^2$ è una costante del moto. D'altra parte il campo vettoriale f che definisce il sistema dinamico (21.18) è della forma (21.17), con $g(x,y)=e^xy$: in particolare non esiste alcuna funzione H tale che $f_1=\partial H/\partial y$ e $f_2=-\partial H/\partial x$, come è facile verificare. Si veda l'esercizio 30 per uno studio qualitativo del sistema (21.18).

§22 Sistemi gradiente

Nel presente paragrafo analizzeremo alcuni sistemi notevoli in cui il campo vettoriale si può scrivere come gradiente di una funzione scalare.

Definizione 22.1 (SISTEMA GRADIENTE). Un sistema dinamico (17.1) si dice sistema gradiente se esiste una funzione $V: \mathbb{R}^n \to \mathbb{R}$ di classe C^2 tale che

$$\dot{x} = f(x), \qquad x \in \mathbb{R}^n, \qquad f(x) = -\nabla V(x).$$
 (22.1)

Definizione 22.2 (Punto regolare per il sistema gradiente (22.1) se $\nabla V(x) \neq 0$.

Indicheremo con Σ_c la superficie di dimensione n-1 definita da $\Sigma_c = \{x \in \mathbb{R}^n : V(x) = c\}$, con $c \in \mathbb{R}$: Σ_c è la superficie di livello di V corrispondente al valore c.

Lemma 22.3 (Proprietà dei sistemi gradiente) Dato il sistema gradiente (22.1), si ha:

- 1. $\dot{V}(x) \leq 0 \ \forall x, \ e \ \dot{V}(x) = 0 \ se \ e \ solo \ se \ x \ è \ un \ punto \ di \ equilibrio;$
- 2. se x_0 è un punto di minimo isolato di V(x) allora x_0 è un punto asintoticamente stabile;
- 3. se x è un punto regolare per il sistema (22.1), allora $\nabla V(x)$ è ortogonale in x alle superfici di livello di V;
- 4. nei punti regolari le traiettorie attraversano ortogonalmente le superfici di livello di V.

Dimostrazione. Da (22.1) si ha

$$\dot{V}(x) = -\left(\nabla V(x)\right)^2 \le 0,$$

così che $\dot{V}(x)$ è nullo se e solo se $\nabla V(x) = 0$; in quest'ultimo caso f(x) = 0. Questo dimostra la proprietà 1.

La funzione $V(x) - V(x_0)$ è una funzione di Ljapunov che verifica le proprietà $1 \div 3$ del teorema 19.10 in un intorno di x_0 . Quindi x_0 è un punto di equilibrio asintoticamente stabile. Questo dimostra la proprietà 2.

Le superfici di livello di V sono gli insiemi $\Sigma_c = \{x \in \mathbb{R}^n : V(x) = c\}$, con $c \in \mathbb{R}$. Se $u \in \Sigma_c$ è un punto regolare, allora Σ_c è una superficie regolare di codimensione 1 intorno a u (cfr. l'esercizio 7 del capitolo 4). Lungo la superficie Σ_c i vettori tangenti sono dati da

$$T(x) = \lim_{\alpha \to 0} \frac{\psi(\alpha, x) - x}{\alpha},$$

se $\alpha \mapsto \psi(\alpha, x)$, $x \in \Sigma_c$, è una curva sulla superficie di livello, descritta al variare di $\alpha \in \mathbb{R}$, con $\psi(0, x) = x$. Poiché si ha $dV/d\alpha = 0$ lungo la curva $\alpha \mapsto \psi(\alpha, x)$, risulta

$$\frac{\mathrm{d}V(x)}{\mathrm{d}\alpha}\bigg|_{\alpha=0} = \langle \nabla V(x), T(x) \rangle = 0,$$

e quindi il vettore $\nabla V(x)$ è ortogonale a T(x) e, di conseguenza, è ortogonale in x alla superficie di livello Σ_c . Questo dimostra la proprietà 3.

Infine la proprietà 4 segue dalla proprietà 3 e dal fatto che le traiettorie sono tangenti al campo vettoriale e quindi a ∇V .

Teorema 22.4 Dato il sistema gradiente (22.1), se $y \in L_{\omega}(x)$, allora $y \in un$ punto di equilibrio.

Dimostrazione. Sia $y \in L_{\omega}(x)$ per qualche $x \in \mathbb{R}^n$. Dimostriamo per assurdo che si ha $\dot{V}(\varphi(t,y)) = 0 \ \forall t \in \mathbb{R}$. Ne seguirà allora che $\dot{V}(y) = 0$, così che la proprietà 1 del lemma 22.3 implicherà che y è un punto di equilibrio.

Supponiamo che esista un punto $y_1 = \varphi(t, y)$, per qualche t > 0 tale che $V(y_1) \neq V(y)$. La proprietà 1 nel lemma 22.3 implica allora $V(y_1) < V(y)$; poniamo

$$\varepsilon := V(y) - V(y_1) > 0. \tag{22.2}$$

Per il teorema 17.18 esistono due successioni di tempi $\{t_k\}$ e $\{s_k\}$ tali che, per $k \to \infty$, si ha $\varphi(t_k, x) \to y$ e $\varphi(s_k, x) \to y_1$, e, corrispondentemente, $V(\varphi(t_k, x)) \to V(y)$ e $V(\varphi(s_k, x)) \to V(y_1)$, per continuità. Sia k_0 tale che si abbia $|V(\varphi(t_k, x)) - V(y)| < \varepsilon/2$ e $|V(\varphi(s_k, x)) - V(y_1)| < \varepsilon/2$ per ogni $k > k_0$. Scegliendo eventualmente sottosuccessioni di $\{t_k\}$ e $\{s_k\}$, utilizzando il lemma 17.14, si può supporre che sia $s_k < t_k < s_{k+1}$ per ogni $k > k_0$. Si ottiene quindi $V(\varphi(t_k, x)) \le V(\varphi(s_k, x))$ per ogni $k > k_0$, così che

$$V(y) - V(y_1) = V(y) - V(\varphi(t_k, x)) + V(\varphi(t_k, x)) - V(y_1)$$

$$\leq V(y) - V(\varphi(t_k, x)) + V(\varphi(s_k, x)) - V(y_1)$$

$$\leq |V(\varphi(t_k, x)) - V(y)| + |V(\varphi(s_k, x)) - V(y_1)| < \varepsilon,$$

che è in contraddizione con la (22.2). Deve essere quindi $V(y_1) = V(y)$ per ogni y_1 lungo la traiettoria $\varphi(t,y)$, e quindi $\dot{V}(y) = 0$.

Corollario 22.5 Nel caso in cui V(x) abbia solo punti critici isolati, ogni traiettoria o tende all'infinito o tende a un punto di equilibrio (isolato).

Dimostrazione. Sia $x \in \mathbb{R}^n$. Supponiamo che $\varphi(t,x)$ sia confinato in una regione limitata: esisterà allora un compatto K tale che $\varphi(t,x) \in K \ \forall t \geq 0$. Quindi l'insieme $L_{\omega}(x)$ è non vuoto, per il lemma 19.9. Sia $y \in L_{\omega}(x)$: per il teorema 22.4 e per il fatto che i punti critici di V sono isolati, otteniamo che il punto y è un punto di equilibrio isolato.

Teorema 22.6 Gli autovalori della matrice A che si ottiene linearizzando il sistema (22.1) nell'intorno di un punto di equilibrio sono tutti reali.

Dimostrazione. Poiché la funzione V(x) in (22.1) è di classe C^2 , la matrice A del sistema linearizato ha elementi $A_{ij} = [\partial^2 V/\partial x_i \partial x_j](x_0)$ ed è pertanto simmetrica. Quindi i suoi autovalori sono reali (cfr. l'esercizio 39 del capitolo 1).

Osservazione 22.7 Il corollario 22.5 e il teorema 22.6 implicano che i sistemi gradiente non possono avere traiettorie periodiche o moti a spirale. Si noti anche che i sistemi gradiente hanno proprietà completamente differenti dai sistemi meccanici conservativi (cfr. la definizione 17.31). In particolare, mentre i sistemi gradiente non possono avere orbite chiuse, i sistemi meccanici conservativi non possono avere punti di equilibrio tali che le traiettorie o si avvicino ad essi o si allontanino da essi lungo qualsiasi direzione (in particolare non possono avere punti di equilibrio asintoticamente stabili).

§23 Equazioni di Lotka-Volterra

Le equazioni di Lotka-Volterra descrivono un sistema ecologico di predatori e prede (sistema preda-predatore), su cui si fanno le seguenti ipotesi:

- la preda è l'unico cibo del predatore;
- la velocità con cui i predatori si cibano di prede è proporzionale al numero di incontri tra prede e predatori, e quindi al prodotto del numero di prede per il numero di predatori, con un minimo necessario per sostenere la popolazione di predatori;
- la velocità con cui diminuisce la popolazione delle prede a causa dei predatori è proporzionale al numero di incontri tra prede e predatori;
- il cibo disponibile per le prede è costante in assenza di predatori, e quindi, in assenza di predatori, la velocità con cui aumenta la popolazione di prede è proporzionale alla popolazione stessa.

Indichiamo con x il numero di prede e con y il numero di predatori, e trattiamo x, y come se fossero variabili continue. Ovviamente $x, y \ge 0$. L'evoluzione del sistema considerato è