ESERCIZI 257

Esercizio 9 Si consideri il sistema planare (25.1) discusso nel §25. Si dimostri che è sufficiente studiare le curve di livello γ_E per $E \neq 0$ nel primo quadrante, dove esse ammettono rappresentazione cartesiana

$$x = x_{\pm}(y) := \sqrt{2 - y^2 \pm \sqrt{1 + \frac{E}{y}}}.$$

[Soluzione. Per $y \neq 0$, l'equazione H(x,y) = E si può scrivere nella forma

$$x^4 + 2(y^2 - 2)x^2 + (y^2 - 1)(y^2 - 3) - \frac{E}{y} = 0,$$

che, risolta, dà

$$x^{2} = -(y^{2} - 2) \pm \sqrt{(y^{2} - 2)^{2} - (y^{2} - 1)(y^{2} - 3) + \frac{E}{y}} = (2 - y^{2}) \pm \sqrt{1 + \frac{E}{y}}.$$

Si noti che se E=0 ritroviamo $x^2+y^2=2\pm 1$, consistentemente con il §25.3. In generale si ha $x=\pm x_{\pm}(y)$, dove $x_{\pm}(y)$ è definita per y tale che $1+E/y\geq 0$ e $2-y^2\pm \sqrt{1+E/y}\geq 0$. Poiché H(x,y)=H(-x,y)=-H(x,-y), una volta studiate le curve di livello nel quadrante $x\geq 0, y>0$, le curve negli altri quadranti si ottengono per riflessione rispetto agli assi coordinati.]

Esercizio 10 Si dimostri che le curve di livello del sistema (25.1) nel primo quadrante, per E > 0, sono contenute nella regione $A_1 \cup A_2$, dove (cfr. la fig. 5.20)

$$\mathcal{A}_1 := \left\{ (x, y) \in \mathbb{R}^2 : x \ge 0, \ y > \sqrt{3 - x^2} \text{ se } x < \sqrt{3}, \ y > 0 \text{ se } x \ge \sqrt{3} \right\},$$

$$\mathcal{A}_2 := \left\{ (x, y) \in \mathbb{R}^2 : 0 \le x \le 1, \ \sqrt{1 - x^2} > y > 0 \right\},$$

mentre, per E < 0, sono contenute nella regione

$$\mathcal{A}_3 := \left\{ (x,y) \in \mathbb{R}^2 : 0 \le x \le \sqrt{3}, \ \sqrt{3-x^2} > y > \sqrt{1-x^2} \text{ se } 0 \le x < 1, \ \sqrt{3-x^2} > y > 0 \text{ se } x \ge 1 \right\}.$$

[Suggerimento. Poiché è continua e si annulla solo per $(x,y) \in \gamma_0$, H(x,y) ha sempre lo stesso segno in ciascuno degli insiemi aperti connessi in cui γ_0 divide il piano. Per determinare il segno in ognuno di tali insiemi è sufficiente calcolare la funzione in un punto qualsiasi dell'insieme e verificare se è positivo o negativo. Si ha $H(0, +\infty) = +\infty$, H(0, 1/2) = 33/32 e H(0, 3/2) = -45/32. Da qui segue l'asserto.]

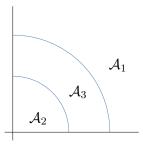


Figura 5.20: Insiemi A_1 , A_2 e A_3 dell'esercizio 10.

Esercizio 11 Si studino le curve di livello γ_E del sistema (25.1) per $E \neq 0$. [Suggerimento. Si usino le notazioni dell'esercizio 10. Per E>0, la funzione $x_+(y)$ è definita per $y\in (0,y_0]$, dove $y_0=y_0(E)$ è la soluzione unica dell'equazione $y^2-2=\sqrt{1+E/y}$ per y>0. Che tale soluzione esista e sia unica si vede confrontando i grafici delle due funzioni y^2-2 e $\sqrt{1+E/y}$ per y>0 (cfr. la figura 5.21); poiché $2-y^2+\sqrt{1+E/y}>3-y^2$ per E,y>0 si ha $y_0>\sqrt{3}$. Inoltre si ha

$$\frac{\mathrm{d}x_{+}}{\mathrm{d}y}(y) = -\frac{1}{2\sqrt{2-y^{2} + \sqrt{1+\frac{E}{y}}}} \left(2y + \frac{E}{2y^{2}\sqrt{1+\frac{E}{y}}}\right) < 0,$$

quindi $x_+(y)$ è strettamente decrescente e tale che $x_+(y_0) = 0$ e $\lim_{y\to 0^+} x_+(y) = +\infty$. In conclusione, la curva $(x_+(y), y)$, con $y \le y_0$, si trova nella regione \mathcal{A}_1 ed è come nella figura 5.19.

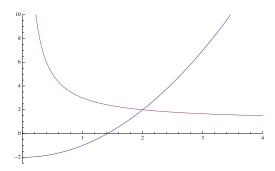


Figura 5.21: Grafico delle curve $y^2 - 2$ e $\sqrt{1 + E/y}$ per E = 2.

Sempre per E>0, perché la funzione $x_-(y)$ sia definita occorre che sia $2-y^2 \geq \sqrt{1+E/y}$. L'equazione $2-y^2 = \sqrt{1+E/y}$ per y>0 ammette due soluzioni $y_\pm = y_\pm(E)$ se e solo se $E\leq E_0$ per un opportuno E_0 ; le due soluzioni sono tali che $0< y_- \leq y_+ < 1$ e concidono per $E=E_0$ (cfr. la figura 5.22). Per ogni valore di $E\in (0,E_0)$ la funzione $x_-(y)$ è quindi definita per $y\in [y_-,y_+]$, è strettamente crescente per $y\in (y_-,y_1)$ e strettamente decrescente per $y\in (y_1,y_+)$, dove $y_1=y_1(E)$ è il valore in cui

$$\frac{dx_{-}}{dy}(y) = -\frac{1}{2\sqrt{2-y^{2}-\sqrt{1+\frac{E}{y}}}} \left(2y - \frac{E}{2y^{2}\sqrt{1+\frac{E}{y}}}\right)$$

si annulla, i.e. tale che $\sqrt{1+E/y_1}=E/4y_1^3$ (tale valore esiste ed è unico). In conclusione, la curva $(x_-(y),y)$, con $y\in[y_-,y_+]$, si trova nella regione \mathcal{A}_2 ed è come nella figura 5.19. Infine, per E<0, le funzioni $x_+(y)$ e $x_-(y)$ sono definite in $[y_1,y_2]$ e in $[y_1,y_3]$, rispettivamente, dove y_1,y_2 e y_3 , con $y_1< y_2< y_3$, dipendono da E; in particolare si ha $y_1=-E$. Le due curve $(x_+(y),y)$, con $y\in[y_1,y_2]$ e $(x_-(y),y)$, con $y\in[y_1,y_3]$, sono entrambe contenute in \mathcal{A}_3 e si raccordano in y_1 , dove $x_-(y_1)=x_+(y_1)$, mentre si ha $x_-(y_2)=x_+(y_3)=0$, consistentemente con la figura 5.19.]

ESERCIZI 259

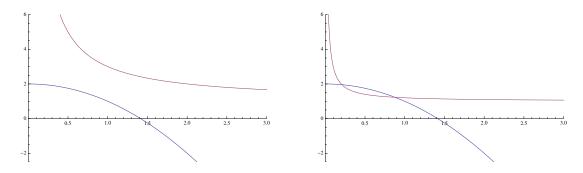


Figura 5.22: Grafico delle curve $2-y^2$ e $\sqrt{1+E/y}$ per E=2 (a sinistra) ed E=0.2 (a destra).

Esercizio 12 Sia dato il sistema dinamico planare

$$\begin{cases} \dot{x} = 4y(x^2 + y^2 - 1), \\ \dot{y} = -4x(x^2 + y^2 - 3). \end{cases}$$

- (1) Si verifichi che $H(x,y)=(x^2+2x+y^2-1)(x^2-2x+y^2-1)$ è una costante del moto.
- (2) Si determinino i punti critici e se ne discuta la stabilità.
- (3) Si traccino le curve di livello nel piano delle fasi.
- (4) Si individuino i dati iniziali che dànno origine a traiettorie periodiche.

[Suggerimento. Si hanno 5 punti di equilibrio: $P_1 = (0,0)$, $P_2 = (-\sqrt{3},0)$ e $P_3 = (\sqrt{3},0)$ sono stabili, $P_4 = (0,1)$ e $P_5 = (0,-1)$ sono instabili. Le curve di livello sono rappresentate nella figura 5.23.]

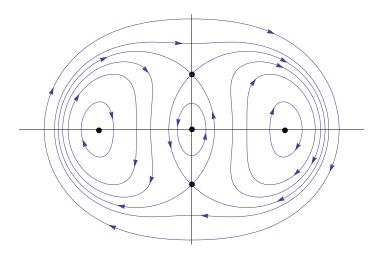


Figura 5.23: Piano delle fasi per il sistema dell'esercizio 12.