di uguaglianza. Infatti il teorema di Fenchel-Moreau afferma che, se $f: \mathbb{R} \to \mathbb{R}$ è una funzione propria, le tre affermazioni seguenti sono equivalenti:

- 1. f è una funzione convessa e chiusa;
- 2. f è l'estremo superiore puntuale di funzioni affini non più grandi di f;
- 3. $f^{**} = f$.

Si veda l'esercizio 12 per la definizione di funzione affine e l'esercizio 15 per la dimostrazione del teorema di Fenchel-Moreau.

In più dimensioni, dato un insieme aperto $A \subset \mathbb{R}^n$, una funzione $f: \mathbb{R}^n \to \mathbb{R}$ si dice convessa se l'insieme A è convesso (cfr. l'esercizio 5 del capitolo 3) e se $f((1-t)x_1+tx_2) \le (1-t)f(x_1)+tf(x_2)$ per ogni $x_1,x_2 \in \mathbb{R}^n$ e per ogni $t \in [0,1]$; la funzione f si dice strettamente convessa se nella diseguaglianza vale il segno stretto per $x_1 \neq x_2$.

Data una funzione convessa $f: \mathbb{R}^n \to \mathbb{R}$, si definisce

$$g(y) := \sup_{x \in \mathbb{R}^n} (\langle x, y \rangle - f(x))$$

la sua trasformata di Legendre. Di nuovo, sotto ulteriori assunzioni sulla funzione f, più precisamente che f sia di classe C^2 e la matrice di elementi

$$\frac{\partial^2 f}{\partial x_i \partial x_j} \tag{71.6}$$

sia definita positiva, così che la funzione risulti strettamente convessa (cfr. l'esercizio 16), l'estremo superiore è in realtà un massimo. Inoltre la funzione g(y) è anch'essa convessa e la sua trasformata di Legendre è la funzione f(x) (cfr. l'esercizio 17). La matrice di elementi

$$\frac{\partial^2 g}{\partial y_i \partial y_j}$$

è l'inversa della matrice di elementi (71.6) calcolata in x = x(y), dove x = x(y) è il punto in cui è raggiunto l'estremo superiore nella definizione di g (cfr. l'esecizio 18).

Osservazione 71.6 I risultati discussi nell'osservazione 71.5 in \mathbb{R} si possono estendere a funzioni $f: \mathbb{R}^n \to \mathbb{R}^n$ (cfr. l'esercizio 17).

Definizione 71.7 (HAMILTONIANA) Data una lagrangiana $\mathcal{L}(q,\dot{q},t)$, convessa e di classe C^2 , si definisce hamiltoniana la funzione

$$\mathcal{H}(q,p) = \sup_{\eta \in \mathbb{R}^n} (\langle p, \eta \rangle - \mathcal{L}(q, \eta, t)), \qquad (71.7)$$

i.e. la trasformata di Legendre della lagrangiana. La funzione H è convessa e di classe C^2 .

Esempio 71.8 Data la lagrangiana

$$\mathcal{L}(q,\dot{q}) = \frac{1}{2} \langle \dot{q}, A(q)\dot{q} \rangle - V(q),$$

la sua trasformata di Legendre rispetto \dot{q} è data da

$$\mathcal{H}(q,p) = \frac{1}{2} \langle \dot{q}, A(q)\dot{q} \rangle + V(q) = \frac{1}{2} \langle p, A^{-1}(q)p \rangle + V(q). \tag{71.8}$$

dove $p = \partial \mathcal{L}/\partial \dot{q}$.

Definizione 71.9 (COORDINATE CANONICHE) Date la coordinate q, chiameremo momenti coniugati le variabili p definite implicitamente in (71.7). Se la lagrangiana è una funzione di classe C^2 si ha

$$p = \frac{\partial \mathcal{L}(q, \dot{q}, t)}{\partial \dot{q}}.$$
 (71.9)

Chiameremo coordinate canoniche le variabili (q, p).

Osservazione 71.10 Data una varietà Σ , identificando (notazionalemente) i punti con le loro coordinate locali, se $q \in \Sigma$, si ha $(q, \dot{q}) \in T\Sigma$, dove $T\Sigma$ indica il fibrato tangente di Σ . Quindi p, definito in accordo con la (71.9), è un elemento dello spazio cotangente $T_q^*\Sigma$ (cfr. l'osservazione 62.11). Si ha allora $z = (q, p) \in T^*\Sigma$, dove (se \sqcup indica l'unione disgiunta)

$$T^*\Sigma := \bigsqcup_{x \in \Sigma} T_x^*\Sigma = \bigcup_{x \in \Sigma} \{x\} \times T_x^*\Sigma$$

prende il nome di fibrato cotangente di Σ . Si chiama spazio delle fasi l'insieme di definizione delle variabili (q, p), che è dunque un sottoinsieme di $T^*\Sigma$.

Osservazione 71.11 La lagrangiana è a sua volta la trasformata di Legendre dell'hamiltoniana. In particolare si ha

$$\dot{q} = \frac{\partial \mathcal{H}}{\partial p},\tag{71.10}$$

dal momento che $\mathcal H$ è la trasformata di Legendre di $\mathcal L$ rispetto alla variabile $\dot q$. Inoltre si vede facilemente che si ha

$$\dot{p} = \frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial \mathcal{L}}{\partial \dot{q}} = \frac{\partial \mathcal{L}}{\partial q} = \frac{\partial}{\partial q} \left(\langle p, \dot{q} \rangle - \mathcal{H}(p, q) \right) = \left\langle \frac{\partial p}{\partial q}, \dot{q} \right\rangle - \frac{\partial \mathcal{H}}{\partial q} - \left\langle \frac{\partial \mathcal{H}}{\partial p}, \frac{\partial p}{\partial q} \right\rangle = -\frac{\partial \mathcal{H}}{\partial q}, \quad (71.11)$$

dove si è usata la (71.10). Le (71.10) e (71.11) rappresentano quindi le equazioni del moto (i.e. le equazioni di Eulero-Lagrange) espresse in termini delle variabili (q, p).

Definizione 71.12 (EQUAZIONI HAMILTONIANE) Data un'hamiltoniana $\mathcal{H} = \mathcal{H}(q, p, t)$ di classe C^2 si definiscono equazioni di Hamilton le equazioni

$$\begin{cases}
\dot{q} = \frac{\partial \mathcal{H}}{\partial p}, \\
\dot{p} = -\frac{\partial \mathcal{H}}{\partial q},
\end{cases} (71.12)$$

che costituiscono un sistema di 2n equazioni differenziali del primo ordine.

Osservazione 71.13 Si noti che l'hamiltoniana è definita a meno di una costante additiva, eventualmente dipendente dal tempo. La situazione è quindi diversa dal caso della lagrangiana, che è invece definita a meno di una derivata totale (cfr. l'osservazione 51.21).

Definizione 71.14 (MATRICE SIMPLETTICA STANDARD) Chiamiamo matrice simplettica standard la matrice $2n \times 2n$

$$E = \begin{pmatrix} 0 & \mathbb{1} \\ -\mathbb{1} & 0 \end{pmatrix}, \tag{71.13}$$

dove 0, 1 sono matrici $n \times n$.

Osservazione 71.15 Data la matrice simplettica standard E si ha

$$E^{T} = -E, E^{-1} = -E, E^{2} = -1,$$
 (71.14)

come è immediato verificare (cfr. l'esercizio 21); in (71.14), $\mathbbm{1}$ è l'identità $2n \times 2n$. Possiamo allora riscrivere le equazioni di Hamilton (71.12) in forma più compatta come

$$\dot{z} = E \frac{\partial \mathcal{H}}{\partial z},$$

dove $z = (q, p) \in \mathbb{R}^{2n}$. Si definisce flusso hamiltoniano (cfr. la definizione 11.10) l'insieme di tutte le traiettorie del sistema (71.12).

Definizione 71.16 (Equazioni canoniche) Sia un sistema dinamico in \mathbb{R}^{2n} descritto dalle equazioni $\dot{z} = f(z)$. Diremo che tali equazioni sono equazioni canoniche se esiste una funzione \mathcal{H} di classe C^2 in \mathbb{R}^{2n} tale che si abbia $f = E\partial \mathcal{H}/\partial z$.

La definizione di hamiltoniana si estende facilmente al caso di un sistema lagrangiano definito su una varietà. In generale si parlerà di sistema hamiltoniano, in accordo con la seguente definizione.

Definizione 71.17 (SISTEMA HAMILTONIANO) Data una varietà Σ e data una funzione $\mathcal{H}: T^*\Sigma \times \mathbb{R} \to \mathbb{R}$ di classe C^2 , si definisce sistema hamiltoniano la coppia (Σ, \mathcal{H}) .

Definizione 71.18 (Campo vettoriale hamiltoniano associato all'hamiltoniana \mathcal{H} il campo vettoriale

$$f_{\mathcal{H}} := E \frac{\partial \mathcal{H}}{\partial z} = \left(\frac{\partial \mathcal{H}}{\partial p}, -\frac{\partial \mathcal{H}}{\partial q}\right),$$
 (71.15)

dove $z = (q, p) \in \mathbb{R}^{2n}$ e $\partial/\partial z = (\partial/\partial z_1, \dots, \partial/\partial z_{2n})$.

Osservazione 71.19 Dato un campo vettoriale $f: \mathbb{R}^N \to \mathbb{R}^N$, si definisce divergenza di f la funzione

$$\operatorname{div} f(x) := \sum_{i=1}^{N} \frac{\partial f_1}{\partial x_1}(x) + \ldots + \frac{\partial f_N}{\partial x_N}(x).$$

È facile vedere che il campo vettoriale (71.15) è un campo vettoriale a divergenza nulla, i.e.

$$\operatorname{div} f_{\mathcal{H}} = \sum_{k=1}^{2n} \sum_{j=1}^{2n} E_{kj} \frac{\partial^2 \mathcal{H}}{\partial z_k \partial z_j} = 0,$$

dove si è utilizzato il fatto che E è antisimmetrica (i.e. $E_{ik} = -E_{ki}$).

Definizione 71.20 (Trasformazione che conserva il volume) $Sia\ \Omega \subset \mathbb{R}^N$ un insieme aperto. Dato un insieme $D \subset \Omega$ chiamiamo

$$Vol(D) = \int_D dx$$

il volume dell'insieme D. Diremo che una trasformazione $\varphi \colon \Omega \to \Omega$ che dipende dal parametro continuo t è una trasformazione che conserva il volume se per ogni sottoinsieme $D \subset \Omega$, indicando con

$$D(t) = \varphi(t, D) = \bigcup_{x \in D} \varphi(t, x)$$
 (71.16)

l'insieme ottenuto facendo evolvere i punti di D = D(0) al tempo t, si ha

$$Vol(D(t)) = Vol(D)$$
(71.17)

per ogni t. per cui il flusso è definito.

Teorema 71.21 (Teorema di Liouville) Il flusso hamiltoniano conserva il volume.

Dimostrazione. Dimostreremo più in generale che, dato un campo vettoriale $\dot{x} = f(x)$ in $\Omega \subset \mathbb{R}^N$, se f è a divergenza nulla (i.e. tale che div f = 0), allora il flusso corrispondente conserva il volume.