17 Trasformazioni canoniche

§74 Trasformazioni canoniche e simplettiche

Iniziamo con alcuni richiami di analisi. Dato uno spazio vettoriale reale E indichiamo con E^* lo spazio duale di E, cioè lo spazio vettoriale delle applicazioni lineari di E in \mathbb{R} . Si chiamano funzionali lineari o forme lineari le applicazioni lineari di E in \mathbb{R} (se E è uno spazio vettoriale complesso, i funzionali lineari sono le applicazioni lineari di E in \mathbb{C}). Dato un aperto $A \subset \mathbb{R}^n$ si definisce forma differenziale in A un'applicazione continua ω di A in $(\mathbb{R}^n)^*$.

Fissata una base $\{e_1, \ldots, e_n\}$ in \mathbb{R}^n , ogni vettore v in \mathbb{R}^n si decompone in modo unico nella forma $v = v_1 e_1 + \ldots + v_n e_n$. La corrispondente base in $(\mathbb{R}^n)^*$ si chiama base canonica e si indica con $\{dx_1, \ldots, dx_n\}$. L'azione di dx_i su un vettore v è definita da $dx_i(v) = v_i$; in particolare si ha $dx_i(e_j) = \delta_{i,j}$, dove $\delta_{i,j}$ è il simbolo di Kronecker. Possiamo scrivere una forma differenziale ω come

$$\omega = \sum_{k=1}^{n} f_k(x) \, \mathrm{d}x_k = \langle f(x), \mathrm{d}x \rangle \,, \tag{74.1}$$

dove $dx = (dx_1, \ldots, dx_n)$ e $f(x) = (f_1(x), \ldots, f_n(x))$ è una funzione definita in \mathcal{A} . In accordo con la definizione, la funzione f è almeno continua in \mathcal{A} ; diremo che la forma differenziale ω è di classe C^p se le funzioni f_k sono di classe C^p . Dato un vettore $v \in \mathbb{R}^n$, la forma differenziale ω definisce quindi un'applicazione $(x, v) \mapsto \omega(x; v) = f_1(x) v_1 + \ldots + f_n(x) v_n$; in particolare $f_i(x) = \omega(x; e_i)$.

Osservazione 74.1 In realtà, come vedremo al §76 (cr. pag. 244), una forma differenziale è più in generale un'applicazione definita su una varietà M, che a ogni punto $x \in M$ associa un'applicazione lineare che agisce sullo spazio tangente T_xM . Tuttavia, se M è uno spazio vettoriale E (che si può sempre identificare con \mathbb{R}^n), lo spazio tangente T_xM è E stesso, così che, fin tanto che si considerino forma differenziali su uno spazio vettoriale E non è necessario introdurre lo spazio tangente, ma è sufficiente considerare lo spazio duale di E.

Ricordiamo (cfr. l'osservazione 11.35 del capitolo 3) che una curva regolare in \mathbb{R}^n è un'applicazione differenziabile $\gamma: [a,b] \to \mathbb{R}^n$ tale che $d\gamma(t)/dt \neq 0 \ \forall t \in (a,b)$. Definiamo integrale

della forma differenziale ω lungo la curva regolare γ il numero

$$\int_{\gamma} \omega = \int_{a}^{b} dt \sum_{k=1}^{N} f_{k}(\gamma(t)) \frac{d\gamma_{k}(t)}{dt} = \int_{a}^{b} dt \left\langle f(\gamma(t)), \frac{d\gamma(t)}{dt} \right\rangle, \tag{74.2}$$

dove γ_k sono le componenti dell'applicazione γ nella base fissata. Più in generale si può considerare l'integrale di una forma differenziale lungo una curva regolare a tratti, i.e. una curva $\gamma:[a,b]\to\mathbb{R}^n$ tale che [a,b] è l'unione di un numero finito di intervalli $[t_i,t_{i-1}]$, dove $i=1,\ldots,p$ per qualche $p\in\mathbb{N}$, in ciascuno dei quali γ è regolare; in questo caso si definisce

$$\int_{\gamma} \omega = \sum_{i=1}^{p} \int_{t_{i-1}}^{t_i} dt \sum_{k=1}^{N} f_k(\gamma(t)) \frac{d\gamma_k(t)}{dt}, \tag{74.3}$$

dove $t_0 = a$ e $t_p = b$. Questo permette di calcolare l'integrale di una forma differenziale lungo *curve poligonali*, i.e. curve regolari a tratti il cui sostegno sia costituito da segmenti che connettono una serie di punti consecutivi.

Osservazione 74.2 Data la curva γ , sia $\tilde{\gamma}$ una riparametrizzazione di γ (cfr. l'esercizio 36 del capitolo 3), così che $\tilde{\gamma}$: $[c,d] \to \mathcal{A}$ è tale che $\tilde{\gamma}(s(t)) = \gamma(t)$ per qualche funzione suriettiva $s: [a,b] \to [c,d]$ tale che $\mathrm{d}s(t)/\mathrm{d}t \neq 0 \ \forall t \in [a,b]$. Si vede facilmente che

$$\int_{\gamma} \omega = \int_{a}^{b} dt \left\langle f(\tilde{\gamma}(s(t)), \frac{d\tilde{\gamma}(s(t))}{dt} \right\rangle = \int_{a}^{b} dt \left\langle f(\tilde{\gamma}(s(t)), \frac{d\tilde{\gamma}(s(t))}{ds} \right\rangle \frac{ds}{dt}$$
$$= \int_{s(a)}^{s(b)} ds \left\langle f(\tilde{\gamma}(s)), \frac{d\tilde{\gamma}(s)}{ds} \right\rangle = \int_{\tilde{\gamma}} \omega,$$

dove s(a) = c e s(b) = d se $t \mapsto s(t)$ è crescente, mentre s(a) = d e s(b) = c se $t \mapsto s(t)$ è decrescente. In conclusione si ha:

1.
$$\gamma$$
 e $\tilde{\gamma}$ hanno lo stesso verso $\Longrightarrow \int_{\tilde{\gamma}} \omega = \int_{\gamma} \omega,$
2. γ e $\tilde{\gamma}$ hanno verso opposto $\Longrightarrow \int_{\tilde{z}} \omega = -\int_{\gamma} \omega.$

Per esempio se $s(t) = (b-a)^{-1}(bd-ac-(d-c)t)$, $\tilde{\gamma}$ ha verso opposto a quello di γ .

Se γ è una curva chiusa scriveremo l'integrale come

$$\oint_{\alpha} \omega$$
.

La forma differenziale (74.1) si dice esatta in \mathcal{A} se esiste una funzione $\psi \colon \mathcal{A} \to \mathbb{R}$ di classe C^1 tale $\omega = d\psi$, i.e. se

$$f_k(x) = \frac{\partial \psi}{\partial x_k}(x), \qquad k = 1, \dots, n.$$
 (74.4)

Una forma differenziale ω è esatta in \mathcal{A} se e solo se l'integrale lungo qualsiasi curva chiusa in \mathcal{A} è nullo (cfr. l'esercizio 2).

La forma differenziale (74.1) si dice chiusa se f è di classe C^1 e si ha

$$\frac{\partial f_i}{\partial x_j} = \frac{\partial f_j}{\partial x_i}, \qquad i, j = 1, \dots, n.$$
 (74.5)

Una forma differenziale esatta (di classe C^2) è necessariamente chiusa. Il contrario non è vero (cfr. l'esercizio 3). Tuttavia, in un insieme che sia stellato, o più in generale semplicemente connesso (cfr. gli esercizi 5 e 6 per le definizioni), una forma differenziale è esatta se e solo se è chiusa (cfr. l'esercizio 5 nel caso di insiemi stellati e l'esercizio 8 nel caso di insiemi semplicemente connessi); tale risultato è un caso particolare del lemma di Poincaré che sarà discusso più avanti (cfr. il lemma 76.16). Quindi localmente le nozioni di forma chiusa e di forma esatta coincidono.

Nel seguito considereremo sistemi hamiltoniani descritti da coordinate canoniche (q, p), dove $(q, p) \in \mathcal{A} \subset \mathbb{R}^n \times \mathbb{R}^n$, e scriveremo z = (q, p). Indichiamo con $M(N, \mathbb{R})$ l'insieme delle matrici $N \times N$ a elementi reali (cfr. pag. 10 nel capitolo 1 per le notazioni).

Definizione 74.3 (MATRICE SIMPLETTICA) Una matrice $A \in M(2n, \mathbb{R})$ si dice simplettica se

$$A^T E A = E, (74.6)$$

 $dove\ A^T\ indica\ la\ trasposta\ di\ A\ ed\ E\ \grave{e}\ la\ matrice\ simplettica\ standard\ (71.13).$

Osservazione 74.4 Sia A una matrice simplettica. Scriviamo A nella forma

$$A = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix},\tag{74.7}$$

con $\alpha, \beta, \gamma, \delta$ matrici $n \times n$ reali. In termini di tali matrici la condizione (74.6) si legge

$$\gamma^T \alpha = \alpha^T \gamma, \tag{74.8a}$$

$$\delta^T \beta = \beta^T \delta, \tag{74.8b}$$

$$\delta^T \alpha - \beta^T \gamma = 1. \tag{74.8c}$$

Lemma 74.5 Se A e B sono due matrici simplettiche anche il prodotto AB è una matrice simplettica.

Dimostrazione. Se A e B sono due matrici simplettiche si ha $A^TEA = E$ e $B^TEB = E$, e quindi, posto C = AB, si ottiene $C^TEC = (AB)^TEAB = B^TA^TEAB = B^TEB = E$.

Lemma 74.6 L'identità 1 e la matrice simplettica standard (71.13) sono matrici simplettiche.

Dimostrazione. Si ha $\mathbb{1}^T E \mathbb{1} = \mathbb{1} E \mathbb{1} = E$. Analogamente, utilizzando la (71.14), si ottiene $E^T E E = -E^2 E = \mathbb{1} E = E$.

Lemma 74.7 L'inversa di una matrice simplettica è simplettica.

Dimostrazione. Sia A una matrice simplettica. Dimostriamo innanzitutto che A è invertibile. Poiché det $E = \det A^T \det E \det A = \det E(\det A)^2$ e det E = 1 – come si verifica immediatamente (cfr. l'esercizio 9) si ha det $A = \pm 1$, quindi esiste A^{-1} . Moltiplicando la (74.6) a destra per A^{-1} e a sinistra per E, utilizzando il fatto che $E^2 = -1$, otteniamo

$$A^{-1} = -EA^T E. (74.9)$$

Per verificare se A^{-1} è simplettica consideriamo $(A^{-1})^T E A^{-1}$. Si ha per la (74.9)

$$(A^{-1})^T E A^{-1} = (E A^T E)^T E E A^T E = E^T A E^T E E A^T E = E A (-E A^T E) = E A A^{-1} = E,$$

dove si è utilizzato anche che $E^T = -E$.

Lemma 74.8 La trasposta di una matrice simplettica è simplettica.

Dimostrazione. Moltiplicando la (74.9) a destra per E e utilizzando che $E^2=-1$ si ottiene $A^{-1}E=EA^T$, così che

$$(A^T)^T E A^T = A E A^T = A A^{-1} E = E,$$

che dimostra l'asserto.

Osservazione 74.9 Le matrici simplettiche formano un gruppo (cf. l'esercizio 10). Tale gruppo si indica con Sp(2n), se la matrici sono $2n \times 2n$.

Nel corso della dimostrazione del Lemma 74.7 abbiamo trovato che il determinante di una qualsiasi matrice simplettica A vale ± 1 . In realtà si ha det A=1, anche la dimostrazione di tale proprietà non è assolutamente banale come dimostrare che $|\det A|=1$. Prima di procedere con la dimostrazione diamo un risultato preliminare.

Lemma 74.10 Data la matrice $2n \times 2n$

$$\Lambda = \begin{pmatrix} \lambda & -\mu \\ \mu & \lambda \end{pmatrix},\tag{74.10}$$

 $con \lambda, \mu \ matrici \ reali \ n \times n, \ si \ ha \ \det \Lambda = |\det(\lambda + i\mu)|^2 \ge 0.$

Dimostrazione. Consideriamo la matrice

$$Q = \begin{pmatrix} \mathbb{1} & i\mathbb{1} \\ \mathbb{1} & -i\mathbb{1} \end{pmatrix},$$

dove 1 è l'identità $n \times n$. Si vede subito che Q è non singolare, e che la sua inversa è

$$Q^{-1} = \frac{1}{2} \begin{pmatrix} \mathbb{1} & \mathbb{1} \\ -i\mathbb{1} & i\mathbb{1} \end{pmatrix}.$$

Allora si ha

$$\det \Lambda = \det(Q\Lambda Q^{-1}) = \det Q \det \Lambda \det Q^{-1} = \det \begin{pmatrix} \lambda + i\mu & 0 \\ 0 & \lambda - i\mu \end{pmatrix}$$
$$= \det(\lambda + i\mu) \det(\lambda - i\mu) = \det(\lambda + i\mu) \overline{\det(\lambda + i\mu)} = |\det(\lambda + i\mu)|^2,$$

da cui segue l'asserto.

Teorema 74.11 Sia A una matrice simplettica. Allora $\det A = 1$.

Dimostrazione. Sia A una matrice simplettica. Scriviamo A nella forma (74.7). Consideriamo la matrice ΛA , con Λ data dalla (74.10): si ottiene facilmente

$$\Lambda A = \begin{pmatrix} \lambda \alpha - \mu \gamma & \lambda \beta - \mu \delta \\ \mu \alpha + \lambda \gamma & \mu \beta + \lambda \delta \end{pmatrix}.$$

Scegliamo in (74.10)

$$\lambda = \delta^T, \qquad \mu = \beta^T \implies \Lambda = \begin{pmatrix} \delta^T & -\beta^T \\ \beta^T & \delta^T \end{pmatrix},$$
 (74.11)

Risulta allora, tenendo conto delle (74.8).

$$\Lambda A = \begin{pmatrix} \mathbb{1} & 0 \\ \beta^T \alpha + \delta^T \gamma & \beta^T \beta + \delta^T \delta \end{pmatrix},$$

così che $\det(\Lambda A) = \det(\beta^T \beta + \delta^T \delta)$. D'altra parte la matrice $\beta^T \beta + \delta^T \delta$ è definita positiva. Questo si dimostra come segue. Per ogni $x \in \mathbb{R}^n$ si ha

$$\langle x, (\beta^T \beta + \delta^T \delta) x \rangle = \langle \beta x, \beta x \rangle + \langle \delta x, \delta x \rangle = |\beta x|^2 + |\delta x|^2 \ge 0.$$

Si può avere il segno uguale solo se $x = \bar{x} \in \mathbb{R}^n$, con \bar{x} autovettore sia di β sia di δ , i.e. $\beta \bar{x} = \delta \bar{x} = 0$. Ma in tal caso si avrebbe

$$\begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \begin{pmatrix} 0 \\ \bar{x} \end{pmatrix} = \begin{pmatrix} \beta \bar{x} \\ \delta \bar{x} \end{pmatrix} = 0,$$

i.e. il vettore $(0, \bar{x}) \in \mathbb{R}^{2n}$ sarebbe un autovettore di A associato all'autovalore 0. Questo non è possibile dal momento che det $A = \pm 1 \neq 0$. Ne segue che la matrice $\beta^T \beta + \delta^T \delta$ deve essere definita positiva. In conclusione, se Λ è scelto come in (74.11), si ha det $(\Lambda A) = \det A \det \Lambda > 0$, che, unito al fatto che det $A = \pm 1$ e det $\Lambda \geq 0$, implica det A = 1 e det $\Lambda > 0$.

Definizione 74.12 (Trasformazione di coordinate un'applicazione $z \mapsto Z = Z(z,t)$ di classe C^2 , invertibile con inversa di classe C^2 , con $z \in \mathcal{A} \subset \mathbb{R}^{2n}$ e $Z \in \mathcal{B} \subset \mathbb{R}^{2n}$. Se Z(z,t) = Z(z), i.e. se Z non dipende esplicitamente dal tempo, diremo che la trasformazione di coordinate è indipendente dal tempo.

Esempio 74.13 Il riscalamento $z=(q,p)\mapsto Z=(Q,P)$, dove $Q=\alpha q$ e $P=\beta p$, con $\alpha\beta\neq 0$, è una trasformazione di coordinate.

Esempio 74.14 Lo scambio delle coordinate canoniche $z = (q, p) \mapsto Z = (Q, P)$, dove Q = p e P = q, è una trasformazione di coordinate.

Definizione 74.15 (Trasformazione Canonica) Una trasformazione di coordinate $z \mapsto Z(z,t)$ si dice trasformazione canonica se la matrice jacobiana $J = \partial Z(z,t)/\partial z$ è simplettica per ogni t.

Definizione 74.16 (Trasformazione simplettica) Una trasformazione di coordinate $z \mapsto Z(z,t)$ si dice trasformazione simplettica se è canonica e non dipende esplicitamente dal tempo.

Definizione 74.17 (Trasformazione CHE CONSERVA LA STRUTTURA CANONICA DELLE EQUAZIONI) Una trasformazione di coordinate $z \mapsto Z(z,t)$ è una trasformazione che conserva la struttura canonica delle equazioni se per ogni funzione \mathcal{H} di classe C^2 esiste una funzione \mathcal{K} di classe C^2 tale che le soluzioni del sistema di equazioni $\dot{z} = E\partial\mathcal{H}/\partial z$ sono trasformate in soluzioni del sistema di equazioni $\dot{Z} = E\partial\mathcal{K}/\partial Z$.

Osservazione 74.18 In virtù del lemma 74.7, una trasformazione di coordinate risulta canonica se e solo se la sua inversa è una trasformazione canonica.

Osservazione 74.19 Le trasformazioni di coordinate considerate negli esempi 74.13 e 74.14 conservano la struttura canonica delle equazioni, con $\mathcal{K} = \alpha \beta \mathcal{H}$ nell'esempio 74.13 e con $\mathcal{K} = -\mathcal{H}$ nell'esempio 74.14. D'altra parte non sono trasformazioni canoniche, tranne il caso, nell'esempio 74.13, in cui si abbia $\alpha\beta = 1$ (cfr. l'esercizio 11). Se scambiamo tra loro le coordinate q e p e, in più, cambiamo il segno alle q o alle p, per esempio $(q, p) \mapsto (Q, P) = (p, -q)$, allora otteniamo una trasformazione canonica con $\mathcal{K} = \mathcal{H}$ (cfr. l'esercizio 12).

Teorema 74.20 Le trasformazioni canoniche conservano la struttura canonica delle equazioni.

Dimostrazione. Sia $z \mapsto Z(z,t)$ una trasformazione canonica. Allora, se $J = \partial Z/\partial z$ è la matrice jacobiana della trasformazione (i.e. $J_{ik} = \partial Z_i/\partial z_k$), si ha $J^T E J = E$, e quindi

$$\dot{Z} = \frac{\mathrm{d}}{\mathrm{d}t} Z(z(t), t) = J \, \dot{z} + \frac{\partial Z}{\partial t} = J \, E \frac{\partial \mathcal{H}}{\partial z} + \frac{\partial Z}{\partial t} = J E J^T \frac{\partial \hat{\mathcal{H}}}{\partial Z} + \frac{\partial Z}{\partial t},$$

dove abbiamo posto $\hat{\mathcal{H}}(Z,t) = \mathcal{H}(z(Z,t),t)$, indicato con $Z \mapsto z(Z,t)$ la trasformazione inversa di $z \mapsto Z(z,t)$ – si noti che una trasformazione canonica è sempre invertibile per il Lemma

74.7 – e abbiamo usato il fatto che

$$\frac{\partial F}{\partial z_i} = \frac{\partial F(z(Z,t),t)}{\partial z_i} = \sum_{k=1}^{2n} \frac{\partial F(z(Z,t),t)}{\partial Z_k} \frac{\partial Z_k}{\partial z_i} = \sum_{k=1}^{2n} \frac{\partial \hat{F}(Z,t)}{\partial Z_k} \frac{\partial Z_k}{\partial z_i}$$

$$= \sum_{k=1}^{2n} J_{ki} \frac{\partial \hat{F}(Z,t)}{\partial Z_k} = \sum_{k=1}^{2n} (J^T)_{ik} \frac{\partial \hat{F}(Z,t)}{\partial Z_k} = \left(J^T \frac{\partial \hat{F}(Z,t)}{\partial Z}\right)_i$$
(74.12)

per ogni funzione F di classe C^1 (avendo definito $\hat{F}(Z,t) := F(z(Z,t),t)$).

Per completare la dimostrazione dobbiamo quindi far vedere che esiste una funzione Ψ tale che $\partial Z/\partial t = E\partial\Psi/\partial Z$, i.e. tale che

$$f := -E \frac{\partial Z}{\partial t} = \frac{\partial \Psi}{\partial Z}.$$
 (74.13)

Consideriamo allora la forma differenziale di classe C^1 (sotto le ipotesi di regolarità della trasformazione di coordinate)

$$\omega = \sum_{k=1}^{2n} f_k(Z, t) \, dZ_k. \tag{74.14}$$

La forma differenziale (74.14) è esatta se esiste una funzione Ψ di classe C^2 tale che $f_k = \partial \Psi/\partial Z_k$, mentre è chiusa se si ha $\partial f_i/\partial Z_k = \partial f_k/\partial Z_i$ per ogni i, k = 1, ..., 2n (cfr. pag. 227). Inoltre localmente ogni forma differenziale è esatta se e solo se è chiusa (cfr. di nuovo i richiami a pag. 227). Per dimostrare la (74.13) basta far vedere che la forma differenziale (74.14) è chiusa, i.e. che la matrice A di elementi

$$A_{ik} = \frac{\partial f_i}{\partial Z_k}$$

è simmetrica. Si ha

$$A = \frac{\partial f}{\partial Z} = -E \frac{\partial}{\partial Z} \frac{\partial Z}{\partial t} = -E \frac{\partial}{\partial z} \frac{\partial Z}{\partial t} J^{-1} = -E \frac{\partial J}{\partial t} J^{-1},$$

che possiamo riscrivere

$$A = EJ_t EJ^T E, (74.15)$$

avendo posto $J_t := \partial J/\partial t$, per semplicità notazionale, e utilizzato la (74.9) con A = J. Si ha

$$A^{T} = (EJ_{t}EJ^{T}E)^{T} = E^{T}JE^{T}J_{t}^{T}E^{T} = -EJEJ_{t}^{T}E,$$
(74.16)

e quindi la differenza tra le (74.15) e (74.16) dà

$$A - A^{T} = E \left(J_{t} E J^{T} + J E J_{t}^{T} \right) E = E \frac{\partial}{\partial t} \left(J E J^{T} \right) E = E \frac{\partial E}{\partial t} E = 0,$$

dove si è utilizzato che J^T è simplettica (cfr. il lemma 74.8) per scrivere $JEJ^T=E$ e si è tenuto conto che E è costante. In conclusione si ha $A=A^T$, i.e. A è simmetrica, e quindi

esiste una funzione Ψ di classe C^2 tale che la forma differenziale (74.14) è il differenziale esatto di Ψ . Nelle nuove coordinate Z il campo vettoriale è un campo vettoriale hamiltoniano, con hamiltoniana $\mathcal{K}(Z,t) = \hat{\mathcal{H}}(z(Z,t),t) + \Psi(Z,t)$. Ovviamente se la trasformazione $z \mapsto Z(z,t)$ non dipende esplicitamente dal tempo, i.e. Z = Z(z), si ha $\mathcal{K}(Z) = \hat{\mathcal{H}}(z(Z))$.

Osservazione 74.21 La dimostrazione del teorema 74.20 mostra che le trasformazioni simplettiche conservano la struttura canonica delle equazioni del moto con la stessa hamiltoniana (espressa nelle nuove variabili). Se $z = (q, p) \mapsto Z = (Q, P)$ è una trasformazione simplettica, l'hamiltoniana $\mathcal{H}(z,t)$ viene trasformata in $\mathcal{K}(Z,t) = \mathcal{H}(z(Z),t)$. Nel caso di trasformazioni canoniche dipendenti dal tempo la nuova lamiltoniana è invece della forma $\mathcal{K}(Z,t) = \mathcal{H}(z(Z,t),t) + \Psi(Z,t)$, dove la funzione Ψ è determinata dalla (74.13).

Abbiamo visto che una trasformazione canonica conserva la struttura canonica delle equazioni del moto (cfr. il teorema 74.20). Gli esempi 74.13 e 74.14 mostrano che il viceversa non è vero, i.e. una trasformazione che conserva la struttura canonica delle equazioni non necessariamente è canonica (cfr. l'osservazione 74.19). Nel caso di trasformazioni indipendenti dal tempo tuttavia vale il seguente risultato.

Teorema 74.22 Sia $z \mapsto Z(z)$ una trasformazione di coordinate indipendente dal tempo. Le due affermazioni seguenti sono equivalenti.

- (1) La trasformazione è simplettica.
- (2) La trasformazione conserva la struttura canonica delle equazioni con la stessa hamiltoniana.

Dimostrazione. L'implicazione $(1) \Longrightarrow (2)$ segue dal teorema 74.20 e dall'osservazione 74.21.

Per dimostrare l'implicazione (2) \Longrightarrow (1) supponiamo che la trasformazione $z \mapsto Z(z)$ porti le soluzioni di $\dot{z} = E\partial \mathcal{H}/\partial z$ nelle soluzioni di $\dot{Z} = E\partial \mathcal{K}/\partial Z$, con $\mathcal{K}(Z,t) = \mathcal{H}(z(Z),t)$. Si ha allora

$$\dot{z}_{k} = \sum_{i=1}^{2n} \frac{\partial z_{k}}{\partial Z_{i}} \dot{Z}_{i} = \sum_{i=1}^{2n} (J^{-1})_{ki} \dot{Z}_{i},$$

$$\frac{\partial \mathcal{H}}{\partial z_{k}} = \sum_{i=1}^{2n} \frac{\partial \mathcal{K}}{\partial Z_{i}} \frac{\partial Z_{i}}{\partial z_{k}} = \sum_{i=1}^{2n} \frac{\partial \mathcal{K}}{\partial Z_{i}} J_{ik} = \sum_{i=1}^{2n} J_{ki}^{T} \frac{\partial \mathcal{K}}{\partial Z_{i}},$$

dove $J=\partial Z/\partial z$ è la matrice jacobiana della trasformazione $z\mapsto Z(z)$. Possiamo riscrivere allora l'equazione $\dot{z}=E\partial H/\partial z$ come

$$\dot{z} = J^{-1}\dot{Z} = EJ^T \frac{\partial \mathcal{K}}{\partial Z},$$

che dà

$$\dot{Z} = JEJ^T \frac{\partial \mathcal{K}}{\partial Z},$$

e, tenuto conto che si ha $\dot{Z} = E\partial \mathcal{K}/\partial Z$, otteniamo $JEJ^T = E$, i.e. J^T è simplettica, e quindi, per il Lemma 74.8, J è simplettica.

§75 Parentesi di Poisson

Definizione 75.1 (PARENTESI DI POISSON) Date due funzioni $F, G : \mathbb{R}^{2n+1} \to \mathbb{R}$ di classe C^1 chiamiamo parentesi di Poisson di F e G la funzione

$$\{F,G\} := \sum_{k=1}^{n} \frac{\partial F}{\partial q_k} \frac{\partial G}{\partial p_k} - \frac{\partial F}{\partial p_k} \frac{\partial G}{\partial q_k} = \left\langle \frac{\partial F}{\partial q}, \frac{\partial G}{\partial p} \right\rangle - \left\langle \frac{\partial F}{\partial p}, \frac{\partial G}{\partial q} \right\rangle = \left\langle \frac{\partial F}{\partial z}, E \frac{\partial G}{\partial z} \right\rangle, \quad (75.1)$$

dove z = (q, p) ed E è la matrice simplettica standard (71.13).

Osservazione 75.2 In (75.1), i prodotti scalari espressi in termini delle coordinate q e p sono in \mathbb{R}^n , mentre il prodotto scalare espresso in termini delle variabili z è in \mathbb{R}^{2n} .

Lemma 75.3 Le parentesi di Poisson godono delle seguenti proprietà:

- (1) sono antisimmetriche: $\{f,g\} = -\{g,f\};$
- (2) sono lineari: $\{(f+g), h\} = \{f, h\} + \{g, h\};$
- (3) soddisfano l'identità di Jacobi: $\{f, \{g, h\}\} + \{g, \{h, f\}\} + \{h, \{f, g\}\} = 0$.

Si noti che le parentesi di Poisson hanno le stesse proprietà del prodotto di Lie (cfr. la definizione 63.2). In realtà esiste una relazione profonda tra parentesi di Poisson e prodotto di Lie. Date due funzioni $A, B : \mathbb{R}^{2n+1} \to \mathbb{R}$ di classe C^2 possiamo considere i due campi vettoriali hamiltoniani ξ_A e ξ_B , di componenti, rispettivamente, $(E\partial A/\partial z)_k$ ed $(E\partial B/\partial z)_k$. Sia $[\xi_A, \xi_B]$ il campo vettoriale ottentuto come prodotto di Lie dei due campi vettoriali ξ_A e ξ_B . Si ha allora (cfr. l'esercizio 13).

$$[\xi_A, \xi_B] = \xi_{\{B,A\}},\tag{75.2}$$

dove $\{B,A\}$ è la funzione che si ottiene come parentesi di Poisson di B e A. Di conseguenza le proprietà delle parentesi di Poisson si possono anche dimostrare, invece di utilizzare direttamente la definizione, a partire dalle analoghe proprietà del prodotto di Lie, e dall'osservazione banale che, se ξ_{A+B} è il campo vettoriale hamiltoniano di componenti $(E\partial(A+B)/\partial z)_k$, si ha $\xi_{A+B} = \xi_A + \xi_B$.

Definizione 75.4 (INTEGRALE PRIMO) Dato un sistema dinamico, una funzione $f: \mathbb{R}^{2n} \to \mathbb{R}$ si dice integrale primo (o costante del moto) se la sua derivata totale rispetto al tempo è nulla.

Osservazione 75.5 Nel caso di un sistema hamiltoniano, data una funzione $f: \mathbb{R}^{2n} \times \mathbb{R} \to \mathbb{R}$ di classe C^1 , si ha

$$\frac{\mathrm{d}f}{\mathrm{d}t} = \{f, \mathcal{H}\} + \frac{\partial f}{\partial t},\tag{75.3}$$

dove \mathcal{H} è l'hamiltoniana. In particolare se f non dipende esplicitamente dal tempo ed è un integrale primo allora si ha $\{f,\mathcal{H}\}=0$: si dice in tal caso che la funzione f è in involuzione con l'hamiltoniana H. Viceversa, se f non dipende esplicitamente dal tempo e $\{f,\mathcal{H}\}=0$, allora f è un integrale primo per il sistema con hamiltoniana \mathcal{H} .

Teorema 75.6 Le equazioni del moto di un sistema dinamico sono canoniche se e solo se

$$\frac{\mathrm{d}}{\mathrm{d}t}\left\{F,G\right\} = \left\{\frac{\mathrm{d}F}{\mathrm{d}t},G\right\} + \left\{F,\frac{\mathrm{d}G}{\mathrm{d}t}\right\}.\tag{75.4}$$

per ogni coppia di funzioni $F, G: \mathbb{R}^{2n} \times \mathbb{R} \to \mathbb{R}$ di classe C^1 .

Dimostrazione. Dimostriamo prima che se le equazioni del moto sono canoniche vale la (75.4). Se $\dot{z} = E\partial \mathcal{H}/\partial z$, allora per ogni coppia di funzioni $F, G: \mathbb{R}^{2n} \times \mathbb{R} \to \mathbb{R}$ di classe C^1 si ha

$$\frac{\mathrm{d}F}{\mathrm{d}t} = \{F, \mathcal{H}\} + \frac{\partial F}{\partial t}, \qquad \frac{\mathrm{d}G}{\mathrm{d}t} = \{G, \mathcal{H}\} + \frac{\partial G}{\partial t}, \tag{75.5}$$

per la (75.3). Sempre per la stessa (75.3) concludiamo che si ha

$$\frac{\mathrm{d}}{\mathrm{d}t}\{F,G\} = \{\{F,G\},\mathcal{H}\} + \frac{\partial}{\partial t}\{F,G\},\tag{75.6}$$

dove possiamo riscrivere

$$\{\{F,G\},\mathcal{H}\} = -\{\mathcal{H},\{F,G\}\} = \{F,\{G,\mathcal{H}\}\} + \{G,\{\mathcal{H},F\}\}$$

= $\{F,\{G,\mathcal{H}\}\} - \{G,\{F,\mathcal{H}\}\} = \{F,\{G,\mathcal{H}\}\} + \{\{F,\mathcal{H}\},G\},$ (75.7)

poiché le parentesi di Poisson sono antisimmetriche e soddisfano l'identità di Jacobi, e

$$\frac{\partial}{\partial t}\{F,G\} = \left\{\frac{\partial F}{\partial t},G\right\} + \left\{F,\frac{\partial G}{\partial t}\right\}. \tag{75.8}$$

Inserendo le (75.7) e (75.8) nella (75.6) troviamo

$$\frac{\mathrm{d}}{\mathrm{d}t}\{F,G\} = \left\{ \{F,H\},G\} + \left\{ \frac{\partial F}{\partial t},G \right\} + \left\{ F,\{G,H\} \right\} + \left\{ F,\frac{\partial G}{\partial t} \right\} = \left\{ \frac{\mathrm{d}F}{\mathrm{d}t},G \right\} + \left\{ F,\frac{\mathrm{d}G}{\mathrm{d}t} \right\},$$

dove si sono utilizzate le (75.5).

Viceversa supponiamo che valga la (75.4) per ogni coppia di funzioni $F, G: \mathbb{R}^{2n} \times \mathbb{R} \to \mathbb{R}$ di classe C^1 . Se scriviamo $\dot{z} = f(z) := (R(z), -S(z))$, dobbiamo far vedere che deve esistere una funzione \mathcal{H} di classe C^2 tale che $f(z) = E\partial \mathcal{H}/\partial z$, i.e. $R(q, p) = \partial \mathcal{H}/\partial p$ e $S(q, p) = \partial \mathcal{H}/\partial q$.

La definizione (75.1) implica

$$\{q_i, p_j\} = \delta_{i,j}, \qquad \{q_i, q_j\} = 0, \qquad \{p_i, p_j\} = 0,$$
 (75.9)

così che, scrivendo $\dot{q}_i = R_i$ e $\dot{p}_i = -S_i$, in virtù delle definizioni che abbiamo dato, si trova, derivando le (75.9) rispetto al tempo e utilizzando le (75.4),

$$\frac{\partial R_i}{\partial q_i} = \frac{\partial S_j}{\partial p_i}, \qquad \frac{\partial R_i}{\partial p_j} = \frac{\partial R_j}{\partial p_i}, \qquad \frac{\partial S_i}{\partial q_j} = \frac{\partial S_j}{\partial q_i}.$$
 (75.10)

Se poniamo $\Psi = (S, R)$ possiamo riscrivere le (75.10) in modo più compatto come

$$\frac{\partial \Psi_i}{\partial z_j} = \frac{\partial \Psi_j}{\partial z_i}, \qquad i, j = 1, \dots, 2n,$$

che è la condizione perché la forma differenziale

$$\omega(z) = \sum_{k=1}^{2n} \Psi_k dz_k = \sum_{k=1}^{n} G_k dq_k + \sum_{k=1}^{n} F_k dp_k$$

sia chiusa. Poiché localmente una forma differenziale chiusa è esatta (cfr. pag. 74) ne concludiamo che esiste una funzione H tale che $\Psi_k = \partial \mathcal{H}/\partial z_k$ per $k = 1, \dots, 2n$, i.e. tale che $S_k = \partial \mathcal{H}/\partial q_k$ e e $R_k = \partial \mathcal{H}/\partial p_k$ per $k = 1, \dots, 2n$.

Teorema 75.7 (Teorema di Poisson) Se F e G sono integrali primi anche $\{F,G\}$ è un integrale primo.

Dimostrazione. Si applichi il teorema 75.6 e si usi il fatto che dF/dt = dG/dt = 0.

Definizione 75.8 (PARENTESI DI POISSON FONDAMENTALI) *Si definiscono* parentesi di Poisson fondamentali *le parentesi di Poisson*

$$\{q_i, q_j\}, \qquad \{q_i, p_j\}, \qquad \{p_i, p_j\},$$

 $per i, j = 1, \ldots, n.$

Osservazione 75.9 Possiamo riscrivere le relazioni (75.9) in modo più compatto come

$$\{z_i, z_i\} = E_{ij}, \quad i, j = 1, \dots, 2n,$$

dove E, al solito, è la matrice simplettica standard.

Le parentesi di Poisson di due funzioni dipendono dal sistema di coordinate in cui sono scritte. Quando vorremo sottolineare tale dipendenza scriveremo $\{F,G\}_z$, intendendo con tale simbolo

$$\{F,G\}_z = \left\langle \frac{\partial F}{\partial z}(z), E \frac{\partial G}{\partial z}(z) \right\rangle.$$

Se consideriamo una trasformazione di coordinate $z \mapsto Z(z,t)$ in generale si ha $\{F,G\}_z \neq \{F,G\}_Z$. Tuttavia vale il seguente risultato.

Teorema 75.10 Sia $z \mapsto Z(z,t)$ una trasformazione di coordinate. Le seguenti affermazioni sono equivalenti.

- (1) La trasformazione è canonica.
- (2) Si conservano le parentesi di Poisson, i.e. si ha

$$\{F,G\}_Z = \{F,G\}_z$$

per ogni coppia di funzioni $F, G: \mathbb{R}^{2n} \times \mathbb{R} \to \mathbb{R}$ di classe C^1 .

(3) Si conservano le parentesi di Poisson fondamentali, i.e.

$${Q_i, Q_j}_z = 0, {Q_i, P_j}_z = \delta_{i,j}, {P_i, P_j}_z = 0,$$
 (75.11)

 $per i, j = 1, \dots, n.$

Dimostrazione. Dimostrazioni le implicazioni $(1) \Longrightarrow (2) \Longrightarrow (3) \Longrightarrow (1)$.

Se la trasformazione $z\mapsto Z(z,t)$ è canonica allora la matrice $J=\partial Z/\partial z$ è simplettica; per il lemma 74.8, anche J^T è simplettica, i.e. $JEJ^T=E$. Siano F,G due funzioni di classe C^1 . Si ha allora

$$\{F,G\}_{z} = \left\langle \frac{\partial F}{\partial z}, E \frac{\partial G}{\partial z} \right\rangle = \left\langle J^{T} \frac{\partial F}{\partial Z}, E J^{T} \frac{\partial G}{\partial Z} \right\rangle$$
$$= \left\langle \frac{\partial F}{\partial Z}, J E J^{T} \frac{\partial G}{\partial Z} \right\rangle = \left\langle \frac{\partial F}{\partial Z}, E \frac{\partial G}{\partial Z} \right\rangle = \{F, G\}_{Z},$$

dove si è usato che $\partial F/\partial z = J^T \partial F/\partial Z$ (cfr. la (74.12)).

L'implicazione (2) \Longrightarrow (3) è ovvia: basta scegliere come funzioni F, G le coordinate canoniche e utilizzare le identità (75.9).

Supponiamo ora che valgano le (75.11), che riscriviamo (cfr. l'osservazione 75.9) come

$$\{Z_i, Z_j\}_z = E_{ij} (75.12)$$

Applicando la definizione di parentesi di Poisson troviamo

$$\begin{aligned} \left\{ Z_{i}, Z_{j} \right\}_{z} &= \left\langle \frac{\partial Z_{i}}{\partial z}, E \frac{\partial Z_{j}}{\partial z} \right\rangle = \sum_{n,m} \frac{\partial Z_{i}}{\partial z_{n}} E_{nm} \frac{\partial Z_{j}}{\partial z_{m}} \\ &= \sum_{n,m} J_{in} E_{nm} J_{jm} = \sum_{n,m} J_{in} E_{nm} J_{mj}^{T} = (JEJ^{T})_{ij}, \end{aligned}$$

che introdotta in (75.12) dà $JEJ^T=E$: quindi J^T è simplettica, e, per il Lemma 74.8, anche la matrice J è simplettica. Da qui segue che la trasformazione $z\mapsto Z(z,t)$ è canonica.

Il teorema 75.10 fornisce un criterio pratico per riconiscere se una data trasformazione di coordinate è canonica. Basta infatti verificare che valgano le relazioni (75.11): si tratta quindi di verificare un numero finito di condizioni. Si vede facilmente che si tratta di n(2n-1) condizioni (cfr. l'esercizio 14).