ESERCIZI 427

Nota bibliografica Nel presente capitolo abbiamo seguito [Gallavotti-2] per il §85. La discussione delle serie di Lindstedt e della loro rappresentazione grafica in termini di alberi (cfr. i paragrafi §87 e 88) è invece inspirata a [Gentile & Mastropietro].

Per un'introduzione alla teoria dei grafi si veda, per esempio, [Harary & Palmer] o [Bollobas]. Per definizioni e proprietà delle frazioni continue (cfr. gli esercizi 17÷43) si veda [Hardy & Wright], [Khinčin] o [Schmidt].

Per un approfondimento sui sistemi integrabili, nell'ambito della meccanica classica, si può vedere, per esempio, [Babelon et al.]. Per una (possibile) dimostrazione del teorema KAM rimandiamo al capitolo successivo; un'esposizione esauriente della storia del teorema KAM e della sua connessione con i lavori precedenti e con il contesto storico, senza insistere troppo sugli aspetti matematici, si può trovare in [Dumas].

Esercizi

Esercizio 1 Si dimostri la stima (84.4). [Soluzione. Si consideri prima il caso n=1. Sia $f(\varphi)$ una funzione periodica in φ di periodo 2π e analitica nella striscia $\Sigma_{\xi} := \{ \varphi \in \mathbb{C} : \Re \varphi \in \mathbb{T}, |\Im \varphi| \leq \xi \}$. Sviluppiamo la funzione in serie di Fourier:

$$f(\varphi) = \sum_{\nu \in \mathbb{Z}} e^{i\nu\varphi} f_{\nu}, \qquad f_{\nu} := \frac{1}{2\pi} \int_{-\pi}^{\pi} d\varphi \, e^{-i\nu\varphi} f(\varphi).$$

Dato $\nu \in \mathbb{Z} \setminus \{0\}$, poniamo $\sigma(\nu) := \nu/|\nu|$. Sia $\gamma(\nu)$ il contorno nel piano complesso che ha come frontiera il segmento $\gamma_0 = [-\pi, \pi]$ lungo l'asse reale, il segmento $\gamma_1 = \{\varphi \in \mathbb{C}, \Re \varphi \in [-\pi, \pi], \Im \varphi = -\sigma(\nu)\xi\}$ e i due segmenti verticali γ_2 e γ_3 che uniscono gli estremi di γ_0 e γ_1 . Assumiamo che γ sia orientato in maniera che il segmento γ_0 sia percorso da $-\pi$ a π e gli altri segmenti in maniera consistente (cfr. la figura 19.19). Poiché la funzione f è analitica in Σ_ξ si ha (cfr. l'esercizio 27 del capitolo 11)

$$\oint_{\gamma} f(\varphi) e^{-i\nu\varphi} d\varphi = 0.$$

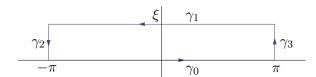


Figura 19.19: Contorno d'integrazione γ nel caso in cui sia $\sigma(\nu) < 0$.

D'altra parte

$$\begin{split} \oint_{\gamma} f(\varphi) \, \mathrm{e}^{-i\nu\varphi} \, \mathrm{d}\varphi \, &= \, \int_{\gamma_0} f(\varphi) \, \mathrm{e}^{-i\nu\varphi} \, \mathrm{d}\varphi + \int_{\gamma_3} f(\varphi) \, \mathrm{e}^{-i\nu\varphi} \, \mathrm{d}\varphi - \int_{\gamma_1} f(\varphi) \, \mathrm{e}^{-i\nu\varphi} \, \mathrm{d}\varphi - \int_{\gamma_2} f(\varphi) \, \mathrm{e}^{-i\nu\varphi} \, \mathrm{d}\varphi \\ &= \, \int_{\gamma_0} f(\varphi) \, \mathrm{e}^{-i\nu\varphi} \, \mathrm{d}\varphi - \int_{\gamma_1} f(\varphi) \, \mathrm{e}^{-i\nu\varphi} \, \mathrm{d}\varphi, \end{split}$$

avendo usato che gli integrali lungo γ_2 e lungo γ_3 sono uguali per la periodicità di f. Si ottiene quindi

$$\int_{-\pi}^{\pi} f(\varphi) e^{-i\nu\varphi} d\varphi = \int_{\gamma_0} f(\varphi) e^{-i\nu\varphi} d\varphi = \int_{\gamma_1} f(\varphi) e^{-i\nu\varphi} d\varphi = \int_{-\pi}^{\pi} f(\varphi + i\sigma(\nu)\xi) e^{-i\nu\varphi} e^{-|\nu|\xi} d\varphi,$$

da cui segue che

$$|f_{\nu}| \leq \frac{1}{2\pi} e^{-|\nu|\xi} \int_{-\pi}^{\pi} \max_{\varphi' \in \Sigma_{\xi}} |f(\varphi')| d\varphi \leq e^{-\xi|\nu|} \max_{\varphi' \in \Sigma_{\xi}} |f(\varphi')|.$$

Se $f = f(\varphi_1, \ldots, \varphi_n)$ dipende da n variabili, è periodica in ciascuna di esse di periodo 2π ed è analitica nell'insieme $\Sigma_{\xi} := \{(\varphi_1, \ldots, \varphi_n) \in \mathbb{C}^n : \Re \varphi_i \in \mathbb{T}, \, |\Im \varphi_i| \leq \xi, \, i = 1, \ldots, n\}$, si ragiona in modo analogo integrando una variabile alla volta. Si trova

$$|f_{\nu}| \le e^{-\xi|\nu_1|} \dots e^{-\xi|\nu_n|} \max_{\substack{|\Im \varphi_1|,\dots,|\Im \varphi_n| \le \xi}} |f(\varphi_1,\dots,\varphi_n)|,$$

da cui segue l'asserto notando che $|\nu_1| + \ldots + |\nu_n| \ge |\nu|$.]

Esercizio 2 Si scriva la perturbazione nell'hamiltoniana (84.5) in variabili azione-angolo.

Esercizio 3 Sia I la matrice in (84.9). Si dimostri la (84.10).

Esercizio 4 Dato $x = (x_1, \ldots, x_n) \in \mathbb{R}^n$, sia |x| la norma euclidea di x, i.e. $|x|^2 = x_1^2 + \ldots + x_n^2$. Si definisca $|x|_1 := |x_1| + \ldots + |x_n|$. Si dimostri che $|x|_1$ è una norma e che si ha $|x| \leq |x|_1 \leq \sqrt{n}|x|$. [Soluzione. Si verifica facilmente che $|\cdot|_1$ verifica le proprietà della norma (cfr. la definizione 1.31). Si ha inoltre

$$|x|_1^2 = \sum_{i,j=1}^n |x_i x_j| \quad \Longrightarrow \quad |x|^2 = \sum_{i=1}^n x_i^2 \le \sum_{i,j=1}^n |x_i x_j| \le \frac{1}{2} \sum_{i,j=1}^n \left(x_i^2 + x_j^2 \right) \le n|x|^2,$$

da cui segue l'asserto.]

Esercizio 5 Si dimostri la (84.22). [Soluzione. Si ha

$$\sum_{\substack{\nu \in \mathbb{Z}^n \\ |\nu|_1 = m}} 1 = \sum_{\nu_1 = -m}^m \sum_{\nu_2 = -(m - |\nu_1|)}^{m - |\nu_1|} \dots \sum_{\nu_{n-1} = -(m - |\nu_1| - \dots - |\nu_{n-2}|)}^{m - |\nu_1| - \dots - |\nu_{n-2}|} 2,$$

dato che, scelti ν_1, \dots, ν_{n-1} , allora ν_n può assumere solo i due valori $\nu_n = \pm (m - |\nu_1| - \dots - |\nu_{n-1}|)$. Si ottiene quindi

$$\sum_{\substack{\nu \in \mathbb{Z}^n \\ |\nu|_1 = m}} 1 \le 2(2m+1)^{n-1} \le 3^n m^{n-1},$$

poiché ogni somma si può stimare, ignorando i vincoli, con (2m+1).

Esercizio 6 Si dimostri che per ogni $x \in \mathbb{R}_+$, per ogni $p \in \mathbb{N}$ e per ogni $\xi > 0$ si ha $x^p \leq p! \xi^{-p} e^{\xi x}$. [Soluzione. Si ha

$$x^p = p! \, \xi^{-p} \frac{1}{p!} \, (\xi x)^p \le p! \, \xi^{-p} \sum_{k=0}^{\infty} \frac{1}{k!} \, (\xi x)^k = p! \, \xi^{-p} \, e^{\xi x}.$$

purché $\xi > 0$.]

ESERCIZI 429

Esercizio 7 Sia $f: \mathbb{R}_+ \to \mathbb{R}_+$ la funzione definita da $f(x) := x^p e^{-\xi x}$, con $p, \xi > 0$. Si dimostri che

- f raggiunge il suo massimo $M := p^p e^{-p} \xi^{-p}$ in $x_0 = p/\xi$;
- si ha $f(x) \ge e^{p/2} p^p e^{-p} \xi^{-p} \ \forall x \in [x_0/2, x_0];$
- si ha $f(x) \ge (4e^{-1})^p p^p e^{-p} \xi^{-p} \ \forall x \in [x_0, 2x_0]$.

[Soluzione. La derivata di f(x) è $f'(x) = x^{p-1} e^{-\xi x} (p-\xi x)$, quindi f'(x) = 0 se e solo se $x = x_0 := p/\xi$; inoltre f'(x) > 0 per $x < x_0$ e f'(x) < 0 per $x > x_0$, quindi x_0 è un punto di massimo, così che $M = f(x_0)$. Inoltre si ha $f(x) \ge f(x_0/2) \ \forall x \in (x_0/2, x_0]$ e $f(x) \ge f(2x_0) \ \forall x \in [x_0, 2x_0]$. Calcolando esplicitamente i valori di $f(x_0, f(x_0/2 \text{ e } f(2x_0) \text{ segue l'asserto.}$ Si noti che se $p \in \mathbb{N}$, allora $M \le p!\xi^{-p}$, poiché $p^p \le p!e^p$ (per l'esercizio 6 con x = p e $\xi = 1$).]

Esercizio 8 Si consideri l'intervallo $[n_1, n_2] \subset \mathbb{R}_+$, dove $n_1, n_2 \in \mathbb{N}$, con $n_2 > n_1$. Si dimostri che, se $f: [n_1, n_2] \to \mathbb{R}$ è una funzione positiva continua crescente, si ha (cfr. la figura 19.20)

$$\sum_{n=n_1}^{n_2-1} f(n) \le \int_{n_1}^{n_2} \mathrm{d}x \, f(x) \le \sum_{n=n_1+1}^{n_2} f(n),$$

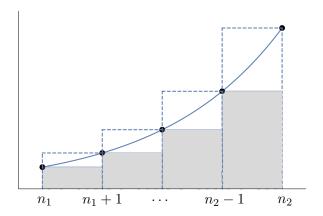


Figura 19.20: Relazione tra la somma di f(n) e l'integrale di f(x) nel caso in cui f sia crescente.

mentre, se $f:[n_1,n_2]\to\mathbb{R}$ è una funzione positiva continua decrescente, si ha (cfr. la figura 19.21)

$$\sum_{n=n_1+1}^{n_2} f(n) \le \int_{n_1}^{n_2} \mathrm{d}x \, f(x) \le \sum_{n=n_1}^{n_2-1} f(n).$$

Si deduca dall'ultimo risultato che, se $\{a_n\}$ è una successione tale che $a_n = f(n)$, per qualche funzione continua $f: \mathbb{R}_+ \to \mathbb{R}_+$ che sia decrescente per $x > x_0$, per qualche $x_0 \in \mathbb{R}_+$, allora la serie $\sum_{n=1}^{\infty} a_n$ converge se e solo se f(x) è integrabile (*criterio integrale per la convergenza di una serie*) e che si ha

$$\sum_{n_0+1}^{\infty} a_n \le \int_{n_0}^{\infty} \mathrm{d}x \, f(x)$$

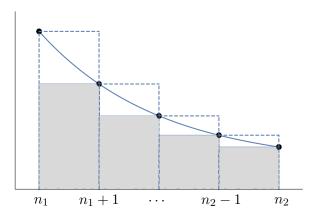


Figura 19.21: Relazione tra la somma di f(n) e l'integrale di f(x) nel caso in cui f sia decrescente.

per ogni $n_0 \ge x_0$. [Suggerimento. Si consideri il caso in cui f sia crescente. La somma a sinistra si può interpretare come la somma delle aree di n_2-n_1 rettangoli che hanno base di lunghezza 1 e altezza pari a f(n), con $n=n_1,\ldots,n_2-1$ (cfr. la regione ombreggiata della figura 19.20); analogamente la somma a destra rappresenta la somma di n_2-n_1 rettangoli che hanno base di lunghezza 1 e altezza pari a f(n), con $n=n_1+1,\ldots,n_2$ (cfr. la regione con la frontiera tratteggiata della figura 19.20). L'integrale, che rappresenta l'area dell'insieme racchiuso tra il grafico di f, l'asse delle x e le due rette verticali passanti per $x=n_1$ e $x=n_2$, è compreso tra le due somme. Nel caso in cui f sia descrescente si ragiona in maniera analoga, tenendo presente la figura 19.21. In particolare, se $a_n=f(n)$, per ogni $N>n_0>x_0$ si ha

$$\sum_{n=n_0+1}^{N} a_n \le \int_{n_0}^{N} \mathrm{d}x \, f(x) \le \sum_{n=n_0}^{N-1} a_n$$

e, prendendo il limite $N \to \infty$, si trova

$$\sum_{n=n_0+1}^{\infty} a_n \le \int_{n_0}^{+\infty} \mathrm{d}x \, f(x) \le \sum_{n=n_0}^{\infty} a_n,$$

che mostra che la serie converge se e solo se l'integrale converge e implica la stima dall'alto.]

Esercizio 9 Si dimostri che, per ogni $p \in \mathbb{R}$ e per ogni $\xi > 0$, si ha

$$\sum_{\nu \in \mathbb{Z}^n} |\nu|^p e^{-\xi|\nu|} \le A \, \xi^{-n-p},$$

per un'opportuna costante A dipendente solo da p e da n. [Soluzione. Se si pone $\xi_1 := \xi/\sqrt{n}$, si ha

$$\sum_{\nu \in \mathbb{Z}^n} |\nu|^p \mathrm{e}^{-\xi|\nu|} \leq \sum_{\nu \in \mathbb{Z}^n} |\nu|_1^p \mathrm{e}^{-\xi_1|\nu|_1} \leq \sum_{m=1}^\infty \sum_{\substack{\nu \in \mathbb{Z}^n \\ |\nu|_1 = m}} m^p \mathrm{e}^{-\xi_1 m} \leq 3^n \sum_{m=1}^\infty m^{p+n-1} \mathrm{e}^{-\xi_1 m},$$

dove $|\nu|_1 = |\nu_1| + \ldots + |\nu_n|$ (cfr. l'esercizio 4) e si è tenuto conto anche dell'esercizio 5. Definiamo $f(x) := x^s e^{-\xi_1|x|}$, con s = p + n - 1; per l'esercizio 7 la funzione f(x) è crescente fino a $x_0 := s/\xi_1$ e

ESERCIZI 431

decrescente per $> x_0$. Sia $m_0 := \lfloor x_0 \rfloor$, dove $\lfloor x \rfloor$ è la parte intera di x, i.e. il più grande intero minore o uguale a x. Se $m_0 \ge 1$, si ha (cfr. l'esercizio 8)

$$\sum_{m=1}^{\infty} m^{p+n-1} e^{-\xi_1 m} = \sum_{m=1}^{\infty} f(m) = \sum_{m=1}^{m_0 - 1} f(m) + f(m_0) + f(m_0 + 1) + \sum_{m=m_0 + 2}^{\infty} f(m)$$

$$\leq \int_1^{m_0} dx f(x) + f(m_0) + f(m_0 + 1) + \int_{m_0 + 1}^{+\infty} dx f(x) \leq 2f(x_0) + \int_0^{+\infty} dx f(x).$$

Si ha $f(x_0) \leq s^s e^{-s} \xi_1^{-s} \leq s! \xi_1^{-s}$ (sempre per l'esercizio 7), mentre l'integrale si può riscrivere

$$\int_0^{+\infty} \mathrm{d}x \, f(x) = \int_0^{+\infty} \mathrm{d}x \, x^s \mathrm{e}^{-\xi_1 x} = \xi_1^{-s-1} \int_0^{+\infty} \mathrm{d}x \, x^s \mathrm{e}^{-x}.$$

Se poniamo $s_1 := \lceil s \rceil$, dove $\lceil x \rceil$ è la parte intera superiore di x (i.e. il più piccolo intero non minore di x), l'ultimo integrale si può stimare con

$$\int_0^{+\infty} \mathrm{d}x \, x^s \mathrm{e}^{-x} = \int_0^1 \mathrm{d}x \, \mathrm{e}^{-x} + \int_0^1 \mathrm{d}x \, x^{s_1} \mathrm{e}^{-x} \le \left(1 - \frac{1}{\mathrm{e}}\right) + s_1! 2^{s_1} \int_0^{\infty} \mathrm{d}x \, \mathrm{e}^{-x/2} \le 1 + s_1! 2^{s_1+1},$$

dove si è tenuto conto dell'esercizio 6 con $\xi = 1/2$. Poiché, se $m_0 \ge 1$, si ha $s/\xi_1 \ge x_0 \ge m_0 > 1$ e quindi $2^s > \xi_1$, si ottiene

$$2f(x_0) + \int_0^\infty dx f(x) \le 2s_1! \xi_1^{-s} + \xi_1^{-s-1} + s_1! 2^{s_1+1} \xi_1^{-s-1}$$

$$\le s_1! 2^{s_1+2} \xi_1^{-s-1} + s_1! 2^{s_1+1} \xi_1^{-s-1} \le s_1! 2^{s_1+3} \xi_1^{-s-1},$$

dove si è usato che la funzione $s \mapsto s^s e^{-s}$ è crescente. Se invece $m_0 = 0$, si ha semplicemente

$$\sum_{m=1}^{\infty} m^{p+n-1} e^{-\xi_1 m} = \sum_{m=1}^{\infty} f(m) \le \int_0^{\infty} dx f(x),$$

e l'integrale si stima come nel caso precedente. In particolare si ha $A = 3^n(\sqrt{n})^{p+n}s_1!2^{p+n+3}$.

Esercizio 10 Sia a_0, a_1, a_2, \ldots una successione reale tale che $0 \le a_k < 1 \ \forall k \in \mathbb{N}$. Si definisca

$$p_n := \prod_{k=0}^n \left(1 - a_k\right).$$

Si dimostri che esiste finito il limite $p = \lim_{n \to \infty} p_n$ e si ha $p \ge 0$. [Soluzione. Poiché $1 - a_k > 0$ $\forall k \in \mathbb{N}$, si ha $p_n > 0$. D'altra parte $p_{n+1} = (1 - a_{n+1}) p_n < p_n$ per ogni $n \in \mathbb{N}$, quindi la successione $\{p_n\}$ è decrescente. Ne segue (cfr. l'esercizio 7 del capitolo 1) che la successione converge e il suo limite p è non negativo.]

Esercizio 11 Con le notazioni dell'esercizio 10, si dice che il prodotto infinito

$$\prod_{k=0}^{\infty} (1 - a_k) = \lim_{n \to \infty} \prod_{k=0}^{n} (1 - a_k) = \lim_{n \to \infty} p_n$$