FM210 - Meccanica Analitica Anno Accademico 2022/2023

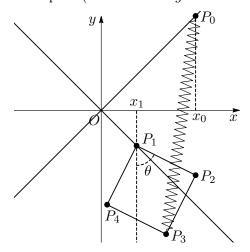
Recupero della seconda prova di esonero (21-06-2023)

ESERCIZIO 1. [6+2] Un sistema meccanico è costituito da 2 punti materiali P_1 e P_2 , entrambi di massa m, che si muovono nel piano verticale xy nel modo seguente:

- il punto P_1 è collegato all'origine O da un'asta inestensibile di lunghezza $\ell=1$ e massa trascurabile;
- il punto P_2 scorre lungo l'asse x;
- una molla di lunghezza a riposo nulla e costante elastica k collega P_1 al punto Q = (0, -2);
- una seconda molla, sempre di lunghezza a riposo nulla e costante elastica k, collega P_1 a P_2 ;
- sul sistema agisce inoltre la forza peso (si indichi con g l'accelerazione di gravità).
- 1. Si scrivano la lagrangiana del sistema e le equazioni di Eulero-Lagrange, utilizzando come coordinate lagrangiane l'angolo che il segmento OP_1 forma con l'asse y discendente e l'ascissa x del punto P_2 .
- 2. Si determinino le configurazioni di equilibrio e se discuta la stabilità.
- 3. [Si discuta come cambiano le configurazioni di equilibrio e la loro stabilità nel caso in cui il piano verticale ruoti intorno all'asse y con velocità angolare costante ω .]

ESERCIZIO 2. [6+3] Un sistema meccanico è costituito da 5 punti materiali P_0 , P_1 , P_2 , P_3 e P_4 , di cui il primo ha massa $m_0 = 2$, mentre gli altri quattro hanno tutti massa m = 1 e sono disposti ai 4 vertici di un quadrato indeformabile di massa trascurabile e di lato $\ell = 1$. I punti si muovono nel piano verticale xy nel modo seguente:

- il punto P_0 scorre lungo la retta di equazione y = x;
- il punto P_1 scorre lungo la retta di equazione y = -x;
- il punto P_3 , che occupa l'estremo opposto della diagonale del quadrato rispetto a P_1 , è collegato al punto P_0 da una molla di lunghezza a riposo trascurabile e costante elastica k,
- sul sistema agisce inoltre la forza peso (si indichi con q l'accelerazione di gravità).



- 1. Si scrivano la lagrangiana del sistema e le corrispondenti equazioni di Eulero-Lagrange utilizzando come coordinate lagrangiane l'ascissa x_0 del punto P_0 , l'ascissa x_1 del punto P_1 e l'angolo θ che il lato del quadrato che collega i punti P_1 e P_2 forma con l'asse y discendente (cfr. la figura).
- 2. Si determinino le configurazioni di equilibrio del sistema e se ne discuta la stabilità. Può essere utile utilizzare le identità trigonometriche, valide per $\theta \in (-\pi/2, \pi/2)$,

$$\sin \theta = \frac{\tan \theta}{\sqrt{1 + \tan^2 \theta}}, \qquad \cos \theta = \frac{1}{\sqrt{1 + \tan^2 \theta}}.$$

3. [Si calcoli la forza vincolare che agisce sul punto P_0 .]

ESERCIZIO 3. [6+2] Un sistema meccanico è costituito da un disco omogeneo, di raggio r=1 e massa M=2, e da due punti materiali P_1 e P_2 , entrambi di massa m=1, che si muovono nel piano xy nel modo seguente:

- il punto P_1 scorre lungo la retta di equazione y = -x;
- il punto P_2 scorre lungo l'asse y;
- il centro C del disco è collegato ai due punti P_1 e P_2 tramite due molle di lunghezza a riposo trascurabile e costante elastica k;
- il disco è libero di ruotare intorno al proprio asse, i.e. all'asse ortogonale al disco e passante per C;
- sul sistema agisce inoltre la forza peso (si indichi con g l'accelerazione di gravità).
- 1. Si scrivano la lagrangiana del sistema e le equazioni di Eulero-Lagrange, utilizzando come coordinate lagrangiane le coordinate cartesiane (x_0, y_0) del centro del disco, l'ascissa x del punto P_1 , l'ordinata y del punto P_2 e l'angolo θ che descrive la rotazione del disco intorno al proprio asse.
- 2. Si determinino le configurazioni di equilibrio e se discuta la stabilità.
- 3. [Si studi come cambiano le configurazioni di equilibrio nel caso in cui il piano xy ruoti intorno al'asse y con velocità angolare costante ω .]

ESERCIZIO 4. [6+2] Si consideri la trasformazione di coordinate

$$\begin{cases} Q = \frac{p e^{-q^2}}{1 + 2q^2}, \\ P = \frac{p^2 e^{-2q^2}}{(1 + 2q^2)^2} - q e^{q^2}, \end{cases}$$

- 1. Si dimostri che è canonica trovandone una funzione generatrice di seconda specie F(q, P).
- 2. Data l'hamiltoniana

$$H(q,p) = \frac{p^2 e^{-2q^2}}{(1+2q^2)^2} - 2q e^{q^2},$$

si determini l'hamiltoniana $\mathcal{K}(Q,P)$ nel sistema di coordinate (Q,P).

- 3. Si risolvano le equazioni di Hamilton nel sistema di coordinate (Q, P).
- 4. [Si usi il risultato del punto precedente per trovare la soluzione nelle equazioni di Hamilton nelle variabili (q, p) con dati iniziali (q(0), p(0)) = (1, 1).]

ESERCIZIO 5. [6+3] Si consideri la trasformazione di coordinate

$$\begin{cases} Q_1 = 2q_2\sqrt{p_2 - q_1^2}, \\ Q_2 = q_1(1 - q_1p_1 + 2q_1^2q_2), \\ P_1 = \sqrt{p_2 - q_1^2}, \\ P_2 = \frac{p_1 - 2q_1q_2}{1 - q_1p_1 + 2q_1^2q_2}. \end{cases}$$

- 1. Si determini il dominio \mathcal{D} della trasformazione.
- 2. Si dimostri che la trasformazione è canonica trovandone una funzione generatrice di seconda specie $F(q_1, q_2, P_1, P_2)$. Può essere utile notare che $P_2(1 + 2q_1^2q_2) + 2q_1q_2 = 2q_1q_2(1 + q_1P_2) + P_2$.
- 3. Si verifichi che la funzione generatrice $F = F(q_1, q_2, P_1, P_2)$ trovata al punto precedente soddisfa la condizione che la matrice 2×2 di elementi $\partial^2 F/\partial q_i \partial P_j$ è non singolare nel dominio \mathcal{D} .
- 4. [Si dimostri esplicitamente che si conservano le parentesi di Poisson fondamentali.]