Lezioni di MATEMATICA I Corso di Laurea in Scienze Geologiche A.A. 2022-2023

Guido Gentile

Ultima versione: 7 dicembre 2022

Indice

1	Nui	meri reali e numeri complessi	8				
	1.1	Notazioni	6				
	1.2	Numeri naturali					
	1.3	Numeri interi	13				
	1.4	Numeri razionali	13				
	1.5	Numeri reali	15				
	1.6	Definizione assiomatica dei numeri reali	16				
	1.7	Intervalli	18				
	1.8	Numeri complessi	20				
		1.8.1 Radici di un polinomio a coefficienti complessi	22				
		1.8.2 Radici di un polinomio a coefficienti reali	23				
		1.8.3 Fattorizzazione di un polinomio	23				
		1.8.4 Calcolo delle radici di un polinomio	24				
2							
4	Fun	nzioni reali di variabile reale	25				
Z	Fun 2.1	nzioni reali di variabile reale Piano cartesiano					
4			25				
4	2.1	Piano cartesiano	25 26				
4	2.1 2.2	Piano cartesiano	25 26				
3	2.1 2.2 2.3 2.4	Piano cartesiano	25 26 27				
	2.1 2.2 2.3 2.4	Piano cartesiano	25 26 27 30 33				
	2.1 2.2 2.3 2.4 Fun	Piano cartesiano	25 26 27 30 33				
	2.1 2.2 2.3 2.4 Fun 3.1	Piano cartesiano Estremo superiore ed estremo inferiore Modulo di un numero reale Funzione reale di variabile reale zioni elementari principali Funzioni elementari principali	25 26 27 30 33 33				
	2.1 2.2 2.3 2.4 Fun 3.1 3.2	Piano cartesiano Estremo superiore ed estremo inferiore Modulo di un numero reale Funzione reale di variabile reale nzioni elementari principali Funzioni elementari principali Domini e grafici delle funzioni potenze Equazioni di primo e secondo grado	25 26 27 30 33 33 35				
	2.1 2.2 2.3 2.4 Fun 3.1 3.2	Piano cartesiano	25 26 27 30 33 33 35				

		3.4.1 Disquazione di primo grado $ax + b \ge 0, a \ne 0$		38
		3.4.2 Disquazione di primo grado $ax + b \le 0, a \ne 0$. :	38
		3.4.3 Conclusioni	. ;	38
	3.5	Disequazioni di secondo grado	. 3	39
		3.5.1 Disequazione di secondo grado $ax^2 + bx + c \ge 0, a \ne 0$		39
		3.5.2 Disequazione di secondo grado $ax^2 + bx + c > 0, a \neq 0$		39
		3.5.3 Disequazione di secondo grado $ax^2 + bx + c \le 0, a \ne 0$. 4	40
		3.5.4 Disequazione di secondo grado $ax^2 + bx + c < 0, a \neq 0$. 4	40
	3.6	Domini e grafici delle funzioni trigonometriche	. 4	42
	3.7	Dominio e grafico della funzione esponenziale	. 4	47
	3.8	Dominio e grafico della funzione logaritmo	. 4	49
	3.9	Simmetrie e parità	. 5	50
	3.10	Esercizi	. 5	52
	_			
4		zioni composte e inverse		57
	4.1	Proprietà delle funzioni		
	4.2	Composizione di funzioni		
	4.3	Funzione inversa		
	4.4	Funzioni trigonometriche inverse		60
	4.5	Funzioni elementari		61
	4.6	Esercizi	. (<u> </u>
5	Lim	niti	6	35
	5.1	Funzione distanza	. 6	₆₅
	5.2	Limite	. (66
	5.3	Limite destro e sinistro	. 6	39
	5.4	Funzioni limitate e funzioni illimitate	. 6	39
	5.5	Teoremi sui limiti	. 7	71
	5.6	Alcuni esempi e limiti notevoli	. 7	74
	5.7	Un limite notevole: il numero di Nepero	. 7	76
		5.7.1 Prima parte	. 7	76
		5.7.2 Seconda parte	. 7	77
	5.8	Esercizi	. 7	78
6	Fun	nzioni continue	8	33
	6.1	Definizione ed esempi		33
		•		

	6.2	Proprietà delle funzioni continue
	6.3	Funzioni discontinue
	6.4	Teoremi sulle funzioni continue
	6.5	Infinitesimi
	6.6	Esercizi
7	Fun	zioni derivabili 95
	7.1	Derivata
	7.2	Proprietà della derivata
		7.2.1 Interpretazione grafica della derivata
		7.2.2 Regole di derivazione
	7.3	Derivata di una funzione composta
	7.4	Derivata della funzione inversa
	7.5	Derivate di ordine qualsiasi
		7.5.1 Derivata seconda
		7.5.2 Derivate di ordine superiore
	7.6	Esercizi
8	Teo	remi sulle funzioni derivabili 107
	8.1	Teoremi di Rolle, Lagrange e Cauchy
	8.2	Forme indeterminate
	8.3	Teoremi di de l'Hôpital
		8.3.1 Forme indeterminate della forma $0/0$
		8.3.2 Forme indeterminate della forma ∞/∞
	8.4	Esercizi
9	Stu	dio del grafico di una funzione 117
	9.1	Asintoti
	9.2	Funzioni crescenti e decrescenti
	9.3	Massimi e minimi assoluti di una funzione
	9.4	Primo studio del grafico di una funzione
	9.5	Studio della derivata seconda
	9.6	Funzioni convesse e funzioni concave
	9.7	Schema per lo studio del grafico di una funzione
	9.8	Esercizi

10	Vettori	187
	10.1 Vettori nel piano	187
	10.2 Rette nel piano	190
	10.3 Vettori linearmente indipendenti nel piano	192
	10.4 Prodotto scalare nel piano	194
	10.5 Vettori nello spazio	198
	10.6 Prodotto vettoriale	199
	10.7 Rette nello spazio	201
	10.8 Piani	202
	10.9 Vettori in \mathbb{R}^n	204
	10.10Esercizi	205
		~
11		211
	11.1 Matrici	
	11.2 Prodotto di matrici	
	11.3 Determinante di una matrice	
	11.4 Matrice inversa	
	11.5 Matrici simmetriche	
	11.6 Sistemi di equazioni lineari	
	11.7 Autovalori e autovettori di matrici $2 \times 2 \dots \dots \dots \dots$	
	11.8 Autovalori e autovettori di matrici $n \times n$	
	11.9 Diagonalizzazione di una matrice $2 \times 2 \dots \dots \dots \dots \dots$	
	11.10Esercizi	237
12	Integrali	247
	12.1 Integrali definiti	247
	12.2 Proprietà degli integrali definiti	251
	12.3 Integrali indefiniti	
	12.4 Tabella di integrali indefiniti	
13	Metodi di integrazione	259
	13.1 Integrazione per sostituzione	259
	13.2 Integrazione per parti	
	13.3 Integrazione di funzioni razionali	
	13.4 Esercizi	

14 Form	nula di	Taylor	27 9
14.1	Appross	simazioni di funzioni con polinomi	279
14.2	Formula	a di MacLaurin di funzioni elementari	283
	14.2.1	Formula di MacLaurin per la funzione e^x	283
	14.2.2	Formula di MacLaurin per la funzione $\sin x$	283
	14.2.3	Formula di MacLaurin per la funzione $\cos x$	285
	14.2.4	Formula di MacLaurin per la funzione $1/(1-x)$	285
	14.2.5	Formula di MacLaurin per la funzione $1/(1+x)$	286
	14.2.6	Formula di MacLaurin per la funzione $1/(1-x^2)$	286
	14.2.7	Formula di MacLaurin per la funzione $1/(1+x^2)$	286
	14.2.8	Formula di MacLaurin per la funzione $ln(1+x)$	287
	14.2.9	Formula di MacLaurin per la funzione $\operatorname{arctg} x$	287
	14.2.10	Formula di MacLaurin per altre funzioni elementari	288
14.3	Calcolo	di limiti mediante la formula di Taylor	289
14.4	Esercizi		293
Indice	analitic	0	299

1 Numeri reali e numeri complessi

1.1 Notazioni

Introduciamo le seguenti notazioni:

- 1. Dato un insieme $X, x \in X$ significa che x è un elemento di X.
- 2. Dato un insieme X, se Y è un sottoinsieme di X scriviamo $Y \subset X$.
- 3. Dati due insiemi $A \in B$, $A \cup B$ (unione di $A \in B$) indica l'insieme i cui elementi appartengono ad A o a B o a entrambi $A \in B$, i.e. $A \cup B = \{x : x \in A \text{ o } x \in B\}$.
- 4. Dati due insiemi $A \in B$, $A \cap B$ (intersezione di $A \in B$) indica l'insieme i cui elementi appartengono sia ad A sia a B, i.e. $A \cup B = \{x : x \in A \in x \in B\}$.
- 5. Dati due insiemi X e Y, indichiamo con $X \setminus Y$ (differenza tra X e Y) l'insieme dei punti di X che non appartengono a Y, i.e. $X \setminus Y = \{x \in X : x \notin Y\}$.
- 6. $\forall x$ significa "per ogni x".
- 7. $\exists x$ significa "esiste x", mentre $\exists ! x$ significa "esiste un unico x".
- 8. Indichiamo con \emptyset l'insieme vuoto (l'insieme che non contiene alcun elemento).
- 9. Dato un sottoinsieme $Y \subset X$, si dice complementare di Y in X l'insieme Y^c dei punti di X che non appartengono a Y, i.e. $Y^c = \{x \in X : x \notin Y\}$ è tale che $Y \cup Y^c = X$ e $Y \cap Y^c = \emptyset$.
- 10. Dati due insiemi $A \in B$, $A \times B$ (prodotto cartesiano di $A \in B$) indica l'insieme ottenuto prendendo tutte le coppie ordinate (x, y), con $x \in A \in y \in B$.

Osservazioni:

1. Si noti che, nella definizione di unione, la disgiunzione "o" ha carattere inclusivo, non esclusivo: un elemento appartiene all'unione di due insiemi anche nel caso in cui appartenga a entrambi.

2. Confrontando le definizioni ai punti 5 e 9, si vede subito che se $Y \subset X$ si ha $X \setminus Y = X \cap Y^{c}$. Se invece Y non è un sottoinsieme di X, si ha $X \setminus Y = X \setminus (Y \cap X)$.

Esercizi:

- 1. Si determinino l'unione, l'intersezione e le differenze dei due insiemi $A = \{1, 2, 3, 4, 6, 8, 10\}$ e $B = \{1, 5, 6, 9\}$
- 2. Dato l'insieme $A = \{0, 1, 2, 4, 5, 6, 7, 8, 9\}$, si determino due insiemi $B \in C$ tali che $B \cup C = A$ e $B \cap C = \emptyset$, e si calcolino $A \setminus B$ e $A \setminus C$.

Soluzioni:

- 1. $A \cup B = \{1, 2, 3, 4, 5, 6, 8, 9, 10\}, A \cap B = \{1, 6\}, A \setminus B = A = \{2, 3, 4, 8, 10\}, B \setminus A = \{5, 9\}.$
- 2. Per esempio $B = \{0, 2, 4, 6, 8\}$ e $C = \{1, 5, 7, 9\}$. Si ha $A \setminus B = C$ e $A \setminus C = B$.

1.2 Numeri naturali

L'insieme dei *numeri naturali* è l'insieme $\mathbb{N} = \{0, 1, 2, 3, \ldots\}$. I numeri naturali sono i numeri più intuitivi: si utilizzano per contare gli oggetti (la cassa contiene 10 mele, il libro ha 286 pagine, ecc.) o per definire un ordinamento tra oggetti (questo è il terzo libro che ho letto questo mese, ecc.).

Sui numeri naturali si possono definire un'operazione di *addizione* o *somma* (+) e un'operazione di *moltiplicazione* o *prodotto* (·): $\forall p,q \in \mathbb{N}$ si possono considerare la loro somma $p+q \in \mathbb{N}$ e il loro prodotto $p \cdot q \in \mathbb{N}$. L'elemento 0 prende il nome di *zero*: si ha p+0=p e $p\cdot 0=0$ $\forall p\in \mathbb{N}$.

Proprietà dei numeri naturali:

- 1. Proprietà commutativa dell'addizione: $\forall p, q \in \mathbb{N}$ si ha p+q=q+p.
- 2. Proprietà associativa dell'addizione: $\forall p, q, m \in \mathbb{N}$ si ha p + (q + m) = (p + q) + m.
- 3. Proprietà commutativa del prodotto: $\forall p, q \in \mathbb{N}$ si ha $p \cdot q = q \cdot p$.
- 4. Proprietà associativa del prodotto: $\forall p, q, m \in \mathbb{N}$ si ha $p \cdot (q \cdot m) = (p \cdot q) \cdot m$.
- 5. Proprietà distributiva: $\forall p, q, n \in \mathbb{N}$ si ha $p \cdot (q+n) = p \cdot q + p \cdot n$.

Osservazioni:

1. A volte l'insieme dei umeri naturali è definito escludendo lo zero: $\mathbb{N} = \{1, 2, 3, \ldots\}$. Noi non segueremo questa convenzione.

2. Nel seguito il prodotto di due numeri qualsiasi x, y sarà indicato indifferentemente come $x \cdot y$ oppure, più semplicemente, come xy, omettendo il punto tra i due numeri.

Dato un numero $n \in \mathbb{N}$, $n \geq 1$, il prodotto dei primi n numeri interi $1, 2, \ldots, n$ si chiama fattoriale di n e si indica con il simbolo n!. Si ha 1! = 1, $2! = 1 \cdot 2 = 2$, $3! = 1 \cdot 2 \cdot 3 = 6$, $4! = 1 \cdot 2 \cdot 3 \cdot 4 = 24$, $5! = 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 = 24 \cdot 5 = 120$, e così via. Si pone per definizione 0! = 1. Si vede immediatamente che $n! = n \cdot (n-1)! \ \forall n \in \mathbb{N}, n \geq 1$. Dati $n, k \in \mathbb{N}$, con $k \leq n$, si definisce coefficiente binomiale il numero

$$C_{n,k} := \binom{n}{k} = \frac{n!}{k!(n-k)!}$$

Si ha per esempio

$$\binom{n}{n} = 1, \quad \binom{n}{n-1} = n, \quad \binom{n}{n-2} = \frac{n(n-1)}{2}, \quad \dots, \quad \binom{n}{1} = n, \quad \binom{n}{0} = 1.$$

Si vede subito che

$$\binom{n}{k} = \binom{n}{n-k}.$$

Ricordiamo infine la formula del binomio (o formula di Newton)

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k = \binom{n}{0} a^n + \binom{n}{1} a^{n-1} b + \ldots + \binom{n}{n-1} a b^{n-1} + \binom{n}{n} b^n.$$

Per n=2 si ha

$$(a+b)^2 = a^2 + 2ab + b^2,$$

per n=3 si ha

$$(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$$

per n=4 si ha

$$(a+b)^4 = a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4$$

e così via.

Osservazioni:

1. Dato un insieme di n elementi, n! rappresenta il numero di permutazioni degli elementi dell'insieme: in altre parole n! esprime in quanti modi diversi si possano ordinare n elementi. Per esempio, se $A = \{1, 2, 3\}$, allora ci sono 3! modi di ordinare i tre elementi di A: (1,2,3), (1,3,2), (2,1,3), (2,3,1), (3,1,2) e (3,2,1).

2. Dato un insieme di n elementi, il coefficiente binomiale $C_{n,k}$ indica il numero di combinazioni degli n elementi presi k alla volta (che rappresenta il numero di modi di scegliere k elementi nell'insieme) ovvero il numero di sottoinsiemi costituiti da k elementi. Per esempio se $A = \{1, 2, 3\}$, ci sono $C_{3,2} = 3$ sottoinsiemi costituiti da due elementi: (1,2), (1,3) e (2,3).

Esercizi:

- 1. Si scriva esplicitamente e si calcoli la somma $\sum_{k=1}^{5} k^2$.
- 2. Si scriva esplicitamente e si calcoli la somma $\sum_{k=1}^{5} (1+2k)$.
- 3. Si dimostri che per ogni $k, n \in \mathbb{N}, k \le n$, si ha $\binom{n}{k} \le 2^n$.
- 4. Si sviluppi la formula del binomio $(a+b)^n$ per n=5 e n=6.
- 5. Si riscriva utilizzando le notazioni introdotte in $\S 1.1$ la seguente affermazione: comunque siano presi un elemento dell'insieme A e un elemento dell'insieme B la somma dei loro quadrati è minore o uguale a 13.
- 6. Si determino due sottoinsiemi A e B di № per cui valga l'affermazione dell'esercizio 5.
- 7. Si riscriva utilizzando le notazioni introdotte in $\S 1.1$ la seguente affermazione: per ogni elemento dell'insieme A esiste un elemento dell'insieme B tale che la somma dei due elementi è uguale al loro prodotto.
- 8. Si mostri che, se $A, B \subset \mathbb{N}$ (i.e. se Ac e B sono sottoinsiemi di \mathbb{N}), l'affermazione dell'esercizio 7 può valere solo se $A = B = \{2\}$ oppure $A = B = \{0\}$.

Soluzioni:

1.
$$\sum_{k=1}^{5} k^2 = 1 + 4 + 9 + 16 + 25 = 55.$$

2.
$$\sum_{k=1}^{5} (1+2k) = 3+5+7+9+11 = 35.$$

3.
$$\binom{n}{k} \le \sum_{k=0}^{n} \binom{n}{k} = \sum_{k=0}^{n} \binom{n}{k} 1^k 1^{n-k} = (1+1)^n = 2^n.$$

4. Si ha

$$(a+b)^5 = a^5 + 5a^4b + 10a^3b^2 + 10a^2b^3 + 5ab^4 + b^5,$$

$$(a+b)^6 = a^6 + 6a^5b + 15a^4b^2 + 20a^3b^3 + 15a^2b^4 + 6ab^5 + b^6.$$

5.
$$\forall (a, b) \in A \times B \ a^2 + b^2 \le 13$$
.

- 6. Per esempio $A = \{0, 1, 2\}$ e $B = \{1, 3\}$.
- 7. $\forall a \in A \ \exists b \in B : a + b = a \cdot b$.
- 8. Siano $a, b \in \mathbb{N}$ tali che $a+b=a \cdot b$. Se a=1 si ha $1+b=1 \cdot b=b$, che non è mai soddisfatta. Se $a \neq 1$ si ha $(a-1) \cdot b=a$ e dividendo per $a-1 \neq 0$ si trova b=a/(a-1), che può essere intero solo se a=0 o a-1=1; corrispondentemente si ha b=0 se a=0 e b=2/1=2 se a=2. Quindi sono possibili solo due casi: a=b=0 oppure a=b=2.

1.3 Numeri interi

Un'equazione di primo grado x+p=q, con $p,q\in\mathbb{N}$, non sempre ammette soluzione in \mathbb{N} . Per esempio l'equazione x+2=1 non ammette soluzione in \mathbb{N} . Da qui la necessità di ampliare l'insieme dei numeri \Longrightarrow insieme dei numeri interi $\mathbb{Z}=\{\ldots,-3,-2,-1,0,1,2,3,\ldots\}$. Si ha $\mathbb{N}\subset\mathbb{Z}$.

Un numero intero p si dice positivo se $p \in \mathbb{N}$ e $p \neq 0$ (i.e. $p = 1, 2, 3, \ldots$), non negativo se $p \in \mathbb{N}$, (i.e. $p = 0, 1, 2, 3, \ldots$), negativo se $-p \in \mathbb{N}$ e $p \neq 0$ (i.e. $p = -1, -2, -3, \ldots$) e non positivo se $-p \in \mathbb{N}$ (i.e. $p = 0, -1, -2, -3, \ldots$). In particolare, se p è un numero positivo o negativo, allora p non è mai nullo (i.e. $p \neq 0$), mentre, se p è un numero non positivo o non negativo, allora può essere nullo.

I numeri interi ereditano le stesse proprietà (commutativa, associativa e distributiva) dei numeri naturali. In particolare esiste l'elemento neutro dell'addizione: l'elemento 0 è tale che per ogni $p \in \mathbb{Z}$ si ha p+0=0+p=p. Inoltre, per ogni $p \in \mathbb{Z}$, esiste un unico $q \in \mathbb{Q}$ tale che p+q=0; l'elemento q si chiama l'elemento opposto di p.

1.4 Numeri razionali

Un'equazione di primo grado px = q, con $p, q \in \mathbb{Z}$, $p \neq 0$, in generale non ammette soluzione in \mathbb{Z} , a meno che q non sia divisibile per p. Per esempio l'equazione 2x = 3 non ammette soluzione in \mathbb{Z} . Da qui la necessità di ampliare ulteriormente l'insieme dei numeri \Longrightarrow insieme dei numeri q0. Si ha q0. Si ha q0.

La rappresentazione di un numero razionale non è unica: per esempio 2/3, 4/6, (-10)/(-15) rappresentano lo stesso numero. Tuttavia diventa unica se imponiamo che i due numeri siano *primi tra loro* (i.e. che non abbiano divisori comuni a parte 1); per esempio per tutti i numeri considerati prima scegliamo la rappresentazione 2/3.

I numeri interi ereditano le proprietà commutativa, associativa e distributiva dei numeri interi. Oltre all'elemento neutro dell'addizione, esiste anche un elemento neutro del prodotto: l'elemento 1 è tale che per ogni $p \in \mathbb{Q}$ si ha $p \cdot 1 = 1 \cdot p = p$ e, se $p \neq 0$, esiste un unico $q \in \mathbb{Q}$ tale che $p \cdot q = 1$. L'elemento q si chiama l'elemento inverso di p ed è dato da q = 1/p.

Osservazioni:

- 1. Il coefficiente binomiale è stato introdotto in §1.2 come rapporto di due numeri naturali (quindi come numero razionale). Si può tuttavia dimostrare che in realtà è sempre un numero naturale: il numeratore del rapporto è sempre divisibile per il denominatore (cfr. i complementi alla fine del paragrafo).
- 2. Un numero razionale p/q, con $p, q \neq 0$, è positivo se p e q sono entrami positivi o entrami negativi ed è negativo se p e q hanno segno opposto (i.e. sono uno positivo e l'altro negativo). Si può sempre supporre che sia q > 0; infatti, se q < 0, si può scrivere p/q = (-p)/(-q), con -q > 0.

Complementi:

- 1. Principio di induzione. Il principio di induzione è una tecnica utilizzata per dimostrare la validità di un enunciato P_n che dipende da un indice n = 1, 2, 3, ... Per dimostrare che l'enunciato P_n è vero per ogni n occorre verificare che (1) P_1 è vero e (2) se si assume che $P_{n'}$ è vero per ogni n' = 1, 2, ..., n, allora anche P_{n+1} è vero. Infatti, una volta verificate le proprietà (1) e (2), se P_n fosse falso per qualche n, allora dovrebbe essere falso per qualche n' < n (altrimenti, per la proprietà (2) anche P_n sarebbe vero), e, ragionando allo stesso modo, dovrebbe essere falso per qualche n'' < n': iterando l'argomento si trova alla fine che anche P_1 dovrebbe essere falso, ma questo non è possibile per la proprietà (1).
- 2. Il coefficiente binomiale è un numero naturale. Si dimostra per induzione che è vero per ogni n = 1, 2, 3, ... il seguente enunciato P_n : il coefficiente binomiale $C_{n,k}$ è un numero naturale per ogni k = 0, 1, ..., n. Per n = 1 si ha

$$C_{1,0} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \frac{1!}{0!1!} = 1, \qquad C_{1,1} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \frac{1!}{1!0!} = 1,$$

quindi l'enunciato P_1 è vero. Assumiamo che l'enunciato $P_{n'}$ sia vero per $n'=1,\ldots,n$ e mostriamo allora che è vero anche P_{n+1} : si ha, per ogni $k \leq n$,

$$C_{n+1,k} = \frac{(n+1)!}{k!(n+1-k)!} = \frac{n!(n+1)}{(k-1)!k(n-k)!(n-k+1)}$$

$$= \frac{n!}{(k-1)!(n-k)!} \frac{n+1}{k(n-k+1)} = \frac{n!}{(k-1)!(n-k)!} \left(\frac{1}{n-k+1} + \frac{1}{k}\right)$$

$$= \frac{n!}{(k-1)!(n-k+1)!} + \frac{n!}{k!(n-k)!}$$

$$= \frac{n!}{(k-1)!(n-(k-1))!} + \frac{n!}{k!(n-k)!} = C_{n,k-1} + C_{n,k},$$

dove $C_{n,k-1}$ e $C_{n,k}$ sono numeri naturali per l'ipotesi induttiva. D'altra parte, per k = n+1, si ha

$$C_{n+1,n+1} = \frac{(n+1)!}{(n+1)!0!} = 1,$$

cosí che concludiamo che $C_{n+1,k}$ è un numero naturale per ogni $k=0,1,\ldots,k+1$, ovvero che P_{n+1} è vero.

1.5 Numeri reali

Un'equazione di secondo grado $ax^2 + bx + c = 0$, con $a \neq 0$, anche nel caso in cui i coefficienti a, b, c siano sono numeri razionali, non necessariamente ammette soluzioni in \mathbb{Q} . Per esempio l'equazione $x^2 - 2 = 0$ non ammette soluzione in \mathbb{Q} . Le soluzioni dell'equazione sono $x = \pm \sqrt{2}$, dove il numero $\sqrt{2}$ (radice quadrata di 2) non è un numero razionale; infatti si può dimostrare che $\sqrt{2}$ non si può scrivere come rapporto di due numeri interi (cfr. i complementi alla fine del paragrafo). Da qui la necessità di ampliare ancora una volta l'insieme dei numeri \Longrightarrow insieme dei numeri irrazionali (numeri che non possono essere scritti sotto forma di frazione p/q, con $p, q \in \mathbb{Z}$, $q \neq 0$) \Longrightarrow insieme dei numeri razionali e dei numeri irrazionali costituisce l'insieme dei numeri reali \mathbb{R} . Si ha quindi $\mathbb{Q} \subset \mathbb{R}$.

15

Su $\mathbb R$ si possono ancora definire le operazioni di addizione (+) e moltiplicazione (·), che continuano a godere delle proprietà commutativa, associativa e distributiva. L'insieme $\mathbb R$ è totalmente ordinato: $\forall x,y \in \mathbb R$ solo una delle tre possibilità può verificarsi: x>y, $x=y,\,x< y$.

Osservazioni:

- 1. Come si vedrà in §1.8, un'equazione di secondo grado può non avere soluzioni reali.
- 2. In realtà, non tutti i numeri reali appaiono come soluzioni di equazioni di secondo grado: in numeri reali si suddividono in numeri reali algebrici, che sono soluzioni di equazioni algebriche, i.e. di equazioni della forma $P_n(x) = 0$, dove $P_n(x)$ è un polinomio di grado n per qualche $n \in \mathbb{N}$, e numeri reali trascendenti, che al contrario non risolvono alcuna equazione polinomiale: esempi di numeri reali trascendenti sono π ed e (cfr. pag. 77).

L'insieme dei numeri reali ha una proprietà notevole, la proprietà di continuità, che lo caratterizza e distingue dall'insieme dei numeri razionali e che può essere illustrata come segue.

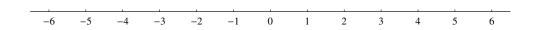


Figura 1.1: Asse reale.

Si chiama asse reale una retta sulla quale si siano fissati: un punto O, chiamato origine, un senso positivo, indicato da una freccia, e un'unità di misura (cfr. la Figura 1.1). Se si traccia la retta in direzione orizzontale, usualmente si assume che l'orientamento sia da sinistra a destra. Si identifica allora lo zero (0) con il punto O, i numeri positivi sono

a destra di O e i numeri negativi alla sua sinistra. A ogni punto della retta è associato un numero reale e viceversa ($corrispondenza\ biunivoca$). Tale proprietà implica che i numeri reali si possano rappresentare come un insieme continuo ed è perciò indicata come $proprietà\ di\ continuità\ dei\ numeri\ reali$.

Complementi:

- 1. Dimostrazione per assurdo. Si chiama dimostrazione per assurdo un ragionamento in cui, per dimostrare che vale una proprietà, si assume che la proprietà sia falsa e si fa vedere, attraverso una serie di passaggi logico-deduttivi, che questo porta a una contraddizione.
- 2. Irrazionalità del numero $\sqrt{2}$. Si dimostra per assurdo, assumendo che esistano $p, q \in \mathbb{Z}$, primi tra loro, tali $\sqrt{2} = p/q$. Si avrebbe allora $2 = p^2/q^2$, ovvero $2q^2 = p^2$: ne segue che p^2 , e quindi p, dovrebbe essere divisibile per 2, i.e. si dovrebbe avere p = 2m, con $m \in \mathbb{Z}$, da cui si otterrebbe $2q^2 = 4m^2 \Longrightarrow q^2 = 2m^2$, così che anche q^2 , e quindi q, dovrebbe essere divisibile per 2, contro l'ipotesi che p e q siano primi tra loro.

1.6 Definizione assiomatica dei numeri reali

L'insieme dei numeri reali può essere caratterizzato astrattamente, in modo rigorsoso e autocontenuto, attraverso una serie di *assiomi*, da cui discendono tutte le proprietà.

Definizione 1.1. I numeri reali sono un insieme \mathbb{R} con la sequente struttura:

```
1. \forall x, y \in \mathbb{R} è definito x + y \in \mathbb{R} (somma o addizione);
```

```
2. \forall x, y \in \mathbb{R} è definito x \cdot y \in \mathbb{R} (prodotto);
```

```
3. \forall x, y \in \mathbb{R} si ha x + y = y + x (proprietà commutativa di + y = y + x)
```

```
4. \forall x, y, z \in \mathbb{R} si ha x + (y + z) = (x + y) + z (proprietà associativa di + y
```

- 5. $\forall x, y \in \mathbb{R}$ si ha $x \cdot y = y \cdot x$ (proprietà commutativa $di \cdot$)
- 6. $\forall x, y, z \in \mathbb{R}$ si ha $x \cdot (y \cdot z) = (x \cdot y) \cdot z$ (proprietà associativa di ·)
- 7. $\forall x, y, z \in \mathbb{R}$ sia ha $x \cdot (y + z) = x \cdot y + x \cdot z$ (proprietà distributiva);
- 8. $\exists !\ 0 \in \mathbb{R} \ tale \ che \ x + 0 = 0 + x = x \ \forall x \in \mathbb{R} \ (elemento neutro \ di +);$
- 9. $\forall x \in \mathbb{R} \exists ! \ y = -x \ tale \ che \ x + y = 0 \ (opposto)$
- 10. $\exists ! \ 1 \in \mathbb{R} \ tale \ che \ x \cdot 1 = 1 \cdot x = x \ \forall x \in \mathbb{R} \ (elemento neutro \ di \cdot);$
- 11. $\forall x \in \mathbb{R}, x \neq 0, \exists ! \ y = 1/x \ tale \ che \ y \cdot x = x \cdot y = 1 \ (inverso \ o \ reciproco);$

- 12. esiste un ordinamento totale, i.e. una relazione tra coppie di elementi che goda delle seguenti proprietà:
 - $\forall x, y \in \mathbb{R}$ si ha $x \leq y$ oppure $x \geq y$ (dicotomia);
 - $x \le y \ e \ y \le z \Longrightarrow x \le z$ (proprietà transitiva)
 - $x \le y \ e \ y \le x \Longrightarrow x = y$ (proprietà antisimmetrica)
 - $\forall x \in \mathbb{R}$ si ha $x \leq x$ (proprietà riflessiva);
- 13. $x \le y \Longrightarrow x + z \le y + z \ \forall z \in \mathbb{R}$;
- 14. $0 \le x \ e \ 0 \le y \Longrightarrow 0 \le x \cdot y$.

Dalle proprietà sopra seguono proprietà interessanti, e.g.

- 1. $\forall x \in \mathbb{R}$ si ha $x \cdot 0 = 0$. Dimostrazione: $x \cdot 0 = x \cdot (1 - 1) = x \cdot 1 - x \cdot 1 = x - x = 0$.
- 2. Se x > 0 allora -x < 0. Dimostrazione: $x > 0 \Longrightarrow x - x > -x \Longrightarrow 0 > -x$.
- 3. Se $x, y \ge 0$ e $z \ge 0$ allora $x > y \Longrightarrow x \cdot z > y \cdot z$. Dimostrazione: se x > y si ha x - y > 0, quindi $0 < (x - y) \cdot z = x \cdot z - y \cdot z \Longrightarrow x \cdot z > y \cdot z$.
- 4. Se $x, y \ge 0$ e z < 0 allora $x > y \Longrightarrow x \cdot z < y \cdot z$. Dimostrazione: se w > 0 allora $x \cdot w > y \cdot w$ [per 3]; se w = -z > 0 [per 2] allora $x \cdot (-z) > y \cdot (-z) \Longrightarrow -x \cdot z > -y \cdot z \Longrightarrow y \cdot z - x \cdot z > 0$ [sommando $y \cdot z$] $\Longrightarrow y \cdot z > x \cdot z$ [sommando $x \cdot z$].
- 5. $\forall a \in \mathbb{R}$ si ha $a^2 \ge 0$.

 Dimostrazione: se $a \ge 0$ si ha $a^2 = a \cdot a \ge a \cdot 0 = 0$ [per 3]; se a < 0 si ha -a > 0 [per 2], quindi usando 4 con x = -a, y = 0, z = a si trova $-a^2 = (-a) \cdot a = x \cdot z < y \cdot z = a \cdot 0 = 0$ [per 1] $\Longrightarrow a^2 > 0$ [per 2].

In realtà gli assiomi sopra non sono sufficienti a caratterizzare completamente l'insieme dei numeri reali, in particolare ad assicurarne la continuità sull'asse reale: occorre un ulteriore assioma. Diamo alcune definizioni preliminari.

Definizione 1.2. Siano A e B due sottoinsiemi non vuoti di \mathbb{R} . Diremo che (A, B) è una sezione di \mathbb{R} se

- 1. $A \cup B = \mathbb{R} \ e \ A \cap B = \emptyset$
- 2. $\forall a \in A \ e \ \forall b \in B \ si \ ha \ a \leq b$.

Definizione 1.3. Data una sezione (A, B) di R diremo che $\ell \in \mathbb{R}$ è un elemento separatore della sezione se $a \leq \ell \leq b \ \forall a \in A \ e \ \forall b \in B$.

Agli assiomi della Definizione 1.1 bisogna allora aggiungere il seguente assioma di Dedekind: per ogni sezione (A, B) di \mathbb{R} esiste un unico elemento separatore della sezione. L'assioma di Dedekind (detto anche assioma di continuità o assioma di completezza) garantisce che i numeri reali sono continui. In particolare è l'assioma di Dedekind che implica che i numeri reali sono in corrispondenza biunivoca con i punti di una retta.

1.7 Intervalli

Un intervallo I è un sottoinsieme di \mathbb{R} , $I \subset \mathbb{R}$, formato da tutti i punti compresi tra due estremi a e b, dove $a, b \in \mathbb{R}$, con a < b.

Un intervallo I si dice chiuso se $I=[a,b]=\{x\in\mathbb{R}:a\leq x\leq b\}$ e aperto se $I=(a,b)=\{x\in\mathbb{R}:a< x< b\}$. Esistono anche intervalli che non sono né aperti né chiusi: intervalli aperti a sinistra $(I=(a,b]=\{x\in\mathbb{R}:a< x\leq b\})$ e intervalli aperti a destra $(I=[a,b)=\{x\in\mathbb{R}:a\leq x< b\})$.

Gli intervalli possono essere limitati (se sia a che b sono finiti) o illimitati: $[a, +\infty)$, $(a, +\infty)$, $(-\infty, b]$, $(-\infty, b)$, con a, b finiti, oppure $(-\infty, +\infty)$ se né a né b sono finiti. In particolare $\mathbb{R} = (-\infty, +\infty)$.

Osservazioni:

- 1. Si possono considerare anche sottoinsiemi più generali di R, che non siano intervalli.
- 2. Dato un qualsiasi intervallo limitato $I \subset \mathbb{R}$, il suo complementare I^c non è un intervallo (ma è unione disgiunta di due intervalli). Per esempio se I = [1,2) si ha $I^c = (-\infty, 1) \cup [2, +\infty)$. Si ha in ogni caso $I \cup I^c = \mathbb{R}$ e $I \cap I^c = \emptyset$.

Esempi:

- 1. L'unione dei due intervalli disgiunti, quali (-2, -1) e (2, 4), non è un intervallo.
- 2. Né è un intervallo l'insieme costituito da un insieme discreto di punti, quali {0}, {1} e {4}.

Anche la nozione di insieme aperto e insieme chiuso in \mathbb{R} è in realtà più generale di quella data sopra. Si definisce *intorno* di centro c e raggio r l'insieme

$$B_r(c) := \{ x \in \mathbb{R} : c - r < x < c + r \} = (c - r, c + r).$$

Un insieme $A \subset \mathbb{R}$ si dice aperto se per ogni $x \in A$ esiste un intorno di centro x contenuto in A. Un insieme $C \subset \mathbb{R}$ si dice chiuso se il suo complementare C^c è aperto. Per esempio l'insieme $(1,2) \cup (3,4)$ non è un intervallo, ma è un insieme aperto. L'insieme I = [2,5) non è né aperto né chiuso: infatti, se si sceglie c = 2, per ogni c > 0 l'intorno l'insieme l'

1.7. INTERVALLI

è il complementare di I, è aperto (perché qualsiasi intorno di 5 contiene punti x non appartenenti a J), quindi I non è chiuso.

I numeri razionali sono densi sulla retta: comunque si fissa un intervallo si trova un numero razionale dentro quell'intervallo (cfr. i complementi alla fine del paragrafo). Tuttavia, i numeri razionali sono tanti quanti i naturali, nel senso che si possono mettere in corrispondenza biunivoca con i naturali (cfr. i complementi alla fine del paragrafo): tale proprietà si esprime dicendo che i numeri razionali sono numerabili.

Esercizi:

- 1. Si determinino l'unione e l'intersezione di $I_1 = [-1, 3)$ e $I_2 = (2, 5)$.
- 2. Si determinino l'unione e l'intersezione di $I_1 = [-2, 0)$ e $I_2 = (1, 4)$.
- 3. Si determinino l'unione e l'intersezione di $I_1 = (-4,3)$ e $I_2 = (-3,0)$.
- 4. Si determinino l'unione e l'intersezione di $I_1 = [-4, 3]$ e $I_2 = [3, 5]$.
- 5. Si determinimo l'unione e l'intersezione di $I_1 = [0, +\infty)$ e $I_2 = (-\infty, 1)$
- 6. Si determinimo l'unione e l'intersezione di $I_1 = (-\infty, +\infty)$ e $I_2 = (-\infty, 0)$.
- 7. Si determinimo l'unione e l'intersezione di $I_1 = (-5, 4)$ e $I_2 = [4, 6)$.
- 8. Si determinimo l'unione e l'intersezione di $I_1 = [-2, -1]$ e $I_2 = [-1, 7)$.
- 9. Si determinimo l'unione e l'intersezione di $I_1 = [-2, -1]$, $I_2 = [-1, 4]$ e $I_3 = [-3, 0]$.
- 10. Si determinimo l'unione e l'intersezione di $I_1=(-\infty,1), I_2=(-1,2)$ e $I_3=[1,2)$.
- 11. Si determinimo l'unione e l'intersezione di $I_1=(-4,-1),\ I_2=(-1,1)$ e $I_3=[1,2).$
- 12. Si determinimo l'unione e l'intersezione di $I_1 = (1,6)$, $I_2 = (3,8)$ e $I_3 = (2,5)$.

Soluzioni:

- 1. $I_1 \cup I_2 = [-1, 5), I_1 \cap I_2 = (2, 3).$
- 2. $I_1 \cup I_2 = [-2, 0) \cup (1, 4), I_1 \cap I_2 = \emptyset.$
- 3. $I_1 \cup I_2 = I_1 = (-4, 3), I_1 \cap I_2 = I_2 = (-3, 0).$
- 4. $I_1 \cup I_2 = [-4, 5], I_1 \cap I_2 = \{3\}.$
- 5. $I_1 \cup I_2 = (-\infty, +\infty), I_1 \cap I_2 = [0, 1).$
- 6. $I_1 \cup I_2 = (-\infty, +\infty) = I_1, I_1 \cap I_2 = (-\infty, 0) = I_2.$
- 7. $I_1 \cup I_2 = (-5, 6) = \mathbb{R}, I_1 \cap I_2 = \emptyset.$
- 8. $I_1 \cup I_2 = [-2, 7), I_1 \cap I_2 = \{-1\}.$
- 9. $I_1 \cup I_2 \cup I_3 = [-3, 4], I_1 \cap I_2 \cap I_3 = \{-1\}.$
- 10. $I_1 \cup I_2 \cup I_3 = (-\infty, 2), I_1 \cap I_2 \cap I_3 = \emptyset.$
- 11. $I_1 \cup I_2 \cup I_3 = (-4, -1) \cup (-1, 2), I_1 \cap I_2 \cap I_3 = \emptyset.$
- 12. $I_1 \cup I_2 \cup I_3 = (1,8), I_1 \cap I_2 \cap I_3 = (3,5).$

Complementi:

- 1. Densità dei numeri razionali. Sia $I=(a,b)\subset\mathbb{R}$ un intervallo, con b>a. Sia q tale che q(b-a)>1 (tale q esiste poiché $\delta:=b-a>0$ e quindi $q\delta\to+\infty$ per $q\to+\infty$). Sia p il più piccolo intero strettamente maggiore di qa, i.e. tale che $p-1\leq qa< p$. Si ha allora $qa< p\leq qa+1< qb$, da cui, dividendo per q, si ottiene a< p/q< b: quindi il numero razionale q/p è all'interno dell'intervallo I.
- 2. Numerabilità dei numeri razionali. I numeri razionali siscrivono nella forma p/q, con $q, p \in \mathbb{Z}$ primi tra loro. Senza perdita di generalità si può supporre che sia q > 0: infatti, se q < 0, basta scrivere p/q = (-p)/(-q). Se definisce h(p/q) = |p| + q l'altezza del numero razionale p/q. Per costruzione h(p/q) è un numero naturale e i numeri razionali con altezza fissata sono finiti e possono essere ordinati, per esempio sulla base del valore crescente del numeratore p. I numeri razionali x possono allora essere ordinati fissando prima l'altezza $h(x) = n \in \mathbb{N}$ e poi l'ordine di x tra i numeri razionali che hanno altezza n. Ijn questo modo si stabilisce una corrispondenza biunivoca tra i numeri razionali e i numeri naturali.

1.8 Numeri complessi

Un'equazione di secondo grado $ax^2 + bx + c = 0$, anche nel caso che si assuma che i numeri a, b, c (i.e. i coefficienti dell'equazione) siano reali, non necessariamente ammette soluzioni reali. Per esempio l'equazione $x^2 + 1 = 0$ non ammette soluzioni reali poiché $x^2 \ge 0 \ \forall x \in \mathbb{R}$. Da qui la necessità di introdurre l'insieme dei numeri complessi \mathbb{C} , quale estensione dell'insieme dei numeri reali.

I numeri complessi sono numeri della forma z=x+iy, con x e y reali, dove i prende il nome di unità immaginaria ed è definita richiedendo che $i^2=-1$. Chiameremo x e y la parte reale e la parte immaginaria di z, rispettivamente, e scriveremo x=Re(z) e y=Im(z). I numeri reali si ottengono prendendo y=0: i numeri reali sono i numeri complessi con parte immaginaria nulla. Si ha quindi $\mathbb{R} \subset \mathbb{C}$. Si dicono immaginari puri i numeri complessi della forma z=iy, con y reale.

Dato un numero complesso z = x + iy si definisce il suo complesso coniugato come il numero $\bar{z} := x - iy$. Si ha $z\bar{z} = (x + iy)(x - iy) = x^2 - ixy + ixy - i^2y^2 = x^2 + y^2$.

Osservazioni:

- 1. Si verifica facilmente che le soluzioni di un'equazione di secondo grado a coefficienti reali sono numeri complessi coniugati (cfr. i complementi alla fine del paragrafo).
- 2. Anche nel caso in cui i coefficienti dell'equazione siano complessi, le due radici sono numeri complessi (cfr. di nuovo i complementi alla fine del paragrafo).

I numeri complessi si possono rappresentare come coppie ordinate (x, y) di numeri reali nel piano $(piano\ complesso)$. L'asse reale è individuato dai punti (x, 0), mentre i numeri

individuati dai punti (0, y) sono numeri immaginari puri. In generale, il numero complesso z = x + iy è rappresentato dal punto che ha coordinata x lungo l'asse orizzontale, ovvero l'asse reale, e coordinata y lungo l'asse verticale (cfr. la Figura 1.2).

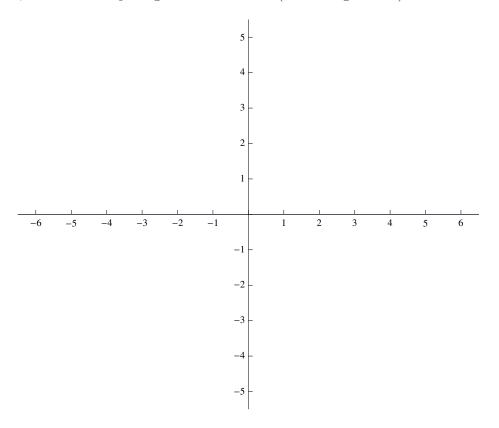


Figura 1.2: Piano complesso.

Complementi:

1. Soluzioni dell'equazione di secondo grado a coefficienti reali. Le soluzioni dell'equazione $ax^2 + bx + c = 0$, con $a, b, c \in \mathbb{R}$ e $a \neq 0$, sono z_{\pm} , date da

$$z_{+} = \frac{-b + \sqrt{\Delta}}{2a}, \qquad z_{-} = \frac{-b - \sqrt{\Delta}}{2a},$$

dove $\Delta = b^2 - 4ac$ pende il nome di discriminante. Se $\Delta \geq 0$, le due soluzioni sono reali (distinte se $\Delta > 0$ e coincidenti se $\Delta = 0$). Se invece $\Delta > 0$, si può scrivere

$$\Delta = (-1) \cdot (-\Delta) \Longrightarrow \sqrt{\Delta} = \sqrt{(-1) \cdot (-\Delta)} = \sqrt{(-1)} \cdot \sqrt{-\Delta} = i\sqrt{-\Delta},$$

dove $-\Delta$ è positivo e quindi $\sqrt{-\Delta}$ è un numero reale ben definito. Di conseguenza si ha

$$z_{+} = -\frac{b}{2a} + i\frac{\sqrt{-\Delta}}{2a}, \qquad z_{-} = -\frac{b}{2a} - i\frac{\sqrt{-\Delta}}{2a}.$$

In altre parole z_{\pm} sono della forma $z_{\pm}=x\pm iy$, dove x=-b/2a e $y=\sqrt{-\Delta}/2a$ sono numeri reali. Si noti che $z_{-}=\bar{z}_{+}$, i.e. le due soluzioni sono l'una la complessa coniugata dell'altra.

2. Soluzioni dell'equazione di secondo grado a coefficienti complessi. Nel caso in cui i coefficienti dell'equazione siano complessi, le due radici sono ancora della forma $z_+ = x_+ + iy_+$ e $z_- = x_- + iy_-$, con x_\pm e y_\pm reali. Infatti, le soluzioni sono sempre date da

$$z_{+} = \frac{-b + \sqrt{\Delta}}{2a}, \qquad z_{-} = \frac{-b - \sqrt{\Delta}}{2a},$$

con $\Delta = b^2 - 4a \in \mathbb{C}$. Ora, se A e $B \neq 0$ sono due numeri complessi, sia il rapporto A/B che \sqrt{A} sono numeri complessi; infatti, se $A = A_1 + \mathrm{i}A_2$ e $B = B_1 + \mathrm{i}B_2$, si ha

$$\frac{A}{B} = \frac{A_1 + iA_2}{B_1 + iB_2} = \frac{A_1 + iA_2}{B_1 + iB_2} \frac{B_1 - iB_2}{B_1 - iB_2} = \frac{A_1B_1 - A_2B_2 + i(A_2B_1 + A_1B_2)}{B_1^2 + B_2^2}
= \frac{A_1B_1 - A_2B_2}{B_1^2 + B_2^2} + i\frac{A_2B_1 + A_1B_2}{B_1^2 + B_2^2},$$

e

$$\pm \sqrt{A_1 + iA_2} = \pm (\alpha + i\beta),$$

dove, come si verifica facilmente richiedendo che

$$A_1 + iA_2 = \alpha^2 - \beta^2 + i2\alpha\beta,$$

ovvero

$$\alpha^2 - \beta^2 = A_1, \qquad 2\alpha\beta = A_2,$$

si ha

$$\alpha = \sqrt{\frac{A_1 + \sqrt{A_1^2 + A_2^2}}{2}}, \qquad \beta = \frac{2A_2}{\alpha}.$$

Se ne conclude che $\pm\sqrt{\Delta}$ è un numero complesso ed entrambi i rapporti -b/2a e $\pm\sqrt{\Delta}/2a$ sono numeri complessi, e quindi tali sono anche le loro somme.

1.8.1 Radici di un polinomio a coefficienti complessi

Si è visto che, passando dalle equazioni di primo grado a quelle di secondo grado, se si vuole che le soluzioni appartengano allo stesso insieme numerico dei coefficienti, occorre estendere l'insieme dei numeri che si intende considerare. Nel caso di equazioni di primo grado ax + b = 0, con $a \neq 0$, si devono prendere $a, b \in \mathbb{Q}$ se si cercano soluzioni in \mathbb{Q} , mentre, nel caso di equazioni di secondo grado $ax^2 + bx + c = 0$, con $a \neq 0$, si devono prendere $a, b, c \in \mathbb{C}$ se si cercano soluzioni che siano sempre in \mathbb{C} . Si potrebbe pensare che, considerando equazioni di grado sempre più elevato, sia necessario di volta in volta ampliare l'insieme dei numeri da considerare. Invece, non è questo il caso: le soluzioni di equazioni di grado arbitrario sono sempre e solo numeri complessi.

Infatti, il teorema fondamentale dell'algebra assicura che, per qualsiasi equazione algebrica di grado n a coefficienti complessi,

$$a_n z^n + a_{n-1} z^{n-1} + \ldots + a_1 z + a_0 = 0, \qquad a_n \neq 0,$$

esistono n soluzioni nel campo complesso. Anche nel caso di coefficienti reali, in generale le soluzioni sono complesse. Dato il polinomio

$$P_n(z) := a_n z^n + a_{n-1} z^{n-1} + \dots + a_1 z + a_0, \qquad a_n \neq 0,$$

le soluzioni z_1, z_2, \ldots, z_n dell'equazione $P_n(z) = 0$ si chiamano radici o zeri dell'equazione. Si dice anche che z_1, z_2, \ldots, z_n sono le radici del polinomio $P_n(z)$. Alcune radici possono essere uguali tra loro; se z_0 è una radice del polinomio $P_n(z)$ diremo che z_0 ha molteplicità k se possiamo scrivere $P_n(z) = (z - z_0)^k Q_{n-k}(z)$, dove $Q_{n-k}(z)$ è un polinomio di grado n-k tale che $Q_{n-k}(z_0) \neq 0$ (in altre parole $Q_{n-k}(z)$ non ammette z_0 come radice).

Esempi:

- 1. Il polinomio di terzo grado $z^2(z-1)$ ha 3 radici reali: z=0 con molteplicità 2 e z=1 con molteplicità 1.
- 2. Il polinomio di quinto grado $6z(z^2+1)^2$ ha 5 radici: di esse z=0 è reale e ha molteplicità 1, mentre z=i e z=-i sono complesse coniugate e hanno entrambe molteplicità 2.

1.8.2 Radici di un polinomio a coefficienti reali

Se i coefficienti $a_n, a_{n-1}, \ldots, a_1, a_0$ del polinomio $P_n(z)$ sono reali, allora le soluzioni dell'equazione $P_n(z) = 0$ che non sono reali si presentano in coppie di numeri complessi coniugati. In particolare, un'equazione di secondo grado ha o due soluzioni reali (eventualmente coincidenti) o due soluzioni complesse coniugate.

Esempi:

- 1. $x^2 3x + 2 = 0$ ha due soluzioni reali distinte $x_1 = 1$ e $x_3 = 2$.
- 2. $7(x-1)^2 = 0$ ha due soluzioni reali coincidenti $x_1 = x_2 = 1$.
- 3. $3x^2 + 3 = 0$ ha due soluzioni complesse coniugate $x_1 = -i$ e $x_2 = i$.

1.8.3 Fattorizzazione di un polinomio

Il polinomio $P_n(z)$ di grado n a coefficienti complessi si può sempre scrivere nella forma (fattorizzazione)

$$P_n(z) = a_n(z-z_1)^{m_1} \dots (z-z_s)^{m_s} = a_n \prod_{i=1}^s (z-z_i)^{m_i},$$

dove z_1, \ldots, z_s sono le radici (complesse) distinte del polinomio e m_1, \ldots, m_s sono le corrispondenti molteplicità algebriche, tali che $m_1 + \ldots + m_s = n$.

Le radici complesse z_i si possono scrivere nella forma $z_i = x_i + iy$, con $x_i, y_i \in \mathbb{R}$, quindi, tenendo conto che

- se $x_i + iy_i$ è una radice, anche $x_i iy_i$ è una radice (cfr. il §1.8.2),
- $(z (x_i + iy))(z (x_i iy)) = z^2 2x_iz + x_i^2 + y_i^2$

se si definisce $p_i = -2x_i$ e $q_i = x_i^2 + y_i^2$, così che

$$z^2 - 2x_iz + x_i^2 + y_i^2 = z^2 + p_iz + q_i$$

la fattorizzazione di $P_n(z)$ si può scrivere nella forma

$$P_n(z) = a_n(z - z_1)^{m_1} \dots (z - z_r)^{m_r} (z^2 + p_{r+1}z + q_{r+1})^{m_{r+1}} \dots (z + p_{r+t}z + q_{r+t})^{m_{r+t}}$$

$$= a_n \left(\prod_{i=1}^r (z - z_i)^{m_i} \right) \left(\prod_{i=r+1}^{r+t} (z^2 + p_i z + q_i)^{m_i} \right),$$

dove

- 1. z_1, \ldots, z_r sono le r radici reali distinte;
- 2. $z_{r+1}, \ldots, z_{r+t}, \overline{z}_{r+1}, \ldots, \overline{z}_{r+t}$ sono le 2t radici complesse distinte,
- 3. $p_i = -2x_i e q_i = x_i^2 + y_i^2 per i = r + 1, \dots, r + t$,
- 4. m_i è la molteplicità algebrica della radice z_i per $i=1,\ldots,r+t$

Esempi:

- 1. $x^3 + 4x = x(x-2i)(x+2i) = x(x^2+4)$ ha una radice reale $(x_1 = 0)$ e due radici complesse coniugate $(x_2 = 2i e x_3 = -2i)$.
- 2. $x^4 5x^3 + x^2 + 21x 18 = (x 1)(x 3)^2(x + 2)$ ha quattro radici reali $x_1 = 1$, $x_2 = 3$, $x_2 = 3$ e $x_4 = -2$, di cui due coincidenti.

1.8.4 Calcolo delle radici di un polinomio

Per quanto il teorema fondamentale dell'algebra assicuri l'esistenza di tante radici quanto è il grado del polinomio, e quindi la possibilità in teoria di fattorizzare il polinomio, in pratica trovare le radici può essere molto complicato se non impossibile. Esclusi i casi n=1 (banale: il polinomio è gia fattorizzato) e n=2 (che sarà discusso a pag. 36), già nei casi n=3 e n=4 formule risolutive per le radici (dovute rispettivamente a Cardano e a Ferrari) esistono ma sono abbastanza complicate. Per n>5 si può dimostrare (teorema di Abel-Ruffini) che non esistono formule risolutive esprimibili tramite radici.

2 | Funzioni reali di variabile reale

2.1 Piano cartesiano

Si definisce $\mathbb{R}^2 = \mathbb{R} \times \mathbb{R} = \{(x,y) : x \in \mathbb{R}, y \in \mathbb{R}\}$: quindi \mathbb{R}^2 è il prodotto cartesiano di \mathbb{R} con se stesso, i.e. l'insieme di tutte le possibili coppie ordinate (x,y) con $x,y \in \mathbb{R}$.

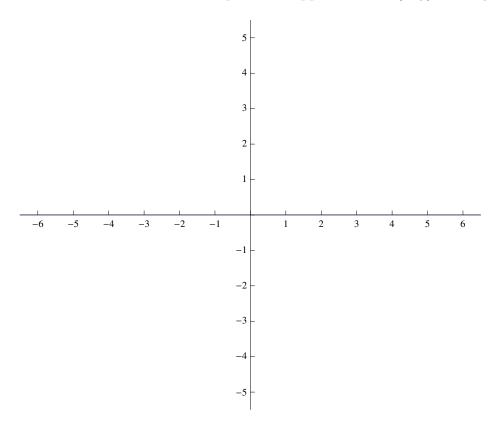


Figura 2.1: Piano cartesiano.

Se si considera un sistema di assi ortogonali nel piano sui quali sia stata introdotta la stessa unità di misura (sistema di riferimento), si ha una corrispondenza biunivoca tra i punti del piano e gli elementi di \mathbb{R}^2 (cfr. Figura 2.1). In particolare possiamo supporre

che una delle due rette sia orizzontale e l'altra verticale: chiameremo asse x o asse delle ascisse la retta orizzontale e asse y o asse delle ordinate la retta verticale. Il punto in cui l'asse x e l'asse y si incontrano si chiama origine. Il piano reale in cui sia stato introdotto un sistema di riferimento si chiama piano cartesiano e gli assi delle ascisse e delle ordinate si chiamano assi cartesiani o assi coordinati. Si chiamano coordinate le coppie (x, y), dove x è l'ascissa e y è l'ordinata.

2.2 Estremo superiore ed estremo inferiore

Definizione 2.1. Dato un insieme $A \subset \mathbb{R}$ diremo che un elemento $M \in A$ è il massimo di A se $a \leq M \ \forall a \in A$. Se il massimo di A esiste si indica con $\max A$.

Definizione 2.2. Dato un insieme $A \subset \mathbb{R}$ diremo che un elemento $m \in A$ è il minimo di A se $a > m \ \forall a \in A$. Se il minimo di A esiste si indica con min A.

Definizione 2.3. Dato un insieme $A \subset \mathbb{R}$ diremo che un elemento $L \in \mathbb{R}$ è un maggiorante di A se $a \leq L \ \forall a \in A$. Se esiste un maggiorante di A diremo che A è superiormente limitato

Definizione 2.4. Dato un insieme $A \subset \mathbb{R}$ diremo che un elemento $\ell \in \mathbb{R}$ è un minorante di A se $a \geq \ell \ \forall a \in A$. Se esiste un minorante di A diremo che A è inferiormente limitato.

Definizione 2.5. Diremo che S è l'estremo superiore di A se è il minimo dei maggioranti di A. Si indica con sup A.

Definizione 2.6. Diremo che s è l'estremo inferiore di A se è il massimo dei minoranti di A. Si indica con inf A.

Esempi:

- 1. Se A = [0, 1] si ha max A = 1 e min A = 0.
- 2. Se A = (0,1] si ha max A = 1, mentre non esiste minimo; tuttavia inf A = 0.
- 3. Se A = (-1, 1) si ha inf A = -1 e sup A = 1 (massimo e minimo non esistono).
- 4. Se $A = (0, +\infty)$, si ha inf A = 0; tuttavia A non è limitato superiormente.
- 5. Se $A = (-\infty, 1]$, si ha max $A = \sup A = 1$; tuttavia A non è limitato inferiormente.
- 6. Se $A = (-1, 2] \cup [5, 8)$, si ha inf A = -1 e sup A = 8; minimo e massimo non esistono.

Teorema 2.7. Se un insieme $A \subset \mathbb{R}$ è limitato superiormente, allora esiste sup A. Se un insieme $A \subset \mathbb{R}$ è limitato inferiormente, allora esiste inf A.

La dimostrazione del teorema consiste nel far vedere (1) che l'insieme dei maggioranti di A e il suo complementare in \mathbb{R} formano una sezione di \mathbb{R} e (2) che l'elemento separatore della sezione appartiene all'insieme dei maggioranti.

Osservazioni:

- 1. Non è detto che l'estremo superiore di un insieme A esista (e.g. $A=(1,+\infty)$). Tuttavia se esiste è unico.
- 2. Non è detto che esista il massimo di un insieme A (e.g. A = [0,1)). Tuttavia se esiste max $A = \sup A$. Quindi, in particolare, se esiste il massimo è unico.
- 3. Analoghe considerazioni valgono per minimo ed estremo inferiore: l'estremo inferiore, se esiste, è unico e il minimo, se esiste, coincide con l'estremo inferiore.
- 4. A volte, se un insieme A è illimitato superiormente, si scrive sup $A=+\infty$; analogamente si scriverà inf $A=-\infty$ se A è illimitato inferiormente. Se si segue tale convenzione, si può rienunciare il teorema 2.7 dicendo che esistono sempre l'estremo superiore e l'estremo inferiore di qualsiasi insieme $A \subset \mathbb{R}$.

2.3 Modulo di un numero reale

Il modulo o valore assoluto di x è definito come:

$$|x| = \begin{cases} x, & x \ge 0, \\ -x, & x < 0. \end{cases}$$

Osservazioni:

- 1. Poiché |0|=0, si può anche definire |x|=x per x>0 e |x|=-x per $x\leq 0$.
- 2. Dalla definizione e dall'osservazione precedente segue che:
 - (a) $|x| \ge 0 \ \forall x \in \mathbb{R};$
 - (b) $\forall x \in \mathbb{R} \text{ si ha } |x| = |-x|;$
 - (c) $\forall x \in \mathbb{R} \text{ si ha } x \leq |x| \text{ e } -x \leq |x|;$
 - (d) dati $x, y \in \mathbb{R}$, se $x \le y$ e $-x \le y$ allora $|x| \le y$.

Esempi:

1.
$$|x-1|(x+1) = \begin{cases} x^2 - 1, & x \ge 1, \\ 1 - x^2, & x < 1. \end{cases}$$

2.
$$|x^2 - 3|(x^2 - x + 1) = \begin{cases} x^4 - x^3 - 2x^2 + 3x - 3, & x \le -\sqrt{3} \text{ oppure } x \ge \sqrt{3}, \\ -x^4 + x^3 + 2x^2 - 3x + 3, & -\sqrt{3} < x < \sqrt{3}. \end{cases}$$

3.
$$|x-2||x+1| = \begin{cases} x^2 - x - 2, & x \ge 2 \text{ oppure } x < -1, \\ -x^2 + x + 2, & -1 \le x < 2. \end{cases}$$

4.
$$|x^2 + 1| |x^2 - 1| = \begin{cases} x^4 - 1, & x \ge 1 \text{ oppure } x \le -1, \\ -x^4 + 1, & -1 < x < 1. \end{cases}$$

Proprietà del modulo:

- 1. $\forall x, y \in \mathbb{R}$ si ha $|x+y| \le |x| + |y|$.
- 2. $\forall x, y \in \mathbb{R}$ si ha $|x y| \ge ||x| |y||$.
- 3. $\forall x, y \in \mathbb{R}$ si ha $|x \cdot y| = |x| \cdot |y|$.
- 4. $\forall x, y \in \mathbb{R}, y \neq 0$, si ha |x/y| = |x|/|y|.
- 5. $\forall x, y, z \in \mathbb{R}$ si ha $|x y| \le |x z| + |z y|$.

Osservazione: la diseguaglianza in 5 è nota come diseguaglianza triangolare.

Dimostrazioni:

- 1. Se $x + y \ge 0$ si ha $|x + y| = x + y \le |x| + |y|$; se x + y < 0 si ha $|x + y| = -(x + y) = -x y \le |x| + |y|$.
- 2. Sia $z = x y \Longrightarrow x = y + z$, quindi $|x| = |z + y| \le |z| + |y| = |x y| + |y| \Longrightarrow |x| |y| \le |x y|$ $\forall x, y \in \mathbb{R}$. Scambiando tra loro x e y (i.e. ridefinendo z = y x e ripetendo l'argomento) si ottiene anche $|y| |x| \le |y x|$ $\forall x, y \in \mathbb{R}$. Poiché |x y| = |y x| si ottiene quindi $\pm (|x| |y|) \le |x y| \Longrightarrow ||x| |y|| \le |x y|$ [per l'osservazione 2d].
- 3. Se x, y > 0 si ha $|x \cdot y| = x \cdot y = |x| \cdot |y|$; se x, y < 0 si ha $|x \cdot y| = (-x) \cdot (-y) = |x| \cdot |y|$; se y < 0 < x si ha $|x \cdot y| = -xy = |x| \cdot |y|$.
- 4. Segue da 3, prendendo 1/y invece di y.
- 5. Si ha $|x-y| = |x-z+z-y| \le |x-z| + |z-y|$ [per 1].

Esercizi:

- 1. Rappresentare sul piano l'insieme dei punti (x,y) che verificano $|x| \leq |y|$.
- 2. Rappresentare sul piano l'insieme dei punti (x,y) che verificano $|x| \le 1, |y| \le 1$.
- 3. Rappresentare sul piano l'insieme dei punti (x,y) che verificano $|xy| \leq 1$.
- 4. Rappresentare sul piano l'insieme dei punti (x,y) che verificano $|x| \leq 1, |y| \leq |x|$.

Soluzioni:

1. Nel primo quadrante, dove $x, y \ge 0$, la condizione $|x| \le |y|$ diventa $y \ge x \ge 0$, quindi la parte dell'insieme che cade nel primo quadrante è costituita dai punti (x, y) che si trovano al di sopra della bisettrice y = x. Nel secondo quadrante, dove $x < 0 \le y$, la condizione $|x| \le |y|$ diventa $0 < -x \le y$, ovvero $y \ge -x$, con x < 0, quindi la parte dell'insieme che

cade nel secondo quadrante è costituita dai punti (x,y) che si trovano al di sopra della bisettrice y=-x. Analogamente si trova che la parte dell'insieme nel terzo quadrante, dove $|x| \leq |y|$ diventa $0 \leq -x \leq -y$, e quella nel quarto quadrante, $|x| \leq |y|$ diventa $0 \leq x \leq -y$, sono costituite dai punti (x,y) che si trovano al di sotto della bisettrice y=x e al di sotto della bisettrice y=-x, rispettivamente. Si ottiene quindi il cono rappresentato nella Figura 2.2, in alto a sinistra.

2. L'insieme è costituito dal quadrato con centro l'origine e lati di lunghezza $\ell=2$ paralleli agli assi coordinati (cfr. la Figura 2.2, in alto a destra).

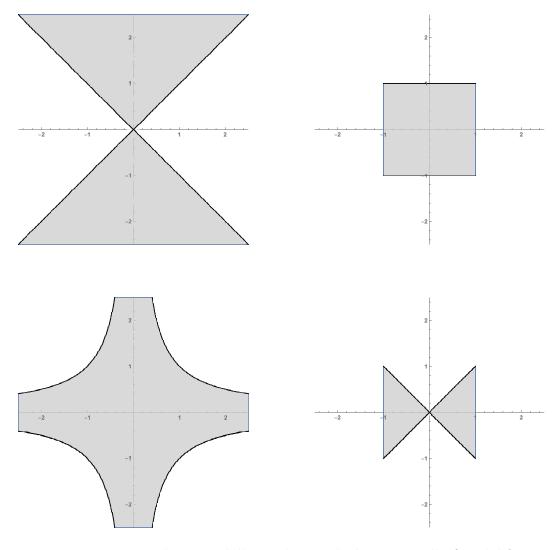


Figura 2.2: Insiemi descritti dalle condizioni degli esercizi alla fine del §2.3.

3. Se x=0 la condizione $|xy| \le 1$ è soddisfatta per ogni $y \in \mathbb{R}$, quindi l'insieme contiene l'asse y. Se $x \ne 0$, Nel primo quadrante, la condizione $|xy| \le 1$ diventa $xy \le 1$, ovvero $y \le 1/x$,

quindi la parte dell'insieme contenuta nel primo quadrante è costituita dai punti che sono al di sotto dell'iperbole y=1/x, con x>0. Ragionando in modo analogo si trova che la parte dell'insieme nel secondo quadrante, quella nel terzo quadrante e quella nel quarto quadrante sono costituite dai punti che si trovano al di sotto dell'iperbole y=-1/x, con x>0, al di sopra dell'iperbole y=1/x, con x<0, e al di sopra dell'iperbole y=-1/x, con x>0, rispettivamente (cfr. la Figura 2.2, in basso a sinistra).

4. L'insieme considerato si può scrivere come intersezione di due insiemi, i.e. nella forma $\{(x,y)\in\mathbb{R}^2:|y|\leq |x|\}\cap\{(x,y)\in\mathbb{R}^2:|x\leq 1|\}$. Per il primo dei due, si ragiona come per l'esercizio 1, con il ruolo di x e y scambiati. Il secondo è costituito dalla striscia costituita da tutti i punti (x,y), con y arbitrario e $-1\leq x\leq 1$. Si ottiene quindi il cono di altezza finita rappresentato nella Figura 2.2, in basso a destra.

2.4 Funzione reale di variabile reale

Si definisce variabile una grandezza che può assumere più valori: per esempio $x \in I$, dove I può essere un intervallo o, più in generale, un sottoinsieme dell'asse reale.

Definizione 2.8. Funzione reale di variabile reale è una legge f che associa a ogni numero reale $x \in I$ un valore reale y = f(x).

Esempi:

- 1. Se $I = \{0.5, 2, 6\}$ si può considerare la funzione $f: I \to \mathbb{R}$ definita ponendo f(0.5) = 1, f(2) = 2 e f(6) = 4.
- 2. Se I = [1, 2] si può considerare la funzione $f(x) = x^2$.

Osservazione: In linea di principio si possono considerare funzioni che associano alla variabile x più di un valore (funzioni a più valori o funzioni multivoche o funzioni polidrome). Noi considereremo esclusivamente funzioni univoche, i.e. funzioni che a ogni $x \in I$ associano uno e un solo valore f(x).

Definizione 2.9. L'insieme dei valori x per i quali il valore y è dato secondo la legge f si chiama campo di definizione o campo di esistenza o dominio. Se I è il dominio di f scriveremo $f: I \to \mathbb{R}$.

Se f è assegnata senza specificare il suo campo di definizione si intende che va considerato come dominio l'insieme D_f di tutti i valori su cui f è definito.

Esempi:

- 1. Se f(x) = x, il dominio è $D_f = \mathbb{R}$.
- 2. Se $f(x) = x^2$, il dominio è $D_f = \mathbb{R}$.

- 3. Se f(x) = |x|, il dominio è $D_f = \mathbb{R}$.
- 4. Se $f(x) = \sqrt{x}$, il dominio è $D_f = \mathbb{R}_+ = \{x \in \mathbb{R} : x \ge 0\}$.
- 5. Se f(x) = 1/x, il dominio è $D_f = \mathbb{R} \setminus \{0\} = \{x \in \mathbb{R} : x \neq 0\}$.
- 6. Se $f(x) = 1/(x^2 3)$, il dominio è $D_f = \mathbb{R} \setminus \{\pm \sqrt{3}\} = \{x \in \mathbb{R} : x \neq \pm \sqrt{3}\}$.

Definizione 2.10. Si chiama codominio di f l'insieme C_f dei valori assunti da f(x) al variare di $x \in I$: $C_f = \{y \in \mathbb{R} : \exists x \in I \text{ tale che } y = f(x)\}.$

Esempi:

- 1. Se f(x) = x, il codominio è $C_f = \mathbb{R}$.
- 2. Se $f(x) = x^2$, il codominio è $C_f = \mathbb{R}_+$.
- 3. Se $f(x) = \sqrt{x}$, il codominio è $C_f = \mathbb{R}_+$.
- 4. Se f(x) = 1/x, il codominio è $C_f = \mathbb{R} \setminus \{0\}$.
- 5. Se f(x) = |x|, il codominio è $C_f = \mathbb{R}_+$.
- 6. Se $f(x) = x^2 + x^4$, il codominio è $C_f = \mathbb{R}_+$.

In genere se si vuole studiare una funzione a valori reali, di cui non si conoscono dominio e codominio, per prima cosa si cercherà di individuarne il dominio $I = D_f$. Si scriverà $f: I \to \mathbb{R}$. Una volta determinato il codominio C_f , si potrà essere più precisi scrivendo $f: I \to C_f$.

Usualmente individuare il dominio di una funzione non presenta particolari difficoltà. Al contrario detreminarne il codominio può essere più problematico e spesso richiede uno studio approfondito della funzione.

Esempi:

1. Si consideri la funzione

$$f(x) = \frac{(x-3)(x+2)}{x^2+4}.$$

Si vede immediatamente che $D_f = \mathbb{R}$, mentre per trovarne il codominio occorre studiare la funzione in dettaglio (cfr. il capitolo 9): si trova $C_f = [-3/2, 1)$.

2. Analoghe considerazioni valgono per la funzione

$$f(x) = \frac{(x^2 - 3)(x + 4)}{(x^2 + 4)(x - 1)},$$

per cui è facile vedere che $D_f = \mathbb{R} \setminus \{1\} = (-\infty, 1) \cup (1, +\infty)$. Per determinare C_f occorre lavorare di più; procedendo secondo lo schema del capitolo 9 si trova $C_f = (-\infty, +\infty) = \mathbb{R}$.

Per studiare il comportamento di una funzione, in particolare per individuarme il codominio, spesso è conveniente rappresentare la funzioni graficamente, nel modo seguente. Data una funzione $f: I \to \mathbb{R}$, che a $x \in I$ associa $f(x) \in \mathbb{R}$, consideriamo per ogni $x \in I$ il punto $P = (x, f(x)) \in \mathbb{R}^2$.

Definizione 2.11. Data una funzione $f: I \to \mathbb{R}$, l'insieme

$$graf(f) := \{(x, f(x)) \in \mathbb{R}^2 : x \in I\}$$

prende il nome grafico di f.

Osservazione: Il grafico di una funzione è un sottoinsieme del piano cartesiano. Più precisamente è l'insieme dei punti (x,y) tali che $x \in I$ e y = f(x). Per costruzione a ogni punto $x \in I$ corrisponde uno e un solo punto del piano cartesiano.

Esempi:

- 1. Il grafico della funzione dell'esempio 1 dopo la Definizione 2.8 è costituita dai tre punti (0.5, 1), (2, 2) e (6, 4) (cfr. la Figura 2.3, a sinistra).
- 2. Il grafico della funzione dell'esempio 1 dopo la Definizione 2.8 è costiyuita dai ramo di parabola rappresentato nella Figura 2.3, a destra.

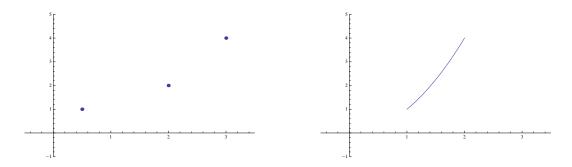


Figura 2.3: Grafici delle funzioni f(x) considerate negli esempi dopo la Definizione 2.8.

Definizione 2.12. Una funzione $f: I \to \mathbb{R}$ si dice periodica in I se esiste T > 0 tale che $f(x+T) = f(x) \ \forall x \in I$. Il più piccolo T per cui questo accade si chiama periodo fondamentale o semplicemente periodo della funzione.

Osservazioni:

- 1. Un funzione periodica è in sostanza una funzione che si ripete a intervalli regolari. Esempi di funzioni periodiche sono le funzioni trigonometriche che vedremo più avanti (cfr. il §3.6).
- 2. La funzione $f(x) = \text{costante } \hat{\mathbf{e}}$ una funzione periodica per la quale non $\hat{\mathbf{e}}$ tuttavia definito il periodo, in quanto non esiste un T minimo tale che f(x+T) = f(x).

3 | Funzioni elementari principali

3.1 Funzioni elementari principali

Si chiamano funzioni elementari principali le seguenti funzioni:

- 1. funzione potenza x^{α} , dove $\alpha \in \mathbb{R}$ è l'esponente;
- 2. $funzioni\ trigonometriche$: $\sin x$ (seno), $\cos x$ (coseno), $\tan x$ o $\tan x$ o a o
- 3. funzione logaritmo: $\log_a x$, dove a è la base (se a = 10 si scrive $\log_{10} x = \log x$; se a = e si scrive $\log_e x = \ln x$);
- 4. funzione esponenziale: a^x , dove $a \in \mathbb{R}$ è la base (particolaremente interessanti sono i casi a = 10 e a = e).

Osservazione: e è il numero di Nepero che verrà definito più avanti (cfr. pagina 77).

3.2 Domini e grafici delle funzioni potenze

La funzione potenza è la funzione $f(x) = x^{\alpha}$, dove $\alpha \in \mathbb{R}$ prende il nome di esponente. Il caso $\alpha = 0$ è banale perché $x^0 = 1 \ \forall x \neq 0$.

Se $\alpha \neq 0$, consideriamo prima il caso $\alpha > 0$. Se $\alpha \in \mathbb{Q}$, i.e. se $\alpha = p/q$, con $p, q \in \mathbb{N}$ (per $\alpha > 0$, possiamo supporre senza perdita di generalità che p e q siano entrambi positivi; cfr. l'osservazione 2 del §1.4). Se q = 1, x^p è semplicemente il prodotto di x per sè stesso p volte:

$$x^p = \underbrace{x \cdot \dots \cdot x}_{p \text{ volte}}.$$

Se invece $p=1, \, x^{1/q}$ è il numero y tale che

$$y^q = \underbrace{y \cdot \ldots \cdot y}_{q \text{ volte}} = x.$$

Se q è pari, tale numero esiste solo se $x \ge 0$. Pertanto, in generale, il numero $y = x^{p/q}$ è il numero la cui potenza con esponente q è uguale alla potenza con esponente p del numero x: se q è dispari, tale numero y esiste per ogni x, mentre se q è pari esso esiste solo se $x \ge 0$. Se $\alpha \in \mathbb{R} \setminus \mathbb{Q}$, la potenza x^{α} si calcola passando attraverso la funzione esponenziale (cfr. il §3.7) e la funzione logaritmo (cfr. il §3.8), ponendo $x^{\alpha} = \exp(\alpha \ln x)$, che è ben definito per x > 0 e si pone uguale a 0 per x = 0.

Se infine $\alpha < 0$, si può scrivere $x^{\alpha} = x^{-\beta} = 1/x^{\beta}$, con $\beta = -\alpha > 0$. In particolare, il dominio di x^{α} differisce da quello della potenza con esponente positivo in quanto il punto x = 0 va escluso.

In conclusione, riguarda al dominio della funzione potenza, vale quanto segue:

- se $\alpha = p/q$, con q dispari, si ha $D_f = \mathbb{R}$;
- se $\alpha = p/q$, con q pari, oppure $\alpha \in \mathbb{R} \setminus \mathbb{Q}$ (irrazionale) allora $D_f = \mathbb{R}_+$.

Esempi di grafici di potenze sono riportati in Figura 3.1, per alcuni valori $\alpha > 0$, e in Figura 3.2, per alcuni valori di $\alpha < 0$.

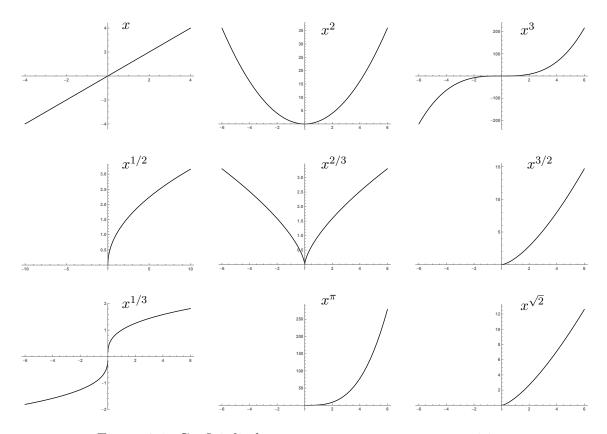


Figura 3.1: Grafici di alcune potenze con esponente positivo.

In particolare si vede che $f(1) = 1^{\alpha} = 1$, indipendentemente dal valore di α . Inoltre, per $x \geq 0$, si ha la situazione seguente: se $\alpha = 1$ il grafico di f(x) = x è una retta passante per l'origine (bisettrice del primo e terzo quadrante), se $\alpha > 1$ il grafico è una curva che si mantiene al di sotto della retta per x < 1 e al di sopra per x > 1, se $\alpha < 1$ il grafico è una curva che si mantiene al di sopra della retta per x < 1 e al di sotto per x > 1 (cfr. gli esempi in Figura 3.1).

Osservazioni:

- 1. Se $\alpha = 1/n$ spesso si usa la notazione $\sqrt[n]{x} = x^{1/n}$. In particolare se n = 2 si scrive semplicemente $\sqrt[n]{x} = \sqrt{x}$.
- 2. Sia $f(x) = x^{\alpha}$. Per $x \ge 0$ si ha $f(x) \ge 0$ per ogni valore di α . Per x < 0, quando la funzione è definita ovvero per $\alpha = p/q$, con q dispari —, si ha f(x) > 0 se p è pari (esempi: $f(x) = x^2$, $f(x) = x^{-2}$, $f(x) = x^{2/3}$) e f(x) < 0 se p è dispari (esempi: f(x) = x, $f(x) = x^3$, $f(x) = x^{1/3}$).

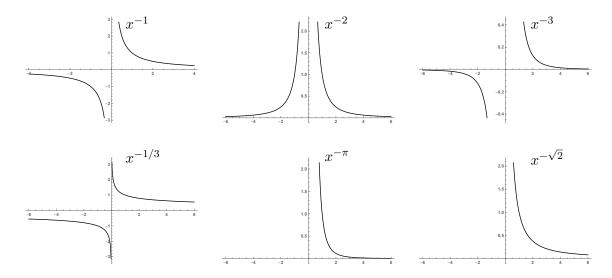


Figura 3.2: Grafici di alcune potenze con esponente negativo

3.3 Equazioni di primo e secondo grado

3.3.1 Equazione di primo grado $ax + b = 0, a \neq 0$

La soluzione dell'equazione ax + b = 0, $a \neq 0$, è x = -b/a. Graficamente la funzione f(x) = ax + b rappresenta una retta che attraversa l'asse x nel punto x = -b/a e l'asse y nel punto y = b; ved. Figura 3.3. In particolare a è il coefficiente angolare della retta: si ha $a = \operatorname{tg} \varphi$, dove φ è l'angolo che la retta forma con l'asse x.

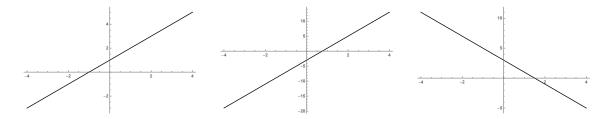


Figura 3.3: Grafici di alcune rette.

3.3.2 Equazione di secondo grado $ax^2 + bx + c = 0, a \neq 0$

L'equazione $ax^2 + bx + c = 0$, $a \neq 0$, ha due soluzioni in C:

$$x_1 = \frac{-b - \sqrt{b^2 - 4ac}}{2a}, \qquad x_2 = \frac{-b + \sqrt{b^2 - 4ac}}{2a}.$$

In particolare, definendo il discriminante $\Delta=b^2-4ac$, se $\Delta>0$ le due soluzioni sono reali e distinte, se $\Delta=0$ le due soluzioni sono reali e coincidenti, se $\Delta<0$ non esistono soluzioni reali. La funzione $f(x)=ax^2+bx+c$ rappresenta una parabola, con concavità rivolta verso l'alto se a>0 e verso il basso se a<0.

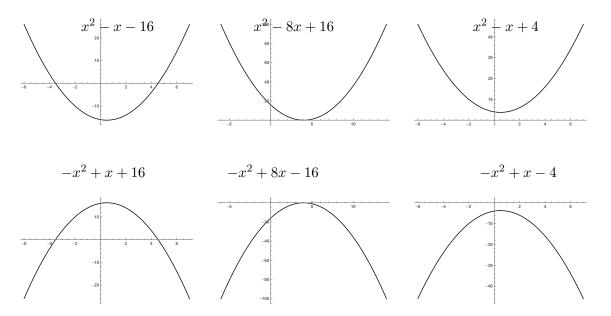


Figura 3.4: Grafici di alcune parabole.

Osservazione: se l'equazione di secondo grado è della forma $ax^2 + 2b_0x + c = 0$ (i.e. il coefficiente del termine di primo grado è divisibile per 2) allora le radici si possono scrivere

nella forma:

$$x_1 = \frac{-b_0 - \sqrt{b_0^2 - ac}}{a}, \qquad x_2 = \frac{-b_0 + \sqrt{b_0^2 - ac}}{a}.$$

A seconda del valore del discriminante si hanno i casi rappresentati in Figura 3.4: le soluzioni dell'equazioni $ax^2 + bx + c = 0$ corrispondono ai punti in cui la parabola interseca l'asse x.

Complementi:

1. Formule risolutive dell'equazione di secondo grado. Poiché $a \neq 0$, dividendo l'equazione $ax^2 + bx + c = 0$ per a si ottiene

$$x^2 + \frac{b}{a}x = -\frac{c}{a},$$

Si può completare il quadrato a primo membro aggiungendo a sottraendo un'opportuna costante, i.e. scrivendo

$$x^{2} + \frac{b}{a}x = x^{2} + 2\left(\frac{b}{2a}\right)x = x^{2} + 2\left(\frac{b}{2a}\right)x + \frac{b^{2}}{4a^{2}} - \frac{b^{2}}{4a^{2}} = \left(x + \frac{b}{2a}\right)^{2} - \frac{b^{2}}{4a^{2}},$$

che, inserita nell'equazione precedente, dà

$$\left(x + \frac{b}{2a}\right)^2 = \frac{b^2}{4a^2} - \frac{c}{a} = \frac{b^2 - 4ac}{4a^2}.$$

Estraendo la radice quadrata si ottiene

$$x + \frac{b}{2a} = \pm \sqrt{\frac{b^2 - 4ac}{4a^2}} = \pm \frac{\sqrt{b^2 - 4ac}}{2a}$$

ovvero

$$x = -\frac{b}{2a} \pm \frac{\sqrt{b^2 - 4ac}}{2a} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}.$$

2. Derivazione alternativa delle formule risolutive dell'equazione di secondo grado. Partendo dall'equazione di secondo grado $ax^2 + bx + c = 0$, si introduce la variabile y scrivendo x = y + m, con m da determinare. L'equazione diventa allora

$$a(m+y)^{2} + b(m+y) + c = am^{2} + 2amy + ay^{2} + bm + by + c$$
$$= ay^{2} + (2am + b) + (am^{2} + bm + c) = 0.$$

Fissando m = -b/2a, così da cancellare il termine lineare in y, si ottiene

$$ay^{2} + (am^{2} + bm + c) = ay^{2} + \left(\frac{b^{2}}{4a} - \frac{b^{2}}{2a} + c\right) = ay^{2} + \left(-\frac{b^{2}}{4a} + c\right) = 0,$$

ovvero

$$y^{2} = -\frac{1}{a}\left(-\frac{b^{2}}{4a} + c\right) = \frac{b^{2} - 4ac}{4a^{2}} \implies y = \pm \frac{\sqrt{b^{2} - 4ac}}{2a}.$$

Tornando alla variabile x, si trovano le formule risolutive note.

3.4 Disequazioni di primo grado

3.4.1 Disequazione di primo grado $ax + b \ge 0, a \ne 0$

Consideriamo la disequazione di primo grado $ax + b \ge 0$, dove $a, b \in \mathbb{R}$, con $a \ne 0$. Sia $x_0 = -b/a$ la soluzione di ax + b = 0. Allora la disequazione è soddisfatta per $x \ge x_0$ se a > 0 e per $x \le x_0$ se a < 0. Se vale il segno stretto, i.e. se la disequazione ha la forma ax + b > 0, allora la soluzione è $x > x_0$ per a > 0 e $x < x_0$ per a < 0.

Se si considera la retta di equazione y = ax+b, per $x \ge x_0$ la retta è al di sopra dell'asse x se a > 0 e al di sotto se a < 0. Quindi le soluzioni della disequazione ammettono una semplice interpretazione in termini del grafico della funzione f(x) = ax + b.

3.4.2 Disequazione di primo grado $ax + b \le 0, a \ne 0$

Consideriamo ora la disequazione di primo grado $ax + b \le 0$, dove $a, b \in \mathbb{R}$, con $a \ne 0$. Ci si riconduce al caso precedente moltiplicando la disequazione membro a membro per -1: $ax + b \le 0 \Longrightarrow -ax - b = (-1)(ax + b) \ge 0$. Quindi la soluzione è $x \ge -(-b)/(-a) = -b/a = x_0$ se -a > 0, i.e. a < 0, e $x \le -b/a = x_0$ se -a < 0, i.e. a > 0. Come prima, se vale il segno stretto nella disequazione, i.e. se la disequazione assume la forma ax + b < 0, allora vale il segno stretto anche nella soluzione.

Anche in questo caso le soluzioni della disequazione ammettono una semplice interpretazione in termini del grafico della funzione f(x) = ax + b.

3.4.3 Conclusioni

In conclusione, a seconda del segno di a, la disequazione è soddidafta se e solo se x soddisfa la diseguaglianza indicata nella tabella seguente:

$$a > 0 \qquad a < 0$$

$$ax + b > 0 \qquad x > -\frac{b}{a} \qquad x < -\frac{b}{a}$$

$$ax + b \ge 0 \qquad x \ge -\frac{b}{a} \qquad x \le -\frac{b}{a}$$

$$ax + b < 0 \qquad x < -\frac{b}{a} \qquad x > -\frac{b}{a}$$

$$ax + b \le 0 \qquad x \le -\frac{b}{a} \qquad x \ge -\frac{b}{a}$$

3.5 Disequazioni di secondo grado

3.5.1 Disequazione di secondo grado $ax^2 + bx + c \ge 0, a \ne 0$

Nel discutere la disequazione $ax^2 + bx + c \ge 0$, $a \ne 0$, è conveniente procedere nel modo seguente. Si disegna la parabola $y = f(x) = ax^2 + bx + c$. Si possono avere vari casi, come mostrato dalla Figura 3.4. Siano x_1 e x_2 le due soluzioni dell'equazione di secondo grado corrispondente $ax^2 + bx + c = 0$: si può avere (1) $ax^2 + bx + c = 0$ per $x = x_1$ oppure per $x = x_2$, con x_1 e x_2 reali e distinti, (2) $ax^2 + bx + c = 0$ per $x = x_1 = x_2$, se x_1 e x_2 sono reali e coincidenti e (3) $ax^2 + bx + c \ne 0 \ \forall x \in \mathbb{R}$.

Quindi x_1 e x_2 sono i punti dell'asse reale in cui f(x) si annulla. I punti x per cui f(x) > 0 sono i valori di x in cui la parabola è al di sopra dell'asse x, mentre i punti x per cui f(x) < 0 sono i valori di x in cui la parabola è al di sotto dell'asse x. Occorre distinguere sei possibili casi:

- $a > 0, \Delta > 0 \Longrightarrow x \le x_1 \text{ oppure } x \ge x_2;$
- $a > 0, \Delta = 0 \Longrightarrow x \in \mathbb{R}$ (in tal caso $x_1 = x_2$);
- $a > 0, \, \Delta < 0 \Longrightarrow x \in \mathbb{R}$ (in tal caso non esistono x_1, x_2);
- $a < 0, \Delta > 0 \Longrightarrow x_1 < x < x_2$;
- $a < 0, \Delta = 0 \Longrightarrow x = x_1 \text{ (in tal caso } x_1 = x_2);$
- $a < 0, \Delta < 0 \Longrightarrow$ nessuna soluzione (in tal caso non esistono x_1, x_2).

3.5.2 Disequazione di secondo grado $ax^2 + bx + c > 0, a \neq 0$

Si ragiona come sopra tenendo conto che se nella disequazione vale il segno stretto, allora vale in segno stretto anche nelle soluzioni (con il caveat che se $\Delta = 0$ la disequazione non è più risolta da $x = x_1$). Quindi la soluzione in tal caso diventa:

- $a > 0, \Delta > 0 \Longrightarrow x < x_1 \text{ oppure } x > x_2$;
- a > 0, $\Delta = 0 \Longrightarrow x \neq x_1$ (in tal caso $x_1 = x_2$);
- $a > 0, \, \Delta < 0 \Longrightarrow x \in \mathbb{R}$ (in tal caso non esistono x_1, x_2);
- $a < 0, \Delta > 0 \Longrightarrow x_1 < x < x_2;$
- $a < 0, \Delta = 0 \Longrightarrow$ nessuna soluzione (in tal caso $x_1 = x_2$);
- $a < 0, \Delta < 0 \Longrightarrow$ nessuna soluzione (in tal caso non esistono x_1, x_2).

3.5.3 Disequazione di secondo grado $ax^2 + bx + c \le 0, a \ne 0$

Si ragiona come nel caso precedente, con l'unica differenza che ora occorre individuare i valori di x in cui la parabola si trova al di sotto dell'asse x. Quindi si ha:

- $a > 0, \Delta > 0 \Longrightarrow x_1 \le x \le x_2;$
- a > 0, $\Delta = 0 \Longrightarrow x = x_1$ (in tal caso $x_1 = x_2$);
- $a > 0, \, \Delta < 0 \Longrightarrow$ nessuna soluzione (in tal caso non esistono x_1, x_2);
- $a < 0, \Delta > 0 \Longrightarrow x \le x_1 \text{ oppure } x \ge x_2;$
- $a < 0, \Delta = 0 \Longrightarrow x \in \mathbb{R}$ (in tal caso $x_1 = x_2$);
- $a < 0, \Delta < 0 \Longrightarrow x \in \mathbb{R}$ (in tal caso non esistono x_1, x_2).

3.5.4 Disequazione di secondo grado $ax^2 + bx + c < 0, a \neq 0$

Ragionando come sopra si trova:

- $a > 0, \Delta > 0 \Longrightarrow x_1 < x < x_2;$
- a > 0, $\Delta = 0 \Longrightarrow$ nessuna soluzione (in tal caso $x_1 = x_2$);
- $a > 0, \, \Delta < 0 \Longrightarrow$ nessuna soluzione (in tal caso non esistono x_1, x_2);
- $a < 0, \Delta > 0 \Longrightarrow x < x_1 \text{ oppure } x > x_2;$
- $a < 0, \Delta = 0 \Longrightarrow x \neq x_1$ (in tal caso $x_1 = x_2$);
- $a < 0, \Delta < 0 \Longrightarrow x \in \mathbb{R}$ (in tal caso non esistono x_1, x_2).

Esercizi.

- 1. Si risolva la disequazione $x^2 + 4x \frac{9}{4} \ge 0$.
- 2. Si risolva la disequazione $\frac{2x-3}{5-x^2} \ge 0$.
- 3. Si risolva la disequazione $|x^2 2| < x$.
- 4. Si risolva la disequazione $\frac{2x-1}{x+2} \frac{12-6x}{4-x^2} \ge 0.$
- 5. Si risolva la disequazione $x + 3 \ge \sqrt{x + 3}$.
- 6. Si risolva la disequazione $\frac{x^2 4x + 3}{2 x} \le 0.$

3.5. DISEQUAZIONI DI SECONDO GRADO

41

- 7. Si risolva il sistema di disequazioni $x^2 4x + 4 > 0$, 2 x > 0.
- 8. Si risolva la disequazione $x^3 4x^2 + 2x > 0$.
- 9. Si risolva la disequazione $x^4 24x^3 + 8x^2 > 0$.
- 10. Si risolva la disequazione $x^4 6x^2 + 4 \ge 0$.
- 11. Si risolva la disequazione $2x^4 3x^2 + 1 > 0$.
- 12. Si risolva la disequazione $\frac{1}{x^2} \frac{6}{x^4} + 2 < 0$.

Soluzioni:

- 1. La disequazione è della forma $ax^2 + bx + c \ge 0$, con a = 1 > 0 e $\Delta = b^2 4ac = 25 > 0$. Le radici di $x^2 + 4x 9/4 = 0$ sono $x_1 = -9/2$ e $x_2 = 1/2$. Quindi la soluzione della disequazione è: $x \in (-\infty, -9/2] \cup [1/2, +\infty)$.
- 2. Deve essere $2x-3 \ge 0$ e $5-x^2>0$ oppure $2x-3 \le 0$ e $5-x^2<0$. Quindi la soluzione della disequazione è: $x \in (-\infty, -\sqrt{5}) \cup [3/2, \sqrt{5})$.
- 3. Se $x^2 \ge 2$ si ha $x^2 2 x < 0$, che ammette soluzione: -1 < x < 2 (poiché a = 1 > 0, $\Delta = 9 > 0$ e le radici sono $x_1 = -1$, $x_2 = 2$); la condizione $x^2 \ge 2$ richiede $x \ge \sqrt{2}$ oppure $x \le -\sqrt{2} \Longrightarrow \sqrt{2} \le x < 2$. Se $x^2 < 2$ si ha $2 x^2 x < 0$, che ammette soluzione: x < -2 oppure x > 1 (poiché a = -1 < 0, $\Delta = 9 > 0$ e le radici sono $x_1 = -2$, x = 1); la condizione $x^2 < 2$ richiede $|x| < \sqrt{2} \Longrightarrow 1 < x < \sqrt{2}$. Unendo le due condizioni troviamo la soluzione: $x \in (1, 2)$.
- 4. Si deve innanzitutto richiedere $x+2\neq 0$ e $x^2\neq 4 \Longrightarrow x\neq \pm 2$. Inoltre 12-6x=6(2-x) e $4-x^2=(2+x)(2-x)\Longrightarrow (12-6x)/(4-x^2)=6/(2+x)$. Quindi

$$\frac{2x-1}{x+2} - \frac{12-6x}{4-x^2} = \frac{2x-1}{x+2} - \frac{6}{2+x} = \frac{2x-1-6}{2+x} = \frac{2x-7}{2+x}.$$

così che si deve richiedere $2x-7 \ge 0$ e 2+x>0 oppure $2x-7 \le 0$ e 2+x<0. La soluzione è quindi: $x \in (-\infty, -2) \cup [7/2, +\infty)$.

- 5. Si deve avere $x+3 \ge 0 \Longrightarrow$ se x+3=0 (i.e. x=-3) si ha $0 \ge 0$, che è soddisfatta; se x+3>0, dividendo l'equaizone per $\sqrt{x+3}$, si ottiene $\sqrt{x+3} \ge 1 \Longrightarrow x+3 \ge 1$. Quindi la soluzione è: $x \in \{-3\} \cup [-2, +\infty)$.
- 6. La soluzione è: $x \in [1, 2) \cup [3, +\infty)$.
- 7. La soluzione è: $x \in (-\infty, 2)$.
- 8. Si può scrivere $x^3 4x^2 + 2x = x$ ($x^2 4x + 2$), quindi si ha $x \ge 0$ e $x^2 4x + 2 \ge 0$ oppure $x \le 0$ e $x^2 4x + 2 \le 0$. L'equazione $x^2 4x + 2 = 0$ ha soluzioni $x_1 = 2 \sqrt{2}$ e $x_2 = 2 + \sqrt{2}$, quindi $x^2 4x + 2 \ge 0$ per $x \le 2 \sqrt{2}$ oppure per $x \ge 2 + \sqrt{2}$, mentre $x^2 4x + 2 \le 0$ per $2 \sqrt{2} \le x \le 2 + \sqrt{2}$. In conclusione si deve avere: $x \in [0, 2 \sqrt{2}] \cup [2 + \sqrt{2}, +\infty)$.
- 9. Si può scrivere $x^4 24x^3 + 8x^2 = x^2(x^2 24x + 8)$, quindi, poiché $x^2 \ge 0$, si deve richiedere $x^2 24x + 8 \ge 0$ oppure x = 0 (valore per il quale $x^2 = 0$). L'equazione $x^2 24x + 8 = 0$ ha soluzioni $x_1 = 12 \sqrt{136}$ e $x_2 = 12 + \sqrt{136}$, quindi $x^2 24x + 8 \ge 0$ per $x \le 12 \sqrt{136}$ oppure per $x \ge 12 + \sqrt{136}$, mentre $x^2 24x + 8 \le 0$ per $12 \sqrt{136} \le x \le 12 + \sqrt{136}$. In conclusione, tenendo conto che $\sqrt{136} < 12$ si deve avere: $x \in \{0\} \cup [12 \sqrt{136}, 12 + \sqrt{136}]$.

- 10. Se si pone $t=x^2$, la disequazione si riscrive in termini di t nella forma $t^2-6t+4\geq 0$, che ammette soluzione $t\in (-\infty,3-\sqrt{5}]\cup [3+\sqrt{5},+\infty)$. D'altra parte i valori t<0 vanno scartati perché $t=x^2\geq 0$. Quindi si deve avere $x^2\in [0,3-\sqrt{5}]\cup [3+\sqrt{5},+\infty)$, ovvero $x\in (-\infty,-\sqrt{3}+\sqrt{5})\cup [-\sqrt{3}-\sqrt{5},\sqrt{3}-\sqrt{5}]\cup [\sqrt{3}-\sqrt{5},+\infty)$.
- 11. Se si pone $t=x^2$, la disequazione si riscrive in termini di t nella forma $2t^2-3t+1>0$, che ammette soluzione $t\in(-\infty,1/2)\cup(1,+\infty)$. Poiché i valori t<0 vanno scartati, si deve avere $x^2\in[0,1/2)\cup(1,+\infty)$, ovvero $x\in(-\infty,-1)\cup(-1/\sqrt{2},1/\sqrt{2})\cup(1,+\infty)$.
- 12. Innazitutto si deve richiedere $x \neq 0$. Si può allora riscrivere la disequazione, moltiplicando il primo membro per x^4 , nella forma $x^2-6+2x^4<0$. Ponendo $x^2=t$, si trova che le radici dell'equazione $2t^2+t-6=0$ sono $t_1=-2$ e t=3/2, quindi la disequazione $2t^2+t-6<0$ è soddisfatta per $t\in (-2,3/2)$. Ne segue che la disequazione $2x^4+x^2-6<0$ è soddisfatta per $x^2\in [0,3/2)$, i.e. per $x\in (-\sqrt{3}/2,\sqrt{3}/2)$. D'altra parte il valore x=0 va escluso, per quanto visto all'inizio, quindi la disequazione è soddisfatta per $x\in (-\sqrt{3},0)\cup (0,\sqrt{3}/2)$.

3.6 Domini e grafici delle funzioni trigonometriche

Le funzioni trigonometriche sono le funzioni seno, coseno, tangente, cotangente, secante e cosecante, indicate, rispettivamente, come $\sin x$, $\cos x$, $\tan x$, $\cos x$, $\tan x$, $\cot x$,

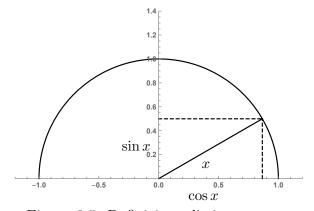


Figura 3.5: Definizione di $\sin x = \cos x$.

Le funzioni $\sin x$ e $\cos x$ sono definite come segue (cfr. la Figura 3.5). Data la circonferenza di raggio 1 e centro l'origine, si consideri il raggio che forma un angolo x con l'asse delle ascisse: allora $\cos x$ rappresenta la proiezione del raggio sull'asse delle ascisse e $\sin x$ rappresenta la proiezione del raggio sull'asse delle ordinate.

Le due funzioni $\sin x$ e $\cos x$ sono quindi definite per $x \in \mathbb{R}$; sono periodiche di periodo 2π , quindi è sufficiente studiarne il grafico per $x \in [-\pi, \pi]$ oppure per $x \in [0, 2\pi]$. Per costruzione si ha $\sin x = 0$ per $x = k\pi$ e $\cos x = 0$ per $x = k\pi + \pi/2$, con $k \in \mathbb{Z}$ (cfr. la Figura 3.6).

Le funzioni tg x e cotg x sono definite rispettivamente come

$$\operatorname{tg} x := \frac{\sin x}{\cos x}, \qquad \cot g x := \frac{\cos x}{\sin x}.$$

In particolare la funzione tg x è definita per $x \neq (2k+1)\pi/2$, $k \in \mathbb{Z}$; inoltre, essa è periodica di periodo π , quindi è sufficiente studiarne il grafico per $x \in (-\pi/2, \pi/2)$ (cfr. la Figura 3.6). La funzione cotg x è definita per $x \neq k\pi$, $k \in \mathbb{Z}$, ed è anch'essa periodica di periodo π , ed è quindi è sufficiente studiarne il grafico per $x \in (0, \pi)$ (cfr. la Figura 3.6).

Analogamente si ragiona per le funzioni

$$\sec x := \frac{1}{\cos x}, \qquad \csc x := \frac{1}{\sin x},$$

i cui grafici sono riportati sempre in Figura 3.6. Le due funzioni $\sec x$ e $\csc x$ hanno periodo 2π e sono definite, rispettivamente, per $x \neq \pi + 2k\pi$, $k \in \mathbb{N}$ e per $x \neq 2k\pi$, $k \in \mathbb{N}$.

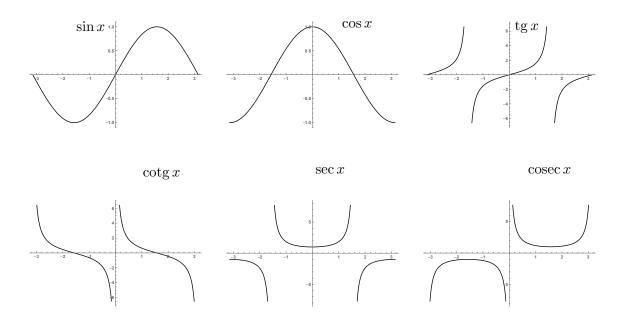


Figura 3.6: Grafici delle funzioni trigonometriche.

Osservazioni:

- 1. Estremamente importanti da ricordare sono le formule di addizione (per la dimostrazione, cfr. i complementi più avanti):
 - (a) $\sin(x \pm y) = \sin x \cos y \pm \cos x \sin y$;
 - (b) $\cos(x \pm y) = \cos x \cos y \mp \sin x \sin y$.

- 2. Ricordando tali formule si possono ricavare tutte le altre relazioni trigonometriche, come le relazioni fondamentali:
 - $\sin 0 = \sin(x x) = \sin x \cos x \sin x \cos x = 0 \Longrightarrow \sin 0 = 0$,
 - $\cos x = \cos(x+0) = \cos x \cos 0 \sin x \sin 0 = \cos x \cos 0 \Longrightarrow \cos 0 = 1$,
 - $\cos 0 = \cos(x x) = \cos^2 x + \sin^2 x = 1 \ \forall x \in \mathbb{R},$
 - o le altre formule di addizione:
 - $\operatorname{tg}(x \pm y) = (\operatorname{tg} x \pm \operatorname{tg} y)/(1 \operatorname{tg} x \operatorname{tg} y),$
 - $\cot g(x \pm y) = (\cot g x \cot g y \mp 1)/(\cot g y \pm \cot g x),$
 - o le formule di prostaferesi
 - $\sin x + \sin y = 2\sin((x+y)/2)\cos((x-y)/2)$,
 - $\cos x + \cos y = 2\cos((x+y)/2)\cos((x-y)/2)$,
 - $\operatorname{tg} x + \operatorname{tg} y = \sin(x+y)/\cos x \cos y$,
 - $\cot x + \cot y = \sin(x+y)/\sin x \sin y$,
 - o le formule di Werner:
 - $\sin x \cos y = (1/2)[\sin(x+y) + \sin(x-y)],$
 - $\cos x \cos y = (1/2)[\cos(x+y) + \cos(x-y)],$
 - $\sin x \sin y = (1/2)[\cos(x-y) \cos(x+y)],$
 - o le formule di bisezione:
 - $\sin(x/2) = \pm \sqrt{(1 \cos x)/2}$,
 - $\cos(x/2) = \pm \sqrt{(1 + \cos x)/2}$,
 - $\operatorname{tg}(x/2) = \sqrt{(1 \cos x)/(1 + \cos x)}$.
- 3. Inoltre il fatto che si abbia $\sin(2\pi) = 0$ e $\cos 2\pi = 1$ è consistente con il fatto che $\sin x$ e $\cos x$ sono periodiche. Infatti, utilizzando le formule di addizione, si ha

$$\sin(x + 2\pi) = \sin x \cos(2\pi) + \sin(2\pi) \cos x = \sin x,$$
$$\cos(x + 2\pi) = \cos x \cos(2\pi) - \sin(2\pi) \sin x = \cos x.$$

4. È utile ricordarsi i valori delle funzioni trigonometriche in corrispondenza ad alcuni angoli speciali:

$$x \qquad 0 \quad \frac{\pi}{6} \quad \frac{\pi}{4} \quad \frac{\pi}{3} \quad \frac{\pi}{2} \quad \frac{2\pi}{3} \quad \frac{3\pi}{4} \quad \frac{5\pi}{6} \quad \pi$$

$$\sin x \qquad 0 \quad \frac{1}{2} \quad \frac{1}{\sqrt{2}} \quad \frac{\sqrt{3}}{2} \quad 1 \quad \frac{\sqrt{3}}{2} \quad \frac{1}{\sqrt{2}} \quad \frac{1}{2} \quad 0$$

$$\cos x \qquad 1 \quad \frac{\sqrt{3}}{2} \quad \frac{1}{\sqrt{2}} \quad \frac{1}{2} \quad 0 \quad -\frac{1}{2} \quad -\frac{1}{\sqrt{2}} \quad -\frac{\sqrt{3}}{2} \quad -1$$

$$\operatorname{tg} x \qquad 0 \quad \frac{1}{\sqrt{3}} \quad 1 \quad \sqrt{3} \quad \infty \quad -\sqrt{3} \quad -1 \quad -\frac{1}{\sqrt{3}} \quad 0$$

$$\cot x \qquad \infty \quad \sqrt{3} \quad 1 \quad \frac{1}{\sqrt{3}} \quad 0 \quad -\frac{1}{\sqrt{3}} \quad -1 \quad -\sqrt{3} \quad \infty$$

I valori che corrispondono ad angoli $x \in (\pi, 2\pi)$ si possono ricavare da quelli elencati sopra utilizzando le formule di addizione: per esempio se $x = 3\pi/2$ si ha $x = \pi + \pi/2$, quindi $\sin x = \sin \pi \cos(\pi/2) + \cos \pi \sin(\pi/2) = -1$, $\cos x = \cos \pi \cos(\pi/2) - \sin \pi \sin(\pi/2) = 0$.

Complementi:

- 1. Dimostrazione della formula di addizione $\sin(x+y) = \sin x \cos y + \cos x \sin y$. Si consideri la Figura 3.7, dove A e B sono i punti in cui due le rette r e s, che formano un angolo x e x+y con l'asse delle ascisse, intersecano rispettivamente la circonferenza di raggio 1, e P è la proiezione ortogonale del segmento OB lungo il segmento OA. Si ha pertanto, per definizione delle funzioni seno e coseno, $|OB'| = |OB| \cos(x+y)$ e $|BB'| = |OB| \sin(x+y)$, mentre $|OP| = |OB| \cos y$ e $|BP| = |OB| \sin y$ e, analogamente, $|OP'| = |OP| \cos x$ e $|PP'| = |OP| \sin x$. Tenendo conto che |OB| = 1, la formula di addizione si può quindi riscrivere come $|BB'| = |OP| \sin x + |PB| \cos x$. Se z denota l'angolo BPB' e Q è il punto del segmento BB' tale che QP è parallelo a OP', dimostriamo innanzitutto che z=x: se θ denota l'angolo QPB, si ha $x+\theta=\pi/2$ (poiché gli angoli OAQ e x sono uguali, in quanto angoli alterni interni di due rette parallele tagliate da una trasversale, e gli angoli x e θ sono complementari); inoltre $\theta+z=\pi/2$ (perché la somma degli angoli interni di un triangolo è π e l'angolo PQB è retto); dalle due relazioni segue che x e z sono uguali. Si ha allora $|BQ| = |BP| \cos x = |BP| \cos x$ e $|QP'| = |PP'| = |OP| \sin x$. Notando che |BB'| = |BQ| + |QB'|, si ottiene la formula desiderata.
- 2. Dimostrazione della formula di addizione $\cos(x+y) = \cos x \cos y \sin x \sin y$. Facendo di nuovo riferimento alla Figura 3.7 e utilizzando le notazioni introdotte nella discussione del punto 1, si trova che, per costruzione, $\cos(x+y) = |OB| \cos(x+y) = |OB'| =$

|OP'| - |B'P'|, dove $|OP'| = |OP| \cos x = |OB| \cos y \cos x = \cos x \cos y$ e, analogamente, $|B'P'| = |QP| = |BP| \sin z = |OB| \sin y \sin z = \sin y \sin z = \sin y \sin x$ (dal momento che z = x), da cui segue la formula desiderata.

- 3. Dimostrazione della formula di addizione $\sin(x-y) = \sin x \cos y \cos x \sin y$. Segue dalla formula $\sin(x+y) = \sin x \cos y + \cos x \sin y$, notando che $\sin y = \cos y$ sono, rispettivamente, dispari e pari in y. Quindi $\cos(-y) = \cos y = \sin(-y) = -\sin y$.
- 4. Dimostrazione della formula di addizione $\cos(x-y) = \cos x \cos y + \sin x \sin y$. Segue dalla formula $\cos(x+y) = \cos x \cos y \sin x \sin y$, usando di nuovo che le funzioni $\sin y \in \cos y$ sono, rispettivamente, dispari e pari in y.

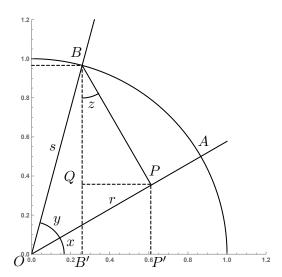


Figura 3.7: Dimostrazione delle formule di addizione.

Esercizi:

- 1. Si dimostri la formula di prostaferesi $\sin x + \sin y = 2\sin((x+y)/2)\cos((x-y)/2)$.
- 2. Si dimostri la formula di prostaferesi $\cos x + \cos y = 2\cos((x+y)/2)\cos((x-y)/2)$.
- 3. Si dimostri la formula di bisezione $\sin(x/2) = \pm \sqrt{(1-\cos x)/2}$
- 4. Si dimostri la formula di bisezione $\cos(x/2) = \pm \sqrt{(1 + \cos x)/2}$.

Solutioni:

- 1. Posto $x = \alpha + \beta$ e $y = \alpha \beta$, si usino le formule di addizione 1(a) per $\sin(\alpha + \beta)$ e $\sin(\alpha \beta)$.
- 2. Posto $x = \alpha + \beta$ e $y = \alpha \beta$, si usino le formule di addizione 1(b) per $\cos(\alpha + \beta)$ e $\cos(\alpha \beta)$.

- 3. Si scriva $\cos x = \cos(x/2 + x/2) = \cos^2(x/2) \sin^2(x/2) = 1 2\sin^2(x/2) \Longrightarrow 2\sin^2(x/2) = 1 \cos x$. Estraendo la radice quadrata segue l'asserto.
- 4. Si proceda come nell'esercizio 3, scrivendo però $\cos^2(x/2) \sin^2(x/2) = 2\cos^2(x/2) 1$.

Osservazioni:

- 1. Le funzioni $\cos(x/2)$ e $\sin(x/2)$ che compaiono nelle formule di bisezioni sono periodiche di periodo 4π : infatti, richiedendo che si abbia $\cos((x+T)/2) = \cos(x/2)$, si trova $T/2 = 2\pi$ e quindi $T = 4\pi$; analogamente si ragiona per $\sin x$. Più in generale le funzioni $\cos(\alpha x)$ e $\sin(\alpha x)$, con $\alpha \neq 0$, sono periodiche di periodo $2\pi\alpha$; per esempio, $\cos(4x)$ è periodica di periodo $T = 4 \cdot 2\pi = 8\pi$.
- 2. Il segno \pm delle formule di bisezione dipendono dal valore di x. Per esempio, nella formula $\cos(x/2) = \pm \sqrt{(1+\cos x)/2}$, poiché $\cos(x/2)$ è periodica di periodo 4π , ci si può limitare all'intervallo $[-2\pi, 2\pi]$. Per $x \in [-\pi, \pi]$, la funzione $\cos(x/2)$ ricopre l'intervallo [0,1] ed è quindi positiva: quindi nella formula di bisezione vale il segno +; per $x \in [-2\pi, -\pi) \cup (\pi, 2\pi]$. la funzione è invece negativa e vale il segno -. Se $x \notin [-2\pi, 2\pi]$, esiste $k \in \mathbb{Z}$ tale che $x + 2\pi k \in [-2\pi, 2\pi]$: il segno è quindi + o a seconda che si abbia $x + 2\pi k \in [-\pi, \pi]$ o $x + 2\pi k \in [-2\pi, -\pi) \cup (\pi, 2\pi]$.

3.7 Dominio e grafico della funzione esponenziale

La funzione esponenziale è data da a^x , con a > 0, $a \neq 1$, ed è definita per $x \in \mathbb{R}$. Il grafico è rappresentato in Figura 3.8 per alcuni valori di a > 1 e in Figura 3.9 per alcuni valori di a < 1.

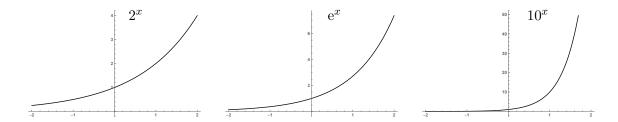


Figura 3.8: Grafici della funzione esponenziale per alcuni valori di a > 1.

Osservazioni:

1. Per ogni fissato $x \in \mathbb{R}$, più grande è a > 1 più grandi sono i valori che assume la funzione a^x e, allo stesso modo, più piccoli sono i valori che assume la funzione a^{-x} (si confrontino i valori sull'asse delle ordinate in Figura 3.8 e in in Figura 3.9).

2. Di particolare interesse è il caso in cui a = e, dove e è il numero di Nepero (cfr. §5.7 più avanti).

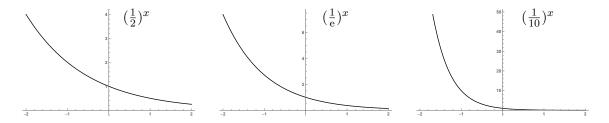


Figura 3.9: Grafici della funzione esponenziale per alcuni valori di a < 1.

Proprietà fondamentali dell'esponenziale:

1. $\forall a > 0, a \neq 1, e \ \forall x, y \in \mathbb{R}$ si ha

$$a^{x+y} = a^x a^y,$$

i.e. l'esponenziale della somma è uguale al prodotto degli esponenziali.

2. $\forall a > 0$ si ha

$$a^{-x} = \frac{1}{a^x}.$$

3. $\forall a > 0, a \neq 1, e \ \forall x, y \in \mathbb{R}$ si ha

$$a^{x-y} = \frac{a^x}{a^y},$$

i.e. l'esponenziale della differenza è uguale al rapporto degli esponenziali.

4. $\forall a > 0, a \neq 1, e \ \forall x, y \in \mathbb{R}$ si ha

$$(a^x)^y = a^{xy}.$$

5. $\forall a > 0$ si ha $a^0 = 1$ e $a^1 = a$.

Osservazioni:

- 1. Per la proprietà 1 (o anche per la 4 con y=2), si ha $(a^x)^2=a^x\cdot a^x=a^{2x}$.
- 2. Un'utile regola mnemonica per ricordare che $a^{x+y}=a^xa^y$ (e non $a^{x+y}=a^x+a^y$ assolutamente!) è la seguente. Si scelga x=y=0 e si ricordi che $a^0=1$ $\forall a>0$. Allora $a^{0+0}=1=1\cdot 1=a^0a^0$, mentre $a^0+a^0=2\neq 1$).

3.8 Dominio e grafico della funzione logaritmo

La funzione logaritmo è data da $f(x) = \log_a x$, con a > 0, $a \neq 1$, ed è definita per x > 0. Il grafico è rappresentato in Figura 3.10 per alcuni valori di a > 1 e in Figura 3.11 per alcuni valori di a < 1.

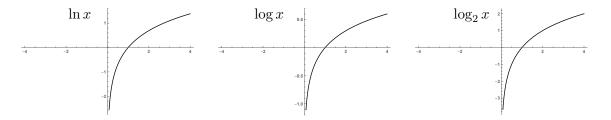


Figura 3.10: Grafici della funzione logaritmo per alcuni valori di a > 1.

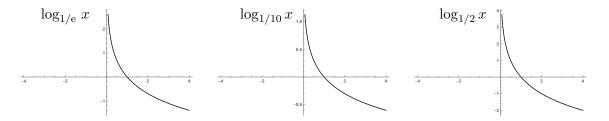


Figura 3.11: Grafici della funzione logaritmo per alcuni valori di a < 1.

Il logaritmo in base a di un numero è definito dalla seguente relazione: $\log_a x = y$ se e solo se $a^y = x$. In particolare $\forall a > 0$ si ha $\log_a a = 1$ (questo si può vedere come segue: $\log_a a = y \Longrightarrow a^y = a \Longrightarrow y = 1$).

Proprietà fondamentali del logaritmo:

1. $\forall a > 0, a \neq 1, e \ \forall x, y > 0$ si ha

$$\log_a(xy) = \log_a x + \log_a y,$$

i.e. il logaritmo del prodotto è uguale alla somma dei logaritmi.

2. $\forall a > 0, a \neq 1, e \ \forall x, y > 0$ si ha

$$\log_a \left(\frac{x}{y}\right) = \log_a x - \log_a y,$$

i.e. il logaritmo del rapporto è uguale alla differenza dei logaritmi.

3. $\forall a > 0, a \neq 1, \forall x > 0 \in \mathbb{R}$ si ha

$$\log_a x^{\alpha} = \alpha \log_a x.$$

4. $\forall a, b > 0, a, b \neq 1$, e $\forall x > 0$ si ha

$$\log_a x = \log_a b \cdot \log_b x$$
.

5. $\forall a > 0, \ a \neq 1, \text{ si ha } \log_a 1 = 0.$

Osservazioni:

- 1. La proprietà 4 si ottiene direttamente dalla definizione: se $z = \log_a x$ e $w = \log_b x$, allora $a^z = b^w = x \Longrightarrow z = z \log_a a = \log_a a^z = \log_a b^w = w \log_a b$.
- 2. Dalla proprietà 4, prendendo x=a, si ottiene $\log_a b=1/\log_b a.$
- 3. Le proprietà del logaritmo si possono derivare dalle proprietà della funzione esponenziale. Per esempio, se poniamo $z = \log_a x$, $w = \log_a y$ e $u = \log_a(xy)$, si ha $a^z = x$, $a^w = y$ e $a^u = xy$, quindi dalla proprietà 1 dell'esponenziale si ottiene $a^u = xy = a^z a^w = a^{z+w} \Longrightarrow u = z + w \Longrightarrow \log_a(xy) = \log_a x + \log_a y$, i.e. la proprietà 1 del logaritmo.
- 4. Il logaritmo in una base qualsiasi a si può sempre esprimere in termini del logaritmo in base e (logaritmo naturale): utilizzando la proprietà 4 si trova

$$\log_a x = \log_a e \cdot \ln x = \frac{1}{\ln a} \ln x,$$

dove si è utilizzata anche l'osservazione 2 per scrivere $\log_a e = 1/\ln a$.

3.9 Simmetrie e parità

Definizione 3.1. Una funzione $f: \mathbb{R} \to \mathbb{R}$ si dice pari se $f(-x) = f(x) \ \forall x \in \mathbb{R}$, si dice dispari se $f(-x) = -f(x) \ \forall x \in \mathbb{R}$.

Proprietà:

- 1. Dalle definizioni segue che se una funzione è pari o dispari, è sufficiente studiarne il comportamento per $x \geq 0$
- 2. Il prodotto di due funzioni pari o di due funzioni dispari è pari, il prodotto di una funzione pari con una dispari è dispari.
- 3. Se una funzione è pari è sufficiente studiarne il grafico per $x \ge 0$: il grafico per x < 0 si ottiene allora per riflessione rispetto all'asse y.

4. Se una funzione è dispari è sufficiente studiarne il grafico per $x \geq 0$: il grafico per x < 0 si ottiene allora attraverso una doppia riflessione (prima rispetto all'asse y, quindi rispetto all'asse x) ovvero attraverso una riflessione rispetto all'origine.

Esempi:

- 1. La funzione $f(x) = x^2$ è pari. Dimostrazione: $f(-x) = (-x)^2 = x^2 = f(x)$.
- 2. La funzione $f(x) = \cos x$ è pari. $Dimostrazione: \cos(-x) = \cos(0-x) = \cos 0 \cos x + \sin 0 \sin x = 1 \cdot \cos x + 0 = \cos x$.
- 3. La funzione f(x) = x è dispari. Dimostrazione: f(-x) = -x = -f(x).
- 4. La funzione $f(x) = \sin x$ è dispari. $Dimostrazione: \sin(-x) = \sin(0-x) = \sin 0 \cos x - \cos 0 \sin x = 0 - 1 \cdot \sin x = -\sin x$.

Osservazioni:

- 1. Noto il grafico di una funzione f(x), il grafico della funzione $g(x) = f(x) + y_0$, $y_0 \in \mathbb{R}$, si ottiene traslando il grafico di f(x) verso l'alto di una quantità y_0 .
- 2. Noto il grafico di una funzione f(x), il grafico della funzione $g(x) = f(x + x_0)$, $x_0 \in \mathbb{R}$, si ottiene traslando il grafico di f(x) verso sinistra di una quantità x_0 .
- 3. Se $y_0 < 0$ traslare verso l'alto di una quantità y_0 significa di fatto traslare verso il basso di una quantità $|y_0|$. Analogamente se $x_0 < 0$ traslare verso sinistra di una quantità x_0 significa di fatto traslare verso destra di una quantità $|x_0|$.
- 4. Il grafico della funzione g(x) = -f(x) si può ottenere da quello di f(x) attraverso una riflessione rispetto all'asse x.
- 5. Il grafico della funzione g(x) = f(-x) si può ottenere da quello di f(x) attraverso una riflessione rispetto all'asse y.

Esempi:

1. Il grafico di $\cos x$ is può ricavare da quello di $\sin x$ tramite una traslazione di $\pi/2$ verso sinistra. Iinfatti

$$\cos x = \cos((x + \pi/2) - \pi/2) = \cos(x + \pi/2)\cos(\pi/2) + \sin(x + \pi/2)\sin(\pi/2)$$
$$= 0 + \sin(x + \pi/2) \cdot 1 = \sin(x + \pi/2).$$

2. Il grafico di una qualsiasi parabola $ax^2 + bx + c$ si può ottenere a partire dalla parabola $y = ax^2$ tramite una traslazione di $x_0 = b/2a$ verso sinistra e una traslazione di $y_0 = c - b^2/4a$ verso l'alto. Per esempio il grafico della funzione $2x^2 + 4x - 3$ si ottiene dal grafico di $2x^2$, prima traslandolo di $x_0 = 4/4 = 1$ verso sinistra, poi di $y_0 = -3 - 4^2/4 \cdot 2 = -5$ verso l'alto, ovvero di 5 verso il basso (cfr. la Figura 3.12).

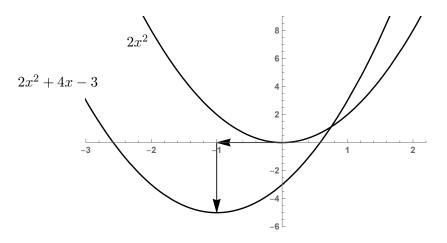


Figura 3.12: Grafico delle funzioni $2x^2 + 4x - 3$ e $2x^2$.

3. Il grafico della funzione $\cot x$ si ottiene dal grafico di $\tan x$ tramite una traslazione di $\pi/2$ verso destra e una successiva riflessione rispetto all'asse x: infatti

$$\cot x = \frac{\cos x}{\sin x} = -\frac{\cos x}{\sin(-x)} = -\frac{\sin(x + \pi/2)}{\cos(-x - \pi/2)} = -\frac{\sin(x + \pi/2)}{\cos(x + \pi/2)} = -\tan(x + \pi/2).$$

- 4. Il grafico di a^x , a < 1, si ottiene dal grafico di b^x , con b = 1/a > 1, attraverso una riflessione rispetto all'asse y: infatti $b^x = a^{-x}$, quindi se $f(x) = b^x$ si ha $f(-x) = b^{-x} = a^x$.
- 5. Il grafico di $\log_a x$, a < 1, si ottiene dal grafico di $\log_b x$, con b = 1/a > 1, attraverso una riflessione rispetto all'asse x: infatti si ha $\log_a x = \log_a b \cdot \log_b x$, quindi se b = 1/a si trova

$$\log_a x = \log_a(1/a) \cdot \log_{1/a} x,$$

dove

$$\log_a(1/a) = -\log_a a = -1 \quad \Longrightarrow \quad \log_a x = -\log_{1/a} x,$$

così che se $\log_{1/a}(x) = f(x)$ si ha $\log_a x = -f(x)$.

3.10 Esercizi

- 1. Si risolva la disequazione $\frac{2x+1}{x-1} \le 3$.
- 2. Si risolva la disequazione ||x|-1| < |x-3|.
- 3. Si risolva la disequazione $\frac{1}{x} + |x 1| \ge 1$.
- 4. Si risolva la disequazione $\sqrt{x^2 x + 1} \ge x + 3$.

3.10. ESERCIZI 53

- 5. Si risolva la disequazione $8^{x+2} \ge 2^{x^2}$.
- 6. Si risolva la disequazione $3^x + \frac{1}{3^x} \le 4$.
- 7. Si risolva la disequazione $3\cos^2 x + \sin^2 x 5\cos x + 1 \le 0$ per $x \in [0, 2\pi]$.
- 8. Si risolva la disequazione $\frac{\sqrt{x}}{\sqrt{x}-1} < \sqrt{x}+1$.
- 9. Si risolva la disequazione |x-1| < 2|x|.
- 10. Si risolva la disequazione $|x^2 1| < x + |x + 1|$.

Soluzioni:

1. Si deve avere $x \neq 1$. Se x > 1 si ottiene

$$2x+1 \le 3(x-1) \implies 3x-3 \ge 2x+1 \implies x \ge 4.$$

Se x < 1 si ottiene

$$2x+1 \ge 3(x-1)$$
 \Longrightarrow $3x-3 \le 2x+1$ \Longrightarrow $x \le 4$

e quindi x < 1. In conclusione la soluzione è: $x \in (-\infty, 1) \cup [4, +\infty)$.

2. Se $x \ge 0$ si ha |x| = x e quindi la diseguaglianza diventa |x-1| < |x-3|: se $x \ge 3$ otteniamo

$$x - 1 < x - 3 \implies -1 < -3$$

che non è mai soddisfatta; se $1 \le x < 3$ otteniamo

$$x-1 < 3-x \implies 2x < 4 \implies x < 2$$

e quindi $1 \le x < 2$; se x < 1 otteniamo

$$1 - x < 3 - x \implies 1 < 3$$

che è sempre soddisfatta. Quindi se $x \ge 0$ otteniamo la condizione $x \in [0, 2)$. Se x < 0 si ha |x| = -x e quindi la diseguaglianza diventa

$$|-x-1| < |x-3|$$

dove |-x-1|=|-(x+1)|=|x+1|. Poiché x<0<3 si ha quindi |-x-1|<3-x. Se $x\geq -1$ otteniamo

$$x+1 < 3-x \implies 2x < 2 \implies x < 1,$$

che è ovviamente soddisfatta per $-1 \le x < 0$; se x < -1 otteniamo

$$-x-1 < 3-x \implies -1 < 3$$

che è sempre soddisfatta. Quindi se x < 0 non otteniamo condizioni addizionali su x. Questo mostra che ogni x < 0 soddisfa la disequazione. In conclusione la soluzione è: $x \in (-\infty, 2)$.

3. Deve essere $x \neq 0$. Se $x \geq 1$ abbiamo

$$\frac{1}{x} + x - 1 \ge 1.$$

Moltiplicando per x e usando il fatto che x > 0, otteniamo

$$1 + x^2 - 2x > 0 \implies (x - 1)^2 > 0$$

che è sempre soddisfatta. Se x < 1 (e $x \neq 0$) abbiamo

$$\frac{1}{x} + 1 - x \ge 1 \implies \frac{1}{x} \ge x,$$

quindi se x > 0 troviamo

$$x^2 \le 1 \quad \Longrightarrow \quad 0 < x \le 1,$$

mentre se x < 0 troviamo

$$x^2 > 1 \implies x < -1.$$

In conclusione la soluzione è: $x \in (-\infty, -1] \cup (0, +\infty)$.

4. L'equazione $x^2-x+1=0$ non ha soluzioni reali poiché $\Delta<0$, quindi l'argomento della radice quadrata è sempre positivo. Se x+3<0 (i.e. x<-3), la disequazione è sempre soddisfatta. Se invece $x+3\geq 0$ (i.e. $x\geq -3$), si ha

$$x^{2} - x + 1 \ge x^{2} + 6x + 9 \Longrightarrow -x + 1 \ge 6x + 9 \Longrightarrow 7x \le -8 \Longrightarrow x \le -\frac{8}{7},$$

da cui si ottiene $-3 \le x \le -8/7$. Quindi la soluzione è: $x \in (-\infty, -8/7]$.

5. Si ha

$$8^{x+2} = 2^{3(x+2)} \Longrightarrow 2^{3(x+2)} \ge 2^{x^2} \Longrightarrow 3(x+2) \ge x^2 \Longrightarrow x^2 - 3x - 6 \le 0$$

quindi la soluzione è: $x \in [3-\sqrt{33})/2, 3+\sqrt{33})/2$], dove $x=(3\pm\sqrt{33})/2$ sono le soluzioni di $x^2-3x-6=0$.

3.10. ESERCIZI 55

6. Ponendo $y = 3^x$ e usando che y > 0, si trova

$$y + \frac{1}{y} \le 4 \implies y^2 - 4y + 1 \le 0 \implies 2 - \sqrt{3} \le y \le 2 + \sqrt{3},$$

dove $y=2\pm\sqrt{3}$ sono le soluzioni di $y^2-4y+1=0$. In conclusione la soluzione è: $x\in [\log_3(2-\sqrt{3}),\log_3(2+\sqrt{3})].$

7. Ponendo $\cos x = y$ e utilizzando che $\sin^2 x = 1 - \cos^2 x$ si trova

$$2y^2 - 5y + 2 \le 0 \quad \Longrightarrow \quad \frac{1}{2} \le y \le 2,$$

dove y=1/2 e y=2 sono le soluzioni di $2y^2-5y+2=0$. Poiché $\cos x \leq 1$ solo i valori $y \in [1/2,1]$ sono accettabili $\Longrightarrow \cos x \in [1/2,1] \Longrightarrow$ la soluzione è: $x \in [0,\pi/3] \cup [5\pi/3,2\pi]$, dove $x=\pi/3$ e $x=2\pi-\pi/3=5\pi/3$ sono i valori per cui si ha $\cos x=1/2$.

8. Si deve avere $x \ge 0$ (perché \sqrt{x} sia definita) e $x \ne 1$ (perché $\sqrt{x} - 1 \ne 0$). Ponendo $\sqrt{x} = y$ si trova y/(y-1) < y+1, dove $y \ge 0$. Se y > 1 si ha

$$y < (y+1)(y-1) = y^2 - 1 \implies y^2 - y - 1 > 0,$$

da cui segue $y<(1-\sqrt{5})/2$ oppure $y>(1+\sqrt{5})/2$. Quindi se y>1 si ottiene $y>(1+\sqrt{5})/2$. Se $0\leq y<1$ si ha

$$y > (y+1)(y-1) = y^2 - 1 \implies y^2 - y - 1 < 0,$$

da cui segue $(1-\sqrt{5})/2 < y < (1+\sqrt{5})/2$, che mostra che tutti i valori $0 \le y < 1$ sono accettabili. La soluzione quindi è: $x \in [0,1) \cup (\sqrt{(1+\sqrt{5})/2},+\infty)$.

9. La disequazione diventa

$$\begin{cases} 1 - x < -2x, & \text{per } x < 0, \\ 1 - x < 2x, & \text{per } 0 \le x < 1, \\ x - 1 < 2x, & \text{per } x \ge 1. \end{cases}$$

Se x < 0 si deve avere x < -1; se $x \in (0,1)$ si ha x > 1/3; se infine $x \ge 1$ si trova x > -1 che è soddisfatta senza condizioni aggiuntive. In conclusione la soluzione è: $(-\infty, -1) \cup (1/3, +\infty)$.

10. La disequazione diventa

$$\begin{cases} x^2 - 1 < -1, & \text{per } x < -1, \\ 1 - x^2 < 2x + 1, & \text{per } -1 \le x \le 1, \\ x^2 - 1 < 2x + 1, & \text{per } x > 1. \end{cases}$$

Se x < -1 si trova $x^2 < 0$, che non può essere soddisfatta; se $x \in [-1,1]$ si ha

$$x^2 + 2x > 0 \implies x(x+2) > 0 \implies x > 0$$
 oppure $x < -2$,

da cui si ottiene $x \in (0,1]$; se infine x > 1 si ha

$$x^2 - 2x - 2 < 0 \implies 1 - \sqrt{3} < x < 1 + \sqrt{3}$$

da cui si ottiene $x \in (1, 1 + \sqrt{3})$. Raccogliendo le varie condizioni si trova che la soluzione è: $x \in (0, 1 + \sqrt{3})$.

4 | Funzioni composte e inverse

4.1 Proprietà delle funzioni

Siano I e J due sottoinsiemi di \mathbb{R} , e sia f una funzione definita in I e che a ogni valore $x \in I$ associa un valore $f(x) \in J$. Scriviamo allora $f: I \to J$.

Definizione 4.1. $f: I \to J$ si dice iniettiva se $\forall x_1, x_2 \in I$, $x_1 \neq x_2 \Longrightarrow f(x_1) \neq f(x_2)$.

Definizione 4.2. $f: I \to J \subset \mathbb{R}$ si dice suriettiva se $\forall y \in J \ \exists x \in I: f(x) = y$.

Definizione 4.3. $f: I \to J$ si dice biunivoca se è suriettiva e iniettiva.

Osservazioni:

- 1. Una funzione biunivoca è anche detta biiettiva o bigettiva.
- 2. Le proprietà di iniettività e suriettività dipendono non solo dalla funzione, ma anche dal suo dominio e codominio.

Esempi:

- 1. La funzione $f: \mathbb{R} \to \mathbb{R}$ definita da $f(x) = x^2$ non è suriettiva perché dato y < 0 non esiste alcun $x \in \mathbb{R}$ tale che f(x) = y. Tuttavia è suriettiva se è vista come funzione da \mathbb{R} in \mathbb{R}_+ .
- 2. Se I = [-1, 1] e J = [-1, 1], f(x) = x è iniettiva e suriettiva. Se I = [-1, 1] e J = [0, 1], $f(x) = x^2$ è suriettiva ma non iniettiva. Se I = [0, 1] e J = [0, 1] entrambe le funzioni f(x) = x e $f(x) = x^2$ sono iniettive e suriettive.
- 3. Se $I = [-\pi, \pi]$ (oppure $I = [0, 2\pi]$) e J = [-1, 1], la funzione $\sin x$ è suriettiva ma non iniettiva, diventa iniettiva se $I = [-\pi/2, \pi/2]$.
- 4. Le funzioni $f(x) = x^n$, $n \in \mathbb{N}$, viste come funzioni da \mathbb{R} a \mathbb{R} , sono iniettive e suriettive per n dispari, non sono né iniettive né suriettive per n pari. Se le funzioni sono viste come funzioni da \mathbb{R}_+ a \mathbb{R}_+ allora sono iniettive e suriettive per ogni $n \in \mathbb{N}$.

Definizione 4.4. Data $f: I \to J$, siano $x \in I$ e $y = f(x) \in J$. Diremo che $y \in I$ immagine di $x \in X$ è la controimmagine di y.

Osservazione: se $f: I \to J$ è biunivoca, $\forall y \in J$ la controimmagine di y è unica.

Definizione 4.5. Una funzione $f: I \to \mathbb{R}$, definita in I, si dice crescente in $[a,b] \subset I$ se $\forall x_1, x_2 \in [a,b]$, con $x_2 > x_1$, si ha $f(x_2) \geq f(x_1)$. Si dice decrescente in $[a,b] \subset I$ se $\forall x_1, x_2 \in [a,b]$, con $x_2 > x_1$, si ha $f(x_2) \leq f(x_1)$. Si dice strettamente crescente o strettamente decrescente se vale il segno stretto: $f(x_2) > f(x_1)$ o $f(x_2) < f(x_1)$, rispettivamente.

Definizione 4.6. Una funzione $f: I \to \mathbb{R}$ che sia crescente o decrescente in $[a,b] \subset I$ si dice monotòna. Se f è strettamente crescente o strettamente descrescente allora si dice che f è una funzione strettamente monotona.

Osservazione: si può anche studiare se una funzione sia crescente o decrescente in un sottointervallo I_0 di I che non sia chiuso. La definizione è analoga alla Definizione 4.7, semplicemente con [a, b] sostituito da I_0 .

Esempi:

- 1. Tutte le funzioni x^{α} , con $\alpha \in \mathbb{R}$, sono strettamente crescenti per $x \geq 0$.
- 2. Le funzioni $x^{p/q}$, con $p, q \in \mathbb{N}$ primi tra loro e q dispari, sono strettamente crescenti per $x \in \mathbb{R}$ se p è dispari, mentre sono strettamente crescenti per $x \geq 0$ e strettamente decrescenti per $x \leq 0$ se p è pari.
- 3. Sia la funzione esponenziale a^x che la funzione logaritmo $\log_a x$ sono strettamente crescenti se a > 1 e strettamente decrescenti se a < 1.
- 4. Le funzioni $\sin x$ e $\cos x$ non sono né crescenti né decrescenti in \mathbb{R} . Tuttavia, se ristrette a opportuni intervalli, esse sono monotone. Per esempio, $\sin x$ è strettamente crescente in $[-\pi/2, \pi/2]$, mentre è strettamente descrescente in $[\pi/2, 3\pi/2]$. Analogamente, $\cos x$ è strettamente crescente in $[-\pi, 0]$ ed è strettamente descrescente in $[0, \pi]$.
- 5. La funzione tg x è strettamente crescente nel suo domino; analogamente la funzione cottg x è strettamente decrescente nel suo domino.
- 6. La funzione f(x) = costante è, in base alla definzione, sia crescente che decrescente, ma non è né strettamente crescente né strettamente decrescente.

4.2 Composizione di funzioni

Definizione 4.7. Date due funzioni f e g, si chiama loro composizione o funzione composta la funzione $f \circ g$ definita da $f \circ g(x) = f(g(x))$.

Osservazione: Si può comporre f con g (e quindi definire $f \circ g$) solo se $C_g \subset D_f$, ovvero, se $f: I \to J$ e $g: I' \to J'$, con $J' \subset I$. Si noti che $f \circ g \neq g \circ f$. Per esempio, se $f = \sqrt{x}$ e g = 1 - x, allora $f \circ g(x) = \sqrt{1 - x}$, mentre $g \circ f(x) = 1 - \sqrt{x}$; inoltre $f \circ g(x)$ è definita se $x \leq 1$ mentre $g \circ f(x)$ è definita se $x \geq 0$.

Esempi:

- 1. $F(x) = \sqrt{1-x} = f \circ g(x)$, con $f(x) = \sqrt{x} \in g(x) = 1-x$;
- 2. $F(x) = \sin(1+x^2) = f \circ g(x)$, con $f(x) = \sin x \in g(x) = 1+x^2$;
- 3. $F(x) = e^{-\sin x^2} = f \circ g \circ h(x)$, con $f(x) = e^{-x}$, $g(x) = \sin x e h(x) = x^2$.
- 4. Se $f(x) = \ln x$ e $g(x) = \sqrt{x}$, la funzione $f \circ g(x) = \ln \sqrt{x}$ è definita per x > 0, mentre la funzione $g \circ f(x) = \sqrt{\ln x}$ è definita per $x \ge 1$.

4.3 Funzione inversa

Definizione 4.8. Sia $f: I \to J$ biunivoca. Si chiama funzione inversa di f la funzione $g: J \to I$ tale che $f \circ g = g \circ f = 1$, dove 1 è la funzione identità (1x = x).

Si pone $g = f^{-1}$. Si noti che $f^{-1}(x) \neq 1/f(x)$: per esempio se f(x) = x la sua inversa è $f^{-1}(x) = x$, il suo inverso (=reciproco) è 1/x.

Se f è biunivoca, per ogni $x \in I$ esiste $y = f(x) \in J$ e tale y è unico. Quindi a y si associa in modo univoco x tale che f(x) = y: tale x è funzione di y e possiamo quindi scrivere x = g(y), con $g = f^{-1}$, così definendo la funzione inversa.

Esempi:

- 1. \sqrt{x} , $x^{1/n}$, $x^{1/\alpha}$ sono le funzioni inverse di x^2 , x^n , x^{α} , purché $x \ge 0$.
- 2. La funzione inversa di $\log_a x$ è a^x , purché x > 0.
- 3. Data la funzione $f(x) = 1 + (x+1)^2/4$, $x \ge -1$, la sua inversa si ottiene esprimendo x in funzione di y = f(x). Si trova $(x+1)^2 4(y-1) = 0$, che ammette le radici $x = \pm \sqrt{4(y-1)} 1$, purché $y \ge 1$. La condizione $x \ge -1$ richiede il segno +. Se indichiamo di nuovo la variabile con x e la sua immagine con y troviamo $y = 2\sqrt{x-1} 1$, $x \ge 1$.

Osservazioni:

- 1. Una funzione f si dice *invertibile* se esiste la funzione inversa f^{-1} : una funzione biunivoca è quindi sempre invertibile.
- 2. Una funzione che sia strettamente monotona e suriettiva è necessariamente iniettiva e quindi invertibile.
- 3. Una regola grafica per determinare la funzione inversa di una funzione data è la seguente: si scambiano tra loro gli assi, ovvero si riflette il grafico rispetto alla bisettrice del primo e terzo quadrante. Si veda, a titolo di esempio, la Figura 4.1, dove sono riportati i grafici della funzione $y = f(x) = 1 + (x+1)^2/4$, $x \ge -1$, e della sua inversa $y = f^{-1}$, $x \ge 1$.

4. Dalla regola grafica del punto precedente si deducono alcune proprietà interessanti: per esempio, la funzione esponenziale cresce più velocemente di ogni potenza, quindi il logaritmo cresce più lentamente di qualsiasi potenza.

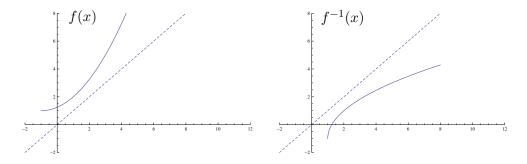


Figura 4.1: Grafici della funzione $f(x) = 1 + (x+1)^2/4$ e della sua inversa $f^{-1}(x)$

4.4 Funzioni trigonometriche inverse

Consideriamo $f(x) = \sin x$, $x \in [-\pi/2, \pi/2]$. Si ha corrispondenza biunivoca con [-1, 1]. Allora la funzione è invertibile: indichiamo la sua inversa con $x = \arcsin x$ (arcoseno). Analogamente $\cos x$ è invertibile come funzione da $[0, \pi]$ a [-1, 1] e la sua inversa è $x = \arccos x$ (arcocoseno). Simili osservazioni valgono per le funzioni inverse della secante e della cosecante: arcsec x (arcosecante) e arccosec x (arcocosecante).

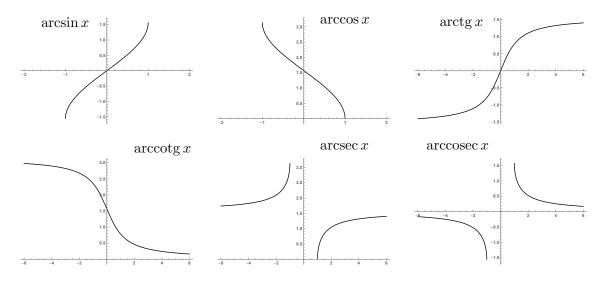


Figura 4.2: Grafici delle funzioni trigonometriche inverse

Analogamente tg x se $I = (-\pi/2, \pi/2)$ e cotg x se $I = (0, \pi)$ sono iniettive: le loro inverse sono rispettivamente $\arctan x$ o $\arctan x$ o x

Grafici delle funzioni trigonometriche inverse sono riportati in Figura 4.2.

4.5 Funzioni elementari

Si chiamano funzioni elementari le funzioni che si scrivono come prodotto, combinazione lineare e composizione di funzioni elementari principali e loro inverse.

Esempi:

- 1. $f(x) = 1/(x+1) \implies$ si ha $f(x) = f_1(f_2(x) + f_3(x))$, dove $f_1(x) = 1/x$, $f_2(x) = x$ e $f_3(x) = 1$, i.e. si compone $f_1(x)$ con la somma di $f_2(x)$ e $f_3(x)$;
- 2. $f(x) = \sqrt{1-x} \Longrightarrow \text{si ha } f(x) = f_1(f_2(x) f_3(x)), \text{ dove } f_1(x) = \sqrt{x}, f_2(x) = 1 \text{ e } f_3(x) = x,$ i.e. si compone $f_1(x)$ con la combinazione lineare $f_2(x) - f_3(x)$;
- 3. $f(x) = \sin x + \cos x^2 \implies$ si ha $f(x) = f_1 + f_2(f_3(x))$, dove $f_1(x) = \sin x$, $f_2(x) = \cos x$ e $f_3(x) = x^2$, i.e. si compone f_2 con f_3 e poi si somma il risultato a f_1 ;
- 4. $f(x) = \log(1 + x^2 + 4x) \Longrightarrow \text{si ha } f(x) = f_1(f_2(x) + f_3(x) + 4f_4(x)), \text{ dove } f_1(x) = \ln x,$ $f_2(x) = 1, f_3(x) = x^2 \text{ e } f_4(x) = x, \text{ i.e. si compone } f_1(x) \text{ con la combinazione lineare}$ $f_2(x) + f_3(x) + 4f_4(x);$
- 5. $f(x) = e^{x^2 2\sqrt{x} + \cos x + \sin x^3} \implies \text{si ha } f(x) = f_1(f_2(x) + f_3(x) + f_4(x) + f_5(f_6(x)), \text{ dove } f_1(x) = e^x, f_2(x) = x^2, f_3(x) = \sqrt{x}, f_4(x) = \cos x, f_5(x) = \sin x \text{ e } f_6(x) = x^3, \text{ i.e. si compone } f_1(x) \text{ con la combinazione lineare } f_2(x) 2f_3(x) + f_4(x) + (f_5 \circ f_6)(x), \text{ dove } (f_5 \circ f_6)(x) = f_5(f_6(x)) = \sin x^3 \text{ è la composizione di } f_5(x) \text{ con } f_6(x);$
- 6. $f(x) = \frac{x^2 x + 1}{x^3 + 4x^2 + 4}$ \Longrightarrow in termini delle funzioni $f_1(x) = 1$, $f_2(x) = x$, $f_3(x) = x^2$, $f_4(x) = x^3$ e $f_5(x) = 1/x$, si considerano le combinazioni lineari $g(x) = f_3(x) f_2(x) + f_1(x)$ e $h(x) = f_4(x) + 4f_3(x) + 4f_1(x)$, poi si compone $f_5(x)$ con h(x), in modo da ottenere $k(x) = (f_5 \circ h(x)) = 1/h(x)$, quindi si scrive f(x) = g(x)k(x), i.e. f(x) si ottiene come prodotto delle due funzioni g(x) e k(x).

In particolare sono funzioni principali le seguenti funzioni funzioni algebriche: polinomi, funzioni razionali (rapporti di polinomi), funzioni irrazionali (coinvolgono potenze con esponenti irrazionali). Le funzioni non algebriche si dicono trascendenti (esempi: funzioni trigonometriche, esponenziali e logaritmi).

Osservazione: Si noti che, sebbene le funzioni elementari siamo le funzioni di uso più frequente (ed essenzialmente le uniche di cui noi ci occuperemo), deve essere chiaro che le funzioni non elementari non hanno nulla di patologico. Di fatto si presentano in modo del tutto naturale, per esempio cercando soluzioni di equazioni differenziali che coinvolgano

anche solo funzioni elementari o calcolando integrali di funzioni elementari. Un'equazione differenziale è un'equazione che lega una funzione di una variabile $x \mapsto f(x)$ alle sue derivate (vedremo al capitolo 7 cos'è una derivata, ma non ci occuperemo di equazioni differenziali). Gli integrali saranno invece studiati nel capitolo 11. In particolare faremo osservare che non necessariamente l'integrale di una funzione elementare si può scrivere in termini di funzioni elementari (cfr. l'osservazione 6 del paragrafo 12.4).

4.6 Esercizi

- 1. Si determinino dominio e codominio della funzione $f(x) = \sqrt{2 + \sin x}$.
- 2. Si determinino dominio e codominio della funzione $f(x) = \sqrt{e^x}$.
- 3. Si determinino dominio e codominio della funzione $f(x) = \sqrt{x^2 1}$.
- 4. Si determini il dominio della funzione $f(x) = \left(\frac{x-1}{x+3}\right)^{1/5}$.
- 5. Si determinino dominio e codominio della funzione $f(x) = \frac{1}{\sqrt{\sin(e^x)}}$.
- 6. Si determinino dominio e codominio della funzione $f(x) = \sqrt{\operatorname{tg} x}$.
- 7. Si determini il dominio di $f(x) = \frac{x^{1/3} + 9}{\sqrt{\ln(x^2 6x + 5)}}$.
- 8. Si determini il dominio di $f(x) = \frac{x^2 4x + 5}{x^2 6x + 3}$.
- 9. Si determini il dominio di $f(x) = \frac{x^2 4x + 5}{x^2 2x + 3}$.
- 10. Si determini il dominio di $f(x) = \ln(4e^{x^2-4x} 4)$.
- 11. Si determini il dominio di $f(x) = \sin(\ln(4+x^2))$.
- 12. Si determini il dominio di $f(x) = \sqrt{x^{2/3} 6x^{8/3}}$.
- 13. Si determini il dominio di $f(x) = \sqrt{\frac{|x| |x+1|}{2} 1}$.
- 14. Si calcoli l'inversa della funzione $f:[0,1] \to [0,1]$ data da $f(x)=2\sqrt{x}-x$.
- 15. Si calcoli l'inversa della funzione $f:[0,1] \to [0,1]$ data da $f(x) = \frac{1}{2}\sqrt{4 2x^2 2x}$.

4.6. ESERCIZI 63

16. Si calcoli l'inversa della funzione $f:[0,1]\to [0,1]$ data da $f(x)=\frac{1}{2}\sqrt{4-x^2-3x}$.

- 17. Si determini il dominio di $f(x) = \sqrt{|x-2| |x+2|}$.
- 18. Si determini il dominio di $f(x) = \sqrt{x|x|+3}$.
- 19. Si determini il dominio di e^{-1/x^2} .
- 20. Si determini il dominio di $f(x) = \ln(|x| 4|x 4|)$.

Solutioni:

1.
$$D_f = \mathbb{R}, C_f = [1, \sqrt{3}].$$

2.
$$D_f = \mathbb{R}, C_f = \{x \in \mathbb{R} : x > 0\}.$$

3.
$$D_f = \{x \in \mathbb{R} : |x| \ge 1\} = (-\infty, -1] \cup [1, +\infty), C_f = \mathbb{R}_+.$$

4.
$$D_f = \mathbb{R} \setminus \{-3\}.$$

5.
$$D_f = \left\{ x : x \in (-\infty, \ln \pi) \cup \bigcup_{k=1}^{\infty} (\ln(2k\pi), \ln((2k+1)\pi)) \right\}, C_f = [1, \infty).$$

6.
$$D_f = \left\{ x : x \in \bigcup_{k=0}^{\infty} [k\pi, k\pi + \pi/2) \right\}, C_f = \mathbb{R}_+.$$

7.
$$D_f = (-\infty, 3 - \sqrt{5}) \cup (3 + \sqrt{5}, +\infty).$$

8.
$$D_f = \{x \in \mathbb{R} : x \neq 3 \pm \sqrt{6}\}.$$

9.
$$D_f = \mathbb{R}$$
.

10.
$$D_f = (-\infty, 0) \cup (4, +\infty)$$
.

11.
$$D_f = \mathbb{R}$$
.

12.
$$D_f = [-1/\sqrt{6}, 1/\sqrt{6}].$$

13. Si scrive

$$|x| - |x+1| = \begin{cases} x - (x+1) = -1, & x \ge 0, \\ -x - (x+1) = -2x - 1, & -1 \le x < 0, \\ -x + (x+1) = 1, & x < -1. \end{cases}$$

Richiedendo che l'argomento della radice quadrata sia non negativo, i.e.

$$\frac{|x| - |x+1|}{2} - 1 \ge 0,$$

si ottengono i seguenti tre sistemi di disequazioni

$$\begin{cases} 1. & x \ge 0, & -\frac{1}{2} - 1 \ge 0, \\ 2. & -1 \le x < 0, & -\frac{x}{2} - \frac{1}{2} - 1 \ge 0, \\ 3. & x < -1, & \frac{1}{2} - 1 \ge 0. \end{cases}$$

Si verifica facilmente che nessuno dei tre sistemi ammette soluzioni. Quindi si trova $D_f = \emptyset$.

- 14. La funzione inversa è $g:[0,1]\to [0,1]$ data da $g(x)=\left(1-\sqrt{1-x}\right)^2$.
- 15. La funzione inversa è $g:[0,1] \to [0,1]$ data da $g(x) = \frac{1}{2} \left(-1 + \sqrt{9 8x^2}\right)$.
- 16. La funzione inversa è $g:[0,1] \to [0,1]$ data da $g(x) = \frac{1}{2} \left(-3 + \sqrt{25 16x^2} \right)$.
- 17. $D_f = R_- = \{x \in \mathbb{R} : x \le 0\}.$
- 18. Si scrive

$$x|x| + 3 = \begin{cases} x^2 + 3, & x \ge 0, \\ -x^2 + 3, & x < 0. \end{cases}$$

Richiedendo che l'argomento della radice quadrata sia non negativo, i.e. $x|x|+3 \ge 0$, si ottengono i seguenti due sistemi di disequazioni

$$\begin{cases} 1. & x \ge 0, & x^2 + 3 \ge 0, \\ 2. & x < 0, & -x^2 + 3 \ge 0, . \end{cases}$$

Il primo sistema di disequazioni è soddisfatto per $x \geq 0$, mentre il secondo è soddisfatto per x > 0 tale che $x^2 \leq 3$, i.e. per $x \geq -\sqrt{3}$. Quindi si trova $D_f = [-\sqrt{3}, +\infty)$.

- 19. $D_f = \mathbb{R} \setminus \{0\} = \{x \in \mathbb{R} : x \neq 0\}.$
- 20. $D_f = (16/5, 16, 3).$

5 | Limiti

5.1 Funzione distanza

Il grafico della funzione modulo è rappresentato in Figura 5.1.

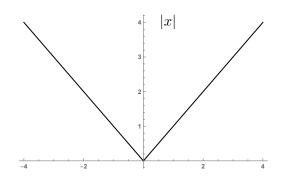


Figura 5.1: Grafico della funzione modulo

Definizione 5.1. Se P_1 e P_2 sono due punti dell'asse reale, individuati da $x_1, x_2 \in \mathbb{R}$, si definisce distanza tra i due punti P_1 e P_2 la grandezza $d(P_1, P_2) = |x_1 - x_2|$.

Osservazione: la distanza tra due punti dell'asse reale è quindi la lunghezza del segmento che ha come estremi i due punti.

Proprietà:

- 1. $d(P_1, P_2) \ge 0$ e si ha $d(P_1, P_2) = 0$ se e solo se $P_1 = P_2$;
- 2. $d(P_1, P_2) = d(P_2, P_1);$
- 3. $d(P_1, P_2) \le d(P_1, P_3) + d(P_3, P_2)$.

Osservazione: la dimostrazione segue dalle proprietà del modulo discusse a pag. 28.

Definizione 5.2. Si definisce intorno di centro x_0 e raggio R l'intervallo aperto $B(x_0, R) = \{x \in \mathbb{R} : |x - x_0| < R\} = (x_0 - R, x_0 + R).$

5.2 Limite

Per dire che x è molto vicino a x_0 scriviamo $|x - x_0| < \delta$, con $\delta > 0$ molto piccolo. Per dire che x è molto grande scriviamo |x| > M, con M > 0 molto grande: se inoltre x è molto grande e positivo specificheremo x > M, mentre se è negativo scriviamo x < -M, con M > 0 molto grande.

Definizione 5.3. Caso di limite finito:

- 1. $\lim_{x \to x_0} f(x) = \ell$ se $\forall \varepsilon > 0 \ \exists \delta > 0$ tale che se $0 < |x x_0| < \delta$ allora $|f(x) \ell| < \varepsilon$.
- 2. $\lim_{x \to +\infty} f(x) = \ell \text{ se } \forall \varepsilon > 0 \ \exists M > 0 \text{ tale che se } x > M \text{ allora } |f(x) \ell| < \varepsilon.$
- 3. $\lim_{x \to -\infty} f(x) = \ell$ se $\forall \varepsilon > 0 \ \exists M > 0$ tale che se x < -M allora $|f(x) \ell| < \varepsilon$.

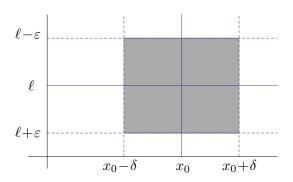


Figura 5.2: Limite ℓ della funzione f(x) per $x \to x_0$.

Osservazioni:

- 1. Nella Definizione 5.3, sia δ sia M dipendono da ε . Il valore di ε è arbitrario: comunque si fissi ε , è possibile trovare un valore di δ o di M per i quali le condizioni scritte sono verificate. Quello che comunque interessa è cosa succede per ε sempre più piccolo: il senso della definizione è che, preso ε piccolo quanto si voglia, è sempre possibile trovare corrispondentemente un valore di δ sufficientemente piccolo (nel caso 1) o un valore di M sufficientemente grande (nel caso 2 o 3) tale che per x distante da x_0 meno di δ o per x più grande di M, rispettivamente, il valore di f(x) dista da ℓ meno di ε .
- 2. Nel caso 1 di Definizione 5.3, la condizione $0 < |x x_0| < \delta$ indica che x è molto vicino a x_0 ma distinto da x_0 . Infatti, per definire il limite, si devono considerare valori di f(x), con x sempre più vicino a x_0 , ma il valore del limite è indipendente dal valore che la funzione eventualmente assuma in x_0 . Di fatto la funzione potrebbe non essere neppure definita in x_0 (cfr. anche le osservazioni di pag. 68).

5.2. LIMITE 67

3. Graficamente, la nozione di limite nel caso 1 di Definizione 5.3 si può interpretare nel modo seguente: i punti del grafico $\operatorname{graf}(f)$ corrispondenti ai valori di x la cui distanza da x_0 è minore di δ si trovano all'interno della striscia $y \in [\ell - \varepsilon, \ell + \varepsilon]$; cfr. la Figura 5.2. Più piccolo si fissa ϵ , più piccolo si deve scegliere δ : per ε sempre più piccolo il rettangolo in grigio in Figura 5.2 diventa sempre più piccolo.

4. Considerazioni grafiche analoghe a quella dell'osservazione 3 si possono fare anche per gli altri limiti della Definizione 5.3.

Definizione 5.4. Caso di limite infinito:

- 1. $\lim_{x \to x_0} f(x) = +\infty$ se $\forall N > 0 \; \exists \delta > 0$ tale che se $0 < |x x_0| < \delta$ allora f(x) > N.
- 2. $\lim_{x \to x_0} f(x) = -\infty$ se $\forall N > 0 \; \exists \delta > 0$ tale che se $0 < |x x_0| < \delta$ allora f(x) < -N.
- 3. $\lim_{x \to +\infty} f(x) = +\infty$ se $\forall N > 0 \exists M > 0$ tale che se x > M allora f(x) > N.
- 4. $\lim_{x \to -\infty} f(x) = +\infty$ se $\forall N > 0$ $\exists M > 0$ tale che se x < -M allora f(x) > N.
- 5. $\lim_{x \to +\infty} f(x) = -\infty$ se $\forall N > 0 \ \exists M > 0$ tale che se x > M allora f(x) < -N.
- 6. $\lim_{x \to -\infty} f(x) = -\infty$ se $\forall N > 0 \exists M > 0$ tale che se x < -M allora f(x) < -N.

Osservazioni:

- 1. Nella Definizione 5.4, sia δ sia M dipendono da N.
- 2. La Definizione 5.4 esprime in modo matematico il concetto che per x sempre più vicino a un dato valore (che può essere un valore x_0 finito o un valore infinito) i valori f(x) che la funzione assume sono sempre più grandi in modulo.

Esercizi:

- 1. $\lim_{x \to 2} (2x 1) = 3$.
- 2. $\lim_{x \to 1} \frac{1}{x} = 1$.
- 3. $\lim_{x \to 1} \frac{x^2 + x 2}{x 1} = 3.$
- $4. \lim_{x \to +\infty} \frac{1}{x} = 0.$
- 5. $\lim_{x \to \infty} \frac{x 1}{x + 2} = 1.$

$$6. \lim_{x \to -\infty} \frac{1}{x} = 0.$$

7.
$$\lim_{x \to \pm \infty} \frac{1}{x^2} = 0$$
.

8.
$$\lim_{x\to 0} \frac{1}{x^2} = +\infty$$
.

Soluzioni:

1.
$$|2x-1-3|=2|x-2|<2\delta \Longrightarrow 2\delta=\varepsilon \Longrightarrow \delta=\varepsilon/2$$
.

2.
$$|1/x - 1| = |(x - 1)/x| \le \delta/(1 - \delta) \Longrightarrow \varepsilon = \delta/(1 - \delta) \Longrightarrow \delta = \varepsilon/(1 + \varepsilon)$$
.

3.
$$x^2 + x - 2 = (x - 1)(x + 2) \Longrightarrow |(x - 1)(x + 2)/(x - 1) - 3| = |x + 2 - 3| = |x - 1| < \delta$$

 $\Longrightarrow \varepsilon = \delta$.

4.
$$1/x < 1/M \Longrightarrow M = 1/\varepsilon$$
.

5.
$$|(x-1)/(x+2)-1| = |3/(x+2)| = 3/(x+2) \implies x+2 > 3/\varepsilon \implies M = 3/\varepsilon - 2$$
.

6.
$$1/x > -1/M \Longrightarrow M = 1/\varepsilon$$
.

7.
$$1/x^2 > 1/M^2 \Longrightarrow \varepsilon = 1/M^2 \Longrightarrow M = 1/\sqrt{\varepsilon}$$
.

8. se
$$|x|<\delta$$
 si ha $1/x^2>1/\delta\Longrightarrow\delta=1/\sqrt{N}\Longrightarrow$ fissato $N>0,$ se $\delta=1/\sqrt{N}$ e $|x|<\delta,$ si ottiene $1/x^2>N.$

Osservazioni:

- 1. La funzione può non essere definita nel punto in cui si fa il limite (cfr. gli esempi 3 e 8); si veda anche l'osservazione 2 di pag. 66.
- 2. Non è detto che il limite esista sempre, come mostrano gli esempi seguenti.

Esempi:

1.
$$f(x) = \begin{cases} 1, & x > 0 \\ -1, & x < 0 \end{cases}$$
 \Longrightarrow non esiste il limite per $x \to 0$.

2.
$$f(x) = \cos x \implies$$
 non esiste il limite per $x \to \infty$.

3.
$$f(x) = \frac{1}{\cos x} \implies$$
 non esiste il limite per $x \to \infty$.

4.
$$f(x) = \sin \frac{1}{x^2} \Longrightarrow$$
 non esiste il limite per $x \to 0$.

5.
$$f(x) = x^2 \cos x \Longrightarrow$$
 non esiste il limite per $x \to \infty$.

6.
$$f(x) = \frac{1}{x} \Longrightarrow$$
 non esiste il limite per $x \to 0$.

5.3 Limite destro e sinistro

Definizione 5.5. Defininiamo il limite destro e limite sinistro:

- $\lim_{x \to x_0^+} f(x) = \ell$ se $\forall \varepsilon > 0 \ \exists \delta > 0$ tale che se $0 < x x_0 < \delta$ allora $|f(x) \ell| < \varepsilon$.
- $\lim_{x \to x_0^-} f(x) = \ell$ se $\forall \varepsilon > 0 \; \exists \delta > 0 \; tale \; che \; se \; 0 > x x_0 > -\delta \; allora \; |f(x) \ell| < \varepsilon$.

Esempi:

- 1. La funzione $f(x) = \frac{1}{x}$ ammette limite destro e sinistro per $x \to 0$: $\lim_{x \to 0^{\pm}} \frac{1}{x} = \pm \infty$.
- 2. La funzione dell'esempio 1 di pag. 68 ammette limite destro e sinistro: $\lim_{x\to 0^{\pm}} f(x) = \pm 1$.
- 3. La funzione $f(x) = \frac{1}{x^2}$ ammette limite destro e sinistro per $x \to 0$: $\lim_{x \to 0^{\pm}} \frac{1}{x^2} = +\infty$.
- 4. La funzione $\sin \frac{1}{x^2}$ (cfr. l'esempio 4 non ammette né limite destro né limite sinistro.

Osservazione: esiste il limite $\lim_{x \to x_0} f(x) = \ell$ se e solo se $\lim_{x \to x_0^+} f(x) = \lim_{x \to x_0^-} f(x) = \ell$.

5.4 Funzioni limitate e funzioni illimitate

Definizione 5.6. Sia $f: I \to \mathbb{R}$: diremo che la funzione f è limitata se esiste M > 0 tale che $|f(x)| < M \ \forall x \in I$. Diremo illimitata una funzione che non sia limitata.

Esempi:

- 1. $f(x) = \cos x$, per $x \in \mathbb{R}$, è limitata.
- 2. f(x) = 1/x, $f(x) = x^2$ sono limitate per $1 \le x \le 2$.
- 3. f(x) = 1/x e $f(x) = x^2$ sono illimitate per $x \in \mathbb{R}$.
- 4. Sia $I \subset \mathbb{R}$ un intervallo chiuso: la funzione $f(x) = x^2$, $x \in I$, è limitata per ogni I, la funzione f(x) = 1/x, $x \in I$, è limitata per ogni I che non contenga lo zero.
- 5. La funzione $f(x) = e^{-x}$ è illimitata in \mathbb{R} .
- 6. La funzione $f(x) = e^{-x^2}$ è limitata in \mathbb{R} .
- 7. La funzione $f(x) = \ln x$ è illimitata in \mathbb{R} .
- 8. La funzione $f(x) = \operatorname{tg} x$ è illimitata in \mathbb{R} .
- 9. La funzione $f(x) = x^2/(x^2+1)$ è limitata in \mathbb{R} , poiché $0 \le x^2 \le x^2+1$.

10. La funzione $f(x) = x/(x^2+1)$ è limitata in \mathbb{R} , poiché, se $|x| \geq 1$, si ha

$$|f(x)| = \frac{|x|}{x^2 + 1} \le \frac{x^2}{x^2 + 1} < 1,$$

mentre, se |x| < 1, si ha

$$|f(x)| = \frac{|x|}{x^2 + 1} < \frac{1}{x^2 + 1} \le 1.$$

Definizione 5.7. Sia $f: I \to \mathbb{R}$: diremo che la funzione f è limitata superiormente se esiste M > 0 tale che $f(x) < M \ \forall x \in I$. Diremo che f è limitata inferiormente se esiste M > 0 tale che $f(x) > -M \ \forall x \in I$.

Osservazioni:

- 1. Una funzione è limitata se e solo se è sia limitata superiormente sia limitata inferioremente.
- 2. Se una funzione f è limitata superiormente allora il suo codominio C_f ammette estremo superiore. Analogamente, se f è limitata inferiormente allora C_f ammette estremo inferiore. In particolare, se f è limitata, allora C_f è un insieme limitato e quindi esistono finiti sup C_f e inf C_f .

Definizione 5.8. Sia $f: I \to \mathbb{R}$. Se f è limitata superiormente defineremo estremo superiore di f l'estremo superiore del suo codominio. Se f è limitata inferiormente defineremo estremo inferiore di f l'estremo inferiore del suo codominio.

Osservazioni:

- 1. L'estremo superiore e l'estremo inferiore di una funzione $f: I \to \mathbb{R}$ vengono indicati con $\sup_{x \in I} f(x)$ e $\inf_{x \in I} f(x)$, rispettivamente.
- 2. Per definizione si ha $\sup_{x \in I} f(x) = \sup_{x \in I} C_f$ e $\inf_{x \in I} f(x) = \inf_{x \in I} C_f$.
- 3. Se $\sup C_f \in C_f$ diremo che la funzione f ha $\max_{x \in I} f(x) = \sup_{x \in I} f(x)$.
- 4. Se inf $C_f \in C_f$ diremo che la funzione f ha minimo $\min_{x \in I} f(x) = \inf_{x \in I} f(x)$.

Esempi:

- 1. La funzione $f(x) = x^2$ è inferiormente limitata e si ha $\inf_{x \in \mathbb{R}} f(x) = \min_{x \in \mathbb{R}} f(x) = 0$.
- 2. La funzione $f(x) = 1 x^2$ è superiormente limitata e si ha $\sup_{x \in \mathbb{R}} f(x) = \max_{x \in \mathbb{R}} f(x) = 1$.
- 3. La funzione $f(x) = e^{-x^2}$ è limitata e si ha $\sup_{x \in \mathbb{R}} f(x) = \max_{x \in \mathbb{R}} f(x) = 1$ e $\inf_{x \in \mathbb{R}} f(x) = 0$.
- 4. La funzione $f(x) = x^3$ non è superiormente né inferiormente limitata.

5.5 Teoremi sui limiti

Consideriamo in questo paragrafo il caso in cui le funzioni abbiano limite finito.

Teorema 5.9. \exists finito $\ell = \lim_{x \to x_0} f(x) \Longrightarrow f(x)$ è limitata quando x tende a x_0 .

Osservazioni:

- 1. Se il limite è infinito la funzione non è limitata. Il viceversa non è vero: se una funzione non è limitata non è detto che tende a $\pm \infty$ (esempio: $x \sin x$ per $x \to +\infty$).
- 2. Se una funzione f(x) è definita in un intorno I ed esiste una costante c > 0 tale che $|f(x)| \ge c \ \forall x \in I$, allora 1/f(x) è definita e limitata per ogni $x \in I$.

Teorema 5.10. Se
$$\lim_{x \to x_0} f(x) = \ell$$
 e $\lim_{x \to x_0} g(x) = \ell'$ allora $\lim_{x \to x_0} (f(x) + g(x)) = \ell + \ell'$.

Teorema 5.11. Se
$$\lim_{x \to x_0} f(x) = \ell$$
 e $\lim_{x \to x_0} g(x) = \ell'$ allora $\lim_{x \to x_0} (f(x) \cdot g(x)) = \ell \cdot \ell'$.

Esempi:

- 1. se k è costante $\lim_{x \to x_0} k \cdot f(x) = k \cdot \lim_{x \to x_0} f(x)$;
- 2. $\lim_{x \to 1} 3x^2 = 3$;
- 3. $\lim_{x \to 0} (1 + 2x + 3x^2 + 6x^3) = 1;$
- 4. $\lim_{x \to \infty} \frac{x^2 2x}{r^2} = 1$.

Teorema 5.12. Se
$$\lim_{x \to x_0} f(x) = \ell$$
 e $\lim_{x \to x_0} g(x) = \ell' \neq 0$ allora $\lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{\ell}{\ell'}$.

Teorema 5.13. Siano f(x), g(x) e h(x) tre funzioni definite in I, tali che $f(x) \le g(x) \le h(x)$ $\forall x \in I$. Allora $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} h(x) = \ell \Longrightarrow \lim_{x \to x_0} g(x) = \ell$.

Osservazione: il Teorema 5.13 è noto come teorema del confronto o teorema dei carabinieri.

Teorema 5.14.
$$f(x) \ge 0$$
 per $x \in I$ $e \exists \ell = \lim_{x \to x_0} f(x) \Longrightarrow \ell \ge 0$.

Osservazione: la dimostrazione del Teorema 5.14 (cfr. i complementi alla fine del paragrafo) è interessante perché fornisce un esempio di dimostrazione per assurdo. L'idea con cui la dimostrazione procede è la seguente: per dimostrare una proprietà si suppone che invece non valga e si fa vedere che in questo modo si trova una contraddizione, quindi la proprietà deve valere (cfr. anche i complementi del §1.5).

Teorema 5.15. $f(x) \ge g(x)$ per $x \in I$ $e \exists \ell = \lim_{x \to x_0} f(x), \ \ell' = \lim_{x \to x_0} g(x) \Longrightarrow \ell \ge \ell'.$

Osservazioni:

- 1. Il Teorema 5.14 può essere visto come un caso particolare del Teorema 5.15, con $g(x) = 0 \ \forall x \in I$.
- 2. Si noti che, nell'enunciato dei Teoremi 5.14 e 5.15, anche se vale il segno stretto f(x) > g(x) può valere il segno = per i limiti. Esempio: $f(x) = 1/x^2$ e g(x) = 0. Per $x \to \infty$ entrambe le funzioni tendono allo stesso limite $\ell = \ell' = 0$, mentre $f(x) > g(x) \ \forall x \neq 0$. Analoghe considerazioni valgono per il Teorema 5.13: se f(x) < g(x) < h(x) e le due funzioni f e h hanno lo stesso limite ℓ allora anche g ha limite ℓ . Esempio: $f(x) = -1/x^2$, g(x) = 0, $h(x) = 1/x^2$.

Teorema 5.16. $\lim_{x\to x_0} f(x) = \ell \neq 0 \Longrightarrow f(x)$ ha il segno di ℓ per x che tende a x_0 .

Complementi:

1. Dimostrazione del Teorema 5.9. Per definizione di limite,

$$\forall \varepsilon > 0 \exists \delta > 0$$
 tale che per $0 < |x - x_0| < \delta$ si ha $|f(x) - \ell| < \varepsilon$.

Quindi per $x \in B(x_0, \delta) \setminus \{x_0\}$ si ha (per la proprietà 2 del modulo a pag. 28)

$$||f(x)| - |\ell|| \le |f(x) - \ell| < \varepsilon,$$

che implica $|f(x)| \leq M = |\ell| + \varepsilon$, e quindi la limitatezza di f(x) per x che tende a x_0 .

- 2. Dimostrazione del Teorema 5.10. Per definizione di limite,
 - 1. $\forall \varepsilon_1 > 0 \exists \delta_1 > 0$ tale che per $0 < |x x_0| < \delta_1$ si ha $|f(x) \ell| < \varepsilon_1$,
 - 2. $\forall \varepsilon_2 > 0 \exists \delta_2 > 0$ tale che per $0 < |x x_0| < \delta_2$ si ha $|g(x) \ell'| < \varepsilon_2$.

Fissato $\varepsilon>0$ scegliamo $\varepsilon_1=\varepsilon_2=\varepsilon/2$ e definiamo $\delta=\min\{\delta_1,\delta_2\}$. Allora per $0<|x-x_0|<\delta$ si ha

$$|f(x) - \ell| \le \varepsilon/2$$
 $|g(x) - \ell'| < \varepsilon/2$,

da cui segue che $|(f(x)+g(x))-(\ell+\ell')| \leq |f(x)-\ell|+|g(x)-\ell'| < \varepsilon$.

- 3. Dimostrazione del Teorema 5.11. Per definizione di limite,
 - 1. $\forall \varepsilon_1 > 0 \exists \delta_1 > 0$ tale che per $0 < |x x_0| < \delta_1$ si ha $|f(x) \ell| < \varepsilon_1$,
 - 2. $\forall \varepsilon_2 > 0 \exists \delta_2 > 0$ tale che per $0 < |x x_0| < \delta_2$ si ha $|g(x) \ell'| < \varepsilon_2$.

Inoltre, poiché la funzione f ammette limite, allora f è limitata per x che tende a x_0 (per il Teorema 5.9): quindi esistono M>0 e $\delta_3>0$ tale che |f(x)|< M per $0<|x-x_0|<\delta_3$. Vogliamo dimostrare che

$$\forall \varepsilon > 0 \exists \delta > 0$$
 tale che per $0 < |x - x_0| < \delta$ si ha $|f(x) \cdot g(x) - \ell \cdot \ell'| < \varepsilon$.

Fissato $\varepsilon > 0$, poniamo $\varepsilon_1 = \varepsilon/2|\ell'|$, $\varepsilon_2 = \varepsilon/2M$ e $\delta = \min\{\delta_1, \delta_2, \delta_3\}$. Per $|x - x_0| < \delta$ si ha

$$|f(x) \cdot g(x) - \ell \cdot \ell'| \le |f(x) \cdot g(x) - f(x) \cdot \ell'| + |f(x) \cdot \ell' - \ell \cdot \ell'|$$

$$\le |f(x)| \cdot |g(x) - \ell'| + |\ell'| \cdot |f(x) - \ell|$$

$$\le M \cdot (\varepsilon/2M) + |\ell'| \cdot (\varepsilon/2|\ell'|) = \varepsilon,$$

che è quanto si voleva dimostrare.

4. Dimostrazione del Teorema 5.12. Segue dal teorema 5.11, notando che se $\ell' \neq 0$ allora 1/g(x) è limitata per $x \to x_0$ e si ha $\lim_{x \to x_0} 1/g(x) = 1/\ell'$. L'ultima affermazione si dimostra notando che

$$\left| \frac{1}{g(x)} - \frac{1}{\ell'} \right| = \left| \frac{g(x) - \ell'}{g(x)\ell'} \right|.$$

Allora $\forall \varepsilon' > 0 \ \exists \delta' > 0$ tale che per $0 < |x - x_0| < \delta'$ si ha

$$|g(x) - \ell'| < \varepsilon' \implies ||g(x)| - |\ell'|| < \varepsilon' \implies -\varepsilon' < |g(x)| - |\ell'| < \varepsilon' \implies |g(x)| > |\ell'| - \varepsilon'.$$

Per tali x si ha

$$\left| \frac{1}{g(x)} - \frac{1}{\ell'} \right| \le \frac{\varepsilon'}{|\ell'|(|\ell'| - \varepsilon')}.$$

In particolare fissato $\varepsilon > 0$ si può porre

$$\varepsilon' = \frac{\varepsilon(|\ell'|)^2}{1 + \varepsilon|\ell'|} \implies \frac{\varepsilon'}{|\ell'|(|\ell'| - \varepsilon')} = \varepsilon.$$

Se si sceglie $\delta = \delta'$, per $0 < |x - x_0| < \delta$ si ha allora $|1/g(x) - 1/\ell'| < \varepsilon$.

- 5. Dimostrazione del Teorema 5.13. Per definizione di limite $\forall \varepsilon > 0 \ \exists \delta > 0$ tale che $|f(x) \ell| < \varepsilon$ e $|h(x) \ell| < \varepsilon$ per $0 < |x x_0| < \delta$. Poiché $f(x) \le g(x) \le h(x)$ si ha allora $-\varepsilon < f(x) \ell \le g(x) \ell \le h(x) \ell < \varepsilon$, quindi $|g(x) \ell| < \varepsilon$.
- 6. Dimostrazione del Teorema 5.14. Si ragiona per assurdo: supponiamo $\ell < 0$. Allora fissato $\varepsilon > 0$ esiste $\delta > 0$ tale che per $0 < |x x_0| < \delta$ si ha $f(x) \ell < \varepsilon$. Scelto $\varepsilon = -\ell/2$ si trova $f(x) < \ell + \varepsilon = \ell/2 < 0$, giungendo così a una contraddizione.
- 7. Dimostrazione del Teorema 5.15. Si definisce h(x) = f(x) g(x) e si applica il Teorema 5.14.
- 8. Dimostrazione del Teorema 5.16. Per definizione di limite $\forall \varepsilon > 0 \ \exists \delta > 0$ tale che per $0 < |x x_0| \le \delta$ si ha $\ell \varepsilon < f(x) < \ell + \varepsilon$. Se si sceglie $\varepsilon = \ell/2$ allora $\exists \delta$ tale che per ogni x tale che $0 < |x x_0| < \delta$ si ha $\ell/2 < f(x) < 3\ell/2$, e quindi f ha il segno di ℓ .

5.6 Alcuni esempi e limiti notevoli

Iniziamo con un'osservazione semplice ma importante. Quando si considera il limite di una funzione f(x) per $x \to x_0$, può essere conveniente introdurre una nuova variabile t in termini della quale sia più semplice calcolare il limite. In tal caso bisogna determinare la relazione che lega le variabili t e x, scrivendo x in funzione di t, cioè x = x(t), e calcolare a quale valore t_0 tende t quando x tende a x_0 :

$$\lim_{x \to x_0} f(x) = \lim_{t \to t_0} f(x(t)).$$

Può infatti succedere che il secondo limite sia un limite che già si conosca o che comunque sia più semplice da calcolare.

Esempi:

1. $\lim_{x\to 0} \sin x^2 \Longrightarrow$ scrivendo $t=x^2$, così che $t\to 0$ per $x\to 0$, si ottiene

$$\lim_{x \to 0} \sin x^2 = \lim_{t \to 0} \sin t.$$

2. $\lim_{x\to 0} \ln \sqrt{x+1} \Longrightarrow$ scrivendo $t=\sqrt{x+1}$, così che $t\to 1$ per $x\to 0$, si ottiene

$$\lim_{x \to 0} \ln \sqrt{x+1} = \lim_{t \to 1} \ln t.$$

3. $\lim_{x\to 0} \frac{e^{x^2-x}-1}{x^2-x} \Longrightarrow$ scrivendo $t=x^2-x$, così che $t\to 0$ per $x\to 0$, si ottiene

$$\lim_{x \to 0} \frac{e^{x^2 - x} - 1}{x^2 - x} = \lim_{t \to 0} \frac{e^t - 1}{t}.$$

Vedremo nel §6.2 come si calcola il secondo limite.

4. $\lim_{x\to\pi} \sin x \Longrightarrow \text{scrivendo } t=x-\pi, \cos che t\to 0 \text{ per } x\to\pi, \text{ si ottiene}$

$$\lim_{x \to \pi} \sin x = 0 = \lim_{t \to 0} \sin(\pi + t) = -\lim_{t \to 0} \sin t,$$

dove si è usato che $\sin(t+\pi) = \sin t \cos \pi + \cos t \sin \pi = -\sin t$, in virtù delle formule di addizione viste nel §3.6.

La strategia da seguire nel calcolo dei limiti di funzioni elementari è di ricondursi di volta in volta a limiti già noti. Rivestono allora particolare importanza alcuni limiti, detti *limiti notevoli*, a cui spesso è possibile ridursi attraverso alcuni passaggi algebrici: essi costituiscono quindi una collezione di limiti che, una volta impressi nella mente,

possono poi essere utilizzati per calcolare limiti di funzioni elementari più complesse che li coinvolgono.

Alcuni limiti notevoli:

- $1. \lim_{x \to 0} \sin x = 0.$
- $2. \lim_{x \to 0} \cos x = 1.$
- $3. \lim_{x \to 0} \frac{\sin x}{x} = 1.$
- $4. \lim_{x \to 0} \frac{\operatorname{tg} x}{x} = 1.$
- $5. \lim_{x \to 0} \frac{\sin kx}{x} = k.$
- 6. $\lim_{x \to 0} \frac{1 \cos x}{x} = 0.$
- 7. $\lim_{x \to 0} \frac{1 \cos x}{x^2} = \frac{1}{2}.$
- 8. $\lim_{x \to 0} \frac{\sin 3x}{\sin x} = 3.$

Solutioni:

1. Si ha $0 \le \sin x \le x$ se $x \in [0, \pi/2]$ e $0 > \sin x > x$ se $x \in [-\pi/, 0)$ (cfr. la Figura 5.3) \Longrightarrow $|\sin x| \le |x|$. Per $x \ge 0$ il risultato segue dal Teorema 5.13. Per x < 0 si può usare il fatto che la funzione è dispari (cfr. pag 50).

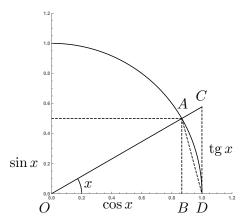


Figura 5.3: L'area del settore circolare OAD è data da $xr^2/2$, dove r è il raggio della circonferenza e x è l'angolo al centro del settore circolare. Quindi, se r = 1, l'area è x/2.

- 2. Si ha $\cos x = \cos((x/2) + (x/2)) = \cos^2(x/2) \sin^2(x/2) = 1 2\sin^2(x/2)$, dove $\lim_{x\to 0} \sin(x/2) = 0$.
- 3. La funzione $\sin x/x$ è pari, quindi basta studiare il caso $x \ge 0$. Si ha $\sin x < x < \tan x$ per $0 < x < \pi/2$: infatti, con riferimento alla Figura 5.3), dove $OB = \cos x$, $AB = \sin x$ e $CD = \tan x$ (poiché i triangoli OAB e ACD sono simili), le aree dei triangoli OAD e OCD, sono rispettivamente $(\sin x)/2$, e $(\tan x)/2$, mentre l'area del settore circolare di angolo x, data da x/2, è maggiore della prima e minore della seconda. Dividendo per $\sin x$, si trova $1 < x/\sin x < 1/\cos x \implies \cos x < \sin x/x < 1$. Si applica quindi il Teorema 5.13.
- 4. $\operatorname{tg} x/x = (\sin x/x) \cdot (1/\cos x)$: si applica quindi il Teorema 5.12.
- 5. $\sin kx/x = (\sin kx/kx) \cdot (kx/x)$: si applica quindi il Teorema 5.11.
- 6. $1 \cos x = 2\sin^2(x/2)$: si applica quindi il Teorema 5.11.
- 7. $1 \cos x = 2\sin^2(x/2)$: si applica quindi il Teorema 5.11.
- 8. $\sin 3x/\sin x = (\sin 3x/3x) \cdot (3x/x) \cdot (x/\sin x)$: si applica quindi il Teorema 5.11.

5.7 Un limite notevole: il numero di Nepero

Consideriamo

$$\lim_{x \to +\infty} \left(1 + \frac{1}{x}\right)^x.$$

Si potrebbe pensare $(1+1/x) \to 1$ e $x \to \infty \Longrightarrow (1+1/x)^x \to 1^\infty = 1$. L'argomento non è però corretto! Vogliamo quindi calcolare il limite.

5.7.1 Prima parte

Consideriamo prima il limite $\lim_{n\to+\infty} \left(1+\frac{1}{n}\right)^n$, con $n\in\mathbb{N}$:

• Mostriamo innanzitutto che la quantità $(1+1/n)^n$ è limitata, ovvero che $\exists c_2 > c_1 > 0$ tali che $c_1 \leq (1+1/n)^n \leq c_2 \ \forall n \in \mathbb{N}$. Infatti, per la formula del binomio (cfr. il §1.2), si ha

$$\left(1 + \frac{1}{n}\right)^n = \sum_{k=0}^n \binom{n}{k} \frac{1}{n^k} = 1 + 1 + \frac{1}{2!} \left(1 - \frac{1}{n}\right) + \frac{1}{3!} \left(1 - \frac{1}{n}\right) \left(1 - \frac{2}{n}\right) + \dots + \frac{1}{n!} \left(1 - \frac{1}{n}\right) \left(1 - \frac{2}{n}\right) \dots \left(1 - \frac{n-1}{n}\right),$$

quindi $0 < 1 - k/n \le 1 \ \forall k = 1, \dots, n-1$, quindi $c_1 = 2$; inoltre

$$\left(1 + \frac{1}{n}\right)^n \le 1 + 1 + \sum_{k=2}^n \frac{1}{k!} \le 1 + \sum_{k=1}^n \frac{1}{2^{k-1}}$$

$$= 1 + \sum_{k=0}^{n-1} \frac{1}{2^k} = 1 + \frac{1 - 1/2^n}{1 - 1/2} = 1 + 2 - \frac{1}{2^{n-1}} \le 3 = c_2.$$

• Se passiamo da n a n+1 i fattori nello sviluppo del binomio diventano più piccoli e abbiamo un addendo in più. Quindi

$$\left(1+\frac{1}{n}\right)^n \le \left(1+\frac{1}{n+1}\right)^{n+1}.$$

• Poiché la quantità $(1+1/n)^n$ aumenta se si passa da n a n+1 ed è limitata superiormente, allora esiste il limite

$$e := \lim_{n \to +\infty} \left(1 + \frac{1}{n} \right)^n.$$

Questo si può vedere come segue. Poniamo $a_n = (1+1/n)^n$. Dal Teorema 2.7 si ha che esiste $\ell = \sup\{a_n : n \in \mathbb{N}\}$. Per definizione di estremo superiore $a_n \leq \ell$ per ogni $n \in \mathbb{N}$ e, comunque sia fissato $\varepsilon > 0$, esiste $M \in \mathbb{N}$ tale che $a_M > \ell - \varepsilon$. Poiché i numeri a_n crescono al crescere di n, si ha $a_n > \ell - \varepsilon \ \forall n \geq M$. In conclusione $\forall n > M$ si ha $\ell - \varepsilon < a_n \leq \ell < \ell + \varepsilon$, i.e. $|a_n - \ell| < \varepsilon$, quindi esiste il limite $\ell = \lim_{n \to \infty} a_n$. Poiché $c_1 \leq a_n \leq c_2 \ \forall n \in \mathbb{N}$ si ha $c_1 \leq \ell \leq c_2$, per il Teorema 5.12.

Osservazioni:

- 1. Il numero e = 2.718281824... è un numero irrazionale, ed è chiamato numero di Nepero o numero di Eulero.
- 2. Esistono definizioni alternative (ed equivalenti) del numero di Nepero, in termini di serie di Taylor o di soluzioni di equazioni differenziali.

5.7.2 Seconda parte

Consideriamo ora $x \in \mathbb{R}$. Per ogni $x \in \mathbb{R}$ $\exists n \in \mathbb{N}$ tale che $n \leq x < n+1$. Se $x \to +\infty$ si ha anche $n \to +\infty$. Inoltre

$$\left(1 + \frac{1}{n+1}\right)^n \le \left(1 + \frac{1}{x}\right)^x \le \left(1 + \frac{1}{n}\right)^{n+1},$$

dove

$$\lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^{n+1} = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n \cdot \lim_{n \to \infty} \left(1 + \frac{1}{n} \right) = e \cdot 1 = e,$$

$$\lim_{n \to \infty} \left(1 + \frac{1}{n+1} \right)^n = \frac{\lim_{n \to \infty} \left(1 + \frac{1}{n+1} \right)^{n+1}}{\lim_{n \to \infty} \left(1 + \frac{1}{n+1} \right)} = \frac{e}{1} = e.$$

Ne segue pertanto che $\lim_{x\to+\infty} \left(1+\frac{1}{x}\right)^x = e.$

Esercizi:

- 1. Si dimostri che $\lim_{x \to -\infty} \left(1 + \frac{1}{x}\right)^x = e$,
- 2. Si dimostri che $\lim_{x\to 0} (1+x)^{1/x} = e$.
- 3. Si dimostri che $\lim_{x\to 0} \left(1+\frac{3}{x}\right)^x = e^3$.
- 4. Si dimostri che $\lim_{x\to +\infty} \left(1+\frac{1}{x^2}\right)^{x^2} = e.$

Soluzioni:

- 1. Si opera il cambio di variabili x = -(t+1).
- 2. Si opera il cambio di variabili x = 1/t.
- 3. Si opera il cambio di variabili x = 3t e si scrive

$$\left(1+\frac{3}{x}\right)^x = \left(1+\frac{1}{t}\right)^{3t} = \left(\left(1+\frac{1}{t}\right)^t\right)^3 = \left(1+\frac{1}{t}\right)^t \cdot \left(1+\frac{1}{t}\right)^t \cdot \left(1+\frac{1}{t}\right)^t.$$

Si applica quindi il Teorema 5.11 sul limite del prodotto.

4. Si opera il cambio di variabili $x^2 = t$.

5.8 Esercizi

$$1. \lim_{x \to +\infty} \left(1 + \frac{1}{x} \right)^{x+3}.$$

5.8. ESERCIZI

79

2.
$$\lim_{x \to 3} \frac{x^2 - 7x + 12}{(x - 3)^3}.$$

3.
$$\lim_{x \to +\infty} \sqrt{x^2 + x + 1} - x$$
.

4.
$$\lim_{x \to +\infty} \frac{x^2 - 2x + 1}{x + 3}$$
.

5.
$$\lim_{x \to +\infty} \frac{x^2 + 1}{x^3 + 4x}.$$

6.
$$\lim_{x \to -\infty} \frac{3x^2 - 2}{2x^2 + 5x + 1}$$

7.
$$\lim_{x \to +\infty} \frac{\sin x}{x}.$$

8.
$$\lim_{x \to +\infty} \frac{\cos x}{x}.$$

9.
$$\lim_{x \to +\infty} x \sin\left(\frac{1}{x}\right)$$
.

$$10. \lim_{x \to 0} \frac{\cos x}{x}.$$

11.
$$\lim_{x \to +\infty} \frac{\operatorname{tg} x}{x}.$$

12.
$$\lim_{x\to 0} \frac{\sqrt{1+x} - \sqrt{1-x}}{x}$$
.

13.
$$\lim_{x\to 0} \frac{1-\sqrt{1-x}}{x}$$
.

14.
$$\lim_{x \to +\infty} \left(\frac{x^2}{x+1} - \frac{x^2}{x+2} \right)$$
.

$$15. \lim_{x \to 0} \frac{\sin(x+\pi)}{x}.$$

16.
$$\lim_{x\to 0} \frac{x\cos(x+\pi/2)}{\cos x - 1}$$
.

17.
$$\lim_{x \to 0} \frac{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}}{\sin x}$$
.

18.
$$\lim_{x \to +\infty} \left(\sqrt{x^2 + 2x} - x \right).$$

19.
$$\lim_{x \to +\infty} \frac{x}{\sqrt{x^2 + x + 1} - 1}$$
.

$$20. \lim_{x \to 0} \frac{\sin(\pi \cos x)}{x \sin x}.$$

$$21. \lim_{x \to \pi} \frac{\sin x}{x - \pi}.$$

22.
$$\lim_{x \to 1} \frac{x^2 - 1}{x^2 + 2x - 3}$$
.

Soluzioni:

- 1. Il limite è: $e \cdot 1^3 = e$.
- 2. Si ha $x^2 7x + 12 = (x 4)(x 3)$, quindi la funzione diventa $(x 4)/(x 3)^2$, dove $x 4 \to -1$ e $(x 3)^2 \to +\infty$. Quindi il limite è: $-\infty$.
- 3. Moltiplicando e dividendo per $\sqrt{x^2 + x + 1} + x$ la funzione diventa

$$\frac{x+1}{\sqrt{x^2+x+1}+x} = \frac{x\left(1+\frac{1}{x}\right)}{x\left(\sqrt{1+\frac{1}{x}+\frac{1}{x^2}}+1\right)} = \frac{1+\frac{1}{x}}{\sqrt{1+\frac{1}{x}+\frac{1}{x^2}}+1},$$

dove $1+1/x \to 1$ e $\sqrt{1+1/x+1/x^2}+1 \to 2$. Quindi il limite è: 1/2.

4. Si ha

$$\frac{x^2 - 2x + 1}{x + 3} = \frac{x^2 \left(1 - \frac{2}{x} + \frac{1}{x^2}\right)}{x \left(1 + \frac{3}{x}\right)} = \frac{x \left(1 - \frac{2}{x} + \frac{1}{x^2}\right)}{1 + \frac{3}{x}},$$

dove $x(1-2/x+1/x^2) \to +\infty$ e $(1+3/x) \to 0$. Quindi il limite è: $+\infty$.

- 5. Il limite è: 0.
- 6. Il limite è: 3/2.
- 7. Si applica la definizione di limite: se x>M si ha $|\sin x/x|\leq 1/|x|<1/M=\varepsilon$ se $M=1/\varepsilon$. D'altra parte

$$-\left|\frac{\sin x}{x}\right| \le \frac{\sin x}{x} \le \left|\frac{\sin x}{x}\right|,$$

Quindi il limite è: 0.

5.8. ESERCIZI 81

- 8. Il limite è: 0.
- 9. Si definisce t=1/x, così che $t\to 0$ per $x\to +\infty$. Quindi il limite è: 1.
- 10. Il limite è: $+\infty$ se $x \to 0^+$ e $-\infty$ se $x \to 0^-$.
- 11. Il limite non esiste.
- 12. Moltiplicando e dividendo per $\sqrt{1+x}+\sqrt{1-x}$ la funzione diventa

$$\frac{2x}{x(\sqrt{1+x} + \sqrt{1-x})} = \frac{2}{\sqrt{1+x} + \sqrt{1-x}},$$

dove $\sqrt{1+x} + \sqrt{1-x} \to 2$. Quindi il limite è: 1.

13. Moltiplicando e dividendo per $(1 + \sqrt{1-x})$ si trova

$$1 - \sqrt{1 - x} = (1 - \sqrt{1 - x}) \frac{1 + \sqrt{1 - x}}{1 + \sqrt{1 - x}} = \frac{1 - (1 - x)}{1 + \sqrt{1 - x}} = \frac{x}{1 + \sqrt{1 - x}}.$$

Dividendo per x si ottiene $(1-\sqrt{1-x})/x=1/(1+\sqrt{1-x})$. Quindi il limite è: 1/2.

14. Si riscrive la funzione come

$$\frac{x^2}{x+1} - \frac{x^2}{x+2} = \frac{x^2(x+2) - x^2(x+1)}{(x+1)(x+2)} = \frac{x^2}{x^2 + 3x + 2} = \frac{x^2}{x^2 \left(1 + \frac{3}{x} + \frac{2}{x^2}\right)},$$

dove $1 + 3/x + 2/x^2 \rightarrow 1$. Quindi il limite è: 1.

15. Si applicano le formule di addizione per scrivere

$$\sin(x+\pi) = \sin x \cos \pi + \cos x \sin \pi = -\sin x$$

e si usa il limite notevole 3 di $\S 5.6$. Quindi il limite è: -1.

16. Per le formula di addizione si ha

$$\cos(x + \pi/2) = \cos x \cos(\pi/2) - \sin x \sin(\pi/2) = -\sin x,$$

quindi si scrive

$$-\frac{x\sin x}{\cos x - 1} = \frac{x^2}{1 - \cos x} \frac{\sin x}{x}$$

e si applicano i limiti notevoli 3 e 7 di §5.6. Il limite è quindi: 2.

17. Moltiplicando e dividendo per $(\sqrt{1+\sin x}+\sqrt{1-\sin x})$ si trova

$$\frac{\sqrt{1+\sin x} - \sqrt{1-\sin x}}{\sin x} = \frac{1+\sin x - 1+\sin x}{\sin x(\sqrt{1+\sin x} + \sqrt{1-\sin x})},$$

dove $\sqrt{1+\sin x}+\sqrt{1-\sin x}\to 2$ per $x\to 0$. Quindi il limite è: 1.

18. Si ha

$$\sqrt{x^2 + 2x} - x = \frac{(\sqrt{x^2 + 2x} - x)(\sqrt{x^2 + 2x} + x)}{\sqrt{x^2 + 2x} + x}$$
$$= \frac{x^2 + 2x - x^2}{x\left(\sqrt{1 + \frac{2}{x}} + 1\right)} = \frac{2}{1 + \sqrt{1 + \frac{2}{x}}},$$

dove si è usato che $\sqrt{x^2}=|x|=x$ per x>0. Poiché $1+2/x\to 1$ per $x\to +\infty$, il limite è: 1.

- 19. Il limite è: 1.
- 20. Utilizzando due volte le formule di addizione, si ha

$$\cos x = \cos(x/2 + x/2) = \cos^2(x/2) - \sin^2(x/2) = 1 - 2\sin^2(x/2)$$

e quindi

$$\sin(\pi \cos x) = \sin(\pi - 2\pi \sin^2(x/2))$$

$$= \sin \pi \cos(2\pi \sin^2(x/2)) + \cos \pi \sin(2\pi \sin^2(x/2))$$

$$= \sin(2\pi \sin^2(x/2)),$$

da cui si ottiene

$$\lim_{x \to 0} \frac{\sin(\pi \cos x)}{x \sin x} = \lim_{x \to 0} \frac{\sin(2\pi \sin^2(x/2))}{2\pi \sin^2(x/2)} \cdot \frac{2\pi \sin^2(x/2)}{(x/2)^2} \cdot \frac{x^2/4}{x \sin x} = 1 \cdot (2\pi) \cdot \frac{1}{4}.$$

Quindi il limite è: $\pi/2$.

21. Definendo $t = x - \pi$, si ottiene

$$\lim_{x \to \pi} \frac{\sin x}{x - \pi} = \lim_{t \to 0} \frac{\sin(t + \pi)}{t} = \lim_{t \to 0} \frac{\sin t \cos \pi + \cos t \sin \pi}{t} = -\lim_{t \to 0} \frac{\sin t}{t}.$$

Quindi Il limite è: -1.

22. Definendo t = x - 1, si ottiene

$$\lim_{x \to 1} \frac{x^2 - 1}{x^2 + 2x - 3} = \lim_{t \to 0} \frac{t^2 + 2t}{t^2 + 4t} = \lim_{t \to 0} \frac{t(2+t)}{t(4+t)} = \lim_{t \to 0} \frac{2+t}{4+t}.$$

Quindi il limite è: 1/2.

6 | Funzioni continue

6.1 Definizione ed esempi

Ogni limite in cui x tende a un valore finito x_0 si può ricondurre a un limite in cui la variabile tende a 0. Infatti se $x \to x_0$ allora si può porre $x = x_0 + \Delta x$, con $\Delta x \to 0$. Quindi, se vogliamo studiare il limite di f(x) per $x \to 0$, possiamo scrivere tale limite come

$$\lim_{x \to x_0} f(x) = \lim_{\Delta x \to 0} f(x_0 + \Delta x).$$

Esempi:

- 1. $\lim_{x \to 1} 1/x = \lim_{t \to 0} 1/(t+1);$
- 2. $\lim_{x \to \pi/4} \sin x = \lim_{t \to 0} \sin(\pi/4 + t) = \lim_{t \to 0} (\sin(\pi/4) \cos t + \cos(\pi/4) \sin t) = \lim_{t \to 0} (\sin(\pi/4) \cos t) + \lim_{t \to 0} (\cos(\pi/4) \sin t) = \sin(\pi/4) \cdot 1 + \cos(\pi/4) \cdot 0 = \sin(\pi/4) = 1/\sqrt{2}.$

Definizione 6.1. Sia $f: I \to \mathbb{R}$ e sia $x_0 \in I$. La funzione si dice continua in x_0 se

$$\lim_{x \to x_0} f(x) = \lim_{\Delta x \to 0} f(x_0 + \Delta x) = f(x_0).$$

La funzione si dice continua in I se è continua in ogni $x \in I$.

Osservazione: Possiamo riscrivere la definizione di funzione continua nella forma

$$\lim_{x \to x_0} f(x) = f\left(\lim_{x \to x_0} x\right),\,$$

dal momento che $\lim_{x \to x_0} x = x_0$.

Esempi:

- 1. $f(x) = x^2$, $f(x) = x^n$, $f(x) = \sin x$, $f(x) = \cos x$, $f(x) = e^x$ sono continue in \mathbb{R} .
- 2. $f(x) = a^x$ è continua in \mathbb{R} . $f(x) = \log_a x$ è continua in $\{x \in \mathbb{R} : x > 0\} = \mathbb{R}_+ \setminus \{0\}$.

- 3. \sqrt{x} è continua in \mathbb{R}_+ .
- 4. f(x) = 1/x, $f(x) = 1/x^n$ sono continue in $\mathbb{R} \setminus \{0\}$.
- 5. Più in generale tutte le funzioni elementari principali sono continue nel loro dominio.
- 6. f(x) = |x| è continua in \mathbb{R} .

Osservazioni:

- 1. Ricordando la definizione di limite in §5.2, diremo quindi che è una funzione f(x) è continua in x_0 se $\forall \varepsilon > 0 \; \exists \delta > 0$ tale che se $|x x_0| < \delta$ allora $|f(x) f(x_0)| < \varepsilon$. In particolare non serve scrivere $|x x_0| > 0$ (cioè richiedere che si abbia $x \neq x_0$), perché in $x = x_0$ si ha $0 = |f(x) f(x_0)| < \varepsilon$.
- 2. Intuitivamente, una funzione f è continua in un intervallo chiuso I se si può tracciare il suo grafico $\{(x, f(x)) \in \mathbb{R}^2 : x \in I\}$ nel piano cartesiano "senza staccare la penna dal foglio".
- 3. Usando le formule di addizione si verifica immediatamente che le funzioni $\sin x$ e $\cos x$ sono continue. Infatti

$$\begin{split} \lim_{x \to x_0} \sin x &= \lim_{\Delta x \to 0} \sin(x_0 + \Delta x) \\ &= \lim_{\Delta x \to 0} \left(\sin x_0 \cdot \cos \Delta x + \cos x_0 \cdot \sin \Delta x \right) \\ &= \sin x_0 \cdot \lim_{\Delta x \to 0} \cos \Delta x + \cos x_0 \cdot \lim_{\Delta x \to 0} \sin \Delta x \\ &= \sin x_0 \cdot 1 + \cos x_0 \cdot 0 = \sin x_0, \\ \lim_{x \to x_0} \cos x &= \lim_{\Delta x \to 0} \cos(x_0 + \Delta x) \\ &= \lim_{\Delta x \to 0} \left(\cos x_0 \cdot \cos \Delta x - \sin x_0 \cdot \sin \Delta x \right) \\ &= \cos x_0 \cdot \lim_{\Delta x \to 0} \cos \Delta x - \sin x_0 \cdot \lim_{\Delta x \to 0} \sin \Delta x \\ &= \cos x_0 \cdot 1 - \sin x_0 \cdot 0 = \cos x_0. \end{split}$$

4. Un'altra funzione di cui si verifica immediatamente la continuità è x^n , con $n \in \mathbb{N}$. Infatti, scrivendo $x = x_0 + \Delta x$, si ha

$$x^{n} = (x_{0} + \Delta x)^{n} = \sum_{k=0}^{n} {n \choose k} x_{0}^{k} (\Delta x)^{n-k},$$

quindi

$$\lim_{x \to x_0} x^n = \lim_{\Delta x \to 0} (x_0 + \Delta x)^n = \sum_{k=0}^n \binom{n}{k} x_0^k \lim_{\Delta x \to 0} (\Delta x)^{n-k} = \binom{n}{n} x_0^n = x_0^n,$$

perché tutti i termini della somma tendono a zero tranne quello con k = n.

85

6.2 Proprietà delle funzioni continue

Dalla Definizione 6.1 di continuità seguono facilmente le seguenti proprietà.

- 1. $f: I \to \mathbb{R} \in g: I \to \mathbb{R}$ sono continue in $x_0 \in I \Longrightarrow f + g$ è continua in x_0 .
- 2. $f: I \to \mathbb{R} \ \text{e } g: I \to \mathbb{R} \ \text{sono continue in } x_0 \in I \Longrightarrow f \cdot g \ \text{è continua in } x_0.$
- 3. $f: I \to \mathbb{R} \in g: I \to \mathbb{R}$ sono continue in $x_0 \in I \in g(x_0) \neq 0 \Longrightarrow f/g$ è continua in x_0 .
- 4. $f: J \to \mathbb{R}$ e $g: I \to J$ sono continue in $g(x_0) \in J$ e in $x_0 \in I$, rispettivamente $\Longrightarrow f \circ g$ è continua in x_0 .

Osservazioni:

- 1. Per la proprietà 1 ogni polinomio in x è continuo su tutto l'asse reale.
- 2. Per la proprietà 3 la funzione tg x è continua in ogni x_0 in cui $\cos x_0 \neq 0$. Analogamente la funzione $\cot x$ è continua in ogni x_0 in cui $\sin x_0 \neq 0$.
- 3. La proprietà 3 comporta che, se le funzioni f e g sono continue, la loro composizione è continua e si ha

$$\lim_{x \to x_0} f(g(x)) = f\left(\lim_{x \to x_0} g(x)\right) = f(g(x_0)).$$

In alte parole, per calcolare il limite di f(g(x)) per $x \to x_0$, possiamo prima calcolare il valore della funzione g(x) in x_0 e poi calcolare il valore di f in $g(x_0)$.

4. Utilizzando l'osservazione precedente, possiamo concludere subito che, per esempio,

$$\lim_{x \to 0} \sin x^2 = 0, \quad \lim_{x \to 0} \ln \sqrt{1 + x^2} = 0, \quad \lim_{x \to 0} \cos(x^2 - x + x^3) = 1, \quad \lim_{x \to 1} \mathrm{e}^{x^2 - x^3 + 3} = \mathrm{e}^3.$$

Questo è implicitamente quello che abbiamo fatto nelle pagine precedenti, quando abbiamo calcolato limiti simili introducendo una nuova variabile t; negli esempi considerati, questo significa porre $t=x^2,\,t=\sqrt{1+x^2},\,t=x^2-x+x^3$ e $t=x^2-x^3+3$, rispettivamente.

Calcolo di limiti usando la continuità:

1.
$$\lim_{x \to +\infty} \left(1 + \frac{1}{x} \right)^{\sqrt{3}x}.$$

$$2. \lim_{x \to +\infty} \left(1 + \frac{1}{\sqrt{3}x} \right)^x.$$

$$3. \lim_{x \to +\infty} \left(\frac{x+3}{x-1}\right)^{x+3}.$$

4.
$$\lim_{x \to 0} \frac{\ln(1+x)}{x} = 1.$$

5.
$$\lim_{x \to 0} \frac{e^x - 1}{x} = 1.$$

6.
$$\lim_{x \to 0} \sin(\sin x^2).$$

Soluzioni.

1. Il limite è: $e^{\sqrt{3}}$.

2. Il limite è: $e^{1/\sqrt{3}}$.

3. Il limite è: e^4 .

4. Il limite è: $\lim_{x\to 0} \ln(1+x)^{1/x} = \ln\lim_{x\to 0} (1+x)^{1/x} = \ln e = 1$.

5. Poniamo $t = e^x - 1 \Longrightarrow e^x = 1 + t \Longrightarrow x = \ln(1+t)$, da cui si ottiene

$$\frac{e^x - 1}{x} = \frac{t}{\ln(1+t)} = \frac{1}{\frac{\ln(1+t)}{t}}.$$

Inoltre $t \to 0$ quando $x \to 0$, così che

$$\lim_{t \to 0} \frac{\ln(1+t)}{t} = 1 \quad \Longrightarrow \quad \lim_{x \to 0} \frac{e^x - 1}{x} = 1.$$

6. Il limite è: 0.

6.3 Funzioni discontinue

Definizione 6.2. Una funzione f si dice discontinua in x_0 se non è continua in x_0 , i.e. se si verifica una delle seguenti condizioni:

- 1. la funzione f non è definita in x_0 ;
- 2. il limite per $x \to x_0$ di f(x) non esiste o è infinito;
- 3. $\exists \lim_{x \to x_0} f(x) = \ell$, $ma \ \ell \neq f(x_0)$.

Osservazione: un caso particolare della condizione 2 si presenta quando esistono

$$\lim_{x \to x_0^+} f(x) = \ell_+, \qquad \lim_{x \to x_0^-} f(x) = \ell_-,$$

ma $\ell_+ \neq \ell_-$.

Esempi:

- 1. La funzione $f(x) = (x^2 + x 2)/(x 1)$ studiata nell'esempio 3 a pag. 67 di §5.3 non è definita in x = 1, anche se il limite di f(x) per $x \to 1$ esiste e vale 3.
- 2. La funzione considerata nell'esempio 1 di §5.3 a pag. 68 non è definita in x = 0; inoltre il limite destro e sinistro di f(x) per $x \to 0$ valgono 1 e -1, rispettivamente.
- 3. La funzione f(x) = 1/x non è definita in x = 0 e il limite di f(x) per $x \to 0$ non esiste: infatti esistono il limite destro $(+\infty)$ e il limite sinistro $(-\infty)$ ma sono diversi.
- 4. La funzione $f(x) = 1/x^2$ non è definita in x = 0 e il limite di f(x) per $x \to 0$ vale $+\infty$.
- 5. La funzione $f(x) = 3^{1/x}$ è discontinua in x = 0 perché non è definita in x = 0; inoltre si ha (cfr. la Figura 6.1)

$$\lim_{x \to 0^+} f(x) = +\infty, \qquad \lim_{x \to 0^-} f(x) = 0.$$

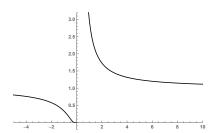


Figura 6.1: Grafico della funzione $3^{1/x}$.

6. La funzione f(x) = x/|x| è discontinua in x = 0 poiché non è definita in x = 0; inoltre si ha

$$\lim_{x \to 0^+} f(x) = +1, \qquad \lim_{x \to 0^-} f(x) = -1;$$

Si noti che f(x) = x/|x| coincide con la funzione considerata nell'esempio 1 del §5.2.

7. La funzione $f(x) = \cos(1/x)$ è discontinua in x = 0 perché non esiste $\lim_{x \to 0} f(x)$.

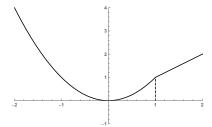


Figura 6.2: Grafico della funzione f(x) dell'esempio 8 con f(1) = 1

8. La funzione definita come

$$f(x) = \begin{cases} x^2, & x < 1, \\ 0, & x = 1, \\ x, & x > 1, \end{cases}$$

è discontinua in x = 1: diventa continua se si pone f(1) = 1 (cfr. la Figura 6.2).

Osservazione: a volte una discontinuità è eliminabile. Per esempio nei casi 1 e 8 la discontinuità è eliminabile ponendo f(1) = 3 nel primo caso e f(1) = 1 nel secondo. La discontinuità non è mai eliminabile (1) se il limite destro e il limite sinistro sono diversi o (2) se almeno uno dei due limiti vale $+\infty$ o $-\infty$.

Definizione 6.3. Un punto x_0 si dice punto di discontinuità di prima specie per f se il limite destro e il limite sinistro sono entrambi finiti e diversi. Ogni punto di discontinuità non eliminabile che non sia di prima specie si dice punto di discontinuità di seconda specie o punto di discontinuità essenziale.

6.4 Teoremi sulle funzioni continue

Teorema 6.4. Sia f una funzione continua nell'intervallo chiuso [a,b]. Allora $\exists x_1, x_2 \in [a,b]$ tali che $f(x_1) \geq f(x)$ e $f(x_2) \leq f(x)$ $\forall x \in [a,b]$.

Osservazioni:

- 1. Il Teorema 6.4 è noto come teorema di Weierstrass. La sua dimostrazione è non banale. Si veda la Figura 6.3 per un'illustrazione grafica del teorema.
- 2. Il punto x_1 si chiama punto di massimo assoluto e il valore $M := f(x_1)$ si dice massimo assoluto della funzione f. Il punto x_2 si chiama punto di minimo assoluto e il valore $m := f(x_2)$ si dice minimo assoluto della funzione f. Scriviamo allora:

$$M:=\max_{x\in[a,b]}f(x), \qquad m=\min_{x\in[a,b]}f(x).$$

3. Data una funzione $f:[a,b]\to\mathbb{R}$, per definizione si ha

$$\max_{x \in [a,b]} f(x) = \max\{y \in \mathbb{R} : \exists x \in [a,b] \text{ tale che } f(x) = y\} = \max C_f,$$

$$\min_{x \in [a,b]} f(x) = \min\{y \in \mathbb{R} : \exists x \in [a,b] \text{ tale che } f(x) = y\} = \min C_f,$$

dove C_f è il codominio della funzione f (cfr. la Definizione 2.10).

- 4. È fondamentale che l'intervallo sia chiuso: f(x) = x e f(x) = 1/x, per $x \in (0,1)$ non hanno né massimo né minimo assoluto.
- 5. Con le notazioni del punto precedente, può succedere che C_f non abbia massimo. Questo succede se C_f è illimitato superiormente (per esempio se $f(x) = x^2$ in \mathbb{R}) oppure se C_f è limitato ma ammette solo estremo superiore (per esempio $f(x) = x^2$ in (-1,1)). Analoghe considerazioni valgono per il minimo: C_f può essere illimitato inferiormente o essere limitato ma avere solo estremo inferiore e non minimo.
- 6. Il massimo di una funzione, se esiste, è unico, ma il punto di massimo di una funzione non è necessariamente unico (esempio: $f(x) = \sin x$ ha infiniti punti di massimo sulla retta). Analoghe considerazioni valgono per il minimo.

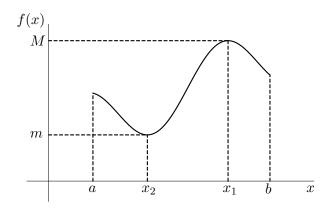


Figura 6.3: Illustrazione del Teorema 6.4 (teorema di Weierstrass).

Teorema 6.5. Sia f una funzione continua in [a,b] e siano M e m il suo massimo assoluto e il suo minimo assoluto, rispettivamente. Allora $\forall c \in [m,M] \ \exists \bar{x} \in [a,b]$ tale che $f(\bar{x}) = c$.

Osservazione: il Teorema 6.5 è noto come teorema dei valori intermedi. Si veda la Figura 6.4 per un'illustrazione grafica del teorema.

Teorema 6.6. $f: I \to \mathbb{R}$ è continua in $x_0 \in I$ e $f(x_0) \neq 0 \Longrightarrow \exists$ un intorno di x_0 in cui f(x) ha lo stesso segno di $f(x_0)$.

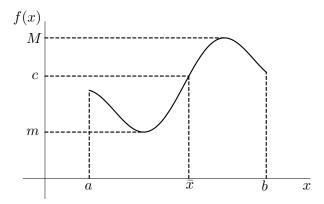


Figura 6.4: Illustrazione del Teorema 6.5 (teorema dei valori intermedi).

Osservazione: il Teorema 6.6 è noto come teorema della permanenza del segno.

Teorema 6.7. $f: I \to \mathbb{R}$ è continua in $x_0 \in I$ e $f(x_0) > L \Longrightarrow \exists$ un intorno di x_0 in cui f(x) rimane maggiore di L.

Osservazione: il Teorema 6.7 è una generalizzazione del Teorema 6.6, a cui si riduce nel caso in cui si abbia L=0.

Teorema 6.8. Sia f una funzione continua in [a,b] e sia f(a) < 0 e f(b) > 0. Allora $\exists \bar{x} \in [a,b]$ tale che $f(\bar{x}) = 0$.

Osservazione: il Teorema 6.8 è noto come teorema degli zeri di una funzione continua.

Teorema 6.9. Sia f una funzione continua in [a,b] e sia f(a) > 0 e f(b) < 0. Allora $\exists \bar{x} \in [a,b]$ tale che $f(\bar{x}) = 0$.

Teorema 6.10. Se la funzione $f:[a,b] \to \mathbb{R}$ è continua e invertibile, allora la sua inversa f^{-1} è anch'essa continua.

Osservazione: il risultato del Teorema 6.10 si estende al caso in cui la funzione f sia definita più in generale in un insieme chiuso e limitato (di cui un intervallo chiuso costituisce un caso particolare).

Complementi:

- 1. Dimostrazione del Teorema 6.6. Sia $\ell = f(x_0) = \lim_{x \to x_0} f(x)$. Per definizione di limite, $\forall \varepsilon > 0 \; \exists \delta > 0$ tale che per $|x x_0| < \delta$ si ha $\ell \varepsilon < f(x) < \ell + \varepsilon$. Se $\ell > 0$, si sceglie $\varepsilon = \ell/2$ e si trova $f(x) > \ell \varepsilon = \ell/2 > 0$; se $\ell < 0$, si sceglie $\varepsilon = -\ell/2$ e si trova $f(x) < \ell + \varepsilon < \ell/2 < 0$. Quindi f(x) ha il segno di ℓ in un intorno di x_0 .
- 2. Dimostrazione del Teorema 6.7. Se si definisce g(x) = f(x) L si ha $g(x_0) = 0$: si può allora applicare il Teorema 6.6 e concludere che in un intorno di x_0 si ha g(x) = f(x) L > 0.

6.5. INFINITESIMI 91

3. Dimostrazione del Teorema 6.8. Sotto le ipotesi del teorema si ha f(a) < 0 < f(b). Inoltre, per definizione di massimo e di minimo, si ha $m \le f(x) \le M \ \forall x \in [a,b]$: in particolare $m \le f(a)$ e $f(b) \le M$. Quindi si ottiene $m \le f(a) < 0 < f(b) \le M$. Poiché dunque $0 \in [m,M]$ si può applicare il Teorema 6.5 e concludere che esiste $\bar{x} \in [a,b]$ tale che $f(\bar{x}) = 0$.

4. Dimostrazione del Teorema 6.9. Si ragiona come per il Teorema 6.8.

6.5 Infinitesimi

Definizione 6.11. Si dice che una funzione f(x) è un infinitesimo per $x \to x_0$ se

$$\lim_{x \to x_0} f(x) = 0.$$

Analogamente si dice che una funzione f(x) è un infinitesimo per $x \to +\infty$ (risp. $x \to -\infty$) se

$$\lim_{x \to +\infty} f(x) = 0 \quad (risp. \lim_{x \to -\infty} f(x) = 0).$$

.

Nel seguito del paragrafo, per non introdurre troppe definizioni, indichiamo i limiti con lim, intendendo che

$$\lim f(x) = \lim_{x \to x_0} f(x), \qquad \lim f(x) = \lim_{x \to +\infty} f(x), \qquad \lim f(x) = \lim_{x \to -\infty} f(x)$$

rispettivamente se la funzione f(x) è un infinitesimo per $x \to x_0$ per qualche x_0 finito, se la funzione f(x) è un infinitesimo per $x \to +\infty$, se la funzione f(x) è un infinitesimo per $x \to -\infty$.

Definizione 6.12. Due infinitesimi f(x) e g(x) si dicono infinitesimi dello stesso ordine se $\lim_{x \to \infty} f(x)/g(x) = \ell$, con ℓ finito e diverso da 0.

Definizione 6.13. Dati due infinitesimi f(x) e g(x) diremo che f(x) è un infinitesimo di ordine superiore rispetto a g(x), ovvero che g(x) è un infinitesimo di ordine inferiore rispetto a f(x), se $\lim f(x)/g(x) = 0$ (e, di conseguenza, $\lim g(x)/f(x) = +\infty$ oppure $\lim g(x)/f(x) = -\infty$).

Definizione 6.14. Un infinitesimo f(x) si dice infinitesimo di ordine k rispetto all'infinitesimo g(x) se f(x) e $(g(x))^k$ sono infinitesimi dello stesso ordine. Se una funzione f(x) è infinitesimo di ordine k rispetto a x si usa la notazione $f(x) = O(x^k)$.

Esempi:

1. Le funzioni x, $\sin x$, $\tan x$ sono infinitesimi dello stesso ordine per $x \to 0$

- 2. La funzione $f(x) = e^x 1$ è un infinitesimo di ordine 1 rispetto a x per $x \to 0$.
- 3. La funzione $f(x) = \cos x 1$ è un infinitesimo di ordine 2 rispetto a x per $x \to 0$.
- 4. La funzione $f(x) = \ln(1+x)$ è un infinitesimo di ordine 1 rispetto a x per $x \to 0$.
- 5. La funzione $f(x) = x^n$, con $n \in \mathbb{N}$, è un infinitesimo di ordine n rispetto a x per $x \to 0$.
- 6. La funzione a^{-x} è un infinitesimo di ordine superiore a $x^{-\alpha}$ per $x \to +\infty$, per ogni a > 1 e per ogni $\alpha > 0$.
- 7. La funzione $1/\log_a x$ è un infinitesimo di ordine inferiore a $x^{-\alpha}$ per $x \to +\infty$, per ogni a > 0, $a \ne 1$, e per ogni $\alpha > 0$.
- 8. Se 1>a>b>0 la funzione a^x è un infinitesimo di ordine inferiore a b^x per $x\to +\infty$.

Osservazione. Se f e g sono infinitesimi di ordine k e p, rispettivamente, allora la funzione f/g è un infinitesimo di ordine k-p. Infatti, se

$$\lim_{x \to 0} \frac{f(x)}{x^k} = \ell \neq 0, \quad \lim_{x \to 0} \frac{g(x)}{x^p} = \ell' \neq 0,$$

allora si ottiene

$$\lim_{x \to 0} \frac{f(x)/g(x)}{x^{k-p}} = \lim_{x \to 0} \frac{f(x)}{x^k} \frac{x^p}{g(x)} = \frac{\ell}{\ell'} \neq 0,$$

da cui segue l'asserto.

6.6 Esercizi

1.
$$\lim_{x \to 0} \frac{1 - \cos(e^x - 1)}{3x}$$
.

$$2. \lim_{x \to 0} \frac{\ln \sqrt{1+x}}{x}.$$

3.
$$\lim_{x \to 1} \frac{(x-1)^2}{e^{3(x-1)^2} - 1}.$$

4.
$$\lim_{x \to 0} \frac{x^2 \sin x}{\log(1+x)}$$
.

5.
$$\lim_{x\to 0} \frac{a^x - 1}{x}$$
, con $a > 0$.

6.
$$\lim_{x \to 0} \frac{4^x - 2^x}{x}.$$

6.6. ESERCIZI 93

7.
$$\lim_{x \to +\infty} \left(\frac{x^2 + 3}{x^2 + 2} \right)^x$$
.

8.
$$\lim_{x \to \pi/2} \frac{(1 - \sin x)^2}{(x - \pi/2)^3 \cos x}.$$

9.
$$\lim_{x \to 1} \frac{x^n - 1}{x - 1}, \text{ con } n \in \mathbb{N}.$$

10.
$$\lim_{x \to +\infty} \sin(\operatorname{arctg} x)$$
.

11.
$$\lim_{x\to 0} \frac{e^{2x} - \sqrt{1-x}}{\sin x}$$
.

12.
$$\lim_{x \to 0} \frac{e^{2x} - e^{x + \sin x}}{x}$$
.

Soluzioni:

1. Si scrive

$$\frac{1 - \cos(e^x - 1)}{3x} = \frac{1 - \cos(e^x - 1)}{(e^x - 1)^2} \cdot \frac{(e^x - 1)^2}{x^2} \cdot \frac{x^2}{3x},$$

da cui si deduce che

$$\lim_{x \to 0} \frac{1 - \cos(e^x - 1)}{3x} = \frac{1}{2} \cdot 1 \cdot 0$$

(si è tenuto conto del limite 7 di pagina 75 e del limite 5 di pag. 86). Quindi il limite è: 0.

2. Si scrive

$$\ln \sqrt{1+x} = \frac{1}{2} \ln(1+x)$$

e si tiene conto del limite 4 di pagina 86. Quindi il limite è: 1/2.

- 3. Il limite è: 1/3.
- 4. Il limite è: 0.
- 5. Si ragiona come per il limite 5 di pag. 86), usando il fatto che

$$\log_a x = \log_a e \cdot \ln x, \qquad \log_a e = \frac{1}{\ln a}.$$

Quindi il limite è: $\ln a$.

6. Scrivendo $4^{x} - 2^{x} = 4^{x} - 1 + 1 - 2^{x}$ si ottiene

$$\lim_{x \to 0} \frac{4^x - 2^x}{x} = \lim_{x \to 0} \frac{4^x - 1}{x} + \lim_{x \to 0} \frac{1 - 2^x}{x} = \ln 4 - \ln 2 = 2 \ln 2 - \ln 2,$$

quindi il limite è: ln 2.

7. Si scrive

$$\left(\frac{x^2+3}{x^2+2}\right)^x = \frac{\left(1+\frac{3}{x^2}\right)^x}{\left(1+\frac{2}{x^2}\right)^x} = \frac{\left(\left(1+\frac{3}{x^2}\right)^{x^2/3}\right)^{1/x}}{\left(\left(1+\frac{2}{x^2}\right)^{x^2/2}\right)^{1/x}},$$

quindi, utilizzando i risultati di §5.7, si trova che il limite è: 1.

8. Si può riscrivere il limite come

$$\lim_{\Delta x \to 0} \frac{(1 - \sin(\pi/2 + \Delta x))^2}{(\Delta x)^3 \cos(\pi/2 + \Delta x)} = -\lim_{\Delta x \to 0} \frac{(1 - \cos(\Delta x))^2}{(\Delta x)^3 \sin(\Delta x)},$$

avendo usato le formula di addizione di pag. 43. Quindi, tenendo conto dei limiti 3 e 7 di $\S 5.6$, si trova che il limite è: -1/4.

9. Si scrive

$$x^{n} = (1+t)^{n} = \sum_{k=0}^{n} \binom{n}{k} t^{k},$$

dove $t \to 0$. Quindi il limite è: n.

- 10. Si usa il fatto che $\lim_{x\to +\infty} \arctan x = \pi/2$ e la continuità di $\sin x$. Quindi il limite è: 1.
- 11. Si scrive il numeratore

$$e^{2x} - \sqrt{1-x} = e^{2x} - 1 + 1 - \sqrt{1-x}$$

quindi si riscrive la funzione come

$$\frac{e^{2x} - \sqrt{1 - x}}{\sin x} = \frac{e^{2x} - 1}{\sin x} + \frac{1 - \sqrt{1 - x}}{\sin x} = \left(\frac{e^{2x} - 1}{x} + \frac{1 - \sqrt{1 - x}}{x}\right) \frac{x}{\sin x}.$$

Si usano allora il limite 3 di pag. 75, l'esercizio 13 di $\S5.7$ e il limite 5 di pag. 86. Quindi il limite è: 5/2.

12. Si può scrivere la funzione come

$$\frac{e^{2x} \left(1 - e^{\sin x - x}\right)}{x} = e^{2x} \cdot \frac{1 - e^{\sin x - x}}{\sin x - x} \cdot \frac{\sin x - x}{x} = e^{2x} \cdot \frac{1 - e^{\sin x - x}}{\sin x - x} \cdot \left(\frac{\sin x}{x} - 1\right)$$

e, usando il fatto che

$$\lim_{x \to 0} e^{2x} = 1, \qquad \lim_{x \to 0} \frac{1 - e^{\sin x - x}}{\sin x - 1} = 1, \qquad \lim_{x \to 0} \left(\frac{\sin x}{x} - 1\right) = 0,$$

si trova che il limite è: 0.

7 | Funzioni derivabili

7.1 Derivata

Sia $f: I \to \mathbb{R}$ una funzione e sia $x_0 \in I$. Poniamo $\Delta f := f(x_0 + \Delta x) - f(x_0)$ e definiamo il rapporto incrementale

$$\frac{\Delta f}{\Delta x} = \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}.$$

Definizione 7.1. La funzione f si dice derivabile in x_0 se esiste finito il limite

$$\lim_{\Delta x \to 0} \frac{\Delta f}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}.$$

Se questo succede il limite si chiama derivata di f in x_0 e si indica con $f'(x_0)$ o $\frac{\mathrm{d}f}{\mathrm{d}x}(x_0)$. Diremo che f è derivabile in I se è derivabile in ogni $x \in I$.

Se $f:I\to\mathbb{R}$ è derivabile in I, si può definire la funzione derivata $f':I\to\mathbb{R}.$

Esempi:

1.
$$f(x) = c$$
 (costante) $\Longrightarrow f'(x) = 0$.

2.
$$f(x) = x \Longrightarrow f'(x) = 1$$
.

3.
$$f(x) = x^2 \Longrightarrow f'(x) = 2x$$
.

4.
$$f(x) = x^3 \Longrightarrow f'(x) = 3x^2$$

5.
$$f(x) = x^n \Longrightarrow f'(x) = n x^{n-1}$$
.

6.
$$f(x) = \frac{1}{x} \Longrightarrow f'(x) = -\frac{1}{x^2}$$
.

7.
$$f(x) = \frac{1}{x^2} \Longrightarrow f'(x) = -\frac{2}{x^3}$$
.

8.
$$f(x) = \frac{1}{x^3} \Longrightarrow f'(x) = -\frac{3}{x^4}$$
.

9.
$$f(x) = \frac{1}{x^n} \Longrightarrow f'(x) = -\frac{n}{x^{n+1}}$$
.

10.
$$f(x) = x^k, k \in \mathbb{Z} \Longrightarrow f'(x) = k x^{k-1}$$
.

11.
$$f(x) = \sin x \Longrightarrow f'(x) = \cos x$$
.

12.
$$f(x) = \cos x \Longrightarrow f'(x) = -\sin x$$
.

13.
$$f(x) = e^x \Longrightarrow f'(x) = e^x$$
.

14.
$$f(x) = \ln x \Longrightarrow f'(x) = 1/x$$
.

Dimostrazione.

1.
$$\Delta f = 0$$
.

2.
$$\Delta f = \Delta x$$
.

3.
$$\Delta f = \Delta x (2x + \Delta x)$$
.

4.
$$\Delta f = \Delta x (3x^2 + 3x\Delta x + (\Delta x)^2)$$
.

5. Per la formula del binomio si ha
$$\Delta f = \Delta x (nx^{n-1} + \gamma(\Delta x))$$
, dove $\lim_{\Delta x \to 0} \gamma(\Delta x) = 0$.

6.
$$\Delta f = -\Delta x/(x(x+\Delta x))$$
.

7.
$$\Delta f = -\Delta x (2x + \Delta x) / (x^2 (x + \Delta x)^2)$$
.

8.
$$\Delta f = -\Delta x (3x^2 + 3x\Delta x + (\Delta x)^2)/(x^3(x + \Delta x)^3).$$

9.
$$\Delta f = -\frac{(x + \Delta x)^n - x^n}{x^n (x + \Delta x)^n} = -\frac{nx^{n-1} \Delta x (1 + \alpha(\Delta x))}{x^{2n} (1 + \beta(\Delta x))}$$
, dove $\alpha(\Delta x), \beta(\Delta x) \to 0$ per $\Delta x \to 0$.

10. Unendo le 5 e 9.

11.
$$\sin(x + \Delta x) - \sin x = \sin x(\cos \Delta x - 1) + \cos x \sin \Delta x$$
, dove $(\cos \Delta x - 1)/\Delta x \to 0$ e $\sin \Delta x/\Delta x \to 1$ per $\Delta x \to 0$.

12.
$$\cos(x + \Delta x) - \cos x = \cos x(\cos \Delta x - 1) - \sin x \sin \Delta x$$
, dove $(\cos \Delta x - 1)/\Delta x \to 0$ e $\sin \Delta x/\Delta x \to 1$ per $\Delta x \to 0$.

13.
$$\Delta f = e^x(e^{\Delta x} - 1)$$
 e si usa il limite 5 di pagina 86.

14.
$$\Delta f = \ln(x + \Delta x) - \ln x = \ln(1 + \Delta x/x) \Longrightarrow \Delta f/\Delta x = (1/x) \ln(1 + \Delta x/x)^{x/\Delta x}$$
 e si usa il limite 4 di pagina 86.

7.2 Proprietà della derivata

Teorema 7.2. Se una funzione $f: I \to \mathbb{R}$ è derivabile in $x_0 \in I$, allora f è continua in $x = x_0$.

Dimostrazione. Se f è derivabile in x_0 , esiste il limite

$$f'(x_0) = \lim_{x \to x_0} \frac{\Delta f}{\Delta x},$$

dove $\Delta f = f(x_0 + \Delta x) - f(x_0)$. Quindi $\Delta f \to 0$ per $\Delta x \to 0$, così che

$$\lim_{\Delta x \to 0} (f(x_0 + \Delta x) - f(x_0)) = 0 \implies \lim_{\Delta x \to 0} f(x_0 + \Delta x) = f(x_0),$$

e quindi f è continua in x_0 .

7.2.1 Interpretazione grafica della derivata

Se $x_0 + \Delta x = x_1$ si ha

$$\frac{f(x_1) - f(x_0)}{x_1 - x_0} = \operatorname{tg} \varphi,$$

dove φ è l'angolo che la retta passante per i punti $P_0 = (x_0, f(x_0))$ e $P_1 = (x_1, f(x_1))$ forma con l'asse x; cfr. la Figura 7.1.

Osservazione: Se il punto P_1 tende al punto P_0 , muovendosi lungo il grafico, la retta tende alla retta tangente al grafico in P_0 e l'angolo φ tende all'angolo α , se α è l'angolo che la retta tangente forma con l'asse x. Quindi $f'(x_0) = \operatorname{tg} \alpha$. Ne concludiamo che la funzione f è derivabile in x_0 se la curva individuata dal grafico y = f(x) ammette retta tangente nel punto $(x_0, f(x_0))$.

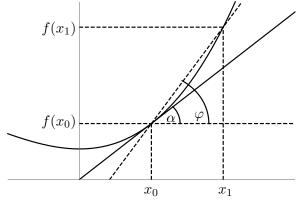


Figura 7.1: Significato geometrico della derivata.

Osservazioni:

- 1. Se f(x) è una funzione pari, allora f'(x) è dispari. Analogamente se f(x) è dispari, allora la sua derivata f'(x) è pari.
- 2. L'equazione della retta tangente al grafico di f(x) nel punto x_0 ha equazione

$$y = f(x_0) + f'(x_0)(x - x_0).$$

Infatti tale retta deve avere equazione

$$y = y(x) = ax + b,$$

per $a \in b$ opportuni (cfr. §3.3). D'altra parte

$$a = f'(x_0)$$

per quanto visto sopra e inoltre $y(x_0) = ax_0 + b = f(x_0)$, da cui si ottiene

$$b = f(x_0) - ax_0 = f(x_0) - f'(x_0) x_0.$$

Quindi risulta $y(x) = f'(x_0) x + f(x_0) - f'(x_0) x_0 = f(x_0) + f'(x_0) (x - x_0)$.

3. La funzione f(x) = |x| non è derivabile in x = 0. Infatti si ha

$$\lim_{\Delta x \to 0^+} \frac{f(\Delta x) - f(0)}{\Delta x} \lim_{\Delta x \to 0^+} \frac{\Delta x}{\Delta x} = 1,$$

$$\lim_{\Delta x \to 0^-} \frac{f(\Delta x) - f(0)}{\Delta x} \lim_{\Delta x \to 0^-} \frac{-\Delta x}{\Delta x} = -1,$$

quindi il limite destro e il limite sinistro sono diversi. Ne segue che non esiste il limite del rapporto incrementale – e quindi non esiste la derivata – in x = 0. Ovviamente la funzione è derivabile in qualsiasi punto $x \neq 0$, e la sua derivata vale f'(x) = 1 se x > 0 e f'(x) = -1 se x < 0.

4. Perché una funzione sia derivabile in un punto occorre che esistano e siano uguali il limite destro e il limite sinistro del rapporto incrementale. Per questo motivo, se una funzione $f: I \to \mathbb{R}$ è definita in un intervallo chiuso [a, b] (in altre parole se I = [a, b], con a < b), non ha senso porsi il problema se la funzione è derivabile in x = a o x = b, ma ci si limiterà a studiarne la derivabilità nell'intervallo aperto (a, b).

7.2.2 Regole di derivazione

Valgono le seguenti regole di derivazione:

1.
$$g(x) = c f(x)$$
, dove $c \in \mathbb{R}$ è una costante $\Longrightarrow g'(x) = c f'(x)$.

2.
$$h(x) = f(x) + g(x) \implies h'(x) = f'(x) + g'(x)$$
.

3.
$$h(x) = f(x) \cdot g(x) \Longrightarrow h'(x) = f'(x) \cdot g(x) + f(x) \cdot g'(x)$$
.

4.
$$h(x) = \frac{f(x)}{g(x)} \in g(x) \neq 0 \Longrightarrow h'(x) = \frac{f'(x)g(x) - f(x)g'(x)}{g(x)^2}$$
.

Dimostrazione:

1.
$$\Delta g = c\Delta f$$
;

2.
$$\Delta h = \Delta f + \Delta g$$
,

3.
$$\Delta h = f(x + \Delta x)g(x + \Delta x) - f(x)g(x)$$
, quindi

$$\Delta h = f(x + \Delta x)g(x + \Delta x) - f(x + \Delta x)g(x) + f(x + \Delta x)g(x) - f(x)g(x)$$

$$= f(x + \Delta x) (g(x + \Delta x) - g(x)) + (f(x + \Delta x) - f(x)) g(x)$$

$$= f(x + \Delta x)\Delta g + g(x)\Delta f,$$

dove $f(x + \Delta x) \to f(x)$ per $\Delta x \to 0$.

4.
$$\Delta h = \frac{f(x + \Delta x)}{g(x + \Delta x)} - \frac{f(x)}{g(x)} = \frac{f(x + \Delta x)g(x) - f(x)g(x + \Delta x)}{g(x)g(x + \Delta x)}$$
, dove

$$f(x + \Delta x)g(x) - f(x)g(x + \Delta x))$$
= $f(x + \Delta x)g(x) - f(x)g(x) + f(x)g(x) - f(x)g(x + \Delta x)$
= $(f(x + \Delta x) - f(x))g(x) - f(x)(g(x + \Delta x) - g(x)) = \Delta f g(x) - \Delta g f(x),$

quindi si ha

$$\Delta h = \frac{\Delta f}{g(x + \Delta x)} - \frac{\Delta g f(x)}{g(x)g(x + \Delta x)},$$

dove $g(x + \Delta x) \to g(x)$ per $\Delta x \to 0$.

Esempi:

1.
$$f(x) = x^2 \cos x \Longrightarrow f'(x) = 2x \cos x - x^2 \sin x$$
.

2.
$$f(x) = \frac{x^2}{\sin x} \Longrightarrow f'(x) = \frac{2x \sin x - x^2 \cos x}{\sin^2 x}$$
.

3.
$$f(x) = \operatorname{tg} x \Longrightarrow f'(x) = \frac{1}{\cos^2 x}$$
.

4.
$$f(x) = \cot x \Longrightarrow f'(x) = -\frac{1}{\sin^2 x}$$
.

5.
$$f(x) = x \ln x \Longrightarrow f'(x) = 1 + \ln x$$
.

Soluzioni:

- 1. Si usa la regola di derivazione 3.
- 2. Si usa la regola di derivazione 4.
- 3. Si usa la regola di derivazione 4 per $\operatorname{tg} x = \frac{\sin x}{\cos x}$.
- 4. Si usa la regola di derivazione 4 per $\cot x = \frac{\cos x}{\sin x}$.
- 5. Si usa la regola di derivazione 3.

7.3 Derivata di una funzione composta

Teorema 7.3. Se $h(x) = f \circ g(x) = f(g(x))$ allors h'(x) = f'(g(x)) g'(x).

Dimostrazione. Si ha

$$\frac{\Delta h}{\Delta x} = \frac{f(g(x + \Delta x)) - f(g(x))}{\Delta x} = \frac{f(g(x + \Delta x)) - f(g(x))}{g(x + \Delta x) - g(x)} \cdot \frac{g(x + \Delta x) - g(x)}{\Delta x},$$

dove $g(x + \Delta x) = u + \Delta u$, dove u = g(x) e $\Delta u \to 0$ quando $\Delta x \to 0$. Quindi si ottiene

$$\frac{\Delta h}{\Delta x} = \frac{f(u + \Delta u) - f(u)}{\Delta u} \cdot \frac{g(x + \Delta x) - g(x)}{\Delta x},$$

dove

$$\lim_{\Delta x \to 0} \frac{f(u + \Delta u) - f(u)}{\Delta u} = \lim_{\Delta u \to 0} \frac{f(u + \Delta u) - f(u)}{\Delta u} = f'(u) = f'(g(x)),$$

$$\lim_{\Delta x \to 0} \frac{g(x + \Delta x) - g(x)}{\Delta x} = g'(x),$$

che completa la dimostrazione.

Osservazione: alla luce del Teorema 7.3, la proprietà 4 del §7.3 si può anche dimostrare a partire dalla 3, considerando f(x)/g(x) come prodotto delle due funzioni f(x) e 1/g(x) e utilizzando il fatto che la derivata di 1/g(x) è $-g'(x)/(g(x))^2$.

Esempi:

1.
$$f(x) = \sin x^2 \Longrightarrow f'(x) = 2x \cos x^2$$
;

2.
$$f(x) = \ln(1+x^2) \Longrightarrow f'(x) = \frac{2x}{1+x^2};$$

3.
$$f(x) = e^{x^2} \implies f'(x) = 2xe^{x^2};$$

4.
$$f(x) = \ln x^2 \Longrightarrow f'(x) = \frac{2}{x}$$
;

5.
$$f(x) = \sqrt{1 - x^3} \Longrightarrow f'(x) = -\frac{3x^2}{\sqrt{1 - x^3}}$$
.

6.
$$f(x) = x^{\alpha} \Longrightarrow f'(x) = \alpha x^{\alpha - 1};$$

7.
$$f(x) = a^x \Longrightarrow f'(x) = a^x \ln a$$
;

8.
$$f(x) = x^x \Longrightarrow f'(x) = x^x (1 + \ln x)$$
.

9.
$$f(x) = \ln|x| \Longrightarrow f'(x) = \frac{1}{x}$$
.

Soluzioni:

- 1. Si applica il Teorema 7.3.
- 2. Si applica il Teorema 7.3.
- 3. Si applica il Teorema 7.3.
- 4. Si applica il Teorema 7.3.
- 5. Si applica il Teorema 7.3.
- 6. Si scrive $x^{\alpha} = e^{\ln x^{\alpha}} = e^{\alpha \ln x}$ e si applica il Teorema 7.3.
- 7. Si scrive $a^x = e^{\ln a^x} = e^{x \ln a}$ e si applica il Teorema 7.3.
- 8. Si scrive $x^x = e^{\ln x^x} = e^{x \ln x}$ e si applica il Teorema 7.3.
- 9. Si utilizza l'osservazione 3 di §7.2 e si applica il Teorema 7.3 (alternativamente si scrive $\ln |x| = \ln x$ per x > 0 e $\ln |x| = \ln (-x)$ per x < 0).

7.4 Derivata della funzione inversa

Teorema 7.4. Se $f: I \to J$ è derivabile e invertibile e $g: J \to I$ è la sua inversa allora si ha g'(x) = 1/f'(g(x)).

Dimostrazione. Si ha f(g(x)) = x, quindi derivando rispetto a x, si ottiene, per il teorema di derivazione della funzione composta,

$$f'(g(x))g'(x) = 1 \implies g'(x) = \frac{1}{f'(g(x))},$$

da cui segue l'asserto.

Esempi:

1.
$$g(x) = \arcsin x \Longrightarrow g'(x) = \frac{1}{\sqrt{1-x^2}};$$

2.
$$g(x) = \arccos x \Longrightarrow g'(x) = -\frac{1}{\sqrt{1-x^2}};$$

3.
$$g(x) = \operatorname{arctg} x \Longrightarrow g'(x) = \frac{1}{1+x^2}$$
.

4.
$$g(x) = \operatorname{arccotg} x \Longrightarrow g'(x) = -\frac{1}{1+x^2}$$
.

Soluzioni (cfr. la Figura 4.2 per le funzioni arcsin x e arccos x):

- 1. Si ha $-\pi/2 \le \arcsin x \le \pi/2$, quindi $\cos(\arcsin x) = \sqrt{\cos^2(\arcsin x)} = \sqrt{1-x^2}$.
- 2. Si ha $0 \le \arccos x \le \pi$, quindi $\sin(\arccos x) = \sqrt{\sin^2(\arccos x)} = \sqrt{1 x^2}$.
- 3. Si ha $\frac{1}{\cos^2(\operatorname{arctg} x)} = \frac{\cos^2(\operatorname{arctg} x) + \sin^2(\operatorname{arctg} x)}{\cos^2(\operatorname{arctg} x)} = 1 + \operatorname{tg}^2(\operatorname{arctg} x) = 1 + x^2.$
- 4. Si ragiona come nel caso precedente partendo da $1/\sin^2(\operatorname{arctcotg} x)$.

Osservazioni:

1. Poiché $f(x) = e^x$ ha derivata $f'(x) = e^x$, se consideriamo $g(x) = f^{-1}(x) = \ln x$ si ha

$$g'(x) = \frac{1}{f'(\ln x)} = \frac{1}{e^{\ln x}} = \frac{1}{x},$$

consistentemente con la derivata 14 di pag. 96.

2. Viceversa, poiché $f(x) = \ln x$ ha derivata f'(x) = 1/x, se consideriamo $g(x) = f^{-1}(x) = e^x$, si ha

$$g'(x) = \frac{1}{f'(e^x)} = \frac{1}{1/e^x} = e^x,$$

consistentemente con la derivata 13 di pag. 96.

7.5 Derivate di ordine qualsiasi

7.5.1 Derivata seconda

Sia f(x) una funzione derivabile. Se la sua derivata f'(x) è a sua volta derivabile indichiamo con f''(x) la sua derivata, che chiameremo derivata seconda di f(x).

Esempi:

1.
$$f(x) = c \Longrightarrow f'(x) = 0 \Longrightarrow f''(x) = 0$$
;

2.
$$f(x) = x^3 \Longrightarrow f'(x) = 3x^2 \Longrightarrow f''(x) = 6x$$
;

3.
$$f(x) = \sin x \Longrightarrow f'(x) = \cos x \Longrightarrow f''(x) = -\sin x;$$

4.
$$f(x) = e^x \implies f'(x) = e^x \implies f''(x) = e^x$$
;

5.
$$f(x) = e^{x^2} \implies f'(x) = 2xe^{x^2} \implies f''(x) = 2e^{x^2} + 4x^2e^{x^2};$$

6.
$$f(x) = \ln x \Longrightarrow f'(x) = \frac{1}{x} \Longrightarrow f''(x) = -\frac{1}{x^2};$$

7.5.2 Derivate di ordine superiore

Se f''(x) è a sua volta derivabile possiamo considerare la derivata terza di f, che indichiamo con f'''(x), e così via. In generale indiciamo con $f^{(n)}(x)$ la derivata di ordine n (o derivata n-esima) di f(x), dove $f^{(0)}(x) = f(x)$, $f^{(1)}(x) = f'(x)$, $f^{(2)}(x) = f''(x)$ e $f^{(3)}(x) = f'''(x)$.

Esempi:

1.
$$f(x) = x^3 \implies f'''(x) = 6 \implies f^{(4)}(x) = 0;$$

2.
$$f(x) = e^x \Longrightarrow f^{(n)}(x) = e^x \ \forall n \in \mathbb{N}.$$

3.
$$f(x) = x^n, n \in \mathbb{N} \Longrightarrow f^{(n)}(x) = n!$$

4.
$$f(x) = x^{-n}, n \in \mathbb{N} \Longrightarrow f^{(p)}(x) = (-1)^p \frac{(n+p)!}{n!} x^{-n-p} \ \forall p \ge 0.$$

Definizione 7.5. Una funzione $f: I \to \mathbb{R}$ si dice di classe C^n in I se è derivabile n volte e la derivata di ordine n è continua.

Osservazioni:

1. Una funzione può essere derivabile un numero finito di volte, ovvero ne esistono le derivate fino all'ordine n, per qualche $n \in \mathbb{N}$, ma non esiste la derivata di ordine n+1. Per esempio la funzione $f(x) = |x|^3 = x^2|x|$ è derivabile due volte, ma la derivata seconda non è derivabile: si ha infatti f'(x) = 3x|x| e f''(x) = 6|x|, e f''(x) non è derivabile (cfr. l'Osservazione 3 del §7.2.1).

- 2. Un funzione derivabile infinite volte si dice di classe C^{∞} .
- 3. Dire che una funzione è di classe C^n vuol dire che è derivabile almeno n volte, ma può ammettere anche derivate di ordine più alto: per esempio una funzione di classe C^{∞} è anche di classe C^n per ogni $n \in \mathbb{N}$.
- 4. Valgono le relazioni di inclusione $C^{n+1} \subset C^n \ \forall n \in \mathbb{N}$.

7.6 Esercizi

- 1. Si calcoli la derivata di $f(x) = 1 + x + x^2 + x^3 + x^4$.
- 2. Si calcoli la derivata di $f(x) = \frac{x^2 + x^3}{1 + x^2}$.
- 3. Si calcoli la derivata di $f(x) = \sin x \cos x$.
- 4. Si calcoli la derivata di $f(x) = \arctan \frac{1+x}{1-x}$.
- 5. Si calcoli la derivata di $f(x) = \ln \left| \frac{x+2}{3-x} \right|$.
- 6. Si calcoli la derivata di $f(x) = \cos \ln x$.
- 7. Si calcoli la derivata di $f(x) = \arcsin \ln x^2$.
- 8. Si calcoli la derivata di $f(x) = x^{x \ln x}$.
- 9. Si calcoli la derivata di $f(x) = x^{x^x}$.
- 10. Si calcoli la derivata di $f(x) = 2^{x^2+3x}$.
- 11. Si calcoli la derivata di $f(x) = (x + \sqrt{x})^{1/3}$.
- 12. Si calcoli la derivata di $f(x) = \cos(\cos(\ln x))$.
- 13. Si calcoli la derivata di $f(x) = \ln(\sin(4+x^3))$.
- 14. Si calcoli la derivata di $f(x) = \operatorname{arctg}((1 + x^{2/3})^{1/2})$.
- 15. Si determini dove la funzione x|x| è derivabile e se na calcoli la derivata ove possibile.
- 16. Si determini dove la funzione |x-1|(1+x) è derivabile e se ne calcoli la derivata ove possibile.

7.6. ESERCIZI 105

17. Si determini dove la funzione $|x^2 - x^3|$ è derivabile e se ne calcoli la derivata ove possibile.

- 18. Si determini dove la funzione $|\sin x|$ è derivabile e se na calcoli la derivata ove possibile.
- 19. Si calcoli la derivata di $f(x) = e^{e^{x}}$.
- 20. Si calcoli la derivata di $f(x) = \ln(\ln(\ln x))$.

Soluzioni:

1. Si ha
$$f'(x) = 1 + 2x + 3x^2 + 4x^3$$
.

2. Si ha
$$f'(x) = \frac{x(2+3x+x^3)}{(1+x^2)^2}$$
.

3. Si ha
$$f'(x) = \cos 2x$$
.

4. Si ha
$$f'(x) = \frac{1}{1+x^2}$$
.

5. Si ha
$$f'(x) = \frac{5}{6 + x - x^2}$$
.

6. Si ha
$$f'(x) = -\frac{\sin(\ln x)}{x}$$
.

7. Si ha
$$f'(x) = \frac{2}{x\sqrt{1 - (\ln(x^2))^2}}$$
.

8. Si ha
$$f'(x) = x^{x \ln x} \ln x (2 + \ln x)$$
.

9. Si ha
$$f'(x) = x^{x^x + x - 1} (1 + x \ln x + x(\ln x)^2)$$
.

10. Si ha
$$f'(x) = 2^{x^2+3x} (3+2x) \ln 2$$
.

11. Si ha
$$f'(x) = \frac{1 + \frac{1}{2\sqrt{x}}}{3(x + \sqrt{x})^{2/3}}$$
.

12. Si ha
$$f'(x) = \frac{\sin(\cos(\ln x))\sin(\ln x)}{x}$$
.

13. Si ha
$$f'(x) = 3x^2 \cot(4 + x^3)$$
.

14. Si ha
$$f'(x) = \frac{1}{3x^{1/3}\sqrt{1+x^{2/3}}(2+x^{2/3})}$$
.

15. La funzione f(x) = x|x| è sicuramente derivabile per $x \neq 0$: si ha f'(x) = 2x per x > 0 e f'(x) = -2x per x < 0. Per discutere la derivabilità in x = 0 si confrontano il limite destro e il limite sinistro del rapporto incrementale. Notando che

$$\lim_{\Delta x \to 0^{+}} \frac{f(\Delta x) - f(0)}{\Delta x} = \lim_{\Delta x \to 0^{+}} \frac{(\Delta x)^{2}}{\Delta x} = 0,$$

$$\lim_{\Delta x \to 0^{-}} \frac{f(\Delta x) - f(0)}{\Delta x} = \lim_{x \to 0^{+}} \frac{-(\Delta x)^{2}}{\Delta x} = 0,$$

si conclude che la funzione è derivabile anche in x=0.

16. Si ha $f(x)=x^2-1$ se $x\geq 1$ e $f(x)=1-x^2$ se x<1. Quindi la funzione f(x) è sicuramente derivabile per $x\neq 1$: si ha f'(x)=2x per x>1 e f'(x)=-2x per x<1. Poiché

$$\lim_{\Delta x \to 0^{+}} \frac{f(1 + \Delta x) - f(1)}{\Delta x} = \lim_{\Delta x \to 0^{+}} \frac{(\Delta x)^{2} + 2\Delta x}{\Delta x} = 2,$$

$$\lim_{\Delta x \to 0^{-}} \frac{f(1 + \Delta x) - f(1)}{\Delta x} = \lim_{x \to 0^{-}} \frac{-(\Delta x)^{2} - 2\Delta x}{\Delta x} = -2,$$

la funzione non è derivabile in x = 1.

17. Si ha $f(x)=x^2-x^3=x^2(1-x)$ se $x\leq 1$ e $f(x)=x^3-x^2$ se x>1. Quindi f(x) è derivabile per $x\neq 1$: si ha $f'(x)=3x^2-2x$ per x>1 e $f'(x)=2x-3x^2$ per x<1. Non è invece derivabile in x=0 perché

$$\lim_{\Delta x \to 0^+} \frac{f(1+\Delta x) - f(1)}{\Delta x} = \lim_{\Delta x \to 0^+} \frac{(\Delta x)^3 + 3(\Delta x)^2 + 3\Delta x - (\Delta x)^2 - 2\Delta x}{\Delta x} = 1,$$

$$\lim_{\Delta x \to 0^-} \frac{f(1+\Delta x) - f(1)}{\Delta x} = \lim_{\Delta x \to 0^-} \frac{-(\Delta x)^3 - 3(\Delta x)^2 - 3\Delta x + (\Delta x)^2 + 2\Delta x}{\Delta x} = -1,$$

dove si è tenuto conto che $(\Delta x)^3 + 3(\Delta x)^2 + 3\Delta x - (\Delta x)^2 - 2\Delta x = \Delta x + O((\Delta x)^2)$.

18. La funzione è derivabile per $x \neq k\pi \ \forall k \in \mathbb{Z}$: si ha inoltre

$$f'(x) = \cos x \text{ per } x \in \bigcup_{k \in \mathbb{Z}} (2k\pi, (2k+1)\pi),$$

 $f'(x) = -\cos \text{ per } x \in \bigcup_{k \in \mathbb{Z}} ((2k+1)\pi, (2k+1)\pi).$

19. Si ha
$$f(x) = e^{e^{x}} e^{e^{x}} e^{x}$$
.

20. Si ha
$$f'(x) = \frac{1}{x(\ln x)(\ln(\ln x))}$$
.

8 | Teoremi sulle funzioni derivabili

8.1 Teoremi di Rolle, Lagrange e Cauchy

Teorema 8.1. Sia $f:[a,b] \to \mathbb{R}$ una funzione continua in [a,b] e derivabile in (a,b) tale che f(a) = f(b) = 0. Allora $\exists c \in (a,b)$ tale che f'(c) = 0.

Osservazioni:

- 1. Il teorema è noto come teorema di Rolle.
- 2. Il significato geometrico del teorema è il seguente (cfr. la Figura 8.1): esiste almeno un punto $c \in (a, b)$ in cui la retta tangente al grafico è parallela all'asse x.
- 3. Se la derivata non esiste ovunque in (a, b) il risultato non vale: si consideri per esempio f(x) = |x| 1, per $x \in [-1, 1]$.

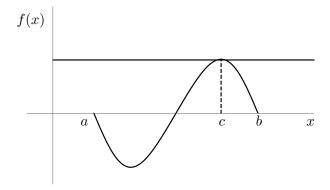


Figura 8.1: Significato geometrico del teorema di Rolle.

Teorema 8.2. Sia $f: [a,b] \to \mathbb{R}$ una funzione continua in [a,b] e derivabile in (a,b) tale che f(a) = f(b). Allora $\exists c \in (a,b)$ tale che f'(c) = 0.

Dimostrazione. Si applica il Teorema 8.1 alla funzione g(x) := f(x) - f(a), notando che si ha g(a) = g(b) = 0 e g'(x) = f'(x).

Teorema 8.3. Sia $f:[a,b] \to \mathbb{R}$ una funzione f continua in [a,b] e derivabile in (a,b). Allora $\exists c \in (a,b)$ tale che f(b) - f(a) = f'(c)(b-a).

Dimostrazione. Definiamo

$$m = \frac{f(b) - f(a)}{b - a}$$

e consideriamo la funzione

$$h(x) = f(x) - f(a) - m(x - a).$$

Si ha allora h(b) = h(a) = 0 e per il Teorema 8.1 esiste $c \in (a, b)$ tale che h'(c) = 0. D'altra parte h'(x) = f'(x) - m, quindi f'(c) = m.

Osservazioni:

- 1. Il teorema è noto come teorema di Lagrange.
- 2. Il significato geometrico del teorema è il seguente (cfr. la Figura 8.2). Sia φ l'angolo che il segmento che unisce i punti $P_1 = ((a, f(a)) e P_2 = (b, (f(b)))$ forma con l'asse x, così che

$$\operatorname{tg}\varphi = \frac{f(b) - f(a)}{b - a}.$$

Esiste pertanto almeno un punto $c \in (a, b)$ in cui si ha $f'(c) = \operatorname{tg} \varphi$, ovvero in cui la retta tangente al grafico forma un angolo φ con l'asse x.

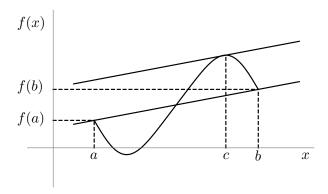


Figura 8.2: Significato geometrico del teorema di Lagrange.

Teorema 8.4. Siano $f:[a,b] \to \mathbb{R}$ e $g:[a,b] \to \mathbb{R}$ due funzioni continue in [a,b] e derivabili in (a,b), e sia g tale che $g'(x) \neq 0 \ \forall x \in (a,b)$. Allora $\exists c \in (a,b)$ tale che

$$\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(c)}{g'(c)}.$$

Dimostrazione. Poniamo

$$m = \frac{f(b) - f(a)}{g(b) - g(a)}$$

e consideriamo la funzione

$$h(x) = f(x) - f(a) - m(g(x) - g(a)).$$

Si ha allora h(b) = h(a) = 0 e per il Teorema 8.1 esiste $c \in (a, b)$ tale che h'(c) = 0. Poiché h'(x) = f'(x) - m g'(x), si ha f'(c) = m g'(c).

Osservazioni:

- 1. Il teorema è noto come teorema di Cauchy.
- 2. Si noti che sotto le ipotesi del teorema necessariamente $g(a) \neq g(b)$ (altrimenti per il Teorema 8.1 si avrebbe g'(c) = 0 per qualche $c \in (a, b)$, contro l'ipotesi che g'(x) non si annulla mai).
- 3. Il Teorema 8.3 implica il Teorema 8.2 come caso particolare se f(b) = f(a).
- 4. Il Teorema 8.4 implica il Teorema 8.3 come caso particolare, prendendo g(x) = x.
- 5. Se si applicasse il Teorema di Lagrange separatamente alle due funzioni f e g, si troverebbe $(f(b) f(a))/(g(b) g(a)) = f'(c_1)/g'(c_2)$, con due costanti $c_1 e c_2$ generalmente diverse, quindi non si può dedurre il Teorema 8.4 dal Teorema 8.3.

8.2 Forme indeterminate

Definizione 8.5. Siano f e g due funzioni definite in un intervallo $I \subset \mathbb{R}$. Supponiamo che esista $x_0 \in I$ tale che $f(x_0) = g(x_0) = 0$. Si dice allora che il limite

$$\lim_{x \to x_0} \frac{f(x)}{g(x)}$$

è una forma indeterminata.

Definizione 8.6. Siano f e g due funzioni definite in un intervallo $I \subset \mathbb{R}$. Supponiamo che esista $x_0 \in I$ tale che $\lim_{x \to x_0} f(x)$ e $\lim_{x \to x_0} g(x)$ sono $+\infty$ oppure $-\infty$. Si dice allora che il limite

$$\lim_{x \to x_0} \frac{f(x)}{g(x)}$$

è una forma indeterminata.

Definizione 8.7. Siano f e g due funzioni definite in un intervallo illimitato $[a, +\infty)$ di \mathbb{R} . Supponiamo che $\lim_{x\to +\infty} f(x) = \lim_{x\to +\infty} g(x) = 0$. Si dice allora che il limite

$$\lim_{x \to +\infty} \frac{f(x)}{g(x)}$$

è una forma indeterminata.

Definizione 8.8. Siano f e g due funzioni definite in un intervallo illimitato $[a, +\infty)$ di \mathbb{R} . Supponiamo che $\lim_{x\to +\infty} f(x)$ e $\lim_{x\to +\infty} g(x)$ sono $+\infty$ oppure $-\infty$ Si dice allora che il limite

$$\lim_{x \to +\infty} \frac{f(x)}{g(x)}$$

è una forma indeterminata.

Osservazioni:

- 1. Se la funzione f(x) è definita in un intervallo $(-\infty, b]$, si possono dare definizioni analoghe alle Definizioni 8.7 e 8.8, in cui il limite è per $x \to -\infty$. Se le funzioni sono definite in tutto \mathbb{R} si possono considerare entrambi i limiti $x \to +\infty$ e $x \to -\infty$.
- 2. Sono state considerate sopra forme indeterminate del tipo 0/0 o ∞/∞ (qui ∞ indica $\pm \infty$). Esistono in linea di principio altre forme indeterminate: $0 \cdot \infty$, 0^0 , ∞^0 , 1^∞ . Tuttavia tali forme sono tutte riconducibili a quelle già viste. Infatti:
 - $0 \cdot \infty = 0/0 \Longrightarrow \text{se } f(x) \to 0 \text{ e } g(x) \to \infty \text{ allora}$

$$f(x) \cdot g(x) = \frac{f(x)}{\frac{1}{g(x)}},$$

dove $1/g(x) \to 0$;

• $0^0 = e^{0 \cdot \ln 0} = e^{0 \cdot \infty} \Longrightarrow \text{se } f(x) \to 0 \text{ e } g(x) \to 0, \text{ con } f(x) > 0, \text{ allora, data } f(x)^{g(x)}, \text{ si considera}$

$$\ln f(x)^{g(x)} = g(x) \ln f(x),$$

dove $g(x) \to 0$ e $\ln f(x) \to -\infty$;

• $\infty^0 = e^{0 \cdot \ln \infty} = e^{0 \cdot \infty} \Longrightarrow \text{se } f(x) \to \infty \text{ e } g(x) \to 0, \text{ con } f(x) > 0, \text{ allora, data } f(x)^{g(x)}, \text{ si considera}$

$$\ln f(x)^{g(x)} = g(x) \ln f(x),$$

dove $\ln f(x) \to +\infty$ e $g(x) \to 0$;

• $1^{\infty} = e^{\infty \cdot \ln 1} = e^{\infty \cdot 0} \Longrightarrow \text{se } f(x) \to 1 \text{ e } g(x) \to \infty$, allora, data $f(x)^{g(x)}$, si considera

$$\ln f(x)^{g(x)} = g(x) \ln f(x),$$

dove $\ln f(x) \to 0$ e $g(x) \to \infty$.

- 3. Se $f(x) \to +\infty$ e $g(x) \to +\infty$ anche f(x) g(x) è una forma indeterminata. Analogamente se $f(x) \to -\infty$ e $g(x) \to -\infty$ anche f(x) g(x) è una forma indeterminata. Tuttavia, in entrambi i casi, ci si può sempre ricondurre ai casi già trattati (si vedano per esempio gli esercizi 9-11 nel §8.3).
- 4. I Teoremi di de l'Hôpital che verranno studiati in §8.3 forniscono un metodo particolarmente efficiente per studiare forme indeterminate.

8.3 Teoremi di de l'Hôpital

8.3.1 Forme indeterminate della forma 0/0

Teorema 8.9. Siano $f:[a,b] \to \mathbb{R}$ e $g:[a,b] \to \mathbb{R}$ due funzioni continue in [a,b] e derivabili in (a,b), tali che

- 1. $\exists x_0 \in (a, b) \text{ tale che } f(x_0) = g(x_0) = 0,$
- 2. $g(x), g'(x) \neq 0 \text{ in } (a,b) \setminus \{x_0\}.$

Allora, se esiste $\lim_{x\to x_0} f'(x)/g'(x)$, esiste anche $\lim_{x\to x_0} f(x)/g(x)$ e si ha

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)}.$$

Esempi:

1.
$$\lim_{x \to 0} \frac{\sin x}{x} = \lim_{x \to 0} \frac{\cos x}{1} = 1$$
.

2.
$$\lim_{x \to 0} \frac{\ln(1+x)}{x} = \lim_{x \to 0} \frac{1/(1+x)}{1} = \lim_{x \to 0} \frac{1}{1+x} = 1.$$

3.
$$\lim_{x\to 0} \frac{e^x - 1}{x} = \lim_{x\to 0} \frac{e^x}{1} = 1$$
.

4.
$$\lim_{x \to 0} \frac{1 - \cos x}{x} = \lim_{x \to 0} \frac{\sin x}{1} = 0.$$

Il Teorema 8.9 si può generalizzare nel modo seguente.

Teorema 8.10. Siano $f:[a,b] \to \mathbb{R}$ $e \ g:[a,b] \to \mathbb{R}$ due funzioni continue in [a,b] e derivabili due volte in (a,b), tali che

1.
$$\exists x_0 \in (a, b) \text{ tale che } f(x_0) = g(x_0) = 0 \text{ e } f'(x_0) = g'(x_0) = 0,$$

2.
$$g(x), g'(x), g''(x) \neq 0$$
 in $(a, b) \setminus \{x_0\}$.

Allora, se esiste $\lim_{x\to x_0} f''(x)/g''(x)$, esiste anche $\lim_{x\to x_0} f(x)/g(x)$ e si ha

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f''(x)}{g''(x)}.$$

Esempi:

1.
$$\lim_{x \to 0} \frac{1 - \cos x}{x^2} = \lim_{x \to 0} \frac{\sin x}{2x} = \lim_{x \to 0} \frac{\cos x}{2} = \frac{1}{2}$$
.

2.
$$\lim_{x \to 0} \frac{e^x - 1 - x}{x^2} = \lim_{x \to 0} \frac{e^x - 1}{2x} = \lim_{x \to 0} \frac{e^x}{2} = \frac{1}{2}$$
.

3.
$$\lim_{x \to 0} \frac{e^x - 1 - x}{1 - \cos x} = \lim_{x \to 0} \frac{e^x - 1}{\sin x} = \lim_{x \to 0} \frac{e^x}{\cos x} = 1.$$

4.
$$\lim_{x \to 0} \frac{\ln(1+x) - \sin x + x^2}{e^x - x - \cos x} = \lim_{x \to 0} \frac{\frac{1}{1+x} - \cos x + 2x}{e^x - 1 + \sin x} = \lim_{x \to 0} \frac{-\frac{1}{(1+x)^2} + \sin x + 2}{e^x + \cos x} = \frac{1}{2}.$$

Osservazione: se anche le derivate seconde delle funzioni f e g si annullano in x_0 si può passare alle derivate terze, e così via. Vale quindi la seguente ulteriore generalizzazione.

Teorema 8.11. Siano $f:[a,b] \to \mathbb{R}$ e $g:[a,b] \to \mathbb{R}$ due funzioni continue in [a,b] e derivabili n volte in (a,b), tali che

- 1. $\exists x_0 \in (a,b)$ tale che le funzioni f e g e tutte le loro derivate fino all'ordine n-1 si annullano in x_0 ,
- 2. $g(x), g'(x), \ldots, g^{(n)}(x) \neq 0 \text{ in } (a,b) \setminus \{x_0\}.$

Allora, se esiste $\lim_{x\to x_0} f^{(n)}(x)/g^{(n)}(x)$, esiste anche $\lim_{x\to x_0} f(x)/g(x)$ e si ha

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f^{(n)}(x)}{g^{(n)}(x)}.$$

Esempi:

1.
$$\lim_{x \to 0} \frac{e^x - e^{-x} - 2x}{x - \sin x} = \lim_{x \to 0} \frac{e^x + e^{-x} - 2}{1 - \cos x} = \lim_{x \to 0} \frac{e^x - e^{-x}}{\sin x} = \lim_{x \to 0} \frac{e^x + e^{-x}}{\cos x} = 2.$$

2.
$$\lim_{x \to 0} \frac{e^{2x} - e^{x + \sin x}}{x^3} = \lim_{x \to 0} \frac{2e^{2x} - e^{x + \sin x}(1 + \cos x)}{3x^2} =$$

$$= \lim_{x \to 0} \frac{4e^{2x} - e^{x + \sin x}(1 + \cos x)^2 + e^{x + \sin x}\sin x}{6x} =$$

$$= \lim_{x \to 0} \frac{8e^{2x} - e^{x + \sin x}(1 + \cos x)^3 + 3e^{x + \sin x}(1 + \cos x)\sin x + e^{x + \sin x}\cos x}{6x} = \frac{1}{6}.$$

Complementi:

1. Dimostrazione del Teorema 8.9 Per il Teorema 8.4 (di Cauchy), per $x \in (a,b) \setminus \{x_0\}$ si ha

$$\frac{f(x)}{g(x)} = \frac{f(x) - f(x_0)}{g(x) - g(x_0)} = \frac{f'(\xi)}{g'(\xi)},$$

per ξ compreso tra x_0 e x ($\xi \in (x_0, x)$ se $x > x_0$, $\xi \in (x, x_0)$ se $x < x_0$). In particolare $\xi \to x_0$ per $x \to x_0$, quindi si trova

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{\xi \to x_0} \frac{f'(\xi)}{g'(\xi)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)},$$

da cui segue l'asserto.

2. Dimostrazione del Teorema 8.10 Applicando il Teorema 8.9 alle funzioni f' e g' si trova

$$\lim_{x \to x_0} \frac{f'(x)}{g'(x)} = \lim_{x \to x_0} \frac{f''(x)}{g''(x)},$$

quindi esiste il limite $\lim_{x\to x_0} f'(x)/g'(x)$. Possiamo allora riapplicare il Teorema 8.9 alle funzioni f e g e si ottiene l'asserto.

3. Dimostrazione del Teorema 8.11 Si applica iterativamente il Teorema 8.9 alle coppie di funzioni $f^{(n-1)}$ e $g^{(n-1)}$, ..., f'' e g'', f' e g', f e g, iterativamente.

8.3.2 Forme indeterminate della forma ∞/∞

Teorema 8.12. Siano $f:[a,b] \to \mathbb{R}$ $e \ g:[a,b] \to \mathbb{R}$ due funzioni continue in [a,b] e derivabili in (a,b), tali che

- 1. $g(x), g'(x) \neq 0$ in (a, b),
- 2. $\lim_{x \to x_0} f(x)$ $e \lim_{x \to x_0} g(x)$ sono $+\infty$ oppure $-\infty$.

Allora, se esiste $\lim_{x\to x_0} f'(x)/g'(x)$, esiste anche $\lim_{x\to x_0} f(x)/g(x)$ e si ha

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)}.$$

Teorema 8.13. Siano $f:[a,+\infty)\to\mathbb{R}$ e $g:[a,+\infty)\to\mathbb{R}$ due funzioni continue in $[a,+\infty)$ e derivabili in $(a,+\infty)$, tali che

- 1. $g(x), g'(x) \neq 0 \text{ in } [a, +\infty),$
- 2. $\lim_{x \to +\infty} f(x) e \lim_{x \to +\infty} g(x) sono +\infty oppure -\infty$.

Alllora, se esiste $\lim_{x\to +\infty} f'(x)/g'(x)$, esiste anche $\lim_{x\to +\infty} f(x)/g(x)$ e si ha

$$\lim_{x \to +\infty} \frac{f(x)}{g(x)} = \lim_{x \to +\infty} \frac{f'(x)}{g'(x)}.$$

Teorema 8.14. Siano $f:(-\infty,b]\to\mathbb{R}$ e $g:(-\infty,b]\to\mathbb{R}$ due funzioni continue in $(-\infty,b]$ e derivabili in $(-\infty,b)$, tali che

- 1. $g'(x) \neq 0$ in $(-\infty, b]$,
- 2. $\lim_{x\to-\infty} f(x)$ $e \lim_{x\to-\infty} g(x)$ sono $+\infty$ oppure $-\infty$.

Allora, se esiste $\lim_{x\to-\infty} f'(x)/g'(x)$, esiste anche $\lim_{x\to-\infty} f(x)/g(x)$ e si ha

$$\lim_{x \to -\infty} \frac{f(x)}{g(x)} = \lim_{x \to -\infty} \frac{f'(x)}{g'(x)}.$$

Osservazioni:

- 1. Le dimostrazioni dei Teoremi 8.12, 8.13 e 8.14 sono analoghe a quella del Teorema 8.9 vista sopra.
- 2. Come il Teorema 8.9 anche i Teoremi 8.12, 8.13 e 8.14 si generalizzano al caso in cui i limiti dei rapporti delle prime n derivate sono forme indeterminate.
- 3. I teoremi enunciati in questo e nel precedente paragrafo sono noti come teoremi di de l'Hôpital.
- 4. I teoremi di de l'Hôpital permettono di calcolare forme indeterminate considerando i limiti dei rapporti delle derivate delle funzioni. Il viceversa non è vero! In altre parole, se esiste il limite di f(x)/g(x), non si può dedurre alcunché sul limite di f'(x)/g'(x). Per esempio se $f(x) = x + \sin x$ e g(x) = x si ha $\lim_{x \to +\infty} (x + \sin x)/x = 1$, d'altra parte $f'(x)/g'(x) = 1 + \cos x$ non ammette limite per $x \to +\infty$.

8.4 Esercizi

- $1. \lim_{x \to +\infty} \frac{\sin(1/x)}{1/x}.$
- $2. \lim_{x \to +\infty} \frac{e^x}{x^2}.$
- 3. $\lim_{x\to 0} x \ln x$.
- 4. $\lim_{x \to 0} x^{\alpha} \ln x, \ \alpha > 0.$
- 5. $\lim_{x \to 1} (x^2 1) \ln(x 1)$.
- 6. $\lim_{x \to 0} \frac{\ln x}{\operatorname{tg}(\pi/2 x)}.$

8.4. ESERCIZI 115

7.
$$\lim_{x \to +\infty} \frac{x^2 - x + 1}{-x^2 + x + 1}$$
.

8.
$$\lim_{x \to 0^+} x^x$$
.

9.
$$\lim_{x \to +\infty} (x^2 - x)$$
.

$$10. \lim_{x \to +\infty} \left(e^{x^2} - x^2 \right).$$

11.
$$\lim_{x\to 0} \left(\frac{1}{\sin x} - \frac{1}{x} \right)$$
.

12.
$$\lim_{x \to 0^+} x^{\sin x}$$
.

13.
$$\lim_{x \to +\infty} x^{-\alpha} e^x$$
, $\alpha > 0$.

14.
$$\lim_{x \to 0^+} (\sin x)^{\operatorname{tg} x}$$
.

15.
$$\lim_{x \to 0} \frac{e^{\sin(x^2)} - 2 + \cos x}{x(e^x - e^{-x})}.$$

16.
$$\lim_{x \to 0} \frac{\cos(\sin x) - \cos x}{x^2 \sin(x^2)}$$
.

Soluzioni:

1.
$$\lim_{x \to +\infty} \frac{\sin(1/x)}{1/x} = \lim_{x \to +\infty} \frac{-(1/x^2)\cos(1/x)}{-1/x^2} = \lim_{x \to +\infty} \cos(1/x) = \lim_{t \to 0} \cos t = 1.$$

2.
$$\lim_{x \to +\infty} \frac{e^x}{x^2} = \lim_{x \to +\infty} \frac{e^x}{2x} = \lim_{x \to +\infty} \frac{e^x}{2} = +\infty.$$

3.
$$\lim_{x \to 0} x \ln x = \lim_{x \to 0} \frac{\ln x}{1/x} \lim_{x \to 0} \frac{1/x}{-1/x^2} = \lim_{x \to 0} (-x) = 0.$$

4.
$$\lim_{x \to 0} x^{\alpha} \ln x = \lim_{x \to 0} \frac{\ln x}{x^{-\alpha}} = \lim_{x \to 0} \frac{1/x}{-\alpha x^{-\alpha - 1}} = -\lim_{x \to 0} \frac{x^{\alpha}}{\alpha} = 0.$$

5.
$$\lim_{x \to 1} (x^2 - 1) \ln(x - 1) = \lim_{x \to 1} (x + 1) (x - 1) \ln(x - 1) = \lim_{t \to 0} (t + 2) t \ln t = 0.$$

6.
$$\lim_{x \to 0} \frac{\ln x}{\operatorname{tg}(\pi/2 - x)} = -\lim_{x \to 0} \frac{\cos^2(\pi/2 - x)}{x} = \lim_{x \to 0} \frac{-2\cos(\pi/2 - x)\sin(\pi/2 - x)}{1} = 0.$$

7.
$$\lim_{x \to +\infty} \frac{x^2 - x + 1}{-x^2 + x + 1} = \lim_{x \to +\infty} \frac{2x - 1}{-2x + 1} = \lim_{x \to +\infty} \frac{2}{-2} = -1.$$

8.
$$\lim_{x \to 0^+} x^x = \lim_{x \to 0^+} e^{x \ln x} = e^{\lim_{x \to 0^+} x \ln x} = e^0 = 1.$$

9.
$$\lim_{x \to +\infty} (x^2 - x) = \lim_{x \to +\infty} x(x - 1) = +\infty.$$

10.
$$e^{x^2} - x^2 = e^{x^2} (1 - x^2 e^{-x^2})$$
, dove $\lim_{x \to +\infty} x^2 e^{-x^2} = \lim_{x \to +\infty} x^2 / e^{x^2} = 0$ (cfr. l'esercizio 2) $\implies \lim_{x \to +\infty} (e^{x^2} - x^2) = \lim_{x \to +\infty} e^{x^2} = +\infty$.

11.
$$\lim_{x \to 0} \left(\frac{1}{\sin x} - \frac{1}{x} \right) = \lim_{x \to 0} \left(\frac{x - \sin x}{x \sin x} \right) = \lim_{x \to 0} \left(\frac{1 - \cos x}{\sin x + x \cos x} \right) = \lim_{x \to 0} \left(\frac{\sin x}{2 \cos x - x \sin x} \right) = 0.$$

12.
$$\lim_{x \to 0^+} x^{\sin x} = \lim_{x \to 0^+} e^{(\sin x) \ln x} = 1.$$

13. Si scrive $x^{-\alpha}e^x = e^x/x^{\alpha}$ e si applica iterativamente il Teorema 8.13 finché l'esponente della potenza al denominatore non diventa negativo

$$\lim_{x \to +\infty} x^{-\alpha} e^x = \lim_{x \to +\infty} \frac{e^x}{x^{\alpha}} = \lim_{x \to +\infty} \frac{e^x}{\alpha x^{\alpha - 1}} = \lim_{x \to +\infty} \frac{e^x}{\alpha (\alpha - 1) x^{\alpha - 2}}$$
$$= \lim_{x \to +\infty} \frac{e^x}{\alpha (\alpha - 1) (\alpha - 2) x^{\alpha - 3}} = \dots = +\infty.$$

14.
$$\lim_{x \to 0^+} (\sin x)^{\lg x} = \lim_{x \to 0^+} e^{(\lg x) \ln(\sin x)} = \lim_{x \to 0^+} e^{(1/\cos x) (\sin x) \ln(\sin x)} = e^{1 \cdot 0} = 1.$$

15.
$$\lim_{x \to 0} \frac{e^{\sin(x^2)} - 2 + \cos x}{x(e^x - e^{-x})} = \lim_{x \to 0} \frac{2x e^{\sin(x^2)} \cos(x^2) - \sin x}{e^x - e^{-x} + x(e^x + e^{-x})} = \lim_{x \to 0} \frac{2 e^{\sin x^2} \cos(x^2) + 4x^2 e^{\sin(x^2)} (\cos(x^2))^2 - 4x^2 e^{\sin(x^2)} \sin(x^2) - \cos x}{2e^x + 2e^{-x} + x(e^x - e^{-x})} = \frac{1}{4}.$$

16.
$$\lim_{x \to 0} \frac{\cos(\sin x) - \cos x}{x^2 \sin(x^2)} = \lim_{x \to 0} \frac{-\sin(\sin x) \cos x + \sin x}{2x \sin(x^2) + 2x^3 \cos(x^2)} =$$

$$\lim_{x \to 0} \frac{\sin(\sin x) \sin x - \cos(\sin x) (\cos x)^2 + \cos x}{10 x^2 \cos(x^2) + 2\sin(x^2) - 4x^4 \sin(x^2)} =$$

$$\lim_{x \to 0} \frac{\sin(\sin x) \cos x + \sin(\sin x) (\cos x)^3 + 3\cos(\sin x) \sin x \cos x - \sin x}{24 x \cos(x^2) - 8x^5 \cos(x^2) - 36x^3 \sin(x^2)} =$$

$$\lim_{x \to 0} \frac{\cos(\sin x) (7(\cos x)^2 + (\cos x)^4 - 3) - \sin(\sin x) \sin x (1 + 6(\cos x)^2) - \cos x}{24 \cos(x^2) - 112 x^4 \cos(x^2) - 156 x^2 \sin(x^2) + 16 x^6 \sin(x^2)} = \frac{1}{6}.$$

9 | Studio del grafico di una funzione

9.1 Asintoti

Definizione 9.1. Data una retta r e una funzione f, se la distanza tra un punto P del grafico di f e la retta tende a zero quando P tende all'infinito, si dice che r è un asintoto della funzione f. L'asintoto si dice asintoto orizzontale se la retta r ha equazione y = c, dove c è costante, si dice asintoto obliquo se la retta r ha equazione y = ax + b, dove $a \neq 0$ e b sono costanti.

Definizione 9.2. Si chiama asintoto verticale di una funzione f una retta r di equazione x = c, tale che si abbia

$$\lim_{x \to c} f(x) = \pm \infty \quad oppure \quad \lim_{x \to c^{+}} f(x) = \pm \infty \quad oppure \quad \lim_{x \to c^{-}} f(x) = \pm \infty,$$

dove $\pm \infty$ indica che il limite vale $+\infty$ o $-\infty$.

Osservazioni:

1. Se una funzione f ha per $x \to +\infty$ un asintoto obliquo di equazione y = ax + b deve succedere che

$$\lim_{x \to +\infty} (f(x) - ax - b) = 0.$$

Questo implica che

$$\lim_{x \to +\infty} \frac{f(x)}{x} = a, \qquad \lim_{x \to +\infty} (f(x) - ax) = b.$$

Analogamente si ragiona se si ha un asintoto obliquo per $x \to -\infty$.

- 2. Per determinare eventuali asintoti obliqui od orizzontali si procede come segue:
 - si calcola prima il limite di f(x)/x per $x \to +\infty$ o per $x \to -\infty$ e, se il limite esiste, si trova così il valore di a (in particolare se a = 0 l'asintoto è orizzontale, se $a \neq 0$ l'asintoto è obliquo),
 - si calcola quindi il limite di f(x) ax, che, se esiste, definisce b.

- 3. Non è detto che se esiste il limite a di f(x)/x allora esiste necessariamente anche il limite di f(x) ax. Per esempio, se $f(x) = x + \ln x$ si ha $\lim_{x \to +\infty} (x + \ln x)/x = 1$; tuttavia $\lim_{x \to +\infty} (f(x) x) = \lim_{x \to +\infty} \ln x = +\infty \implies$ la funzione $f(x) = x + \ln x$ non ammette asintoto per $x \to +\infty$.
- 4. Esempi di asintoti orizzontali, obliqui e verticali sono dati in Figura 9.1:
 - 2.1. la funzione $f(x) = 1 e^{-x^2}$ ha un asintoto orizzontale y = 1 per $x \to \pm \infty$,
 - 2.2. la funzione $(4 + (x + 2)^3)/x^2$ ha un asintoto obliquo di equazione y = 2x + 12 (per $x \to \pm \infty$) e un asintoto verticale di equazione x = 0,
 - 2.3. la funzione 1/(x+2) ha un asintoto verticale di equazione x=-2 e un asintoto orizzontale y=0 (per $x\to\pm\infty$),
 - 2.4. la funzione $(x^2-4x+6)/(x-1)$ ha un asintoto obliquo di equazione y=x-4 (per $x\to\pm\infty$) e un asintoto verticale x=1

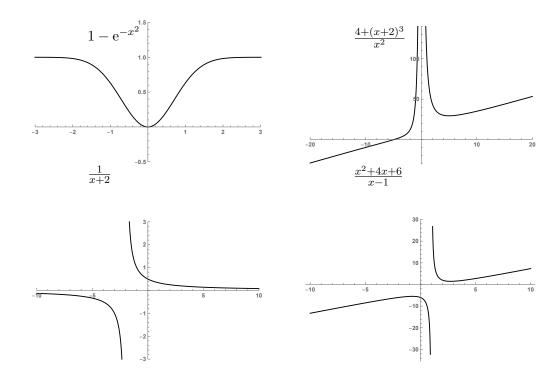


Figura 9.1: Esempi di asintoti.

Esercizi:

- 1. Si dimostri che f(x) = 1/x ha un asintoto verticale in x = 0.
- 2. Si dimostri che f(x) = 1/(x+1) ha un asintoto verticale in x = -1.
- 3. Si dimostri che $f(x) = \operatorname{tg} x$ ha infiniti asintoti verticali in $x = \pi/2 + k\pi$, $k \in \mathbb{Z}$.

9.1. ASINTOTI 119

- 4. Si dimostri che $f(x) = \log_a x$ ha un asintoto verticale in x = 0.
- 5. Si dimostri che $f(x) = 1/(x^2 1)$ ha due asintoti verticali, uno in x = -1 e uno in x = +1.
- 6. Si dimostri che $f(x) = x^2/(1+x)$ ha un asintoto obliquo di equazione y = x-1 per $x \to \pm \infty$.
- 7. Si dimostri che $f(x) = (x^2 + 4)/(x^2 + 1)$ ha un asintoto orizzontale di equazione y = 1 per $x \to \pm \infty$.
- 8. Si dimostri che $f(x) = x + e^x$ ha un asintoto obliquo di equazione y = x per $x \to -\infty$.

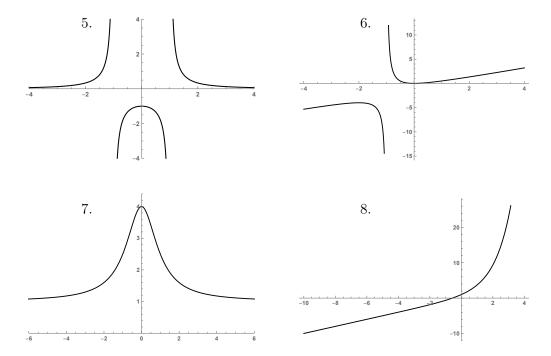


Figura 9.2: Grafici delle funzioni degli esempi 5-8.

Soluzioni (cfr. la Figura 9.2 per gli esercizi 5–8):

- 1. Si ha $\lim_{x\to 0^+} 1/x = +\infty$ e $\lim_{x\to 0^-} 1/x = -\infty$.
- 2. Si ha $\lim_{x \to -1^+} 1/(x+1) = +\infty$ e $\lim_{x \to -1^-} 1/(x+1) = -\infty$.
- 3. Si ha $\lim_{x\to\pi/2^-} \operatorname{tg} x = +\infty$ e $\lim_{x\to\pi/2^+} \operatorname{tg} x = -\infty$, e si usa il fatto che $\operatorname{tg} x$ è una funzione periodica di periodo π .
- 4. Si ha $\lim_{x\to 0^+} \log_a x = -\infty$ se a>1 e $\lim_{x\to 0^+} \log_a x = +\infty$ se a<1.
- 5. Si ha $\lim_{x \to 1^+} 1/(x^2 1) = \lim_{x \to -1^-} 1/(x^2 1) = +\infty$ e $\lim_{x \to 1^-} 1/(x^2 1) = \lim_{x \to -1^+} 1/(x^2 1) = -\infty$.
- 6. Si ha $\lim_{x \to \pm \infty} (x^2 + 4)/(x^2 + 1) = 1$.

- 7. Si ha $\lim_{x \to \pm \infty} x^2/(x(1+x)) = 1$ e $\lim_{x \to \pm \infty} (x^2/(1+x) x) = -1$.
- 8. Si ha $\lim_{x \to -\infty} (x + e)/x = 1$ e $\lim_{x \to -\infty} (x + e^x x) = 0$.

9.2 Funzioni crescenti e decrescenti

Si ricordi la definizione di funzione crescente o decrescente data nel §4.1 (cfr. la Definizione 4.7), che qui ripetiamo per comodità.

Definizione 9.3. Una funzione f continua in [a,b] si dice crescente in [a,b] se $\forall x_1, x_2 \in [a,b]$, con $x_2 > x_1$, si ha $f(x_2) \ge f(x_1)$. Si dice decrescente in [a,b] se $\forall x_1, x_2 \in [a,b]$, con $x_2 > x_1$, si ha $f(x_2) \le f(x_1)$. Si dice strettamente crescente o strettamente decrescente se vale il segno stretto: $f(x_2) > f(x_1)$ o $f(x_2) < f(x_1)$, rispettivamente.

Esempi:

- 1. x^2 è crescente in $[0, \infty)$ ed è decrescente in $(-\infty, 0]$;
- 2. \sqrt{x} è crescente in $[0, \infty)$;
- 3. $a^x \operatorname{con} a > 1$ (in particulare e^x) è crescente in \mathbb{R} ;
- 4. $\log_a x$ con a > 1 (in particolare $\ln x$) è crescente in $(0, +\infty)$;
- 5. $1/x^2$ è decrescente in $(0, \infty)$ e crescente in $(-\infty, 0)$;
- 6. 1/x è decrescente in $(0,\infty)$ e in $(-\infty,0)$, ovvero in $\mathbb{R}\setminus\{0\}$;
- 7. e^{-x} è decrescente in \mathbb{R} ;
- 8. $\sin x$ è crescente per $x \in [-\pi/2, \pi/2]$ e decrescente per $x \in [-\pi, -\pi/2] \cup [\pi/2, \pi]$;
- 9. $\cos x$ è crescente per $x \in [-\pi, 0]$ e decrescente per $x \in [0, \pi]$.
- 10. $\operatorname{tg} x$ è crescente per ogni x per cui è definita.

Osservazioni:

- 1. Se la funzione f(x) è crescente allora -f(x) è decrescente.
- 2. Se la funzione f(x) è pari ed è crescente per x > 0, allora è decrescente per x < 0; se f(x) è dispari ed è crescente per x > 0, allora è crescente anche per x < 0.

Teorema 9.4. Sia $f:[a,b] \to \mathbb{R}$ una funzione continua in [a,b] e derivabile in (a,b). Allora f è crescente in [a,b] se e solo se $f'(x) \ge 0 \ \forall x \in (a,b)$.

Dimostrazione. Sia $x \in (a, b)$ e sia Δx tale che $x + \Delta x \in [a, b]$. Consideriamo il rapporto incrementale

$$\frac{\Delta f}{\Delta x} = \frac{f(x + \Delta x) - f(x)}{\Delta x}.$$

Se f è crescente allora $\Delta f/\Delta x \geq 0 \ \forall \Delta x$. Passando al limite, per il Teorema 5.14, si trova

$$f'(x) = \lim_{\Delta x \to 0} \frac{\Delta f}{\Delta x} \ge 0.$$

Viceversa, fissati $x_1, x_2 \in [a, b]$, con $x_2 > x_1$, per il Teorema 8.3, si ha

$$f(x_2) - f(x_1) = f'(\xi) (x_2 - x_1)$$

per qualche $\xi \in (x_1, x_2)$. Quindi se $f'(x) \ge 0 \ \forall x \in [a, b]$ si trova $f(x_2) - f(x_1) \ge 0$.

Teorema 9.5. Sia $f:[a,b] \to \mathbb{R}$ una funzione continua in [a,b] e derivabile in (a,b). Allora f è decrescente in [a,b] se e solo se $f'(x) \le 0 \ \forall x \in (a,b)$.

Dimostrazione. Si ragiona come per il Teorema 9.4. Oppure si definisce g(x) = -f(x) e si applica il Teorema 9.4 alla funzione g.

Osservazioni:

- 1. Se la funzione è crescente, la tangente al grafico forma un angolo $\varphi \in [0, \pi/2)$ con l'asse x, quindi tg $\varphi \geq 0$.
- 2. Analogamente se la funzione è negativa, l'angolo è $\varphi \in (-\pi/2,0]$ e quindi tg $\varphi \leq 0$.

Esempi:

- 1. Se $f(x) = x^4$ si ha $f'(x) = 4x^3$, quindi f(x) è crescente per $x \ge 0$ e decrescente per $x \le 0$.
- 2. Se $f(x) = x^5$ si ha $f'(x) = 5x^4 \ge 0$, quindi f(x) è crescente $\forall x \in \mathbb{R}$.

Definizione 9.6. Sia f una funzione definita in un intervallo [a,b]. Un punto $x_1 \in (a,b)$ è un punto di massimo relativo (o locale) se esiste un intorno $B(x_1,\delta_1) = (x_1 - \delta_1, x_1 + \delta_1)$ tale che $f(x) \leq f(x_1) \ \forall x \in B(x_1,\delta_1)$. Il valore $f(x_1)$ si dice massimo relativo di f.

Definizione 9.7. Un punto di massimo relativo x_1 di una funzione f si dice punto di massimo relativo stretto (o forte o proprio) se $f(x) < f(x_1) \ \forall x \in B(x_1, \delta_1) \setminus \{x_1\}$; il valore $f(x_1)$ si dice in tal caso massimo relativo stretto (o forte o proprio) di f.

Definizione 9.8. Sia f una funzione definita in un intervallo [a,b]. Un punto $x_2 \in (a,b)$ è un punto di minimo relativo (o locale) se esiste un intorno $B(x_2,\delta_2) = (x_2 - \delta_2, x_2 + \delta_2)$ tale che $f(x) \geq f(x_2) \ \forall x \in B(x_2,\delta_2)$. Il valore $f(x_2)$ si dice minimo relativo di f.

Definizione 9.9. Un punto di minimo relativo x_2 di una funzione f si dice punto di minimo relativo stretto (o forte o proprio) se $f(x) > f(x_2) \ \forall x \in B(x_2, \delta_1) \setminus \{x_2\}$; il valore $f(x_2)$ si dice in tal caso minimo relativo stretto (o forte o proprio) di f.

Definizione 9.10. I punti di massimo e di minimo relativo di una funzione f si chiamano punti estremali di f.

Definizione 9.11. I punti in cui si annulla la derivata prima di una funzione f derivabile si chiamano punti stazionari di f.

Esempio: la funzione $f(x) = x^2(x^2 - 2)$ ha un punto di massimo relativo (stretto) in x = 0, ma non ha massimo assoluto essendo illimitata superiormente; ha invece due punti di minimo relativo (stretto) in $x = \pm 1$, che sono anche punti di minimo assoluto (cfr. la Figura 9.3).

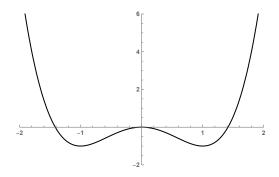


Figura 9.3: Grafico della funzione $x^2(x^2-2)$.

Teorema 9.12. Sia $f:[a,b] \to \mathbb{R}$ una funzione continua in [a,b] e derivabile in (a,b). Se $x_0 \in (a,b)$ è un punto di massimo o di minimo relativo, allora $f'(x_0) = 0$, ovvero se x_0 è un punto estremale allora è un punto stazionario.

Dimostrazione. Sia $x_0 \in (a,b)$ un punto di massimo di f. Allora $\exists \delta > 0$ tale che $f(x_0 + \Delta x) \leq f(x_0)$ e quindi $\Delta f = f(x_0 + \Delta x) - f(x_0) \leq 0 \ \forall |\Delta x| < \delta$. Ne segue che $\Delta f/\Delta x \leq 0$ se $\Delta x \geq 0$ e $\Delta f/\Delta x \geq 0$ se $\Delta x \leq 0$. Poiché la funzione è derivabile esistono il limite destro e il limite sinistro e sono uguali a $f'(x_0)$. Quindi

$$0 \ge \lim_{\Delta x \to 0^+} \frac{\Delta f}{\Delta x} = f'(x_0) = \lim_{\Delta x \to 0^-} \frac{\Delta f}{\Delta x} \ge 0,$$

ovvero $f'(x_0) = 0$. Il caso in cui x_0 sia un punto di minimo si discute similmente

Osservazioni:

1. Il Teorema 9.12 (che è noto come teorema di Fermat) dà una condizione necessaria per l'esistenza di un punto estremale.

- 2. Il viceversa non è vero: se esiste $x_0 \in (a,b)$ tale che $f'(x_0) = 0$ non necessariamente x_0 è un punto di massimo o di minimo (esempio: se $f(x) = x^3$ allora $f'(x) = 3x^2$, quindi f'(0) = 0; tuttavia x = 0 non è né un punto di massimo né un punto di minimo.
- 3. Se la funzione non è derivabile, i punti di massimo e di minimo relativo vanno cercati in modo diverso. Per esempio se f(x) = |x| si ha un punto di minimo assoluto in x = 0, dove la funzione non è derivabile. La funzione $f(x) = (1 x^{2/3})^2$ ha un massimo relativo in x = 0, mentre $f'(x) = -4(1 x^{2/3})x^{-1/3}/3$ diverge per $x \to 0^{\pm}$ (cfr. la Figura 9.4).
- 4. In base alle osservazioni precedenti, un punto stazionario non è necessariamente un punto estremale è un punto estremale è necessariamente un punto stazionario solo nel caso in cui la funzione sia derivabile.

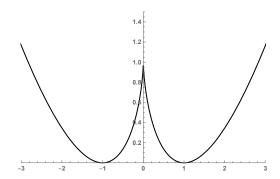


Figura 9.4: Grafico della funzione $(1 - x^{2/3})^2$.

Teorema 9.13. Sia $f: [a,b] \to \mathbb{R}$ una funzione continua in [a,b] e derivabile in (a,b). Se x_1 è un punto stazionario di f ed esiste $\delta > 0$ tale che f'(x) > 0 per $x \in (x_1 - \delta, x_1)$ e f'(x) < 0 per $x \in (x_1, x_1 + \delta)$, allora x_1 è un punto di massimo.

Dimostrazione. Sia $x \in (x_1 - \delta, x_1)$. Allora $f(x) - f(x_1) = f'(\xi)(x - x_1)$, per un opportuno $\xi_1 \in (x, x_1)$. Quindi $f'(\xi_1) > 0 \Longrightarrow f(x) < f(x_1)$. Analogamente per $x \in (x_1, x_1 + \delta)$ si ha $f(x) - f(x_1) = f'(\xi_2)(x - x_1)$, per un opportuno $\xi_2 \in (x_1, x)$. Quindi $f'(\xi_2) < 0 \Longrightarrow f(x) < f(x_1)$. Conclusione: $\forall x \in (x_1 - \delta, x_1 + \delta)$ si ha $f(x) \le f(x_1) \Longrightarrow x_1$ è un punto di massimo.

Teorema 9.14. Sia $f: [a,b] \to \mathbb{R}$ una funzione continua in [a,b] e derivabile in (a,b). Se x_1 è un punto stazionario di f ed esiste $\delta > 0$ tale che f'(x) < 0 per $x \in (x_1 - \delta, x_1)$ e f'(x) > 0 per $x \in (x_1, x_1 + \delta)$, allora x_1 è un punto di minimo.

Dimostrazione. Si procede come nella dimostrazione del Teorema 9.13

Definizione 9.15. Sia $f: [a,b] \to \mathbb{R}$ una funzione continua in [a,b] e derivabile in (a,b). Se x_0 è un punto stazionario di f ed esiste $\delta > 0$ tale che f'(x) > 0 per $x \in (x_0 - \delta, x_0)$ e per $x \in (x_0, x_0 + \delta)$ oppure f'(x) < 0 per $x \in (x_0 - \delta, x_0)$ e per $x \in (x_0, x_0 + \delta)$, allora si dice che x_0 è un punto di flesso orizzontale.

9.3 Massimi e minimi assoluti di una funzione

Si ricordi il Teorema 6.7: una funzione continua in un intervallo chiuso e limitato ammette massimo e minimo. Dal Teorema 9.12 discende che, nella ricerca dei punti di massimo e minimo assoluti di una funzione f derivabile in un intervallo limitato [a,b], possiamo procedere come segue:

- 1. Si cercano i punti stazionari, i.e. i punti x che risolvono l'equazione f'(x) = 0: siano x_1, x_2, x_3, \ldots tali punti. Si calcolano quindi i valori che la funzione f assume in corrispondenza dei punti stazionari, i.e. $f(x_1), f(x_2), f(x_3), \ldots$
- 2. Si calcolano i valori f(a) e f(b) che la funzione assume agli estremi dell'intervallo.
- 3. Il massimo assoluto e il minimo assoluto saranno rispettivamente

$$\max\{f(a), f(b), f(x_1), f(x_2), f(x_3), \ldots\} \in \min\{f(a), f(b), f(x_1), f(x_2), f(x_3), \ldots\}.$$

Osservazione: se la funzione f(x) non è derivabile in qualche punto, allora si dovranno calcolare anche i valori che la funzione assume nei punti di non derivavbilità e confrontarli con i valori che la funzione assume in corrispondenza dei punti stazionariu e degli estremi dell'intervallo.

Esempi:

- 1. $f(x) = x^2$, $x \in [-1, 2] \Longrightarrow$ c'è un solo punto stazionario interno: x = 0; si ha f(-1) = 1, f(0) = 0, f(2) = 4 (cfr. la Figura 9.5) \Longrightarrow max f(x) = f(2) = 4, min f(x) = f(0) = 0.
- 2. $f(x) = x^3 3x^2 x + 3$, $x \in [-2,3] \Longrightarrow$ ci sono due punti stazionari: $x = 1 \pm 2/\sqrt{3}$; si ha $f(1-2/\sqrt{3}) \approx 3.0792$, $f(1+2/\sqrt{3}) \approx -3.0792$, f(-2) = -15, f(3) = 0 (cfr. la Figura 9.5) \Longrightarrow max $f(x) = f(1-2/\sqrt{3})$, min f(x) = f(-2).
- 3. $f(x) = -1/x + 1/x^2$, $x \in [1, 4] \implies$ c'è un solo punto stazionaro: x = 2; si ha f(1) = 0, f(2) = -1/2, f(4) = -3/16 (cfr. la Figura 9.5) $\implies \max f(x) = f(1)$, $\min f(x) = f(2)$.
- 4. f(x) = (1/x) + x, $x \in (0,2] \Longrightarrow$ c'è un solo punto stazionario: x = 1; si ha $f(x) \to +\infty$ per $x \to 0^+$, f(1) = 2, f(2) = 5/2 (cfr. la Figura 9.5) \Longrightarrow min f(x) = f(1) = 2, mentre non esiste massimo (si noti infatti che (0,2] è aperto a sinistra).

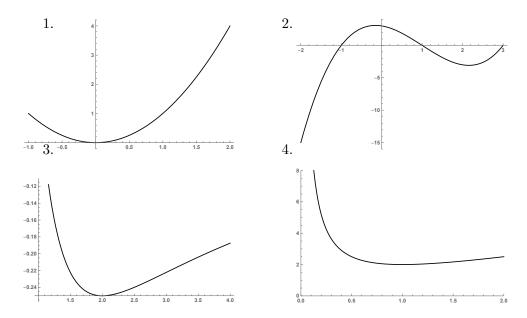


Figura 9.5: Grafici delle funzioni degli esempi di §9.4.

9.4 Primo studio del grafico di una funzione

In base ai risultati ottenuti finora possiamo tracciare un primo schema da seguire per lo studio del grafico di una funzione f(x):

- 1. Determinare il dominio D_f della funzione.
- 2. Studiare l'andamento della funzione agli estremi del dominio; in particolare studiare l'esistenza di eventuali asintoti obliqui od orizzontali o verticali.
- 3. Determinare se esistono e se possibile i punti in cui la funzione f(x) attraversa l'asse x e l'asse y.
- 4. Calcolare la derivata prima f'(x).
- 5. Determinare i punti stazionari, cioè i punti in cui la derivata prima si annulla.
- 6. Studiare il segno della derivata prima per individuare gli intervalli in cui la funzione è crescente e gli intervalli in cui è decrescente e determinare di conseguenza i punti estremali (massimi e minimi relativi) e i punti di flesso.
- 7. Calcolare se non troppo complicato la funzione nei punti stazionari, e individuare nel piano cartesiano i punti del grafico della funzione in corrispondenza dei punti stazionari.
- 8. Completare il grafico della funzione utilizzando le informazioni sugli intervalli in cui la funzione è cescente o decrescente.

Osservazione: a seconda dei valori di f'(x) nell'intorno di un punto stazionario x_0 si ha la seguente tabella:

$$x < x_0$$
 $x = x_0$ $x > x_0$

$$\begin{array}{ccccc}
+ & 0 & - & \Longrightarrow & \text{massimo}, \\
- & 0 & + & \Longrightarrow & \text{minimo}, \\
+ & 0 & + & \Longrightarrow & \text{flesso}, \\
- & 0 & - & \Longrightarrow & \text{flesso}.
\end{array}$$

dove + indica f'(x) > 0, 0 indica f'(x) = 0 e - indica f'(x) < 0.

Esempi (cfr. la Figura 9.6):

1.
$$f(x) = x^3 - 2x^2 - x + 2 = (x^2 - 1)(x - 2);$$

2.
$$f(x) = x^4 - 5x^2 + 4$$
;

3.
$$f(x) = \sqrt{1 - x^2}$$
;

4.
$$(x^2-1)/x$$
.

Soluzioni:

- 1. Il dominio è $D_f = \mathbb{R}$. Si ha $\lim_{x \to +\infty} f(x) = +\infty$ e $\lim_{x \to -\infty} f(x) = -\infty$. Non esistono asintoti. Si ha inoltre f(x) = 0 per x = -1, x = 1 e x = 2, e f(0) = 2. Poiché $f'(x) = 3x^2 4x 1 = 0$, si ha f'(x) = 0 per $x = 2 \pm \sqrt{7}$, f'(x) > 0 per $x > 2 + \sqrt{7}$ e $x < 2 \sqrt{7}$, e f'(x) < 0 per $x \in (2 \sqrt{7}, 2 + \sqrt{7})$: quindi la funzione è crescente in $(-\infty, 2 \sqrt{7})$, ha un punto di massimo relativo stretto in $x = 2 \sqrt{7}$, è decrescente in $(2 \sqrt{7}, 2 + \sqrt{7})$, ha un punto di minimo relativo stretto in $x = 2 + \sqrt{7}$, ed è di nuovo crescente in $(2 + \sqrt{7}, +\infty)$. Il grafico è rappresentato in Figura 9.6.
- 2. Il dominio è $D_f = \mathbb{R}$. La funzione è pari. Si ha $\lim_{x\to\pm\infty} f(x) = +\infty$. Non esistono asintoti. Si ha f(x) = 0 per $x = \pm 1$ e $x = \pm 2$, e f(0) = 4. La derivata prima è $f'(x) = 4x^3 10x = 2x(2x^2 5)$: si annulla per x = 0 e $x = \pm \sqrt{5/2}$, ha segno positivo per $x \in (-\sqrt{5/2}, 0) \cup (\sqrt{5/2}, +\infty)$ e ha segno negativo per $x \in (-\infty, -\sqrt{5/2}) \cup (0, \sqrt{5/2})$. Ne segue che la funzione è decrescente in $(-\infty, -\sqrt{5/2})$, ha un punto di minimo relativo stretto in $x = -\sqrt{5/2}$, è crescente in $(-\sqrt{5/2}, 0)$, ha un punto di massimo relativo stretto in x = 0, è decrescente in $(0, \sqrt{5/2})$, ha un punto di minimo relativo stretto in x = 0, è decrescente in $(0, \sqrt{5/2})$, ha un punto di minimo relativo stretto in x = 0, è decrescente in $(0, \sqrt{5/2})$, la un punto di minimo relativo stretto in $x = \sqrt{5/2}$, ed è di nuovo crescente in $(\sqrt{5/2}, +\infty)$. Il grafico è rappresentato in Figura 9.6.
- 3. Il dominio è $D_f = [-1, 1]$. La funzione si annulla agli estremi. La derivata prima, data da $f'(x) = -x/\sqrt{1/x^2}$, è positiva per $x \in (-1, 0)$, si annulla per x = 0 ed è negativa per $x \in (0, 1)$: la funzione ha un punto di massimo in x = 0, dove assume il valore f(0) = 1, è crescente in [-1, 0] e decrescente in [0, 1]. Il grafico è rappresentato in Figura 9.6: di fatto, è una semicirconferenza, come si vede notando che $y \ge 0$ e $y^2 = 1 x^2$, ovvero $x^2 + y^2 = 1$.

4. Il dominio è $D_f = \mathbb{R} \setminus \{0\} = (-\infty, 0) \cup (0, +\infty)$. La funzione ha un asintoto obliquo y = x sia per $x \to +\infty$ che per $x \to -\infty$, e un asintoto verticale in x = 0: si ha infatti $\lim_{x \to 0^+} f(x) = -\infty$ e $\lim_{x \to 0^-} f(x) = +\infty$. Si ha infine $f'(x) = 1 + 1/x^2 > 0$: la funzione è crescente in tutto il dominio. Il grafico è rappresentato in Figura 9.6.

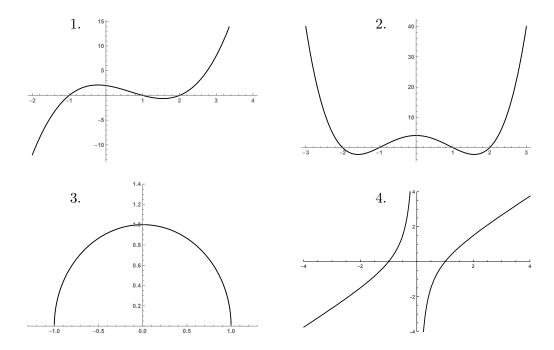


Figura 9.6: Grafici delle funzioni degli esempi di §9.2.

9.5 Studio della derivata seconda

Teorema 9.16. Sia f una funzione di classe C^2 in [a,b], e sia $x_0 \in (a,b)$ un punto stazionario di f (i.e. $f'(x_0) = 0$). Se $f''(x_0) > 0$ allora x_0 è un punto di minimo, se $f''(x_0) < 0$ allora x_0 è un punto di massimo.

Esempi (cfr. la Figura 9.7):

1.
$$f(x) = x^3 - 2x^2 + 4$$
;

$$2. \ f(x) = \sin x + \cos x;$$

3.
$$f(x) = x^3 - 2x + 1$$
;

4.
$$f(x) = x^3 - 2x + 1$$
.

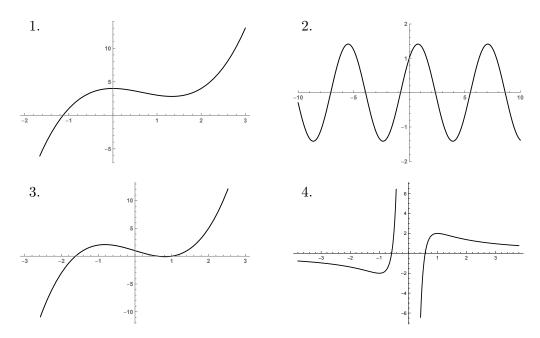


Figura 9.7: Grafici delle funzioni degli esempi di §9.3.

Osservazione: se $f''(x_0) = 0$ non possiamo concludere nulla. Per esempio, se si considerano le funzioni $f(x) = x^4$, $f(x) = x^3$ e $f(x) = -x^4$, si ha in tutti e tre i casi f'(0) = f''(0) = 0, tuttavia x = 0 è un punto di minimo per x^4 , un punto di flesso orizzontale per x^3 e un punto di massimo per $-x^4$, come si vede dalla discussione nel §9.2.

Complementi:

- 1. Dimostrazione del Teorema 9.16. Supponiamo $f''(x_0) < 0$. Poiché f''(x) è continua esiste $\delta > 0$ tale che $f''(x) < 0 \ \forall x \in (x_0 \delta, x_0 + \delta)$, per il Teorema 6.6 (teorema della permanenza del segno). Quindi in tale intorno f'(x) è strettamente decrescente. Poiché $f'(x_0) = 0$ si ha f'(x) > 0 per $x_0 \delta < x < x_0$ e f'(x) < 0 per $x_0 < x < x_0 + \delta$. Per il Teorema 9.13 concludiamo che x_0 è un punto di massimo. Se invece $f''(x_0) > 0$ si ragiona allo stesso modo utilizzando alla fine il Teorema 9.14.
- 2. Generalizzazione del Teorema 9.16. Nel caso in cui la derivata seconda si annulli, si può determinare ugualmente se il punto stazionario è un punto di massimo o di minimo o di flesso andando a guardare la prima derivata di ordine superiore che non si annulli in x_0 . Se tale derivata è di ordine dispari, allora x_0 è un punto di flesso orizzontale; se invece la derivata è di ordine pari, allora x_0 è un punto estremale: un punto di massimo relativo se la derivata è negativa, un punto di minimo relativo se la derivata è positiva. Per esempio, nei casi considerati nell'osservazione sopra, per le funzioni x^4 e $-x^4$ la prima derivata che non si annulla in x=0 è la quarta ed è positiva per x^4 e negativa per $-x^4$ (in x=0 la prima funzione ha un punto di minimo, la seconda ha un punto di massimo), mentre per la funzione x^3 (che ha un punto di flesso orizzontale in x=0) la prima derivata non nulla in x=0 è la terza.

9.6 Funzioni convesse e funzioni concave

Definizione 9.17. Sia f una funzione continua in [a,b] e derivabile in (a,b). Si dice che f è convessa in [a,b] se tutti punti (x, f(x)), al variare di $x \in [a,b]$, si trovano al di sopra di una qualsiasi retta tangente al grafico. Si dice che f è concava in [a,b] se tutti punti (x, f(x)) si trovano al di sotto di una qualsiasi retta tangente al grafico.

Teorema 9.18. Sia f continua in [a,b] e derivabile due volte in (a,b). Se f''(x) > 0 $\forall x \in [a,b]$ allora la funzione f è convessa in [a,b].

Teorema 9.19. Sia f continua in [a,b] e derivabile due volte in (a,b). Se f''(x) < 0 $\forall x \in [a,b]$ allora la funzione f è concava in [a,b].

Esempi:

- 1. $f(x) = x^2$ e $f(x) = a^x$, a > 0 (quindi in particolare e^x), sono convesse in \mathbb{R} .
- 2. $f(x) = x^{\alpha}, \, \alpha > 1$ è convessa in \mathbb{R}_+ .
- 3. $f(x) = x^{\alpha}$, $\alpha < 1$ è concava in \mathbb{R}_+ .
- 4. $f(x) = \log_a x$, con a > 1, è concava in $\mathbb{R}_+ \setminus \{0\}$.
- 5. $f(x) = \log_a x$, con 0 < a < 1, è convessa in $\mathbb{R}_+ \setminus \{0\}$.
- 6. $f(x) = x^3$ è convessa per $x \ge 0$ e concava per $x \le 0$.

Osservazioni:

- 1. Se f è convessa, allora -f è concava.
- 2. Una funzione può essere concava e convessa in differenti intervalli. Per esempio la funzione $f(x) = x^3 3x^2 x + 3$ dell'esempio 4 del §9.4 è convessa in [1, 3] e concava in [-2, 1]. Infatti $f'(x) = 3x^2 6x 1$ e quindi $f''(x) = 6(x 1) \Longrightarrow f''(x) > 0$ per x > 1 e f''(x) < 0 per x < 1.

Se la concavità di una funzione di classe C^2 cambia, come nell'esempio dell'osservazione sopra, vuol dire che la derivata seconda cambia segno e quindi che ci sono punti x in cui f''(x) = 0.

Definizione 9.20. Sia f una funzione continua in [a,b] e derivabile due volte in (a,b). Se $\exists x_0 \in [a,b]$ tale che $f''(x_0) = 0$ e f''(x) cambia di segno passando per $x = x_0$, diciamo che x_0 è un punto di flesso. Se inoltre $f'(x_0) = 0$ diciamo che x_0 è un punto di flesso orizzontale, mentre se $f'(x_0) \neq 0$ diciamo che x_0 è un punto di flesso obliquo.

Esempi:

- 1. $f(x) = x^3$ ha un punto di flesso orizzontale in x = 0: infatti $f'(x) = 3x^2$ e f''(x) = 6x.
- 2. $f(x) = x^3 + x$ ha un punto di flesso obliquo in x = 0: si ha infatti $f'(x) = 3x^2 + 1$ e f''(x) = 6x (cfr. la Figura 9.8).
- 3. $f(x) = \sin x$ ha punti di flesso obliquo in tutti i punti in cui si annulla: infatti $f'(x) = \cos x$ e $f''(x) = -\sin x$; analogamente $f(x) = \cos x$ ha punti di flesso obliquo in tutti i punti in cui si annulla.
- 4. $f(x) = e^{-x^2}$ ha punti di flesso obliquo in $x = \pm 1/\sqrt{2}$, è convessa per $|x| > 1/\sqrt{2}$ e concava per $|x| < 1/\sqrt{2}$. Infatti $f'(x) = -2x e^{-x^2}$ e $f''(x) = (4x^2 2) e^{-x^2}$ (cfr. la Figura 9.8).

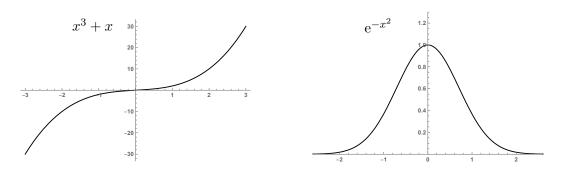


Figura 9.8: Grafici delle funzioni $f(x) = x^3 + x$ e $f(x) = e^{-x^2}$.

Osservazione: la Definizione 9.20 coincide con la Definizione 9.15 per i punti di flesso orizzontale, come è facile verificare.

Complementi:

1. Dimostrazione del Teorema 9.18. Si fissi $x_0 \in [a,b]$: l'equazione della retta tangente al grafico di f nel punto $(x_0, f(x_0))$ è $y = f(x_0) + f'(x_0)(x - x_0)$ (cfr. l'Osservazione 2 di pag. 98). La differenza tra il valore f(x) e il punto della retta che corrisponde all'ascissa x è data da

$$f(x) - [f(x_0) + f'(x_0)(x - x_0)].$$

Utilizzando il teorema 8.3 (di Lagrange) si trova quindi

$$f(x) - [f(x_0) + f'(x_0)(x - x_0)] = [f(x) - f(x_0)] - f'(x_0)(x - x_0)$$

= $f'(\xi)(x - x_0) - f'(x_0)(x - x_0) = (f'(\xi) - f'(x_0))(x - x_0),$

per un opportuno ξ compreso tra x_0 e x. Riapplicando il teorema di Lagrange si trova

$$f(x) - [f(x_0) + f'(x_0)(x - x_0)] = f''(\xi_1)(\xi - x_0)(x - x_0)$$

per un opportuno ξ_1 compreso tra x_0 e ξ . Se $x > x_0$ allora $x_0 < \xi < x$, mentre se $x < x_0$ si ha $x < \xi < x_0$: di conseguenza $(\xi - x_0)(x - x_0) > 0$. Dal momento che $f''(\xi_1) > 0$ per ipotesi, f(x) si trova al di sopra della retta tangente e quindi la funzione f è convessa.

2. Dimostrazione del Teorema 9.19. Si ragiona allo stesso modo del Teorema 9.18.

9.7 Schema per lo studio del grafico di una funzione

Utilizzando gli ultimi risultati possiamo raffinare lo schema da seguire per lo studio di una funzione f(x) rispetto a quanto visto nel §9.4:

- 1. Determinare il dominio D_f della funzione
- 2. Determinare l'andamento della funzione agli estremi del dominio, in particolare studiare l'esistenza di eventuali asintoti obliqui od orizzontali o verticali.
- 3. Determinare se esistono e se possibile i punti in cui la funzione f(x) attraversa l'asse x, cioè i punti \bar{x} tali che $f(\bar{x}) = 0$, e se esiste e se possibile il punto in cui attraversa l'asse y, cioè il valore f(0) = 0.
- 4. Calcolare la derivata prima f'(x)
- 5. Determinare i punti stazionari di f, cioè i punti \bar{x} tali che $f'(\bar{x}) = 0$.
- 6. Calcolare la derivata seconda f''(x).
- 7. Studiare il segno della derivata seconda nei punti stazionari \bar{x} per individuare i punti di minimo relativo (se $f''(\bar{x}) > 0$) e di massimo relativo (se $f''(\bar{x}) < 0$).
- 8. Alternativamente se $f''(\bar{x}) \neq 0$ e obbligatoriamente se $f''(\bar{x}) = 0$, studiare il segno della derivata prima in un intorno di \bar{x} per determinare se \bar{x} è un punto di minimo (ovvero se f'(x) < 0 per $x < \bar{x}$ e f'(x) > 0 per $x > \bar{x}$) o se è un punto di massimo (ovvero se f'(x) > 0 per $x < \bar{x}$ e f'(x) < 0 per $x > \bar{x}$) o infine se è un punto di flesso orizzontale (ovvero se f'(x) ha sempre lo stesso segno in un intorno di \bar{x} tranne che in \bar{x} , dove si annulla).
- 9. Studiare in ogni caso il segno della derivata prima f'(x) per determinare gli intervalli in cui la funzione è crescente e gli intervalli in cui è decrescente.
- 10. Studiare il segno della derivata seconda f''(x) per determinare gli intervalli in cui la funzione è convessa e gli intervalli in cui è concava
- 11. Calcolare la funzione nei punti stazionari, e riportare se non troppo complicato nel piano cartesiano i punti del grafico della funzione in corrispondenza di tali punti stazionari.
- 12. Completare il grafico della funzione utilizzando le informazioni sugli intervalli in cui la funzione è cescente o decrescente.

Osservazioni:

- 1. Se calcolare la derivata seconda risulta troppo laborioso, può comunque essere più comodo determinare se il punto stazionario \bar{x} è un punto di massimo o di minimo relativo studiando direttamente il segno di f'(x) in un intorno di \bar{x} , come indicato al punto 8.
- 2. L'ordine in cui studiare i vari punti elencati sopra non è tassativo: per esempio, dal momento, che lo studio della derivata prima è comunque necessario per studiare dove la funzione è crescente e dove è decrescente, il punto 9 può essere studiato subito dopo il punto 4.
- 3. Analogamente, il punto 3 può essere studiato all'inizio, per esempio se risulta particolarmente semplice; lo si può invece del tutto omettere se risulta eccessivamente laborioso.
- 4. Anche il punto 11, se risulta poco utile, può essere ignorato.
- 5. Se la funzione f(x) è definita ma non è derivabile in qualche punto, quando si cercano i punti di massimo e di minimo occorre prendere in considerazione, oltre ai punti stazionari e agli estremi degli intervalli che costituiscono il dominio, anche i punti in cui la funzione non è derivabile (cfr. l'osservazione 3 a pag. 123).
- 6. Calcolare esplicitamente il valore della funzione in alcuni punti significativi, quali per esempio i punti estremali, è utile per avere una rappresentazione il più accurata possibile del grafico, ma non è strettamente indispensabile per ottenere una grafico qualitativamente accattabile.

9.8 Esercizi

- 1. Si studi il grafico della funzione $f(x) = \frac{2x}{x^2 4}$.
- 2. Si studi il grafico della funzione $f(x) = \frac{\ln(1+x)}{(1+x)^2}$.
- 3. Si studi il grafico della funzione $f(x) = \frac{e^{2x+1}}{x^2}$.
- 4. Si studi il grafico della funzione $f(x) = \frac{x^3 + x^2 + 1}{x^2 + 1}$.
- 5. Si studi il grafico della funzione $f(x) = x e^{-x^2}$.

9.8. ESERCIZI 133

6. Si studi il grafico della funzione
$$f(x) = \frac{x^2 + 3x - 1}{x + 2}$$
.

- 7. Si studi il grafico della funzione $f(x) = e^{-|x|}(x^2 + 4)$.
- 8. Si studi il grafico della funzione $f(x) = e^{-|x|}|x^2 1|$.
- 9. Si studi il grafico della funzione $f(x) = (2-x) e^{-x^2+2x+1}$.
- 10. Si studi il grafico della funzione $f(x) = \sqrt{\frac{x^3}{x+3}}$.
- 11. Si studi il grafico della funzione $f(x) = \ln \frac{x^2 1}{x^2 + 1}$.
- 12. Si studi il grafico della funzione $f(x) = \sqrt{\frac{x^2 + 1}{x^2 1}}$.
- 13. Si studi il grafico della funzione $f(x) = \frac{-1 + (x+2)^2}{x}$.
- 14. Si studi il grafico della funzione $f(x) = \frac{x^4}{x^2 1}$.
- 15. Si studi il grafico della funzione $f(x) = \frac{x^2 1}{x + 2}$.
- 16. Si studi il grafico della funzione $f(x) = e^{x + \ln x^2}$.
- 17. Si studi il grafico della funzione $f(x) = x e^{-1/x^2}$.
- 18. Si studi il grafico della funzione $f(x) = \ln(x^2 3x + 2)$.
- 19. Si studi il grafico della funzione $f(x) = \frac{x^2 + x + 1}{4x + 2}$.
- 20. Si studi il grafico della funzione $f(x) = \sqrt{\frac{x^4 + 1}{x^2}}$.
- 21. Si studi il grafico della funzione $f(x) = \frac{x^3}{(x-1)^2}$.
- 22. Si studi il grafico della funzione $f(x) = e^{x^2 x + 1}$.
- 23. Si studi il grafico della funzione $f(x) = \frac{x^2 + 2 x}{x^2 + 1 x}$.

- 24. Si studi il grafico della funzione $f(x) = \sqrt{x^2 + x + 1}$.
- 25. Si studi il grafico della funzione $f(x) = (x-2)^{2/3} + (x-4)^{2/3}$.
- 26. Si studi il grafico della funzione $f(x) = \sqrt{x^3 4x}$.
- 27. Si studi il grafico della funzione $f(x) = \ln(3 + x^2) \ln x^2$.
- 28. Si studi il grafico della funzione $f(x) = x^4 x^2 \ln(1 + x^2)$.
- 29. Si studi il grafico della funzione $f(x) = \left(\frac{x^2 1}{x^2 + 1}\right)^2$.
- 30. Si studi il grafico della funzione $f(x) = \sqrt{\frac{x^2 4}{x^2 + 4}}$.

Soluzioni:

1. Il dominio della funzione

$$f(x) = \frac{2x}{x^2 - 4}$$

è $D_f = \{x \in \mathbb{R} : x \neq \pm 2\} = (-\infty, -2) \cup (-2, 2) \cup (2, +\infty)$. Si ha f(x) = 0 se e solo se x = 0: quindi f(x) interseca gli assi coordinati solo nell'origine. La funzione f(x) è positiva quando x > 0 e $x^2 > 4$ oppure x < 0 e $x^2 < 4$: quindi f(x) > 0 per $x \in (-2, 0) \cup (2, +\infty)$ e f(x) < 0 per $x \in (-\infty, -2) \cup (0, 2)$; cfr. la Figura 9.9.

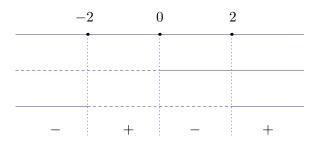


Figura 9.9: Studio del segno della funzione dell'esercizio 1.

Si ha

$$\lim_{x \to \pm \infty} f(x) = \lim_{x \to \pm \infty} \frac{2x}{x^2 \left(1 - \frac{4}{x^2}\right)} = \lim_{x \to \pm \infty} \frac{2x}{x^2} = \lim_{x \to \pm \infty} \frac{2}{x} = 0^{\pm},$$

dove 0^{\pm} significa che la funzione tende a zero da valori positivi se $x \to +\infty$ e da valori negativi se $x \to -\infty$. Inoltre, per $x \to \pm 2$, la funzione diverge: tenendo conto del segno del numeratore e del denominatore si vede che f(x) tende a $+\infty$ quando

9.8. ESERCIZI 135

 $x \to 2^+$ oppure $x \to -2^+$, mentre tende a $-\infty$ quando $x \to 2^-$ oppure $x \to -2^-$. Si ha pertanto

$$\lim_{x \to -\infty} f(x) = 0^{-}, \qquad \lim_{x \to -2^{-}} f(x) = -\infty, \qquad \lim_{x \to -2^{+}} f(x) = +\infty,$$

$$\lim_{x \to 2^{-}} f(x) = -\infty, \qquad \lim_{x \to 2^{+}} f(x) = +\infty, \qquad \lim_{x \to +\infty} f(x) = 0^{+}.$$

Ne concludiamo che la funzione ha un asintoto orizzontale y=0 per $x\to\pm\infty$ e ha due asintoti verticali in x=-2 e in x=2. La derivata di f(x) è

$$f'(x) = \frac{2(x^2 - 4) - (2x)^2}{(x^2 - 4)^2} = -\frac{2(x^2 + 4)}{(x^2 - 4)^2}.$$

Per studiare il segno di f'(x) si noti che il denominatore è sempre positivo (quando è definito, i.e. per $x \neq \pm 2$), quindi $f'(x) < 0 \ \forall x \in D_f$: ne segue che la funzione è strettamente decrescente su tutto il dominio. La derivata seconda di f(x) è

$$f''(x) = -\frac{2(2x)(x^2 - 4)^2 - 2(x^2 + 4)2(x^2 - 4)2x}{(x^2 - 4)^2} = \frac{-4x(x^2 - 4) + 8x(x^2 + 4)}{(x^2 - 4)^3}$$
$$= \frac{4x(2(x^2 + 4) - (x^2 - 4))}{(x^2 - 4)^3} = \frac{4x(x^2 + 12)}{(x^2 - 4)^3}.$$

Poiché $x^2 + 12 > 0 \ \forall x \in \mathbb{R}$, si ha: (a) f''(x) = 0 se e solo se x = 0, (b) f''(x) > 0 se x > 0 e $x^2 - 4 > 0$ oppure se x < 0 e $x^2 - 4 > 0$, (c) f''(x) < 0 nei casi restanti (i.e. se x > 0 e $x^2 - 4 < 0$ oppure se x < 0 e $x^2 - 4 > 0$); cfr. la Figura 9.10.

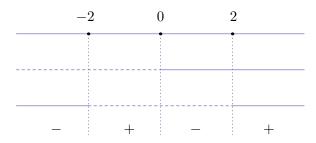


Figura 9.10: Studio del segno della derivata seconda della funzione dell'esercizio 1.

La funzione ha quindi in x=0 un punto di flesso obliquo (poiché $f'(0)=-1/2\neq 0$), è convessa quando f''(x)>0 e quindi per $x\in (-2,0)\cup (2,+\infty)$ ed è concava quando f''(x)<0 e quindi per $x\in (-\infty,-2)\cup (0,+2)$. In particolare la funzione f(x) è convessa dove è positiva e concava dove è negativa. Il grafico della funzione f(x) è rappresentato in Figura 9.11.

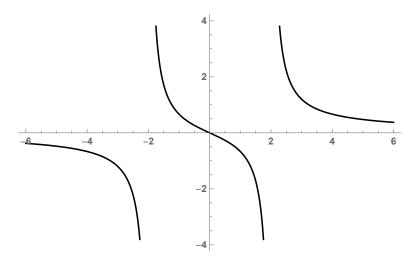


Figura 9.11: Grafico della funzione dell'esercizio 1.

2. Il dominio della funzione

$$f(x) = \frac{\ln(1+x)}{(1+x)^2}$$

è $D_f = \{x \in \mathbb{R} : x > -1\} = (-1, +\infty)$, poiché il denominatore è diverso da 0 per $x \neq -1$ e il logaritmo è definito per x > -1. Il denominatore è sempre positivo (quando definito), quindi f(x) = 0 se e solo se x = 0 (poiché $\ln(1+x) = \ln 1 = 0$ per x = 0): quindi f interseca gli assi coordinati solo nell'origine. La funzione f è positiva quando $\ln(1+x) > 0$, quindi per x > 0, e negativa quando $\ln(1+x) < 0$, quindi per $x \in (-1,0)$. Si ha

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{\frac{1}{1+x}}{2(1+x)} = \lim_{x \to \pm \infty} \frac{1}{(1+x)^2} = 0,$$

dove si è applicato il teorema di de l'Hôpital per calcolare il limite del rapporto delle due funzioni $\ln(1+x)$ e $(1+x)^2$ (che divergono entrambe per $x \to +\infty$). Si trova inoltre

$$\lim_{x \to -1^+} f(x) = -\infty,$$

poiché, per $x \to -1^+$, il numeratore $\ln(1+x)$ tende a $-\infty$ e il denominatore è positivo e tende a 0. Quindi la funzione ha un asintoto orizzontale y=0 per $x \to +\infty$ e un asintoto verticale in x=-1. La derivata di f(x) è

$$f'(x) = \frac{\frac{1}{1+x}(1+x)^2 - 2(1+x)\ln(1+x)}{(1+x)^4} = \frac{1-2\ln(1+x)}{(1+x)^3},$$

9.8. ESERCIZI 137

dove $(1+x)^3 > 0$ per x > -1. Quindi f'(x) = 0 quando

$$2\ln(1+x) = 1 \iff \ln(1+x) = \frac{1}{2} \iff 1+x = e^{1/2} = \sqrt{e} \iff x = x_0 := \sqrt{e} - 1.$$

Poiché il logaritmo è una funzione crescente si ha $\ln(x+1) > 1/2$ per $x > x_0$ e $\ln(1+x) < 1/2$ per $x < x_0$. Ne segue che f'(x) > 0 per $x \in (-1, x_0)$ e f'(x) < 0 per $x \in (x_0, +\infty)$. In particolare in $x = x_0$ la funzione f(x) ha un punto di massimo e si ha

$$f(x_0) = \frac{\ln(1+x_0)}{(1+x_0)^2} = \frac{1/2}{(1+\sqrt{e}-1)^2} = \frac{1}{2e} > 0.$$

La derivata seconda di f(x) è

$$f''(x) = \frac{-\frac{2}{1+x}(1+x)^3 - 3(1+x)^2(1-2\ln(1+x))}{(1+x)^6} = \frac{6\ln(1+x) - 5}{(1+x)^4}.$$

Poiché $(1+x)^4 > 0 \ \forall x > -1$, si ha: (a) f''(x) = 0 se e solo se

$$6\ln(1+x) = 5 \iff \ln(1+x) = \frac{5}{6} \iff 1+x = e^{5/6} \iff x = x_1 := e^{5/6} - 1,$$

(b) f''(x) > 0 se $x > x_1$, (c) f''(x) < 0 se $x < x_1$. Si noti che $x_1 > x_0$, poiché 5/6 > 1/2 e quindi $e^{5/6} > \sqrt{e}$. La funzione ha quindi in $x = x_1$ un punto di flesso obliquo (poiché $f'(x_1) \neq 0$), è convessa (f''(x) > 0) per $x \in (x_1, +\infty)$ ed è concava (f''(x) < 0) per $x \in (-1, x_1)$. Il grafico della funzione f(x) è rappresentato in Figura 9.12.

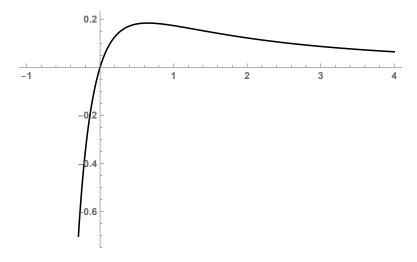


Figura 9.12: Grafico della funzione dell'esercizio 2.

3. Il dominio delle funzione

$$f(x) = \frac{e^{2x+1}}{x^2}$$

è $D_f = \{x \in \mathbb{R} : x \neq 0\} = (-\infty, 0) \cup (0, +\infty)$, poiché il denominatore non si deve annullare (quindi $x \neq 0$) e l'esponenziale è definito per ogni valore del suo argomento. La funzione f(x) è positiva per ogni x per cui è definita, poiché sia l'esponenziale sia il quadrato sono funzioni sempre positive. Si ha, applicando due volte il teorema di de l'Hôpital,

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{2e^{2x+1}}{2x} = \lim_{x \to +\infty} \frac{4e^{2x+1}}{2} = +\infty,$$
$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \frac{2e^{2x+1}}{2x} = \lim_{x \to -\infty} \frac{4e^{2x+1}}{2} = 0^+.$$

Si trova inoltre

$$\lim_{x \to 0^{\pm}} f(x) = \lim_{x \to 0^{\pm}} \frac{e}{x^2} = +\infty,$$

poiché il numeratore e^{2x+1} tende a $e^{0+1}=e^1=e$ per $x\to 0$ (e quindi ha limite finito), mentre x^2 tende a 0. La funzione f(x) ha perciò un asinitoto orizzontale y=0 per $x\to -\infty$ e un asintoto verticale in x=0. Si vede facilmente, sempre attraverso il teorema di de l'Hôpital, che

$$\lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \frac{2e^{2x+1}}{3x^2} = \lim_{x \to +\infty} \frac{4e^{2x+1}}{6x} = \lim_{x \to +\infty} \frac{8e^{2x+1}}{6} = +\infty,$$

quindi non esistono asintoti né orizzontali né obliqui a $+\infty$. La derivata di f(x) è

$$f'(x) = \frac{2e^{2x+1}(x-1)}{x^3},$$

quindi f'(x) = 0 se e solo se x = 1, mentre f'(x) > 0 se x > 1 e x > 0 oppure se x < 1 e x < 0. In conclusione f'(x) > 0 per x < 0 oppure x > 1 e f'(x) < 0 per 0 < x < 1: quindi f(x) è crescente per $x \in (-\infty, 0) \cup (1, +\infty)$ ed è decrescente per $x \in (0, 1)$; cfr. la Figura 9.31. In x = 1 la funzione ha un punto di minimo, tale che $f(1) = e^3$.

Figura 9.13: Studio del segno della derivata prima della funzione dell'esercizio 3.

9.8. ESERCIZI 139

La derivata seconda di f(x) è

$$f''(x) = \frac{4(2e^{2x+1}(x-1) + e^{2x+1})x^3 - 2e^{2x+1}(x-1)(3x^2)}{x^6}$$
$$= \frac{2e^{2x+1}(2x^2 - 4x + 3)}{x^4}.$$

Poiché $x^4 > 0 \ \forall x \neq 0$, il segno di f''(x) è determinato da $g(x) := 2x^2 - 4x + 3$. L'equazione di secondo g(x) = 0 non ammette radici reali poiché il discrimante è $\Delta = 4^2 - 4 \cdot 6 = -8 < 0$; poiché il coefficiente di x^2 è positivo (vale 2), di ha quindi g(x) > 0. In conclusione $f''(x) > 0 \ \forall x \in D_f$, quindi la funzione f(x) è sempre convessa. Il grafico della funzione f(x) è rappresentato in Figura 9.14.

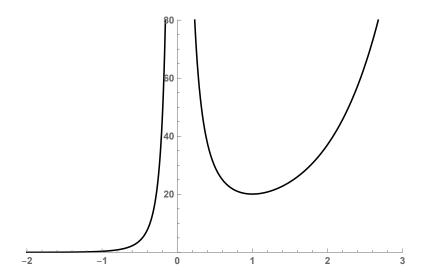


Figura 9.14: Grafico della funzione dell'esercizio 3.

4. La funzione

$$\frac{x^3 + x^2 + 1}{x^2 + 1}$$

è il rapporto di due polinomi; poiché $x^2+1>0$, il dominio di f è $D_f=\mathbb{R}.$ Si ha

$$\lim_{x\to +\infty} f(x) = \lim_{x\to +\infty} \frac{x^3\left(1+\frac{1}{x}+\frac{1}{x^3}\right)}{x^2\left(1+\frac{1}{x^2}\right)} = \lim_{x\to +\infty} \frac{x^3}{x^2} = \lim_{x\to +\infty} x = \pm\infty,$$

quindi la funzione diverge per $x \to \pm \infty$. Per studiare l'esistenza di eventuali asintoti obliqui, della forma y = ax + b, si calcola innanzitutto il limite

$$a := \lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \frac{x^3 \left(1 + \frac{1}{x} + \frac{1}{x^3}\right)}{x^3 \left(1 + \frac{1}{x^2}\right)} = \lim_{x \to +\infty} \frac{x^3}{x^3} = 1.$$

Poiché il limite a = 1 è finito si calcola successivamente il limite

$$b := \lim_{x \to +\infty} (f(x) - x) = \lim_{x \to +\infty} \frac{x^3 + x^2 + 1 - x - x^3}{x^2 + 1}$$
$$= \lim_{x \to +\infty} \frac{x^2 - x + 1}{x^2 + 1} = \frac{x^2 \left(1 - \frac{1}{x} + \frac{1}{x^2}\right)}{x^2 \left(1 + \frac{1}{x^2}\right)} = \lim_{x \to +\infty} \frac{x^2}{x^2} = 1.$$

Quindi, sia per $x \to +\infty$ che per $x \to -\infty$, si ha un asintoto obliquo definito dall'equazione y = x + 1. La derivata di f(x) è

$$f'(x) = \frac{(3x^2 + 2x)(x^2 + 1) - (x^3 + x^2 + 1)2x}{(x^2 + 1)^2}$$
$$= \frac{3x^4 + 2x^3 + 3x^2 + 2x - 2x^4 - 2x^3 - 2x}{(x^2 + 1)^2} = \frac{x^2(x^2 + 3)}{(x^2 + 1)^2}.$$

Si ha quindi f'(x) = 0 per x = 0, mentre $f(x) > 0 \ \forall x \neq 0$, quindi che la funzione f è crescente (strettamente crescente per $x \neq 0$). La derivata seconda di f(x) è

$$f''(x) = \frac{(4x^3 + 6x)(x^2 + 1)^2 - (x^4 + 3x^2)4x(x^2 + 1)}{(x^2 + 1)^4}$$
$$= \frac{(4x^3 + 6x)(x^2 + 1) - 4x(x^4 + 3x^2)}{(x^2 + 1)^3} = \frac{2x(3 - x^2)}{(x^2 + 1)^3}.$$

Poiché $1+x^2>0 \ \forall x\neq 0$, il segno di f''(x) è positivo se x>0 e $3-x^2>0$ (ovvero $-\sqrt{3}< x<\sqrt{3}$) oppure x<0 e $3-x^2<0$ (ovvero $x<-\sqrt{3}$ o $x>\sqrt{3}$) e negativo altrimenti. Quindi f''(x)>0 (e f(x) è convessa) se $x\in (0,\sqrt{3})\cup (-\infty,-\sqrt{3})$, mentre f''(x)<0 (e f(x) è concava) se $x\in (-\sqrt{3},0)\cup (\sqrt{3},+\infty)$; cfr. la Figura 9.37.

9.8. ESERCIZI 141

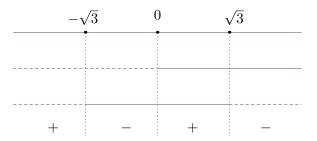


Figura 9.15: Studio del segno della derivata seconda della funzione dell'esercizio 4.

Il grafico della funzione f(x) è rappresentato in Figura 9.16.

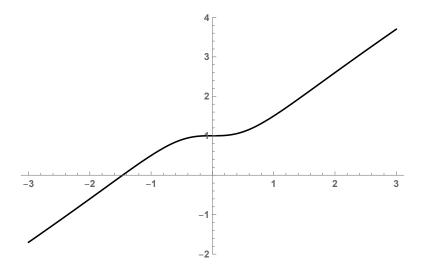


Figura 9.16: Grafico della funzione dell'esercizio 4.

5. La funzione

$$r e^{-x^2}$$

è definita per ogni $x \in \mathbb{R}$, quindi il suo dominio è $D_f = \mathbb{R}$. La funzione esponenziale è strettamente positiva, quindi il segno di f(x) è dato dal segno di x: f(x) > 0 per x > 0 e f(x) < 0 per x < 0. Inoltre f(x) = 0 se e solo se x = 0, quindi f attraversa gli assi coordinati solo nell'origine. Poiché $e^{-x^2} = 1/e^{x^2}$, applicato il teorema di de l'Hôpital per calcolare il limite del rapporto delle due funzioni x e e^{x^2} , si trova

$$\lim_{x\to +\infty} f(x) = \lim_{x\to +\infty} \frac{x}{\mathrm{e}^{x^2}} = \lim_{x\to +\infty} \frac{1}{2x\mathrm{e}^{x^2}} = 0^\pm,$$

dove 0^{\pm} indica che la funzione tende a 0 da valori positivi quando $x \to +\infty$ e da valori negativi quando $x \to -\infty$. Quindi la funzione ha un asintoto orizzontale y = 0 per $x \to \pm \infty$. La derivata di f(x) è

$$f'(x) = (1 - 2x^2) e^{-x^2}$$

da cui si vede che f'(x) = 0 se e solo se $x^2 = 1/2$, i.e. per $x = \pm x_0$, dove $x_0 := 1/\sqrt{2}$. Inoltre f'(x) > 0 per $-x_0 < x < x_0$, mentre f'(x) < 0 per $x < -x_0$ e per $x > x_0$. Quindi f(x) è crescente nell'intervallo $(-x_0, x_0)$ ed è decrescente negli intervalli $(-\infty, -x_0)$ e $x_0, +\infty$). La derivata seconda di f(x) è

$$f''(x) = -4xe^{-x^2} + 2x^2(2xe^{-x^2}) = 2x(2x^2 - 3)e^{-x^2},$$

quindi f''(x) = 0 se x = 0 oppure se $x = \pm x_1$, dove $x_1 := \sqrt{3/2}$. Si hanno quindi tre flessi obliqui, in x = 0, $x = -x_1$ e $x = x_1$. Perché risulti f''(x) > 0 si deve avere x > 0 e $x^2 > 3/2$ (ovvero $x > x_1$ oppure $x < -x_1$) oppure x < 0 e $x^2 < 3/2$ (ovvero $-x_1 < x < x_1$). Ne concludiamo che si ha f''(x) > 0 (e quindi f(x) è convessa) per $x \in (-x_1, 0) \cup (x_1, +\infty)$ e si ha f''(x) < 0) (e quindi f(x) è concava) per $x \in (-\infty, -x_1) \cup (0, x_1)$; cfr. la Figura 9.17.

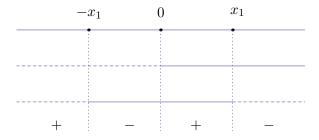


Figura 9.17: Studio del segno della derivata seconda della funzione dell'esercizio 5.

Il grafico della funzione è rappresentato in Figura 9.18.

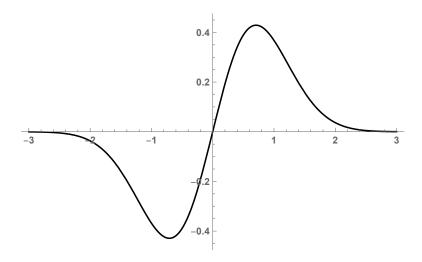


Figura 9.18: Grafico della funzione dell'esercizio 5.

9.8. ESERCIZI 143

6. Il dominio della funzione

$$f(x) = \frac{x^2 + 3x - 1}{x + 2}$$

è $D_f = \{x \in \mathbb{R} : x \neq -2\} = (-\infty, -2) \cup (-2, +\infty)$. Per x = 0 si ha f(0) = -1, mentre risulta f(x) = 0 per $x = x_{\pm}$, dove

$$x_{\pm} = \frac{1}{2} \left(-3 \pm \sqrt{13} \right),$$

quindi la funzione attraversa l'asse delle ascisse in $x = x_-$ e in x_+ e l'asse delle ordinate in x = -1. Inoltre f(x) è positiva quando x > -2 e $x \notin (x_-, x_+)$ oppure x < 2 e $x \in (x_-, x_+)$, mentre è negativa quando x > -2 e $x \in (x_-, x_+)$ oppure x < 2 e $x \notin (x_-, x_+)$; in conclusione si ha f(x) > 0 per $x \in (x_-, x_+) \cup (x_+, x_+)$ e f(x) < 0 per $x \in (-\infty, x_-) \cup (-2, x_+)$; cfr. la Figura 9.19.

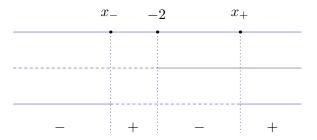


Figura 9.19: Studio del segno della funzione dell'esercizio 6.

Si ha

$$\lim_{x\to\pm\infty}f(x)=\lim_{x\to\pm\infty}\frac{x^2\left(1+\frac{3}{x}-\frac{1}{x^2}\right)}{x\left(1+\frac{2}{x}\right)}=\lim_{x\to\pm\infty}\frac{x^2}{x}=\lim_{x\to\pm\infty}x=\pm\infty.$$

Per individuare l'esistenza di eventuali asintoti obliqui della forma y = ax + b, si studia per prima cosa il limite

$$a := \lim_{x \to \pm \infty} \frac{f(x)}{x} = \lim_{x \to \pm \infty} \frac{x^2 \left(1 + \frac{3}{x} - \frac{1}{x^2}\right)}{x^2 \left(1 + \frac{2}{x}\right)} = \lim_{x \to \pm \infty} \frac{x^2}{x^2} = 1,$$

quindi, poiché a=1 è finito, si studia il limite

$$b := \lim_{x \to \pm \infty} (f(x) - x) = \lim_{x \to \pm \infty} \frac{x^2 + 3x - 1 - x^2 - 2x}{x + 2} = \lim_{x \to \pm \infty} \frac{x - 1}{x + 2} = 1,$$

quindi y = x + 1 è un asintoto obliquo sia per $x \to +\infty$ che per $x \to -\infty$. Si ha poi

$$\lim_{x \to \pm -2^+} f(x) = -\infty, \qquad \lim_{x \to \pm -2^-} f(x) = +\infty,$$

poiché $x^2 + 3x - 1 \rightarrow -3$ per $x \rightarrow -2^{\pm}$, mentre x + 2 tende a 0 da valori positivi per x > -2 e da valori negativi per x < -2. Quindi in x = -2 la funzione f ha un asintoto verticale. La derivata di f(x) è

$$f'(x) = \frac{(2x+3)(x+2) - (x^2 + 3x - 1)}{(x+2)^2} = \frac{x^2 + 4x + 7}{(x+2)^2},$$

dove $(x+2)^2 > 0 \ \forall x \neq -2 \ e \ x^2 + 4x + 7 > 0 \ \forall x \in \mathbb{R}$ (poiché le radici dell'equazione $x^2 + 4x + 7 = 0$ non sono reali, essendo il suo discriminante $\Delta = 4^2 - 4 \cdot 7 = -12 < 0$, e il coefficiente di x^2 è positivo). Quindi $f'(x) > 0 \ \forall x \in D_f$, da cui segue che la funzione è strettamente crescente. La derivata seconda di f(x) è

$$f''(x) = -\frac{(2x+4)(x+2)^2 - 2(x^2+4x+7)(x+2)}{(x+2)^4}$$
$$= -\frac{(2x+4)(x+2) - 2(x^2+4x+7)}{(x+2)^3} = \frac{6}{(x+2)^3},$$

quindi f''(x) > 0 se x < -2 e f''(x) < 0 se x > -2: la funzione è convessa per x < -2 ed è concava per x > -2. Il grafico è rappresentato in Figura 9.20.

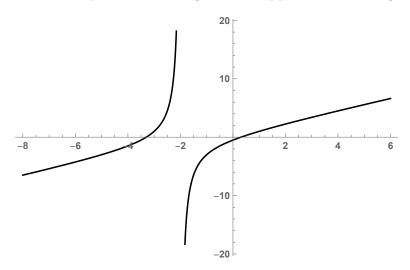


Figura 9.20: Grafico della funzione dell'esercizio 6.

7. La funzione f(x) è definita per ogni $x \in \mathbb{R}$, quindi il suo dominio è $D_f = \mathbb{R}$. Si ha

$$f(x) = \begin{cases} e^{-x} (x^2 + 4), & x \ge 0, \\ e^x (x^2 + 4), & x < 0, \end{cases}$$

quindi dobbiamo studiare la funzione $f_1(x) := e^{-x} (x^2 + 4)$ nel dominio $x \ge 0$ e la funzione $f_2(x) := e^x (x^2 + 4)$ nel dominio x < 0. O, più semplicemente, possiamo studiare la sola funzione $f_1(x)$ per $x \ge 0$ e poi utilizzare il fatto che la funzione f(x) è pari, i.e.

$$f(-x) = e^{-|-x|} ((-x)^2 + 4) = e^{-|x|} (x^2 + 4) = f(x),$$

per ottenere il grafico della funzione per x < 0 da quello per $x \ge 0$ tramite una riflessione rispetto all'asse y (cfr. la discussione al paragrafo §3.9). Quindi studiamo $f_1(x)$ per $x \in [0, +\infty)$. Per x = 0 si ha f(0) = 4, mentre per x > 0 si ha f(x) > 0, quindi la funzione è strettamente positiva; in particolare non interseca mai l'asse x. Si ha

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{x^2 + 4}{e^x} = \lim_{x \to +\infty} \frac{2x}{e^x} = \lim_{x \to +\infty} \frac{2}{e^x} = 0,$$

avendo applicato due volte il teorema di de l'Hôpital per studiare la forma indeterminata. Quindi f(x) ha un asintoto orizzontale y=0 per $x\to +\infty$. La derivata di $f_1(x)$ è

$$f_1'(x) = -e^{-x} (x^2 - 2x + 4),$$

quindi $f_1'(x) = 0$ se e solo se $x^2 - 2x + 4 = 0$. D'altra parte l'equazione di secondo grado $x^2 - 2x + 4 = 0$ non ammette radici reali poiché il suo discriminante vale $\Delta = 4 - 16 = -12 < 0$. Poiché il coefficiente di x^2 è positivo (vale 1), la parabola $y = x^2 - 2x + 4$ si trova sempre nel semipiano superiore, quindi $x^2 - 2x + 4 > 0 \ \forall x \in \mathbb{R}$. Ne segue che $f_1'(x) < 0 \ \forall x \in \mathbb{R}_+$: la funzione $f_1(x)$ è strettamente decrescente. Si noti anche che

$$\lim_{x \to 0+} f_1'(x) = -4,$$

quindi la funzione parte da x=0 con tangente obliqua, diretta verso il basso. La derivata seconda di $f_1(x)$ è

$$f_1''(x) = e^{-x} (x^2 - 4x + 6 - (2x - 4)) = e^{-x} (x^2 - 4x + 6)$$
.

Di nuovo, l'equazione di secondo grado $x^2 - 4x + 6 = 0$ non ammette radici reali poiché il suo discriminante è $\Delta = 16 - 24 = -8 < 0$, così che, tenuto conto che il segno del coefficiente di x^2 è positivo, possiamo concludere che $x^2 - 4x + 6 > 0$ e quindi $f_1''(x) > 0$ per ogni $x \ge 0$. Ne deduciamo che la funzione f_1 è convessa. Il grafico della funzione $f_2(x)$ per x < 0 si ottiene, come detto, per riflessione rispetto all'asse y del grafico di $f_1(x)$. In conclusione il grafico di f(x) è rappresentato in Figura 9.21.

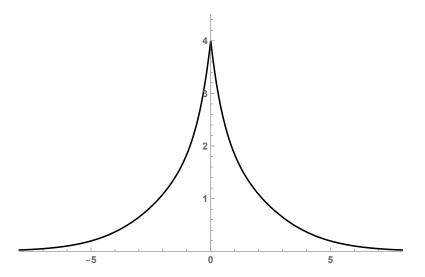


Figura 9.21: Grafico della funzione dell'esercizio 7.

8. Il dominio della funzione

$$f(x) = e^{-|x|} |x^2 - 1|$$

è $D_f=\mathbb{R}$. La funzione è sempre positiva (e strettamente positiva per $x\neq \pm 1$). Tenendo conto che

$$|x| = \begin{cases} x, & x \ge 0, \\ -x, & x < 0 \end{cases},$$

$$|x^2 - 1| = \begin{cases} x^2 - 1, & x^2 - 1 \ge 0 \iff x \ge 1 \text{ oppure } x \le -1, \\ 1 - x^2, & x^2 - 1 < 0 \iff -1 < x < 1, \end{cases}$$

si ha

$$f(x) = \begin{cases} e^{-x} (x^2 - 1), & x \ge 1, \\ e^{-x} (1 - x^2), & 0 \le x < 1, \\ e^{x} (1 - x^2), & -1 \le x \le 0, \\ e^{x} (x^2 - 1), & x < -1. \end{cases}$$

quindi dobbiamo studiare una funzione diversa a seconda dell'intervallo che scegliamo.

• Iniziamo dall'intervallo $[1, +\infty)$. In tal caso si ha

$$\lim_{x \to 1^+} f(x) = f(1) = 0,$$

poiché la funzione f(x) è continua, e

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{x^2 - 1}{e^x} = \lim_{x \to +\infty} \frac{2x}{e^x} = \lim_{x \to +\infty} \frac{2}{e^x} = 0,$$

per il teorema di de l'Hôpital (applicato due volte). La derivata prima e la derivata seconda di f(x) sono

$$f'(x) = e^{-x} (-x^2 + 2x + 1),$$
 $f''(x) = e^{-x} (x^2 - 4x + 1),$

rispettivamente. L'equazione di secondo grado $-x^2+2x+1=0$ ha due radici reali $x=1\pm\sqrt{2}$, quindi $-x^2+2x+1>0$ per $x\in(1-\sqrt{2},1+\sqrt{2})$. Poiché il segno di f'(x) per $x\geq 1$ è determinato dal segno del polinomio $-x^2+2x+1$, ne concludiamo che f'(x)>0 per $x\in[1,1+\sqrt{2})$ e f'(x)<0 per $x\in(1+\sqrt{2},+\infty)$. Quindi f(x) ha un massimo in $x=1+\sqrt{2}$ (dove f'(x) si annulla). Analogamente si trova che l'equazione di secondo grado $x^2-4x+1=0$ ha due radici reali $x=2\pm\sqrt{3}$, quindi $x^2-4x+1>0$ per $x\in(-\infty,2-\sqrt{3})\cup(2+\sqrt{3},+\infty)$. Poiché il segno di f''(x) per $x\geq 1$ è determinato dal segno del polinomio x^2-4x+1 , ne concludiamo che f''(x)>0 per $x>2+\sqrt{3}$) e f''(x)<0 per $x\in(1,2+\sqrt{3})$. quindi la funzione ha un flesso obliquo in $x=x_1:=2+\sqrt{3}$, è convessa per $x>x_1$ ed è concava per $0< x< x_1$.

• Consideriamo ora l'intervallo $x \in [0,1]$ (in x=1 le due determinazioni della funzione per x>1 e x<1 coincidono). Si ha

$$\lim_{x \to 0^+} f(x) = f(0) = 1,$$

di nuovo usando la continuità della funzione. Inoltre

$$f'(x) = e^{-x} (x^2 - 2x - 1), f''(x) = e^{-x} (-x^2 + 4x + 1).$$

A differenza di prima ora si ha $x^2-2x-1>0$ per $x<1-\sqrt{2}$ oppure per $x>1+\sqrt{2}$). Poiché entrambi i punti $x=1\sqrt{2}$ sono esterni all'intervallo [0,1], ne concludiamo che f'(x)<0 e quindi f è strettamente decrescente per $x\in[0,1]$. Discutendo il segno della derivata seconda si vede che $-x^2+4x+1>0$ per $x\in(2-\sqrt{3},2+\sqrt{3})$. Poiché $0<2-\sqrt{3}<1<2+\sqrt{3}$, ne concludiamo che f''(x)<0 (e quindi f(x) è concava) per $x\in(0,2-\sqrt{3})$ e f''(x)>0 (e quindi f(x) è convessa) per $x\in(2-\sqrt{3},1)$.

• I casi restanti, corrispondenti agli intervalli [-1,0] e $(-\infty,-1]$, possono essere discussi in modo assolutamente analogo. Oppure, più semplicemente si osserva che la funzione è pari, così che il grafico per x < 0 si ottiene dal grafico per $x \ge 0$ attraverso una riflessione rispetto all'asse y (cfr. la proprietà 3 del paragrafo §3.9). In conclusione si ottiene il grafico rappresentato in Figura 9.22. Si noti in particolare che il limite destro e il limite sinistro della derivata di f(x) sono diversi per ogni valore di x in cui cambia la determinazione di qualche modulo:

$$\lim_{x \to 0^{\pm}} f'(x) = \mp 1, \qquad \lim_{x \to 1^{\pm}} f'(x) = \pm \frac{2}{e}, \qquad \lim_{x \to -1^{\pm}} f'(x) = \pm \frac{2}{e},$$

quindi, mentre f(x) è continua per ogni $x \in \mathbb{R}$, la sua derivata f'(x) è continua ovunque tranne che in $x \in \{0, \pm 1\}$.

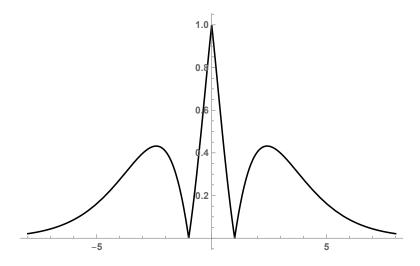


Figura 9.22: Grafico della funzione dell'esercizio 8.

9. Il dominio della funzione

$$f(x) = e^{-x^2 + 2x + 1} (2 - x)$$

è $D_f = \mathbb{R}$. Poiché $e^{-x^2+2x+1} = 1/e^{x^2-2x-1}$ si ha, per il teorema di de l'Hôpital,

$$\lim_{x \to \pm \infty} f(x) = \lim_{x \to \pm \infty} \frac{2-x}{\mathrm{e}^{x^2-2x-1}} = \lim_{x \to \pm \infty} \frac{-1}{\mathrm{e}^{x^2-2x-1}(2x-2)} = 0^{\mp},$$

i.e. la funzione f(x) tende a 0 da valori negativi per $x \to +\infty$ e da valori positivi per $x \to -\infty$: in entrambi i casi la funzione f(x) ha un asintoto orizzontale y = 0. La derivata di f(x) è

$$f'(x) = e^{-x^2 + 2x + 1} (2x^2 - 6x + 3),$$

quindi il segno di f'(x) è dato dal segno del polinomio quadratico $2x^2 - 6x + 3$. L'equazione $2x^2 - 6x + 3 = 0$ ha le due radici reali

$$x_1 = \frac{1}{2} (3 - \sqrt{3}), \qquad x_2 = \frac{1}{2} (3 + \sqrt{3}),$$

quindi, tenendo conto che il segno del coefficiente di x^2 è positivo (vale 2), si ha f'(x) > 0 per $x < x_1$ oppure per $x > x_2$ e f'(x) < 0 per $x_1 < x < x_2$ (e $f'(x_1) = f'(x_2) = 0$). Pertanto la funzione f(x) è crescente per $x \in (-\infty, x_1)$, decrescente per $x \in (x_1, x_2)$ e di nuovo crescente per $x \in (x_2, +\infty)$. In particolare avrà un punto

di massimo assoluto in $x = x_1$ e un punto di minimo assoluto in $x = x_2$. La derivata seconda di f(x) è data da

$$f''(x) = -xe^{-x^2+2x+1} (2x^2 - 8x + 7)$$

Il segno si discute in modo analogo: l'equazione di secondo grado $2x^2 - 8x + 7 = 0$ ha le due radici reali

$$x_3 = \frac{1}{2} \left(4 - \sqrt{2} \right), \qquad x_4 = \frac{1}{2} \left(4 + \sqrt{2} \right),$$

quindi $2x^2 - 8x + 7 > 0$ per $x < x_3$ e per $x > x_4$, mentre $2x^2 - 8x + 7 < 0$ per $x \in (x_3, x_4)$. Si noti che $0 < x_1 < x_3 < x_2 < x_4$. Il segno di f''(x) è determinato dal segno di $-x(2x^2 - 8x + 7)$, quindi f''(x) > 0 se x < 0 e $x \notin (x_3, x_4)$ oppure se x > 0 e $x \in (x_3, x_4)$: ne segue che f''(x) > 0 se $x \in (-\infty, 0) \cup (x_3, x_4)$, mentre f''(x) < 0 se $x \in (0, x_3) \cup (x_4, +\infty)$. In x = 0, $x = x_3$ e $x = x_4$ la funzione ha un flesso obliquo, è convessa negli intervalli $(-\infty, 0)$ e (x_3, x_4) ed è concava negli intervalli $(0, x_3)$ e $(x_4, +\infty)$. Il grafico della funzione è rappresentato in Figura 9.23.

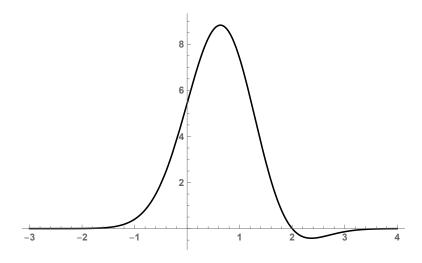


Figura 9.23: Grafico della funzione dell'esercizio 9.

10. Perché la funzione

$$f(x) = \sqrt{\frac{x^3}{x+3}}$$

sia definita occorre innanzitutto che l'argomento della radice sia definito, e quindi $x \neq -3$, inoltre esso deve essere positivo, e quindi

$$\frac{x^3}{x+3} \ge 0 \implies x \ge 0, \ x > -3 \text{ oppure } x \le 0, \ x < -3,$$

il che comporta che si deve avere $x \geq 0$ oppure x < -3. Da questo si deduce che il dominio di f è $D_f = (-\infty, -3) \cup [0, +\infty)$. Inoltre $f(x) \geq 0 \ \forall x \in D_f$ ed è nulla solo in x = 0: infatti in x = 0 la funzione è definita e vale f(0) = 0. Al contrario in x = 3 la funzione ha un asintoto verticale e

$$\lim_{x \to -3^{-}} f(x) = +\infty,$$

poiché $x^3 \to -3^3 = -27$ per $x \to -3$, mentre $x + 3 \to 0^-$ per $x \to -3^-$. Inoltre, applicando il teorema di de l'Hôpital, si trova

$$\lim_{x \to \pm \infty} \frac{x^3}{x + 3} = \lim_{x \to \pm \infty} \frac{3x^2}{1} = 3 \lim_{x \to \pm \infty} x^2 = +\infty,$$

che mostra che $x^3/(x+3)$ e quindi anche f(x), che ne è la radice quadrata, diverge a $\pm \infty$. Per studiare l'esistenza di un eventuale asintoto obliquo della forma y=ax+b, per $x \to +\infty$, si calcola

$$a := \lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to \pm \infty} \frac{1}{x} \sqrt{\frac{x^3}{x+3}} = \lim_{x \to \pm \infty} \sqrt{\frac{x^3}{x^2(x+3)}} = \lim_{x \to \pm \infty} \sqrt{\frac{x^3}{x^3+3x^2}}.$$

D'altra parte, sempre per l'Hôpital, si ha

$$\lim_{x \to \pm \infty} \frac{x^3}{x^3 + 3x^2} = \lim_{x \to \pm \infty} \frac{3x^2}{3x^2 + 6x} = \lim_{x \to \pm \infty} \frac{6x}{6x + 6} = 1,$$

da cui, usando la continuità della funzione radice quadrata, si ottiene

$$\lim_{x \to \pm \infty} \sqrt{\frac{x^3}{x^3 + 3x^2}} = \sqrt{\lim_{x \to \pm \infty} \frac{x^3}{x^3 + 3x^2}} = \sqrt{1} = 1,$$

che implica a = 1. Si studia quindi il limite

$$b := \lim_{t \to +\infty} \left(f(x) - x \right) = \lim_{x \to +\infty} \left(\sqrt{\frac{x^3}{x+3}} - x \right) = \lim_{x \to +\infty} \left(\sqrt{\frac{x^3}{x+3}} - \sqrt{x^2} \right),$$

dove si è usato che $x=|x|=\sqrt{x^2}$ per x>0 (noi siamo interessati al limite $x\to +\infty$). Razionalizzando, otteniamo

$$\sqrt{\frac{x^3}{x+3}} - \sqrt{x^2} = \sqrt{\frac{x^3}{x+3}} - \sqrt{x^2 \frac{x+3}{x+3}} = \sqrt{\frac{1}{x+3}} \left(\sqrt{x^3} - \sqrt{x^3 + 3x^2} \right) \\
= \sqrt{\frac{1}{x+3}} \left(\sqrt{x^3} - \sqrt{x^3 + 3x^2} \right) \cdot \frac{\sqrt{x^3} + \sqrt{x^3 + 3x^2}}{\sqrt{x^3} + \sqrt{x^3 + 3x^2}} \\
\sqrt{\frac{1}{x+3}} \left(\frac{x^3 - x^3 - 3x^2}{\sqrt{x^3} + \sqrt{x^3 + 3x^2}} \right) = -\sqrt{\frac{1}{x+3}} \left(\frac{3x^2}{\sqrt{x^3} + \sqrt{x^3 + 3x^2}} \right),$$

che possiamo riscrivere

$$-\frac{3x^2}{\left(x^{1/2}\sqrt{1+\frac{3}{x}}\right)\left(x^{3/2}\left(1+\sqrt{1+\frac{3}{x}}\right)\right)} = -\frac{3}{\sqrt{1+\frac{3}{x}}\left(1+\sqrt{1+\frac{3}{x}}\right)},$$

dove abbiamo usato che $\sqrt{x} = x^{1/2}$ e $\sqrt{x^3} = x^{3/2}$. Poiché $3/x \to 0$ per $x \to +\infty$ si trova b = -3/2. Quindi per $x \to +\infty$ la funzione f(x) ha un asintoto obliquo della forma y = ax + b, con a = 1 e b = -3/2. Con conti assolutamente analoghi si trova che esiste un asintoto obliquo anche per $x \to -\infty$, in questo caso della forma y = ax + b con a = -1 e b = 3/2. La derivata di f(x) è

$$f'(x) = \frac{x^2(2x+9)}{2\sqrt{\frac{x^3}{x+3}}(x+3)^2}.$$

Per semplificare la discussione distinguiamo i casi $x \ge 0$ e x < 0. Se $x \ge 0$, possiamo riscrivere f'(x) come

$$f'(x) = \frac{x^2(2x+9)(x+3)^{1/2}}{2x^{3/2}(x+3)^2} = \frac{x^{1/2}(2x+9)}{2(x+3)^{3/2}}.$$

Per $x \ge 0$ si ha x+3>0 e 2x+9>0, quindi f'(x)>0 $\forall x>0$ (e solo in x=0 si ha f'(x)=0), così che la funzione è crescente per x>0. Derivando ulteriormente l'espressione sopra per f'(x) e semplificando si trova

$$f''(x) = \frac{27}{4x^{1/2}(x+3)^{5/2}},$$

da cui si evince che f''(x) > 0 per x > 0. Quindi la funzione f(x) è convessa per x > 0. Se invece x < -3 sia x che x + 3 sono negativi, quindi, riscrivendo

$$\sqrt{\frac{x^3}{x+3}} = \sqrt{\frac{-x^3}{-(x+3)}} = \sqrt{\frac{(-x)^3}{-(x+3)}},$$

otteniamo

$$f'(x) = \frac{x^2(2x+9)(-x-3)^{1/2}}{2(-x)^{3/2}(x+3)^2} = \frac{(-x)^2(2x+9)(-x-3)^{1/2}}{2(-x)^{3/2}(-x-3)^2} = \frac{(-x)^{1/2}(2x+9)}{2(-x-3)^{3/2}}.$$

dove abbiamo usato che $x^2 = (-x)^2$ e $(x+3)^2 = (-x-3)^2$. Possiamo ragionare allora come nel caso precedente $(x \ge 0)$, con l'unica differenza che ora, mentre -x-3>0 per x < -3, al contrario 2x + 9 di può annullare per x < -3, precisamente per x = -9/2. Quindi f'(x) = 0 per x = -9/2, f'(x) > 0 per $x \in (-9/2, -3)$ e

f'(x) < 0 per $x \in (-\infty, -9/2)$: la funzione f è decrescente per $x \in (-\infty, -9/2)$ e crescente per $x \in (-9/2, -3)$, e ha in x = -9/2 un minimo assoluto (positivo). La derivata seconda si calcola analogamente al caso precedente e si trova

$$f''(x) = \frac{27}{4(-x)^{1/2}(-x-3)^{5/2}},$$

che implica che f''(x) > 0 anche per x < -3. Quindi f è convessa anche nell'intervallo $(-\infty, -3)$. Il grafico della funzione è rappresentato in Figura 9.24.

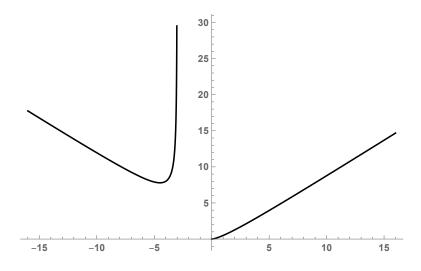


Figura 9.24: Grafico della funzione dell'esercizio 10.

11. La funzione

$$f(x) = \ln \frac{x^2 - 1}{x^2 + 1}$$

è definita per x tale che

$$\frac{x^2 - 1}{x^2 + 1} > 0 \implies x^2 > 1 \implies x > 1 \text{ oppure } x < -1,$$

da cui si ottiene $D_f = (-\infty, -1) \cup (1, +\infty)$. Si ha

$$\lim_{x \to +\infty} \frac{x^2 - 1}{x^2 + 1} = \lim_{x \to +\infty} \frac{x^2 \left(1 - \frac{1}{x^2}\right)}{x^2 \left(1 + \frac{1}{x^2}\right)} = \lim_{x \to +\infty} \frac{x^2}{x^2} = 1,$$

così che, per continuità,

$$\lim_{x \to +\infty} \ln \frac{x^2 - 1}{x^2 + 1} = \ln 1 = 0,$$

quindi la funzione ha un asintoto orizzontale y=0 per $x\to\pm\infty$. Inoltre

$$\lim_{x \to -1^{-}} f(x) = \lim_{x \to 1^{+}} f(x) = -\infty,$$

quindi la funzione ha due asintoti verticali, uno in x=-1 e uno in x=1. La derivata di f(x) è

$$f'(x) = \frac{4x}{x^4 - 1},$$

dove $x^4 - 1 > 0$ per $x \notin (-1,1)$. Quindi f'(x) > 0 (i.e. f è crescente) per x > 0 e f'(x) < 0 (e f è decrescente) per x < 0. La derivata seconda di f(x) è

$$f''(x) = -\frac{4(1+3x^4)}{(x^4-1)^2},$$

quindi f''(x) < 0 per ogni $x \in D_f$, da ci si deduce che f(x) è concava. Il grafico della funzione è rappresentato in Figura 9.25.

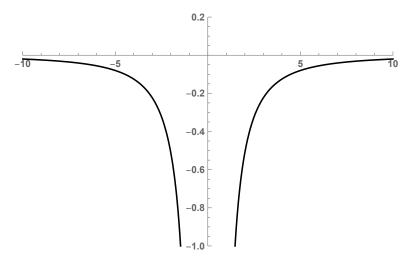


Figura 9.25: Grafico della funzione dell'esercizio 11.

12. Perché la funzione

$$f(x) = \sqrt{\frac{x^2 + 1}{x^2 - 1}}$$

sia definita occorre che l'argomento della radice sia non negativo. Poiché $x^2+1>0$, dobbiamo richiedere $x^2-1>0$ (il segno uguale va escluso poiché l'argomento della radice non è definito per $x^2=1$). In conclusione f(x) è definita per x>1 o x<-1, quindi $D_f=(-\infty,-1)\cup(1,+\infty)$. In particolare f(x) ha due asintoti verticali, uno in x=-1 e uno in x=1. Inoltre si ha

$$\lim_{x \to \pm \infty} \frac{x^2 + 1}{x^2 - 1} = \lim_{x \to \pm \infty} \frac{2x}{2x} = \lim_{x \to \pm \infty} \frac{2}{2} = 1,$$

per il teorema di de l'Hôpital, e poiché la funzione radice quadrata è continua concludiamo che

$$\lim_{x \to \pm \infty} \sqrt{\frac{x^2 + 1}{x^2 - 1}} = \sqrt{1} = 1.$$

Quindi la funzione f(x) ha un asintoto orizzontale y=1 sia per $x\to +\infty$ che per $x\to -\infty$. La derivata di f(x) è

$$f'(x) = -\frac{2x}{(x^2 - 1)^2} \sqrt{\frac{x^2 - 1}{x^2 + 1}} = -\frac{2x}{\sqrt{(x^2 - 1)^3 (x^2 + 1)}},$$

così che il segno di f'(x) è determinato dal segno di x: in particolare f'(x) > 0 per x < -1 e f'(x) < 0 per x > 1, i.e. la funzione è decrescente nell'intervallo $(-\infty, -1)$ e crescente nell'intervallo $(1, +\infty)$. La derivata seconda di f(x) è

$$f''(x) = \frac{(x^2 - 1)^2 (6x^4 + 4x^2 + 2)}{(x^2 - 1)^{3/2} (x^2 + 1)^{3/2}},$$

da cui si vede che $f''(x) > 0 \ \forall x \in D_f$ (poiché $x^2 + 1 > 0 \ \forall x \in \mathbb{R}, \ x^2 - 1 > 0 \ \forall x \in D_f$ e $6x^4 + 4x^2 + 2 > 0 \ \forall x \in D_f$ essendo somma di quantità positive). Quindi f(x) è convessa per ogni $x \in D_f$. Il grafico della funzione è rappresentato in Figura 9.26.

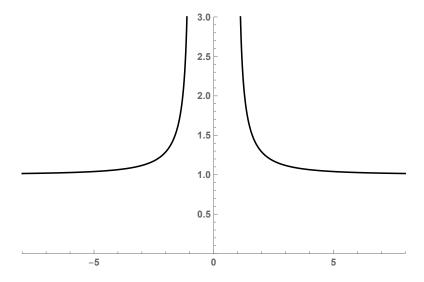


Figura 9.26: Grafico della funzione dell'esercizio 12.

13. Il dominio della funzione

$$f(x) = \frac{-1 + (x+2)^2}{x}$$

è $D_f = \mathbb{R} \setminus \{0\} = \{x \in \mathbb{R} : x \neq 0\} = (-\infty, 0) \cup (0, +\infty)$. Applicando il teorema di de l'Hôpital, si trova

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{2(x+2)}{1} = \pm \infty,$$

che mostra che la funzione diverge per $x \to \pm \infty$; inoltre,

$$\lim_{x \to 0^{\pm}} f(x) = \lim_{x \to 0^{\pm}} \frac{3}{x} = \pm \infty,$$

poiché il numeratore tende a 3 quando x tende a 0. Quindi la funzione ha un asintoto verticale in x = 0. Si studia l'esistenza di eventuali asintoti obliqui della forma y = ax + b, calcolando, nell'ordine, i due limiti

$$a := \lim_{x \to \pm \infty} \frac{f(x)}{x}, \qquad b := \lim_{x \to \pm \infty} (f(x) - ax),$$

e verificando se sono entrambi finiti. Si trova, applicando di nuovo il teorema di de l'Hôpital,

$$a = \lim_{x \to \pm \infty} \frac{-1 + (x+2)^2}{x^2} = \lim_{x \to \pm \infty} \frac{2(x+2)}{2x} = \lim_{x \to \pm \infty} \frac{2}{2} = 1.$$

Il fatto che il limite a sia finito consente di calcolare

$$b = \lim_{x \to \pm \infty} \left(\frac{-1 + (x+2)^2}{x} - x \right) = \lim_{x \to \pm \infty} \frac{-1 + x^2 + 4x + 4 - x^2}{x}$$
$$= \lim_{x \to \pm \infty} \frac{4x + 3}{x} = \lim_{x \to \pm \infty} \frac{4}{1} = 4,$$

dove l'ultimo passaggio segue ancora una volta dal teorema di de l'Hôpital. Quindi f(x) ha un asintoto obliquo y=x+4 sia per $x\to +\infty$ che per $x\to -\infty$. La derivata di f(x) è

$$f'(x) = \frac{2x(x+2) - (-1 + (x+2)^2)}{x^2} = \frac{2x^2 + 4x + 1 - x^2 - 4x - 4}{x^2} = \frac{x^2 - 3}{x^2}.$$

Poiché $x^2 > 0 \ \forall x \neq 0$ si ha f'(x) = 0 se e solo se $x^2 = 3$, ovvero f'(x) = 0 quando $x = \pm \sqrt{3}$. Inoltre f'(x) > 0 quando $x > \sqrt{3}$ oppure $x < -\sqrt{3}$, mentre f'(x) < 0 quando $-\sqrt{3} < x < \sqrt{3}$. Ne concludiamo che la funzione f(x) è crescente per $x \in (-\infty, -\sqrt{3})$, ha un punto di massimo in $x = -\sqrt{3}$, è decrescente per $x \in (-\sqrt{3}, \sqrt{3})$, ha un punto di minimo in $x = \sqrt{3}$ ed è crescente per $x \in (\sqrt{3}, +\infty)$. La derivata seconda di f(x) si calcola facilmente notando che

$$f'(x) = 1 - \frac{3}{x^2} \implies f''(x) = \frac{6}{x^3},$$

quindi f''(x) > 0 se x > 0 e f''(x) < 0 se x < 0: la funzione è convessa nell'intervallo $(0, +\infty)$ e concava nell'intervallo $(-\infty, 0)$. Il grafico è rappresentato in Figura 9.27.

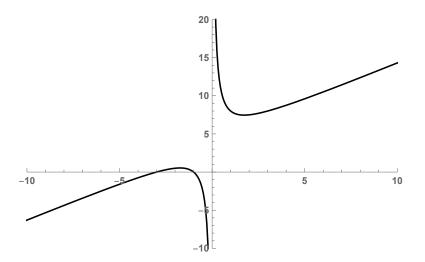


Figura 9.27: Grafico della funzione dell'esercizio 13.

14. La funzione

$$f(x) = \frac{x^4}{x^2 - 1}$$

è definita per ogni x tale che $x^2 \neq 1$, i.e. per ogni $x \neq \pm 1$. Quindi il dominio della funzione è $D_f = \{x \in \mathbb{R} : x \neq \pm 1\} = (-\infty, -1) \cup (-1, 1) \cup (1, +\infty)$. Si ha

$$\lim_{x \to \pm \infty} f(x) = \lim_{x \to \pm \infty} \frac{x^4}{x^2 \left(1 - \frac{1}{x^2}\right)} = \lim_{x \to \pm \infty} x^2 = +\infty,$$

quindi la funzione diverge all'infinito. Poiché

$$\lim_{x \to \pm \infty} \frac{f(x)}{x} = \lim_{x \to \pm \infty} \frac{x^4}{x^3 \left(1 - \frac{1}{x^2}\right)} = \lim_{x \to \pm \infty} x = \pm \infty,$$

possiamo escludere l'esistenza di asintoti obliqui. Si ha inoltre

$$\lim_{x \to 1^+} f(x) = +\infty, \quad \lim_{x \to 1^-} f(x) = -\infty, \quad \lim_{x \to -1^+} f(x) = -\infty, \quad \lim_{x \to -1^-} f(x) = +\infty,$$

poiché $x^4 \to 1$ per $x \to \pm 1$ da destra o da sinistra, indifferentemente, mentre $x^2 - 1 > 0$ per x > 1 e per x < -1 e $x^2 - 1 < 0$ per $x \in (-1, 1)$. Si hanno quindi due asintoti verticali, uno in x = -1 e uno in x = 1. La derivata di f(x) è

$$f'(x) = \frac{2x^3(x^2 - 2)}{(x^2 - 1)^2}.$$

Poiché il denominatore è sempre positivo (dove la funzione è definita), si ha f'(x)=0 quando x=0 oppure $x=\pm\sqrt{2}$: si hanno perciò 3 punti stazionari. Inoltre $x^2-2>0$ per $x\notin (-\sqrt{2},\sqrt{2})$ e $x^2-2<0$ per $x\in (-\sqrt{2},\sqrt{2})$. Quindi f'(x)>0 se x>0 e $x\notin (-\sqrt{2},\sqrt{2})$, ovvero se $x\in (\sqrt{2},+\infty)$, oppure se x<0 e $x\in (-\sqrt{2},\sqrt{2})$, ovvero se $x\in (-\sqrt{2},\sqrt{2})$, ovvero se $x\in (-\sqrt{2},\sqrt{2})$, ovvero se $x\in (0,\sqrt{2})$, oppure se x<0 e $x\notin (-\sqrt{2},\sqrt{2})$, ovvero se $x\in (0,\sqrt{2})$, oppure se x<0 e $x\notin (-\infty,-\sqrt{2})$. In conclusione, f(x) è decrescente per $x\in (-\infty,-\sqrt{2})$, ha un punto di minimo in $x=-\sqrt{2}$, è crescente per $x\in (-\sqrt{2},0)$, ha un punto di massimo in x=0, è decrescente per $x\in (0,\sqrt{2})$, ha un punto di minimo in $x=\sqrt{2}$ ed è crescente per $x\in (\sqrt{2},+\infty)$.

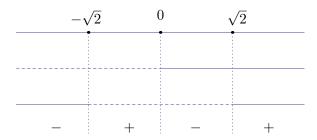


Figura 9.28: Studio del segno della derivata prima della funzione dell'esercizio 14.

La derivata seconda di f(x) è

$$f''(x) = \frac{2x^2(x^4 - 3x^2 + 6)}{(x^2 - 1)^3}.$$

Per studiare il segno di f''(x) si può innanzitutto notare che $x^4 - 3x^2 + 6 > 0$ per ogni $x \in \mathbb{R}$. Questo può essere verificato scrivendo $x^2 = t$ e notando che l'equazione $x^4 - 3x^2 + 6 = 0$ diventa l'equazione di secondo grado $t^2 - 3t + 6 = 0$ in termini di t. Il discriminante dell'equazione è $\Delta = 9 - 24 = -15 < 0$, quindi l'equazione non ammette radici reali. Ne segue che $t^2 - 3t + 6 > 0 \ \forall t \in \mathbb{R}$, poiché il coefficiente di t^2 è positivo (vale 1), e quindi anche $x^4 - 3x^2 + 6 > 0 \ \forall x \in \mathbb{R}$. Poiché anche $x^2 \geq 0$, ne concludiamo che $f''(x) \geq 0$ se $x^2 > 1$, ovvero se x > 1 oppure x < -1, e $f''(x) \leq 0$ se $x^2 < 1$, ovvero se $x \in (-1,1)$. Si noti inoltre che f''(x) = 0 se e solo se x = 0. Tuttavia x = 0 non è un punto di flesso, poiché si ha f''(x) > 0 sia a destra che a sinistra di x = 0: in altre parole il segno di f''(x) non cambia attraversando il punto x = 0. (Analogamente si sarebbe potuto osservare che f'(x) > 0 per x < 0 e f'(x) < 0 per x > 0: questo mostra che x = 0 deve essere un punto di massimo relativo, consistentemente con quanto già trovato). In conclusione, la funzione f(x) è convessa negli intervalli $(-\infty, -1)$ e $(1, +\infty)$ e concava nell'intervallo (-1, 1). Il grafico della funzione è rappresentato in Figura 9.29.

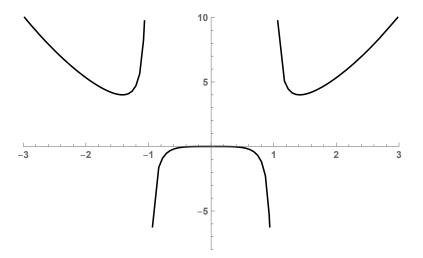


Figura 9.29: Grafico della funzione dell'esercizio 14.

15. Il dominio della funzione

$$f(x) = \frac{x^2 - 1}{x + 2}$$

è $D_f = \{x \in \mathbb{R} : x \neq -2\} = (-\infty, -2) \cup (-2, +\infty)$. Per x = 0 si ha f(0) = -1/2, mentre risulta f(x) = 0 per $x = \pm 1$, quindi la funzione attraversa l'asse delle ascisse in x = -1 e in x = 1 e l'asse delle ordinate in y = -1/2. Studiando il segno si trova che f(x) > 0 per x > 1 e per $x \in (-2, -1)$, mentre f(x) < 0 per x < -2 e per $x \in (-1, 1)$. Si ha

$$\lim_{x \to \pm \infty} f(x) = \lim_{x \to \pm \infty} \frac{x^2 \left(1 - \frac{1}{x}\right)}{x \left(1 + \frac{2}{x}\right)} = \lim_{x \to \pm \infty} \frac{x^2}{x} = \lim_{x \to \pm \infty} x = +\infty.$$

Per individuare l'esistenza di eventuali asintoti obliqui, della forma y = ax + b, si studia per prima cosa il limite

$$a := \lim_{x \to \pm \infty} \frac{f(x)}{x} = \lim_{x \to \pm \infty} \frac{x^2 \left(1 - \frac{1}{x}\right)}{x^2 \left(1 + \frac{2}{x}\right)} = \lim_{x \to \pm \infty} \frac{x^2}{x^2} = 1,$$

quindi poiché a = 1 è finito si studia il limite

$$b := \lim_{x \to \pm \infty} (f(x) - x) = \lim_{x \to \pm \infty} \frac{x^2 - 1 - x(x+2)}{x+2} = \lim_{x \to \pm \infty} \frac{-3}{x+2} = 0,$$

quindi y=x è un asintoto obliquo sia per $x\to +\infty$ che per $x\to -\infty$. Si ha poi

$$\lim_{x \to \pm -2^+} f(x) = \infty, \qquad \lim_{x \to \pm -2^-} f(x) = -\infty,$$

poiché $x^2-1\to 3$ per $x\to 2^\pm$, mentre x+2 tende a 0 da valori positivi per x>-2 e da valori negativi per x<-2. Quindi in x=-2 la funzione f(x) ha un asintoto verticale. La derivata di f(x) è

$$f'(x) = \frac{x^2 + 4x + 1}{(x+2)^2},$$

dove $(x+2)^2 > 0 \ \forall x \neq -2$. L'equazione di secondo grado $x^2 + 4x + 1 = 0$ ammette le due radici reali $x_1 = -2 - \sqrt{3}$ e $x_2 = -2 + \sqrt{3}$, quindi, tenendo conto che il segno el coefficiente di x^2 è positivo (vale 1), si ha $x^2 + 4x + 1 > 0$ per $x \in (-\infty, x_1) \cup (x_2, +\infty)$ e $x^2 + 4x + 1 < 0$ per $x \in (x_1, x_2)$. Quindi la funzione f(x) è crescente per $x \in (-\infty, x_1)$, ha un punto di massimo in $x = x_1$, è descrescente per $x \in (x_1, x_2)$, ha un punto di minimo in $x = x_2$ ed è crescente per $x \in (x_2, +\infty)$. La derivata seconda di f(x) è

$$f''(x) = \frac{6}{(x+2)^3},$$

quindi f''(x) > 0 se x > -2 e f''(x) < 0 se x < -2: la funzione è convessa nell'intervallo $(-2, +\infty)$ ed è concava nell'intervallo $(-\infty, -2)$. Il grafico della funzione è rappresentato in Figura 9.30.

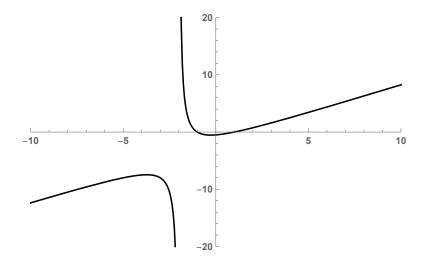


Figura 9.30: Grafico della funzione dell'esercizio 15.

16. Si ha $e^{x+\ln x^2} = e^x e^{\ln x^2}$. La funzione $\ln x^2$ è definita per ogni $x \neq 0$ (poiché $x^2 > 0$ per $x \neq 0$), quindi $D_f = \{x \in \mathbb{R} : x \neq 0\}$. Inoltre risulta $e^{\ln x^2} = x^2$ per $x \neq 0$;

possiamo perciò riscrivere la funzione come

$$f(x) = e^{x + \ln x^2} = x^2 e^x$$

per ogni $x \in D_f$. Poiché entrambe le funzioni x^2 e e^x tendono a $+\infty$ per $x \to +\infty$, si ha

$$\lim_{x \to +\infty} f(x) = +\infty.$$

Inoltre $f(x)/x = x e^x$ per $x \neq 0$, così che $f(x)/x \to +\infty$ per $x \to +\infty$, quindi non esistono asintoti obliqui per $x \to +\infty$. Per $x \to -\infty$, si ha $e^x \to 0$, quindi possiamo studiare il comportamento della funzione f(x) per $x \to -\infty$ scrivendo $e^x = 1/e^{-x}$ e usando il fatto che $e^{-x} \to +\infty$ per $x \to -\infty$. Si ha quindi

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \frac{x^2}{e^{-x}} = \lim_{x \to -\infty} \frac{2x}{-e^{-x}} = \lim_{x \to -\infty} \frac{2}{e^{-x}} = 0,$$

dove si è usato il teorema di de l'Hôpital per calcolare la forma indeterminata. Il risultato ottenuto mostra l'esistenza di un asintoto orizzontale y=0 per $x\to -\infty$. La funzione f(x) non è definita in x=0, d'altra parte esistono il limite destro e il limite sinistro per $x\to 0$:

$$\lim_{x \to 0^{\pm}} x^2 e^x = 0.$$

La derivata di f(x) è

$$f'(x) = e^x (2x + x^2) = e^x x (2 + x),$$

quindi f'(x) = 0 per x = 0 e per x = -2. Si ha f'(x) > 0 se x > 0 e x > -2 (e quindi se x > 0) oppure se x < 0 e x < -2 (e quindi se x < -2), mentre f'(x) < 0 per $x \in (-2,0)$. In conclusione f(x) è crescente per $x \in (-\infty,-2)$ ha un punto di massimo in x = -2, è decrescente per $x \in (-2,0)$, ha un punto di minimo in x = 0 ed è crescente per $x \in (0,+\infty)$; cfr. la Figura 9.31.

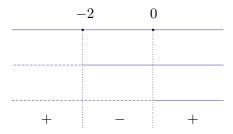


Figura 9.31: Studio del segno della derivata prima della funzione dell'esercizio 16.

La derivata seconda di f(x) è

$$f''(x) = e^x (x^2 + 4x + 2)$$
,

quindi il segno di f''(x) è determinato dal segno del polinomio $x^2 + 4x + 2$. L'equazione di secondo grado $x^2 + 4x + 2 = 0$ ha due radici reali

$$x_1 = -2 - \sqrt{2}, \qquad x_2 = -2 + \sqrt{2},$$

dove $x_1 < -2 < x_2 < 0$. Quindi, tenendo conto che il segno del coefficiente di x^2 è positivo (vale 1), si ha $x^2 + 4x + 2 > 0$ per $x < x_1$ oppure per $x > x_2$, mentre $x^2 + 4x + 2 < 0$ per $x_1 < x < x_2$. Quindi la funzione f(x) è convessa (f''(x) > 0) per $x \in (-\infty, x_1) \cup (x_2, +\infty)$ ed è concava (f''(x) < 0) per $x \in (x_1, x_2)$. I punti x_1 e x_2 sono punti di flesso obliquo, poiché $f'(x_1) \neq 0$ e $f'(x_2) \neq 0$. Il grafico della funzione è rappresentato in Figura 9.32.

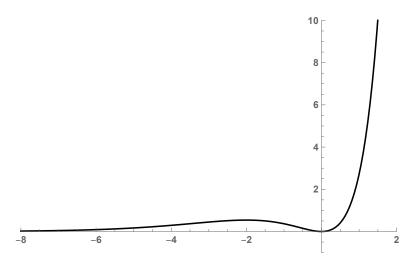


Figura 9.32: Grafico della funzione dell'esercizio 16.

17. La funzione

$$f(x) = x e^{-1/x^2}$$

è definita per ogni $x \neq 0$, quindi $D_f = \{x \in \mathbb{R} : x \neq 0\} = (-\infty, 0) \cup (0, +\infty)$. Per $x \to \pm \infty$, si ha $1/x^2 \to 0$, quindi $e^{-1/x^2} \to e^0 = 1$. Ne segue che

$$\lim_{x \to \pm \infty} f(x) = \lim_{x \to \pm \infty} x \cdot \lim_{x \to \pm \infty} e^{-1/x^2} = \lim_{x \to \pm \infty} x \cdot 1 = \pm \infty.$$

Per studiare l'esistenza di eventuali asintoti obliqui della forma y = ax + b, si calcola innanzitutto il limite

$$a := \lim_{x \to \pm \infty} \frac{f(x)}{x} = \lim_{x \to \pm \infty} e^{-1/x^2} = 1,$$

e, poiché a risulta finito, successivamente il limite

$$b := \lim_{x \to \pm \infty} (f(x) - x) = \lim_{x \to \pm \infty} x \left(e^{-1/x^2} - 1 \right).$$

Per studiare l'ultimo limite (che è una forma indeterminata del tipo $\infty \cdot 0$), conviene cambiare variabile e definire t = 1/x, così che $t \to 0$ per $x \to \pm \infty$. Si ha allora

$$\lim_{x \to \pm \infty} x \left(e^{-1/x^2} - 1 \right) = \lim_{t \to 0} \frac{e^{-t^2} - 1}{t} = \lim_{t \to 0} \frac{-2te^{-t^2}}{1} = 0,$$

dove si è usato il teorema di de l'Hôpital. Quindi b=0. La retta di equazione y=x è quindi un asintoto obliquo per $x\to\pm\infty$. La derivata di f(x) è

$$f'(x) = \frac{x^2 + 2}{x^2} e^{-1/x^2},$$

quindi $f'(x) > 0 \ \forall x \neq 0$: la funzione f(x) è crescente per ogni $x \in D_f$. Ragionando come prima si può facilmente mostrare che $f'(x) \to 0$ per $x \to 0^{\pm}$. Infatti definendo $t = 1/x^2$ possiamo riscrivere

$$f'(x) = \left(1 + \frac{2}{x^2}\right) e^{-1/x^2} = (1 + 2t) e^{-t} = \frac{1 + 2t}{e^t},$$

e quindi, usando che $t\to +\infty$ se $x\to 0^\pm$ e applicando (due volte) il teorema di de l'Hôpital, si trova

$$\lim_{x \to 0^{\pm}} f'(x) = \lim_{t \to +\infty} \frac{1 + 2t}{e^t} = \lim_{t \to +\infty} \frac{2}{e^t} = 0.$$

La derivata seconda di f(x) è

$$f''(x) = -\frac{4}{x^3}e^{-1/x^2} + \left(1 + \frac{2}{x^2}\right)\frac{2}{x^3}e^{-1/x^2} = 2\left(\frac{2 - x^2}{x^5}\right)e^{-1/x^2},$$

quindi f''(x) = 0 se e solo se $x^2 = 2$, ovvero $x = \pm \sqrt{2}$.

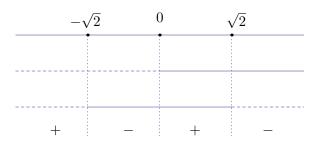


Figura 9.33: Studio del segno della derivata seconda della funzione dell'esercizio 17.

Poiché $2-x^2>0$ per $x\in (-\sqrt{2},\sqrt{2})$ e $2-x^2<0$ per $x\in (-\infty,-\sqrt{2})\cup (\sqrt{2},+\infty)$, concludiamo che f''(x)>0 se $2-x^2>0$ e $x^5>0$, ovvero se $x\in (-\sqrt{2},\sqrt{2})$ e x>0,

oppure se $2-x^2<0$ e $x^5<0$, ovvero se $x\notin (-\sqrt{2},\sqrt{2})$ e x<0. Analogamente f''(x)<0 se $x\in (-\sqrt{2},\sqrt{2})$ e x<0 oppure se $x\notin (-\sqrt{2},\sqrt{2})$ e x>0. In conclusione f''(x)>0 (e quindi f(x) è convessa) per $x\in (-\infty,-\sqrt{2})\cup (0,\sqrt{2})$, mentre f''(x)<0 (e quindi f(x) è concava) per $x\in (-\sqrt{2},0)\cup (\sqrt{2},+\infty)$. In $x=-\sqrt{2}$ e $x=\sqrt{2}$ si hanno punti di flesso obliquo Si noti inoltre che

$$\lim_{x \to 0^{\pm}} f''(x) = 2 \lim_{t \to \pm \infty} \frac{2t^5 - t^3}{e^t} = \lim_{t \to \pm \infty} \frac{10t^4 - 3t^2}{e^t} = \lim_{t \to \pm \infty} \frac{40t^3 - 6t}{e^t}$$
$$= \lim_{t \to \pm \infty} \frac{120t^2 - 6}{e^t} = \lim_{t \to \pm \infty} \frac{240t}{e^t} = \lim_{t \to \pm \infty} \frac{240}{e^t} = 0.$$

Quindi, sebbene la funzione f(x) non sia definita in x = 0, essa tende a 0 per $x \to 0^{\pm}$ insieme con la sua derivata prima e la sua derivata seconda. Il grafico della funzione è rappresentato in Figura 9.34.

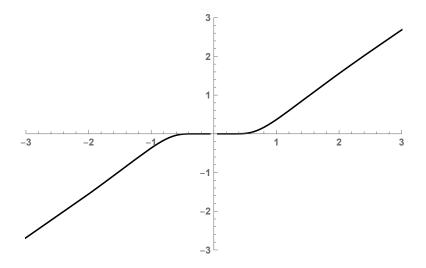


Figura 9.34: Grafico della funzione dell'esercizio 17.

18. La funzione

$$f(x) = \ln(x^2 - 3x + 2)$$

è definita per x tale che $x^2-3x+2>0$. L'equazione di secondo grado $x^2-3x+2=0$ ha due radici reali: x=1 e x=2. Quindi, tenendo conto che il coefficiente di x^2 è positivo si ha f(x)>0 per x<1 oppure per x>2. Da qui concludiamo che $D_f=\{x\in\mathbb{R}:x<1$ oppure $x>2\}=(-\infty,1)\cup(2,+\infty)$. Poiché $x^2-3x+2\to+\infty$ per $x\to\pm\infty$, usando il fatto che il logaritmo è una funzione continua, si trova

$$\lim_{x \to \pm \infty} f(x) = \ln \left(\lim_{x \to \pm \infty} \left(x^2 - 3x + 2 \right) \right) = +\infty.$$

Per mostrare che non esistono asintoti obliqui, si osserva che

$$\lim_{x \to \pm \infty} \frac{f(x)}{x} = \lim_{x \to \pm \infty} \frac{\frac{2x - 3}{x^2 - 3x + 2}}{x} = \lim_{x \to \pm \infty} \frac{2x - 3}{x(x^2 - 3x + 2)}$$

$$= \lim_{x \to \pm \infty} \frac{2x - 3}{x^3 - 3x^2 + 2x} = \lim_{x \to \pm \infty} \frac{2}{3x^2 - 6x + 2}$$

$$= \lim_{x \to \pm \infty} \frac{2}{3x^2 \left(1 - \frac{2}{x} + \frac{2}{x^2}\right)} = 0.$$

In effetti la funzione f(x) diverge logaritmicamente per $x \to \pm \infty$ (quindi più lentamente di qualsiasi potenza). La derivata di f(x) è

$$f'(x) = \frac{2x - 3}{x^2 - 3x + 2}.$$

Il denominatore è positivo per $x \in D_f$. Il numeratore si annulla per x = 3/2 (che è tuttavia all'interno dell'intervallo (1,1)), è positivo per x > 3/2 e negativo per x < 3/2. Ne concludiamo che la funzione f(x) è crescente (f'(x) > 0) per x > 2 ed è decrescente (f'(x) < 0) per x < 1. La derivata seconda di f(x) è

$$f''(x) = -\frac{2x^2 - 6x + 5}{(x^2 - 3x + 2)^2}.$$

Il denominatore è sempre positivo. Anche il polinomio quadratico $2x^2 - 6x + 5$ al numeratore è sempre positivo poiché il discriminante dell'equazione di secondo grado $2x^2 - 6x + 5 = 0$ è $\Delta = 36 - 40 = -4 < 0$, e quindi l'equazione non ammette radici reali. poiché il coefficiente 2 di x^2 è positivo ne segue che $2x^2 - 6x + 5 > 0$ $\forall x \in \mathbb{R}$. Ne segue che $f''(x) < 0 \ \forall x \in D_f$, quindi la funzione f(x) è concava per ogni $x \in D_f$. Il grafico della funzione è rappresentato in Figura 9.35.

19. La funzione

$$f(x) = \frac{x^2 + x + 1}{4x + 2}$$

è definita per ogni $x \neq -1/2$, quindi $D_f = (-\infty, -1/2) \cup (-1/2, +\infty)$. Il polinomio al numeratore è sempre positivo (poiché il discriminante dell'equazione di secondo grado $x^2 + x + 1 = 0$ è $\Delta = 1 - 4 = -3 < 0$ e il segno del coefficiente di x^2 è positivo). Quindi f(x) > 0 per $x \in (-1/2, +\infty)$ e f(x) < 0 per $x \in (-\infty, -1/2)$. La funzione non attraversa mai l'asse x e attraversa l'asse y in y = f(0) = 1/2. Si ha

$$\lim_{x \to \pm \infty} f(x) = \lim_{x \to \pm \infty} \frac{x^2 + x + 1}{4x + 2} = \lim_{x \to \pm \infty} \frac{2x + 1}{4} = \pm \infty.$$

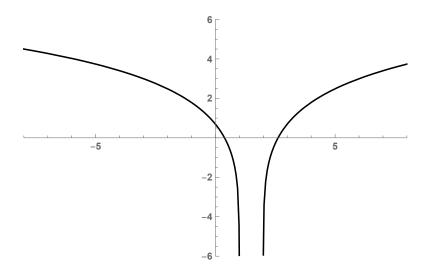


Figura 9.35: Grafico della funzione dell'esercizio 18.

Per studiare l'esistenza di eventuali asintoti della forma y = ax + b si calcola prima il limite

$$a := \lim_{x \to \pm \infty} \frac{f(x)}{x} = \lim_{x \to \pm \infty} \frac{x^2 + x + 1}{x(4x + 2)} = \lim_{x \to \pm \infty} \frac{x^2 + x + 1}{4x^2 + 2x}$$
$$= \lim_{x \to \pm \infty} \frac{2x + 1}{8x + 2} = \lim_{x \to \pm \infty} \frac{2}{8} = \frac{1}{4}$$

e successivamente, poiché a è finito, il limite

$$b := \lim_{x \to \pm \infty} \left(f(x) - \frac{1}{4}x \right) = \lim_{x \to \pm \infty} \left(\frac{x^2 + x + 1}{4x + 2} - \frac{1}{4}x \right)$$
$$= \lim_{x \to \pm \infty} \frac{4x^2 + 4x + 4 - 4x^2 - 2x}{4(4x + 2)} = \lim_{x \to \pm \infty} \frac{2x + 4}{16x + 8} = \lim_{x \to \pm \infty} \frac{2}{16} = \frac{1}{8}.$$

Si noti che, per entrambi i limiti, si tratta di studiare forme indeterminate che possono essere studiate utilizzando il teorema di de l'Hôpital. Si ha quindi un asintoto obliquo

$$y = \frac{1}{4} + \frac{1}{8},$$

sia per $x \to +\infty$ che per $x \to -\infty$. Si ha inoltre

$$\lim_{x \to -2^+} f(x) = +\infty, \qquad \lim_{x \to -2^-} f(x) = -\infty,$$

poiché $x^2+x+1\to 3$ per $x\to -2^\pm$, mentre il denominatore tende a 0 da valori positivi quando $x\to -2^+$ e da valori negativi quadno $x\to -2^-$. In x=-2 la

funzione ha quindi un asintoto verticale. La derivata di f(x) è

$$f'(x) = \frac{4x^2 + 4x - 2}{(4x+2)^2} = \frac{1}{2} \frac{2x^2 + 2x - 1}{(2x+1)^2}.$$

Poiché il denominatore è sempre positivo per $x \in D_f$ si ha f'(x) > 0 se e solo se $2x^2 + 2x - 1 > 0$. L'equazione di secondo grado $2x^2 + 2x - 1 = 0$ ha le due radici

$$x_1 = \frac{1}{2} \cdot \left(-1 - \sqrt{3}\right), \qquad x_2 = \frac{1}{2} \left(-1 + \sqrt{3}\right),$$

quindi tenendo conto che il coefficiente di x^2 è positivo, si trova f'(x) > 0 per $x < x_1$ e per $x > x_2$, mentre f('(x) < 0 per $x \in (x_1, x_2)$ tale che $x \neq -1/2$. In conclusione la funzione f(x) è crescente per $x \in (-\infty, x_1)$, ha un massimo in $x = x_1$, è decrescente negli intervalli $(x_1, -1/2)$ e $(-1/2, x_2)$, ha un minimo in $x = x_2$ ed è crescente per $x \in (x_2, +\infty)$. La derivata seconda di f(x) è

$$f''(x) = \frac{1}{2} \frac{(4x+2)(2x+1)^2 - 4(2x^2 + 2x - 1)(2x+1)}{(2x+1)^4}$$

$$= \frac{1}{2} \frac{(4x+2)(2x+1) - 4(2x^2 + 2x - 1)}{(2x+1)^3}$$

$$= \frac{1}{2} \frac{(8x^2 + 8x + 2 - 8x^2 - 8x + 4)}{(2x+1)^3}$$

$$= \frac{3}{(2x+1)^3},$$

quindi f''(x) > 0 per x > -1/2 e f''(x) < -1/2: la funzione è convessa nell'intervallo $(-1/2, +\infty)$ ed è concava nell'intervallo $(-\infty, -1/2)$. Il grafico della funzione è rappresentato in Figura 9.36.

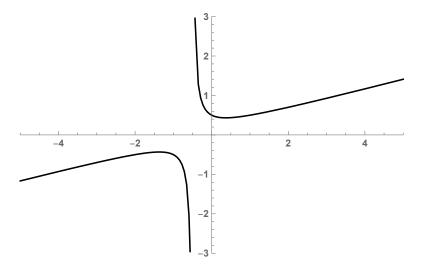


Figura 9.36: Grafico della funzione dell'esercizio 19.

20. Poiché $x^4 + 1 > 0 \ \forall x \in \mathbb{R}$, la funzione

$$f(x) = \sqrt{\frac{x^4 + 1}{x^2}}$$

è definita per ogni $x \neq 0$, quindi $D_f = \{x \in \mathbb{R} : x \neq 0\} = (-\infty, 0) \cup (0, +\infty)$. Si ha f(x) > 0 per ogni $x \in D_f$. Quindi la funzione non attraversa mai gli assi coordinati. Per studiare il comportamento della funzione agli estremi, si calcolano i limiti

$$\lim_{x \to \pm \infty} f(x) = \lim_{x \to \pm \infty} \sqrt{\frac{x^4 \left(1 + \frac{1}{x^4}\right)}{x^2}} = \lim_{x \to \pm \infty} \sqrt{\frac{x^4}{x^2}} = \lim_{x \to \pm \infty} \sqrt{x^2} = +\infty.$$

Inoltre si ha

$$\lim_{x \to 0^{\pm}} f(x) = +\infty.$$

La funzione ha quindi un asintoto verticale in x = 0. Per studiare l'esistenza di eventuali asintoti della forma y = ax + b, si verifica innanzitutto se il limite

$$a := \lim_{x \to \pm \infty} \frac{f(x)}{x}$$

è finito. Si trova, per $x \to +\infty$,

$$a = \lim_{x \to +\infty} \frac{1}{x} \sqrt{\frac{x^4 \left(1 + \frac{1}{x^4}\right)}{x^2}} = \lim_{x \to +\infty} \sqrt{\frac{x^4 \left(1 + \frac{1}{x^4}\right)}{x^2 \cdot x^2}} = \lim_{x \to \pm \infty} \sqrt{\frac{x^4}{x^4}} = 1,$$

dove si è tenuto conto che $x=\sqrt{x^2}$ per x>0. Analogamente, osservando che per x<0 si ha $x=-(-x)=-\sqrt{(-x)^2}=-\sqrt{x^2}$, si trova, per $x\to-\infty$,

$$a = \lim_{x \to +\infty} \frac{1}{x} \sqrt{\frac{x^4 \left(1 + \frac{1}{x^4}\right)}{x^4}} = -\lim_{x \to \pm \infty} \sqrt{\frac{x^4}{x^2 \cdot x^2}} = -1,$$

Poiché a è finito, si calcola, per $x \to +\infty$,

$$b = \lim_{x \to +\infty} (f(x) - x) = \lim_{x \to +\infty} \left(\sqrt{\frac{x^4 + 1}{x^2}} - x \right)$$

$$= \lim_{x \to +\infty} \left(\sqrt{\frac{x^4 + 1}{x^2}} - \sqrt{\frac{x^4}{x^2}} \right)$$

$$= \lim_{x \to +\infty} \frac{\sqrt{x^4 + 1} - \sqrt{x^4}}{\sqrt{x^2}}$$

$$= \lim_{x \to +\infty} \frac{\sqrt{x^4 + 1} - \sqrt{x^4}}{\sqrt{x^2}} \cdot \frac{\sqrt{x^4 + 1} + \sqrt{x^4}}{\sqrt{x^4 + 1} + \sqrt{x^4}}$$

$$= \lim_{x \to +\infty} \frac{x^4 + 1 - x^4}{\sqrt{x^2} \cdot (\sqrt{x^4 + 1} + \sqrt{x^4})}$$

$$= \lim_{x \to +\infty} \frac{1}{\sqrt{x^2} \cdot (\sqrt{x^4 + 1} + \sqrt{x^4})} = 0,$$

Analogamente si trova b=0 per $x\to -\infty$. In conclusione la funzione f(x) ha un asintoto obliquo y=x per $x\to +\infty$ e un asintoto obliquo y=-x per $x\to -\infty$. La derivata di f(x) è

$$f'(x) = \frac{1}{2\sqrt{\frac{x^4 + 1}{x^2}}} \frac{4x^3 \cdot x^2 - 2x(x^4 + 1)}{x^4} = \frac{2x(2x^4 - x^4 - 1)}{2x^4\sqrt{\frac{x^4 + 1}{x^2}}} = \frac{x^4 - 1}{x^3\sqrt{\frac{x^4 + 1}{x^2}}}.$$

A numeratore si ha $x^4-1=0$ se e solo se $x=\pm 1$, mentre $x^4-1>0$ per x<-1 oppure per x>1 e $x^4-1<0$ per -1< x<1. Ne segue che f'(x)>0 per $x\in (-1,0)\cup (1,+\infty)$ e f'(x)<0 per $x\in (-\infty,-1)\cup (0,1)$; cfr. la Figura 9.37. Si ha f'(x) per x=-1 e per x=+1, che sono entrambi punti di mimimo.

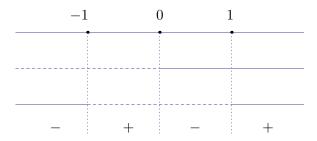


Figura 9.37: Studio del segno della derivata prima della funzione dell'esercizio 20.

La derivata seconda di f(x) è

$$f''(x) = \frac{4x^3 \left(x^3 \sqrt{\frac{x^4 + 1}{x^2}}\right) - (x^4 - 1) \left(3x^2 \sqrt{\frac{x^4 + 1}{x^2}} + x^3 \frac{x^4 - 1}{x^3 \sqrt{\frac{x^4 + 1}{x^2}}}\right)}{x^6 \cdot \frac{x^4 + 1}{x^2}}$$

$$= \frac{4x^3 \left(x^3 \cdot \frac{x^4 + 1}{x^2}\right) - (x^4 - 1) \left(3x^2 \cdot \frac{x^4 + 1}{x^2} + x^3 \frac{x^4 - 1}{x^3}\right)}{x^6 \cdot \frac{x^4 + 1}{x^2} \sqrt{\frac{x^4 + 1}{x^2}}}$$

$$= \frac{4x^4 (x^4 + 1) - (x^4 - 1) (3(x^4 + 1) + (x^4 - 1))}{x^4 (x^4 + 1) \sqrt{\frac{x^4 + 1}{x^2}}}$$

$$= \frac{4x^8 + 4x^4 - 3x^8 + 3 - x^8 + 2x^4 - 1}{x^4 (x^4 + 1) \sqrt{\frac{x^4 + 1}{x^2}}}$$

$$= \frac{6x^4 + 2}{x^4 (x^4 + 1) \sqrt{\frac{x^4 + 1}{x^2}}},$$

da cui si vede che f''(x) > 0 per ogni x per cui la funzione è definita. Quindi f(x) è convessa per ogni $x \in D_f$. Il grafico della funzione è rappresentato in Figura 9.38.

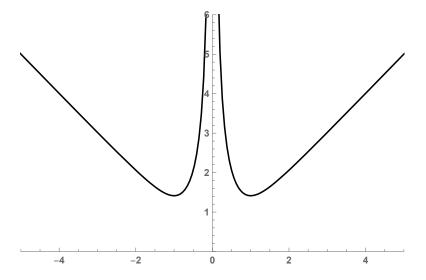


Figura 9.38: Grafico della funzione dell'esercizio 20.

21. La funzione

$$f(x) = \frac{x^3}{(x-1)^2}$$

è definita per ogni $x \neq 1$, quindi $D_f = \{x \in \mathbb{R} : x \neq 1\} = (-\infty, 1) \cup (1, +\infty)$. Poiché $(x-1)^2 > 0 \ \forall x \neq 1$, si ha f(x) > 0 se x > 0 e f(x) < 0 se x < 0. Inoltre f(0) = 0, quindi f(x) attraversa gli assi coordinati solo nell'origine. Usando il teorema di de l'Hôpital si trova

$$\lim_{x \to \pm \infty} f(x) = \lim_{x \to \pm \infty} \frac{3x^2}{2(x-1)} = \lim_{x \to \pm \infty} \frac{6x}{2} = \pm \infty.$$

La presenza di eventuali asintoti della forma y=ax+b si studia calcolando innanzitutto il limite

$$a := \lim_{x \to \pm \infty} \frac{f(x)}{x} = \lim_{x \to \pm \infty} \frac{x^3}{x(x-1)^2} = \lim_{x \to \pm \infty} \frac{x^3}{x^3 - 2x^2 + x}$$
$$= \lim_{x \to \pm \infty} \frac{3x^2}{3x^2 - 4x} = \lim_{x \to \pm \infty} \frac{6x}{6x - 4} = \lim_{x \to \pm \infty} \frac{6}{6} = 1.$$

Poiché a è finito, si studia allora il limite

$$b := \lim_{x \to \pm \infty} (f(x) - x) = \lim_{x \to \pm \infty} \left(\frac{x^3}{(x - 1)^2} - x \right) = \lim_{x \to \pm \infty} \frac{x^3 - x(x - 1)^2}{(x - 1)^2}$$
$$= \lim_{x \to \pm \infty} \frac{x^3 - x^3 + 2x^2 - x}{x^2 - 2x + 1} = \lim_{x \to \pm \infty} \frac{2x^2 - x}{x^2 - 2x + 1} = \lim_{x \to \pm \infty} \frac{4x - 1}{2x - 2} = \lim_{x \to \pm \infty} \frac{4}{2} = 2.$$

Ne concludiamo che y=x+2 è un asintoto obliquo per $x\to\pm\infty$. Si ha inoltre

$$\lim_{x \to 1^{\pm}} f(x) = +\infty,$$

poiché $x^3 \to 1$ per $x \to 1^{\pm}$, mentre $(x-1)^2 \to 0$ da valori positivi per $x \to 1^{\pm}$. Quindi la funzione ha un asintoto verticale in x=1. La derivata di f(x) è

$$f'(x) = \frac{3x^2(x-1)^2 - 2x^3(x-1)}{(x-1)^4} = \frac{3x^2(x-1) - 2x^3}{(x-1)^3} = \frac{x^3 - 3x^2}{(x-1)^3} = \frac{x^2(x-3)}{(x-1)^3},$$

così che f(x) = 0 per x = 0 e per x = 3. Inoltre, per $x \neq 0$, si può ragionare come segue: si ha $(x-1)^3 > 0$ per x > 1 e $(x-1)^3 < 0$ per x < 1, così che abbiamo che f'(x) > 0 quando x > 1 e x > 3 oppure x < 1 e x < 3 e f'(x) > 0 quando x > 1 e x > 3. Di conseguenza f'(x) > 0, e quindi f(x) è crescente, per $x \in (-\infty, 1) \cup (3, +\infty)$, mentre f'(x) < 0, e quindi f(x) è decrescente, per $x \in (1,3) \setminus \{0\}$ (in x = 0 si ha f'(0) = 0). Infine la funzione ha in x = 3 un punto di minimo e in x = 0 un punto di flesso orizzontale.

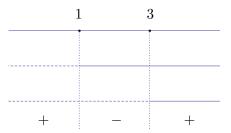


Figura 9.39: Studio del segno della derivata prima della funzione dell'esercizio 21.

La derivata seconda di f(x) è

$$f''(x) = \frac{(3x^2 - 6x)(x - 1)^3 - 3(x^3 - 3x^2)(x - 1)^2}{(x - 1)^6}$$

$$= \frac{(3x^2 - 6x)(x - 1) - 3(x^3 - 3x^2)}{(x - 1)^4}$$

$$= \frac{3x^3 - 3x^2 - 6x^2 + 6x - 3x^3 + 9x^2}{(x - 1)^4} = \frac{6x}{(x - 1)^4}.$$

Quindi f''(x) = 0 se e solo se x = 0. Poiché f'(0) = 0 ritrociamo quindi che x = 0 è un punto di flesso orizzontale. Per $x \neq 1$, si ha f''(x) > 0 se x > 0 e f''(x) < 0 per x < 0: quindi la funzione è convessa negli intervalli (0,3) e $(3,+\infty)$ ed è concava nell'intervallo $(-\infty,0)$. Il grafico della funzione f(x) è rappresentato in Figura 9.40.

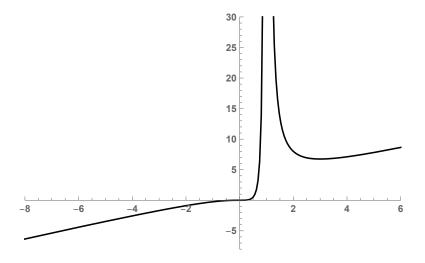


Figura 9.40: Grafico della funzione dell'esercizio 21.

22. La funzione

$$f(x) = e^{x^2 - x + 1}$$

è definita per ogni $x \in \mathbb{R}$, quindi $D_f = \mathbb{R}$. Inoltre $f(x) > 0 \ \forall x \in \mathbb{R}$. Si ha

$$\lim_{x \to \pm \infty} (x^2 - x + 1) = \lim_{x \to \pm \infty} x^2 \left(1 - \frac{1}{x} + \frac{1}{x^2} \right) = \lim_{x \to \pm \infty} x^2 = +\infty,$$

quindi, usando la continuità della funzione esponenziale, si ottiene

$$\lim_{x \to \pm \infty} f(x) = \exp\left(\lim_{x \to \pm \infty} \left(x^2 - x + 1\right)\right) = +\infty.$$

Poiché, per il teorema di de l'Hôpital, si ha

$$\lim_{x \to \pm \infty} \frac{f(x)}{x} = \lim_{x \to \pm \infty} \frac{e^{x^2 - x + 1}}{x} = \lim_{x \to \pm \infty} \frac{(2x - 1)e^{x^2 - x + 1}}{1} = \pm \infty,$$

possiamo escludere l'esistenza di asintoti obliqui. La derivata di f(x) è

$$f'(x) = e^{x^2 - x + 1} (2x - 1),$$

quindi f'(x) > 0 per x > 1/2, f'(x) = 0 per x = 1/2 e f'(x) < 0 per x < 1/2: ne concludiamo che la funzione è decrescente nell'intervallo $(-\infty, 1/2)$, ha un punto di minimo assoluto in x = 1/2 ed è crescente nell'intervallo $(1/2, +\infty)$. La derivata seconda di f(x) è

$$f''(x) = e^{x^2 - x + 1} \left(4x^2 - 4x + 3 \right),$$

quindi il segno di f''(x) è determinato dal segno del polinomio $4x^2-4x+3$. Si ha $4x^2-4x+3>0$ poiché il discriminante dell'equazione di secondo grado è $\Delta=16-48=32<0$ e il coefficiente di x^2 è positivo (vale 4). Quindi la funzione è convessa per ogni $x\in\mathbb{R}$. Il grafico della funzione è rappresentato in Figura 9.41.

23. La funzione

$$f(x) = \frac{x^2 + 2 - x}{x^2 + 1 - x}$$

è definita per ogni x tale che $x^2+1-x\neq 0$. L'equazione di secondo grado $x^2+1-x=0$ non ammette radici reali poiché il suo discriminante è $\Delta=1-4=-3<0$, quindi, $x^2+1-x\neq 0 \ \forall x\in \mathbb{R}$. Più precisamente, tenendo conto che il coefficiente di x^2 è positivo, possiamo concludere che $x^2+1-x>0 \ \forall x\in \mathbb{R}$. Si ha, applicando il teorema di de l'Hôpital,

$$\lim_{x \to \pm \infty} f(x) = \lim_{x \to \pm \infty} \frac{x^2 \left(1 + \frac{2}{x^2} - \frac{1}{x} \right)}{x^2 \left(1 + \frac{1}{x^2} - \frac{1}{x} \right)} = \lim_{x \to \pm \infty} \frac{x^2}{x^2} = 1,$$

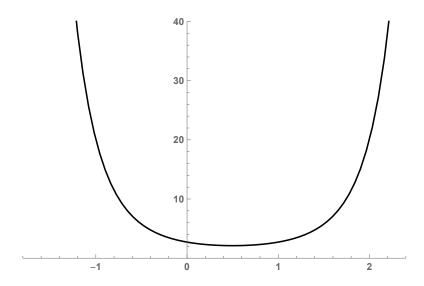


Figura 9.41: Grafico della funzione dell'esercizio 22.

quindi la funzione f(x) ha un asintoto orizzontale y=1 sia per $x\to +\infty$ che per $x\to -\infty$. La derivata di f(x) è

$$f'(x) = \frac{(2x-1)(x^2+1-x) - (x^2+2-x)(2x-1)}{(x^2+1-x)^2}$$

$$= \frac{2x^3+2x-2x^2-x^2-1+x-2x^3+x^2-4x+2+2x^2-x}{(x^2+1-x)^2}$$

$$= \frac{1-2x}{(x^2+1-x)^2}.$$

Quindi f'(x)=0 per x=1/2, mentre f'(x)>0 per x<1/2 e f'(x)<0 per x>1/2: la funzione f(x) è crescente nell'intervallo $(-\infty,1/2)$ ha un punto di massimo in x=1/2 ed è decrescente nell'intervallo $(1/2,+\infty)$. La derivata seconda di f(x) è

$$f''(x) = \frac{-2(x^2 + 1 - x) - (1 - 2x)2(2x - 1)}{(x^2 + 1 - x)^3} = 2\frac{-x^2 - 1 + x + (1 - 2x)^2}{(x^2 + 1 - x)^3}$$
$$= 2\frac{-x^2 - 1 + x + 1 + 4x^2 - 4x}{(x^2 + 1 - x)^3} = 2\frac{3x^2 - 3x}{(x^2 + 1 - x)^3} = \frac{6x(x - 1)}{(x^2 + 1 - x)^3}.$$

Tenendo conto che il denominatore è sempre positivo, si ha f''(x) = 0 per x = 0 e x = 1, mentre f''(x) > 0 per x < 0 oppure x > 1 e f''(x) < 0 per 0 < x < 1 (cfr. la Figura 9.42).

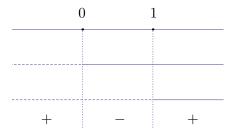


Figura 9.42: Studio del segno della derivata seconda della funzione dell'esercizio 23.

Ne segue che la funzione f(x) è convessa negli intervalli $(-\infty, 0)$ e $(1, +\infty)$ e concava nell'intervallo (0, 1). Inoltre ha un punto di flesso obliquo in x = 0 e in x = 1. Il grafico della funzione è rappresentato in Figura 9.43.

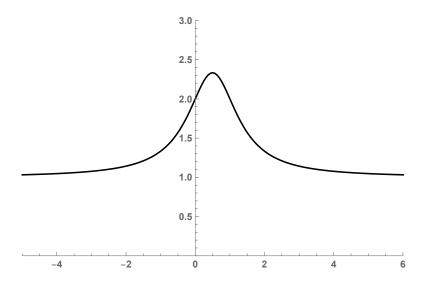


Figura 9.43: Grafico della funzione dell'esercizio 23.

24. L'equazione di secondo grado $x^2 + x + 1$ ha discriminante $\Delta = 1 - 4 = -3 < 0$, quindi non ammette radici reali. Poiché il segno del coefficiente di x^2 è positivo, il polinomio $x^2 + x + 1$ è sempre positivo, quindi il dominio della funzione

$$f(x) = \sqrt{x^2 + x + 1}$$

è $D_f = \mathbb{R}$. Inoltre $f(x) > 0 \ \forall x \in \mathbb{R}$, quindi la funzione non attraversa mai l'asse x. Attraversa invece l'asse y in y = f(0) = 1. Si ha

$$\lim_{x \to \pm \infty} f(x) = \lim_{x \to \pm \infty} \sqrt{x^2 \left(1 + \frac{1}{x} + \frac{1}{x^2}\right)} = +\infty.$$

Inoltre, tenendo conto che $x=\sqrt{x^2}$ per x>0 e $x=-\sqrt{x^2}$ per x<0, si ha

$$a := \lim_{x \to \pm \infty} \frac{f(x)}{x} = \pm \lim_{x \to \pm \infty} \sqrt{\frac{x^2 \left(1 + \frac{1}{x} + \frac{1}{x^2}\right)}{x^2}} = \pm 1.$$

Per concludere se esistano, per $x \to \pm \infty$, asintoti obliqui della forma y = ax + b, poiché abbiamo trovato $a = \pm 1$, resta da studiare, per $x \to \pm \infty$, il limite

$$b := \lim_{x \to \pm \infty} (f(x) \mp x)$$

$$= \lim_{x \to \pm \infty} \left(\sqrt{x^2 + x + 1} - \sqrt{x^2} \right)$$

$$= \lim_{x \to \pm \infty} \left(\sqrt{x^2 + x + 1} - \sqrt{x^2} \right) \cdot \frac{\sqrt{x^2 + x + 1} + \sqrt{x^2}}{\sqrt{x^2 + x + 1} + \sqrt{x^2}}$$

$$= \lim_{x \to \pm \infty} \frac{x^2 + x + 1 - x^2}{\sqrt{x^2 + x + 1} + \sqrt{x^2}}$$

$$= \lim_{x \to \pm \infty} \frac{x + 1}{\sqrt{x^2 + x + 1} + \sqrt{x^2}}$$

$$= \lim_{x \to \pm \infty} \frac{x \left(1 + \frac{1}{x} \right)}{|x| \left(\sqrt{1 + \frac{1}{x} + \frac{1}{x^2}} + 1 \right)} = \pm \frac{1}{2},$$

che mostra che esistono un asintoto obliquo y=x+1/2 per $x\to +\infty$ e un asintoto obliquo y=-x-1/2 per $x\to -\infty$. La derivata di f(x) è

$$f'(x) = \frac{2x+1}{2\sqrt{x^2+x+1}},$$

quindi f'(x) > 0 per x > -1/2 e f'(x) < 0 per x < -1/2: la funzione f(x) è decrescente nell'intervallo $(-\infty, -1/2)$, ha un punto di minimo assoluto in x = -1/2 ed è crescente nell'intervallo $x \in (-1/2, +\infty)$. La derivata seconda di f(x) è

$$f''(x) = \frac{1}{2} \cdot \frac{2\sqrt{x^2 + x + 1} - \frac{(2x+1)^2}{2\sqrt{x^2 + x + 1}}}{x^2 + x + 1}$$
$$= \frac{1}{4} \cdot \frac{4(x^2 + x + 1) - (2x+1)^2}{(x^2 + x + 1)\sqrt{x^2 + x + 1}}$$
$$= \frac{3}{4(x^2 + x + 1)^{3/2}},$$

quindi $f''(x) > 0 \ \forall x \in \mathbb{R}$. Ne segue che la funzione f(x) è convessa su tutto l'asse reale. Il grafico è rappresentato in Figura 9.44.

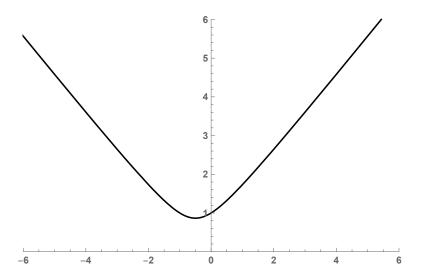


Figura 9.44: Grafico della funzione dell'esercizio 24.

25. La funzione

$$f(x) = (x-2)^{2/3} + (x-4)^{2/3}$$

è definita per ogni $x \in \mathbb{R}$, quindi il suo dominio è $D_f = (-\infty, +\infty)$. Inoltre si ha $f(x) \geq 0$; in particolare f(x) = 0 se e solo se x = 2 oppure x = 4. Ne concludiamo che il grafico della funzione interseca l'asse x nei punti x = 2 e x = 4, mentre attraversa l'asse y in $y = f(0) = 2^{2/3} + 4^{2/3} = 4^{1/3} + 16^{1/3}$. Inoltre si ha

$$\lim_{x \to \pm \infty} f(x) = +\infty.$$

La derivata di f(x) è

$$f'(x) = \frac{2}{3}(x-2)^{-1/3} + \frac{2}{3}(x-4)^{-1/3}$$
$$= \frac{2}{3}\left(\frac{1}{(x-2)^{1/3}} + \frac{1}{(x-4)^{1/3}}\right)$$
$$= \frac{2}{3}\left(\frac{(x-4)^{1/3} + (x-2)^{1/3}}{\left((x-2)(x-4)\right)^{1/3}}\right),$$

che è definita per ogni $x \neq 2,4$. Per discutere il segno di f'(x), distinguiamo i seguenti casi:

• se x < 2, si ha x - 2 < 0 e $x - 4 < 0 \Longrightarrow (x - 2)^{1/3} < 0$ e $(x - 4)^{1/3} < 0$ $\Longrightarrow (x - 2)(x - 4) > 0$, così che il numeratore di f'(x) è negativo e il suo denominatore è positivo $\Longrightarrow f'(x) < 0$;

• se x > 4, si ha x - 2 > 0 e $x - 4 > 0 \Longrightarrow (x - 2)^{1/3} > 0$ e $(x - 4)^{1/3} > 0 \Longrightarrow (x - 2)(x - 4) > 0$, così che sia il numeratore che il denominatore di f'(x) sono positivi $\Longrightarrow f'(x) > 0$;

• se $x \in (2,4)$, si ha x-2>0 e $x-4<0 \Longrightarrow (x-2)^{1/3}>0$ e $(x-4)^{1/3}<0 \Longrightarrow (x-2)(x-4)<0$, così che il denominatore di f'(x) è negativo; per determinare il segno del numeratore bisogna studiare il segno della funzione

$$g(x) := (x-4)^{1/3} + (x-2)^{1/3},$$
 2 < x < 4.

Si ha g(x) > 0 se $(x-4)^{1/3} > -(x-2)^{1/3} = (2-x)^{1/3}$; poiché la funzione $t \mapsto t^{1/3}$ è crescente, l'ultima relazione è soddisfatta se e solo se x-4>2-x, ovvero se e solo se 2x-6>0, che implica x>3; ne concludiamo che g(x)>0 per $x\in (3,4)$, mentre g(x)<0 per $x\in (2,3)\Longrightarrow f'(x)>0$ se $x\in (2,3)$ e f'(x)<0 se $x\in (3,4)$.

In conclusione si ha la situazione illustrata in Figura 9.45.

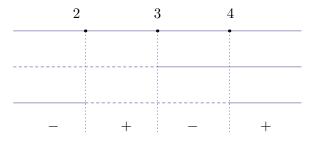


Figura 9.45: Studio del segno della derivata prima della funzione dell'esercizio 25.

In particolare la funzione ha un punto di massimo relativo in x=0. La derivata seconda di f(x) è

$$f''(x) = \frac{2}{3} \left(-\frac{1}{3} \right) (x-2)^{-4/3} + \frac{2}{3} \left(-\frac{1}{3} \right) (x-4)^{-4/3} = -\frac{2}{9} \left((x-2)^{-4/3} + (x-4)^{-4/3} \right),$$

da cui si vede che f''(x) < 0 per ogni $x \in \mathbb{R}$ per cui è definita (cioè per ogni $x \neq 2, 4$). Quindi la funzione f(x) è concava. Il grafico della funzione è rappresentato in Figura 9.46.

26. La funzione

$$f(x) = \sqrt{x^3 - 4x}$$

è definita i valori $x \in \mathbb{R}$ tali che $x^3-4x \ge 0$. Si ha $x^3-4x=x(x^2-4)$, quindi $x^3-4x \ge 0$ se $x \ge 0$ e $x^2-4 \ge 0$ oppure se $x \le 0$ e $x^2-4 \le 0$. Il segno di x^2-4

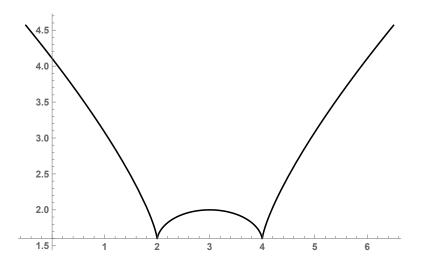


Figura 9.46: Grafico della funzione dell'esercizio 25.

si deduce dallo studio della disequazione $x^2 - 4 \ge 0$: tale disequazione è soddisfatta se $x \ge 2$ o $x \le -2$. In conclusione si ha la situazione rappresentata in Figura 9.47: $x^3 - 4x \ge 0$ per $x \in [-2, 0]$ oppure per $x \ge 0$.

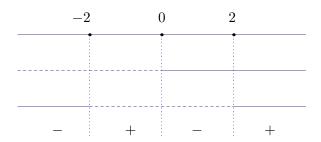


Figura 9.47: Studio del segno di $x^3 - 4x$.

Quindi il dominio della funzione f(x) è $D_f = [-2, 0] \cup [2, +\infty)$. Inoltre si ha $f(x) \ge 0$ $\forall x \in D_f$; in particolare f(x) = 0 se e solo se x = -2 oppure x = 0 oppure x = 2. Per studiare il comportamento della funzione per $x \to +\infty$, si studia il limite

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \sqrt{x^3 - 4x} = \lim_{x \to +\infty} \sqrt{x^3 \left(1 - \frac{4}{x^2}\right)}$$
$$= \lim_{x \to +\infty} \sqrt{x^3} = \lim_{x \to +\infty} x^{3/2} = +\infty.$$

Poiché, ragionando in maniera analoga, si trova

$$\lim_{x\to +\infty}\frac{f(x)}{x}=\lim_{x\to +\infty}\sqrt{\frac{x^3-4x}{x^2}}=\lim_{x\to +\infty}\sqrt{x\left(1-\frac{4}{x^2}\right)}=\lim_{x\to +\infty}\sqrt{x}=+\infty,$$

ne concludiamo che non esistono asintoti (né orizzontali né obliqui) per $x \to +\infty$. La derivata di f(x) è

$$f'(x) = \frac{3x^2 - 4}{2\sqrt{x^3 - 4x}}. (9.1)$$

Il denominatore è sempre positivo (per i valori di $x \in D_f$), quindi il segno di f'(x) è determinato dal segno del numeratore: si ha f'(x) = 0 se e solo se $x^2 = 4/3$, ovvero se e solo se $x = 2/\sqrt{3}$ oppure $x = -2/\sqrt{3}$. D'altra parte si ha $2/\sqrt{3} \in (0, 2)$, quindi $2/\sqrt{3}$ non appartiene al dominio della funzione. Ne segue che l'unico punto stazionario di f(x) è $x_0 := -2/\sqrt{3} \in (-2, 0)$. Poiché $3x^2 - 4 \ge 0$ per $x \ge 2\sqrt{3}$ oppure per $x \le -2\sqrt{3}$, mentre $3x^2 - 4 < 0$ per $x \in (-2/\sqrt{3}, 2/\sqrt{3})$, se ci limitiamo ai valori $x \in D_f$, possiamo concludere che f'(x) > 0 (e quindi f(x) è crescente) se $x \in (-2/\sqrt{3}, 0)$ oppure $x \in (0, +\infty)$, mentre f'(x) < 0 (e quindi f(x) è decrescente) se $x \in (-2/\sqrt{3}, 0)$. In particolare si vede che $x = x_0$ è un punto di massimo relativo per la funzione f(x).

Dall'espressione della derivata prima si vede anche che

$$\lim_{x \to -2^+} f(x) = +\infty,$$
 $\lim_{x \to 0^-} f(x) = -\infty,$ $\lim_{x \to 2^+} f(x) = +\infty,$

da cui si deduce che la tangente al grafico forma con l'asse delle ascisse un angolo $\pi/2$ per x=-2 e per x=2, e un angolo $-\pi/2$ per x=0 (in altre parole la retta tangente al grafico è una retta verticale in corrispondenza dei punti x=-2, x=0 e x=2).

La derivata seconda della funzione f(x) è data da

$$f''(x) = \frac{6x \cdot 2\sqrt{x^3 - 4x} - (3x^2 - 4)\frac{3x^2 - 4}{\sqrt{x^3 - 4x}}}{4(x^3 - 4x)} = \frac{\frac{1}{\sqrt{x^3 - 4x}} \left(12x(x^3 - 4x) - (3x^2 - 4)^2\right)}{4(x^3 - 4x)}$$
$$= \frac{3x^4 - 24x^2 - 16}{4(x^3 - 4x)\sqrt{4x^3 - 4x}} = \frac{3x^4 - 24x^2 - 16}{4(x^3 - 4x)^{3/2}}.$$

Il segno di f''(x) è determinato dal segno del numeratore. Per studiare il segno di $g(x) := 3x^4 - 24x^2 - 16$, è conveniente porre $x^2 := t$ e scrivere $g(x) = 3t^2 - 24t - 16$, in modo da studiare la disequazione $2t^2 - 24t - 16 \ge 0$. Si trova che

$$3y^2 - 24t - 16 = 0 \iff t = 4 \pm \frac{8}{\sqrt{3}}.$$

Quindi, in termini di x, se definiamo $x_0 := \sqrt{4 + 8/\sqrt{3}}$, si ha g(x) = 0 se e solo se $x = x_0$, poiché $4 - 8/\sqrt{3} < 0$. Inoltre risulta g(x) > 0 se $x^2 > 4 + 8/\sqrt{3}$, ovvero se $x > x_0$ oppure $x < -x_0$. Tenuto conto che $x_0 > 2$, si vede che, all'interno del dominio D_f , si ha g(x) > 0 per $x > x_0$, mentre g(x) < 0 per $x \in (-2,0)$ e per $x \in (0,x_0)$. In

conclusione, nell'intervallo [-2,0] la funzione è concava. Nell'intervallo $[0,+\infty)$, la funzione è concava fino a x_0 , ha un punto di flesso obliquo in x_0 ed è convessa per $x > x_0$. Il grafico della funzione è rappresentato in Figura 9.48.

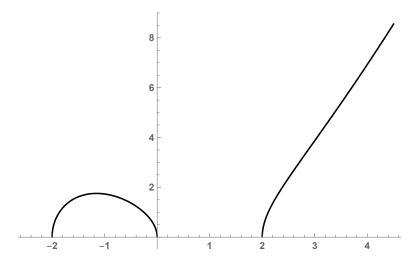


Figura 9.48: Grafico della funzione dell'esercizio 26.

27. La funzione

$$f(x) = \ln(3 + x^2) - \ln x^2$$

è definita per ogni $x \neq 0$, quindi $D_f = (-\infty, 0) \cup (0, +\infty)$. Infatti $3 + x^2 > 0 \ \forall x \in \mathbb{R}$ e $x^2 > 0$ per ogni $x \neq 0$. Per studiare il comportamento della funzione per $x \to \pm \infty$, è conveniente riscrivere (ricordando la proprietà del logaritmo $\ln a - \ln b = \ln(a/b)$)

$$f(x) = \ln \frac{3+x^2}{x^2}.$$

Si ha allora, usando la continuità della funzione logaritmo,

$$\lim_{x \to \pm \infty} f(x) = \lim_{x \to \pm \infty} \ln \frac{3 + x^2}{x^2} = \ln \left(\lim_{x \to \pm \infty} \frac{3 + x^2}{x^2} \right)$$

$$= \ln \left(\lim_{x \to \pm \infty} \frac{x^2 \left(1 + \frac{3}{x^2} \right)}{x^2} \right) \ln \left(\lim_{x \to \pm \infty} \left(1 + \frac{3}{x^2} \right) \right) = \ln 1 = 0,$$

che mostra che esiste un asintoto orizzontale y=0 sia per $x\to +\infty$ che per $x\to -\infty$. Inoltre si ha

$$\lim_{x \to 0^+} f(x) = \ln 3 - \lim_{x \to 0^+} \ln x^2 = \ln 3 + \infty = +\infty,$$

$$\lim_{x \to 0^-} f(x) = \ln 3 - \lim_{x \to 0^-} \ln x^2 = \ln 3 + \infty = +\infty,$$

9.8. ESERCIZI 181

quindi esiste un asintoto verticale x = 0, e la funzione tende a $+\infty$ per x che tende a 0 sia da destra che da sinistra. La derivata di f(x) è data da

$$f'(x) = \frac{2x}{3+x^2} - \frac{2x}{x^2} = \frac{2x}{3+x^2} - \frac{2}{x} = \frac{2x^2 - 2(3+x^2)}{x(3+x^2)} = -\frac{6}{x(3+x^2)}.$$

Poiché $3 + x^2 > 0 \ \forall x \in \mathbb{R}$, si ha f'(x) > 0 se x < 0 e f'(x) < 0 per x > 0: la funzione f(x) è crescente per x < 0 ed è decrescente per x > 0. La derivata seconda della funzione f(x) è

$$f''(x) = -\left(\frac{6}{x^3 + 3x}\right)' = \frac{6(3x^2 + 3)}{(x^3 + 3x)^2}.$$

Si vede immediatamente che f''(x) > 0 per ogni x per cui la funzione è definita (ovvero per ogni $x \neq 0$), da cui si deduce che la funzione f(x) è convessa. Il grafico della funzione è rappresentato in Figura 9.49.

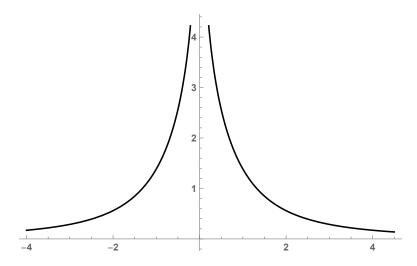


Figura 9.49: Grafico della funzione dell'esercizio 27.

28. Poiché $1 + x^2 > 0 \ \forall x \in \mathbb{R}$, la funzione

$$f(x) = x^4 - x^2 + \ln(1 + x^2)$$

è definita per ogni $x \in \mathbb{R}$. Quindi si ha $D_f = \mathbb{R} = (-\infty, +\infty)$.

Si ha inoltre

$$\lim_{x \to \pm \infty} f(x) = \lim_{x \to \pm \infty} x^4 \left(1 - \frac{1}{x^2} + \frac{\ln(1 + x^2)}{x^4} \right),$$

dove

$$\lim_{x \to \pm \infty} \frac{\ln(1+x^2)}{x^4} = \lim_{x \to \pm \infty} \frac{\frac{2x}{1+x^2}}{4x^3} = \lim_{x \to \pm \infty} \frac{1}{2x^2(1+x^2)} = 0.$$

Si ha pertanto

$$\lim_{x \to \pm \infty} f(x) = \lim_{x \to \pm \infty} x^4 \left(1 - \frac{1}{x^2} + \frac{\ln(1+x^2)}{x^4} \right) = \lim_{x \to \pm \infty} x^4 = +\infty.$$

Poiché, analogamente, si trova che

$$\lim_{x \to \pm \infty} \frac{f(x)}{x} = \lim_{x \to \pm \infty} \frac{x^4}{x} \left(1 - \frac{1}{x^2} + \frac{\ln(1+x^2)}{x^4} \right) = \lim_{x \to \pm \infty} x^3 = \pm \infty,$$

ne concludiamo che la funzione non ha asintoti né orizzontali né obliqui per $x \to \pm \infty$.

La derivata prima di f(x) vale

$$f'(x) = 4x^3 - 2x + \frac{2x}{1+x^2} = \frac{2x(2x^2 - 1)(1+x^2) + 2x}{1+x^2} = \frac{2x^3(1+2x^2)}{1+x^2} = \frac{2x^3 + 4x^5}{1+x^2}.$$

Poiché sia $1+2x^2$ che $1+x^2$ sono strettamente positivi, il segno di f'(x) è determinato dal segno di x^3 : se x>0 si ha f'(x)>0 e, analogamente, se x<0 si ha f'(x)<0. Ne segue che la funzione f(x) è crescente per x>0 e decrescente per x<0, così che x=0 costituisce un punto di minimo relativo.

La derivata seconda di f(x) è data da

$$f''(x) = \frac{(6x^2 + 20x^4)(1 + x^2) - (2x^3 + 4x^5)2x}{(1 + x^2)^2} = \frac{2x^2(6x^4 + 11x^2 + 3)}{(1 + x^2)^2}.$$

Si ha f''(x) = 0 se e solo se x = 0, poiché $6x^4 + 11x^2 + 3 > 0 \ \forall x \in \mathbb{R}$. Inoltre f''(x) > 0 per ogni $x \neq 0$: la funzione f(x) è convessa. Il grafico di f(x) è rappresentato in Figura 9.50.

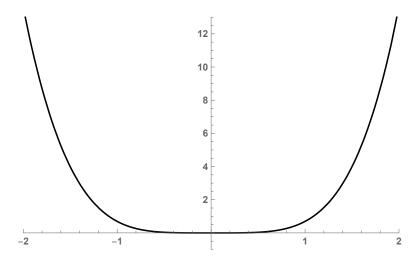


Figura 9.50: Grafico della funzione dell'esercizio 28.

9.8. ESERCIZI 183

29. Poiché $x^2 + 1 \ge 1 > 0 \ \forall x \in \mathbb{R}$, la funzione

$$f(x) = \left(\frac{x^2 - 1}{x^2 + 1}\right)^2 = \frac{(x^2 - 1)^2}{(x^2 + 1)^2} = \frac{x^4 - 2x^2 + 1}{x^4 + 2x^2 + 1}$$

è definita per ogni $x \in \mathbb{R}$. Quindi si ha $D_f = \mathbb{R} = (-\infty, +\infty)$.

Per studiare l'andamento per $x \to \pm \infty$, si considera

$$\lim_{x \to \pm \infty} f(x) = \lim_{x \to \pm \infty} \frac{x^4 \left(1 - \frac{2}{x^2} + \frac{2}{x^4} \right)}{x^4 \left(1 + \frac{2}{x^2} + \frac{2}{x^4} \right)} \lim_{x \to \pm \infty} \frac{1 - \frac{2}{x^2} + \frac{2}{x^4}}{1 + \frac{2}{x^2} + \frac{2}{x^4}} = 1,$$

da cui si evince che la funzione f(x) ha un asintoto orizzontale y=1 per $x\to\pm\infty$. La derivata prima è

$$f'(x) = 2\left(\frac{x^2 - 1}{x^2 + 1}\right) \left(\frac{x^2 - 1}{x^2 + 1}\right)' = 2\left(\frac{x^2 - 1}{x^2 + 1}\right) \frac{2x(x^2 + 1) - (x^2 - 1)2x}{(x^2 + 1)^2}$$
$$= 2\frac{2x(x^2 - 1 - x^2 + 1)}{(x^2 + 1)^3} = 8\frac{x(x^2 - 1)}{(x^2 + 1)^3} = 8\frac{x^3 - x}{(x^2 + 1)^3}.$$

Poiché sia $(x^2+1)^3>0 \ \forall x\in\mathbb{R}$, il segno di f'(x) è determinato dalla funzione $x(x^2-1)$ a numeratore. Si ha f'(x)=0 se x=0 oppure $x=\pm 1$, quindi ci sono tre punti stazionari: x=0, x=-1 e x=+1. Inoltre $x^2-1>0$ per x>1 oppure x<-1, mentre $x^2-1<0$ per $x\in(-1,1)$. Si ha quindi la situazione rappresentata in Figura 9.51.

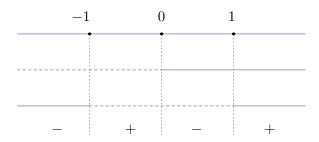


Figura 9.51: Studio del segno di $x^3 - x = x(x^2 - 1)$.

In conclusione, la funzione f(x) è decrecente per x < -1 e per $x \in (0,1)$, mentre è crescente per $x \in (-1,0)$ e per x > 1. Di conseguenza x = 0 è un punto di massimo relativo e $x = \pm 1$ sono due punti di minimo relativo; si vede imediatamente che f(0) = 1 e $f(\pm 1) = 0$.

Per calcolare la derivata seconda di f(x), si applica la regola di derivazione del rapporto di due funzioni, tenendo conto che

$$(x^3 - x)'$$
) = $3x^2 - 1$, $/(x^2 + 1)^3$)' = $3(x^2 + 1)^2 \cdot 2x = 6x(x^2 + 1)^2$.

Si trova quindi

$$f''(x) = \frac{(3x^2 - 1)(x^2 + 1)^3 - (x^3 - x)(6x(x^2 + 1)^2)}{(1 + x^2)^6} = 8\frac{(3x^2 - 1)(x^2 + 1) - 6x(x^3 - x)}{(1 + x^2)^4}$$
$$= 8\frac{3x^4 + 3x^2 - x^2 - 1 - 6x^4 + 6x^2}{(1 + x^2)^4} = 8\frac{-3x^4 + 8x^2 - 1}{(1 + x^2)^4}.$$

Il segno di f''(x) è quindi determinato dal segno di

$$g(x) := -3x^4 + 8x^2 - 1.$$

Se poniamo $x^2 = t$ (e quindi $x = \pm \sqrt{t}$), in termini di t, la funzione g(x) si riscrive

$$G(t) := g(\pm \sqrt{t}) = -3t^2 + 8t - 1,$$

così che, per determinare il segno di g(x), dobbiamo studiare la disequazione di secondo grado G(t)>0. Si ha G(t)=0 per

$$t = \frac{4 \pm \sqrt{13}}{3},$$

da cui si ottengono gli zeri $t_1 = (4 - \sqrt{13})/3$ e $t_2 = (4 + \sqrt{13})/3$, entrambi positivi. Tenuto conto del segno del coefficiente di t^2 in G(t) concludiamo che G(t) è positiva per $t \in (t_1, t_2)$ e negativa per $t \in [0, t_1)$ e $t \in (t_2, +\infty)$. Quindi, in termini di x, si ha g(x) > 0 per $x \in (x_1, x_2)$ oppure per $x \in (-x_2, -x_1)$, dove

$$x_1 = \sqrt{\frac{4 - \sqrt{13}}{3}}, \qquad x_2 = \sqrt{\frac{4 + \sqrt{13}}{3}},$$

mentre g(x) < 0 per $x < -x_2$ oppure $x \in (-x_1, x_1)$ oppure $x > x_2$. Ne segue che la funzione f(x) è convessa per $x \in (x_1, x_2)$ oppure per $x \in (-x_2, -x_1)$ e concava per $x < -x_2$ oppure $x \in (-x_1, x_1)$ oppure $x > x_2$. I punti $x = -x_2$, $x = -x_1$, $x = x_1$ e $x = x_2$ sono punti di flesso obliquo, in cui cambia la concavità della funzione. Il grafico di f(x) è rappresentato in Figura 9.52.

9.8. ESERCIZI 185

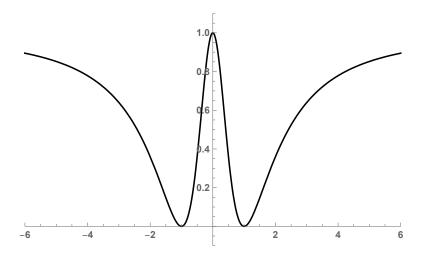


Figura 9.52: Grafico della funzione dell'esercizio 29.

30. La funzione

$$f(x) = \sqrt{\frac{x^2 - 4}{x^2 + 4}}$$

è definita per ogni $x \in \mathbb{R}$ tale che $x^2 \geq 4$, quindi per $x \geq 2$ oppure $x \leq -2$ (il denominatore è sempre strettamente positivo). Quindi si ha $D_f = \mathbb{R} = (-\infty, -2) \cup (2, +\infty)$.

Usando la continuità della funzione radice quadrata, si trova

$$\lim_{x\to\pm\infty}f(x)=\lim_{x\to\pm\infty}\sqrt{\frac{x^2-4}{x^2+4}}=\sqrt{\lim_{x\to\pm\infty}\frac{x^2-4}{x^2+4}},$$

dove

$$\lim_{x \to \pm \infty} \frac{x^2 - 4}{x^2 + 4} = \lim_{x \to \pm \infty} \frac{x^2 \left(1 - \frac{4}{x^2} \right)}{x^2 \left(1 + \frac{4}{x^2} \right)} = \lim_{x \to \pm \infty} \frac{1 - \frac{4}{x^2}}{1 + \frac{4}{x^2}} = 1.$$

Quindi la funzione ha un asintoto orizzontale y=1 sia per $x\to\infty$ che per $x\to-\infty$. Inoltre

$$\lim_{x \to -2^{-}} f(x) = 0, \qquad \lim_{x \to 2^{+}} f(x) = 0,$$

quindi la funzione f(x) non ha asintoti verticali. La derivata prima di f(x) vale

$$f'(x) = \frac{1}{2\sqrt{\frac{x^2 - 4}{x^2 + 4}}} \left(\frac{x^2 - 4}{x^2 + 4}\right)' = \frac{1}{2}\sqrt{\frac{x^2 + 4}{x^2 - 4}} \frac{2x(x^2 + 4) - (x^2 - 4)2x}{(x^2 + 4)^2}$$
$$= x\sqrt{\frac{x^2 + 4}{x^2 - 4}} \frac{x^2 + 4 - x^2 + 4}{(x^2 + 4)^2} = \frac{8x}{(x^2 + 4)^{3/2}(x^2 - 4)^{1/2}}.$$

Poiché il denominatore è sempre positivo per $x \in D_f$, si vede immediatamente che f'(x) > 0 (e quindi f(x) è crescente) per x > 0 e f'(x) < 0 (e quindi f(x) è decrescente) per x < 0. La derivata seconda di f(x) è data da

$$f''(x) = 8 \frac{(x^2 + 4)^{3/2}(x^2 - 4)^{1/2} - x \left(3x(x^2 + 4)^{1/2}(x^2 - 4)^{1/2} + (x^2 + 4)^{3/2}x(x^2 - 4)^{-1/2}\right)}{(x^2 + 4)^3(x^2 - 4)}$$

$$= 8 \frac{(x^2 + 4)^{1/2}}{(x^2 - 4)^{1/2}} \frac{(x^2 + 4)(x^2 - 4) - x^2 \left(3(x^2 - 4) + (x^2 + 4)\right)}{(x^2 + 4)^3(x^2 - 4)}$$

$$= 8 \frac{(x^2 + 4)^{1/2}}{(x^2 - 4)^{1/2}} \frac{(x^4 - 16 - 4x^4 + 8)}{(x^2 + 4)^3(x^2 - 4)} = -\frac{8(3x^4 + 8)}{(x^2 + 4)^{5/2}(x^2 - 4)^{3/2}},$$

dove si è tenuto conto che

$$((x^{2}+4)^{3/2})' = \frac{3}{2}(x^{2}+4)^{1/2}2x = 3x(x^{2}+4)^{1/2},$$

e, analogamente, che

$$((x^{2}-4)^{1/2})' = \frac{1}{2}(x^{2}-4)^{-1/2}2x = x(x^{2}-4)^{-1/2}.$$

Si ha f''(x) < 0 per ogni $x \in D_f$: ne segue che la funzione f(x) è concava. Il grafico di f(x) è rappresentato in Figura 9.53.

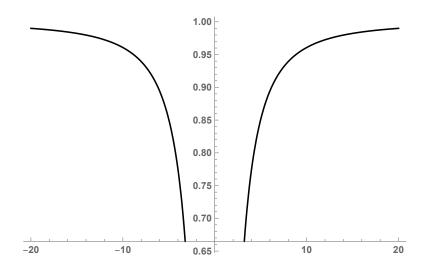


Figura 9.53: Grafico della funzione dell'esercizio 30.

10 Vettori

10.1 Vettori nel piano

Si fissi un sistema di riferimento ortogonale in \mathbb{R}^2 e si indichi con O l'origine del sistema.

Definizione 10.1. Sia P un punto del piano cartesiano. Il segmento di estremi O e P, orientato da O a P, si chiama vettore che parte dal punto O e arriva al punto P e sarà indicato con il simbolo \overrightarrow{OP} .

Osservazioni:

- 1. Dato il vettore \overrightarrow{OP} , si dice che il vettore è applicato in O. Il punto di applicazione può essere diverso da O: dati due punti Q e P del piano si può considerare il vettore \overrightarrow{QP} che parte dal punto Q e arriva al punto P. Tale vettore è applicato in Q.
- 2. Fissata l'origine O, c'è corrispondenza biunivoca tra punti P del piano e vettori \overrightarrow{OP} applicati in O.
- 3. Ogni vettore \overrightarrow{OP} è caratterizzato da: lunghezza, direzione e verso. La lunghezza o modulo si indica con $|\overrightarrow{OP}|$ ed esprime la lunghezza del segmento di estremi i due punti O e P, la direzione è data dal fascio di rette parallele alla retta che passa per i due punti e il verso indica verso quale dei due punti il vettore è orientato.
- 4. Se \vec{v} denota il segmento orientato che unisce due punti qualsiasi del piano, allora \vec{v} è caratterizzato da: lunghezza, direzione, verso e punto d'applicazione.
- 5. In particolare due vettori $\overrightarrow{Q_1P_1}$ e $\overrightarrow{Q_2P_2}$, applicati rispettivamente in Q_1 e in Q_2 , avranno la stessa direzione se la retta passante per i punti Q_1 e P_1 e la retta passante per i punti Q_2 e P_2 sono tra loro parallele. Diremo che i due vettori sono paralleli se hanno lo stesso verso e antiparalleli se hanno versi opposti.

Definizione 10.2. Un vettore \vec{v} di lunghezza unitaria (i.e. tale che $|\vec{v}| = 1$) si chiama versore. I due vettori di lunghezza unitaria applicati in O, diretti uno lungo l'asse x e l'altro lungo l'asse y, nel verso delle x e y crescenti, rispettivamente, sono chiamati versori del piano: il primo è il versore dell'asse x e il secondo è il versore dell'asse y.

Osservazioni:

- 1. Il versore dell'asse x si indica con \vec{i} e il versore dell'asse y si indica con \vec{j} .
- 2. Fissato il punto P del piano cartesiano si può identificare P con una coppia ordinata di numeri x, y, che rappresentano le coordinate del punto P (cfr. §2.1). Se \vec{v} è il vettore che parte dall'origine e arriva al punto P possiamo allora scrivere $\vec{v} = (x, y)$.

Definizione 10.3. Dati due vettori \vec{v} e \vec{w} , applicati nello stesso punto, si definisce somma dei due vettori il vettore $\vec{v} + \vec{w}$ applicato nello stesso punto e individuato dalla diagonale principale del parallelogramma che abbia \vec{v} e \vec{w} come lati adiacenti.

Osservazioni:

- 1. Se i due vettori \vec{v} e \vec{w} hanno la stessa direzione, il parallelogramma degenera in un segmento la cui lunghezza è data dalla somma delle lunghezze dei due vettori: in tal caso possiamo identificare la diagonale con tale segmento.
- 2. La somma di due vettori si ottiene quindi con la costruzione geometrica rappresentata in Figura 10.1, nota come regola del parallelogramma.

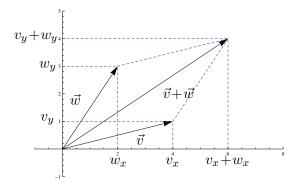


Figura 10.1: Somma di vettori.

- 3. Se $\vec{v} = \overrightarrow{OP} = (x, y)$, possiamo scrivere $\vec{v} = x\vec{i} + y\vec{j}$. I due numeri x e y sono le componenti del vettore \vec{v} (cfr. la Figura 10.2): se φ denota l'angolo che il vettore \overrightarrow{OP} forma con l'asse x, si ha $x = |\overrightarrow{OP}| \cos \varphi$ e $y = |\overrightarrow{OP}| \sin \varphi$. Per il teorema di Pitagora abbiamo allora $|\vec{v}| = \sqrt{x^2 + y^2}$.
- 4. Se $\vec{v} = v_x \vec{i} + v_y \vec{j}$ e $\vec{w} = w_x \vec{i} + w_y \vec{j}$, allora si ha $\vec{v} + \vec{w} = (v_x + w_x)\vec{i} + (v_y + w_y)\vec{j}$ (cfr. la Figura 10.1).

Definizione 10.4. Dato un vettore \vec{v} e un numero reale $\alpha \neq 0$ si indica con $\alpha \vec{v}$ il vettore che ha la stessa direzione di \vec{v} , lunghezza $|\alpha| |\vec{v}|$ e verso concorde con \vec{v} se $\alpha > 0$ e opposto se $\alpha < 0$.

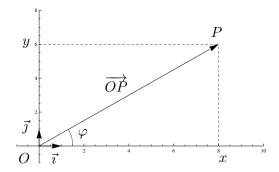


Figura 10.2: Componenti di un vettore.

Osservazioni:

- 1. Dati due vettori \vec{v} e \vec{w} , la differenza di due vettori $\vec{v} \vec{w}$ può essere visto come la somma dei due vettori \vec{v} e $-\vec{w}$, dove $-\vec{w}$ è il vettore $\alpha \vec{w}$ con $\alpha = -1$ (cfr. la Figura 10.3). In particolare, se $\vec{v} = v_x \vec{i} + v_y \vec{j}$ e $\vec{w} = w_x \vec{i} + w_y \vec{j}$ si ha $\vec{v} \vec{w} = (v_x w_x)\vec{i} + (v_y w_y)\vec{j}$.
- 2. Se $\vec{v} = v_x \vec{i} + v_y \vec{j}$, allora $\alpha \vec{v} = \alpha v_x \vec{i} + \alpha v_y \vec{j}$.

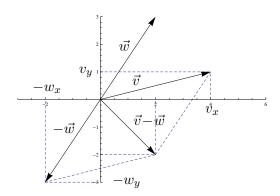


Figura 10.3: Differenza di vettori.

Definizione 10.5. Si definisce vettore nullo $\vec{0}$ il vettore tale che:

- 1. $\vec{v} + \vec{0} = \vec{v}$ per ogni vettore \vec{v} .
- 2. $\alpha \vec{0} = \vec{0}$ per ogni $\alpha \in \mathbb{R}$.
- 3. $0\vec{v} = \vec{0}$ per ogni vettore \vec{v} .

Osservazione: il vettore nullo è quindi il vettore di componenti (0,0).

10.2 Rette nel piano

Dato il vettore $\overrightarrow{OP_0}=x_0\vec{\imath}+y_0\vec{\jmath}$, il vettore $\overrightarrow{OP}=t\overrightarrow{OP_0}=tx_0\vec{\imath}+ty_0\vec{\jmath}$ è il vettore di componenti

$$\begin{cases} x = tx_0, \\ y = ty_0. \end{cases}$$

Al variare di $t \in \mathbb{R}$, le equazioni si chiamano equazioni parametriche della retta individuata dal vettore $\overrightarrow{OP_0}$. Possiamo allora scrivere $t = x/x_0 = y/y_0$, ottenendo

$$y = \frac{y_0}{x_0} x,$$

che prende il nome di equazione cartesiana della retta r individuata dal vettore $\overrightarrow{OP_0}$. Per costruzione r è una retta passante per l'origine.

Più in generale si possono considerare due punti qualsiasi del piano, P_1 e P_2 , di cui non necessariamente uno sia l'origine. Sia $\overrightarrow{P_1P_2}$ il vettore applicato in $P_1=(x_1,x_2)$ che arriva al punto $P_2=(x_2,y_2)$. Un punto P=(x,y) appartiene alla retta passante per $\overrightarrow{P_1P_2}$ se $\overrightarrow{P_1P}=t\overrightarrow{P_1P_2}$ per qualche $t\in\mathbb{R}$. Se scriviamo $P_2=(x_1+(x_2-x_1),y_1+(y_2-y_1))$ e $P=(x_1+(x_2-x_1),y_1+(y_2-y_1))$, si deve allora avere

$$\begin{cases} x = x_1 + t(x_2 - x_1), \\ y = y_1 + t(y_2 - y_1) \end{cases}$$

per qualche $t \in \mathbb{R}$ e quindi

$$\begin{cases} x - x_1 = t (x_2 - x_1), \\ y - y_1 = t (y_2 - y_1). \end{cases}$$

Se $x_2 \neq x_1$ e $y_2 \neq y_1$, eliminando il parametro t si ottiene

$$\frac{x - x_1}{x_2 - x_1} = \frac{y - y_1}{y_2 - y_1},$$

che è l'equazione cartesiana della retta r passante per i due punti P_1 e P_2 . Per costruzione r è parallela al vettore $\vec{v} = (a, b)$, con $a = x_2 - x_1$ e $b = y_2 - y_1$. Quindi il vettore \vec{v} individua la direzione della retta r (cfr. la Figura 10.4).

Osservazioni:

1. Mentre le equazioni parametriche si possono definire per qualsiasi valore di x_1, x_2, y_1, y_2 , l'equazione cartesiana scritta sopra ha senso solo se $x_1 \neq x_2$ e $y_1 \neq y_2$, ovvero se la retta non è parallela né all'asse x né all'asse y.

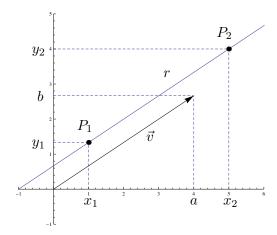


Figura 10.4: Vettore $\vec{v} = (a, b)$ parallelo alla retta r passante per P_1 e P_2 .

- 2. D'altra parte se $x_1 = x_2$ la retta ha semplicemente equazione $x = x_1$ e se $y_1 = y_2$ la retta ha equazione $y = y_1$.
- 3. L'equazione cartesiana rappresenta l'equazione di una retta passante per due punti dati P_1 e P_2 : ponendo $x_2 x_1 = a$ e $y_2 y_1 = b$ possiamo interpretare l'equazione come l'equazione di una retta passante per un punto dato P_1 e parallela a un vettore dato $\vec{v} = (a, b)$.
- 4. Possiamo riscrivere l'equazione cartesiana come

$$y = \frac{y_2 - y_1}{x_2 - x_1} x - x_1 \frac{y_2 - y_1}{x_2 - x_1} + y_1,$$

che, ponendo

$$k = \frac{y_2 - y_1}{x_2 - x_1}, \qquad p = -x_1 \frac{y_2 - y_1}{x_2 - x_1} + y_1 = \frac{y_1 x_2 - y_2 x_1}{x_2 - x_1},$$

diventa

$$y = kx + p$$
.

Ritroviamo quindi l'equazione di una retta con coefficiente angolare k vista in §3.3.

5. Partendo invece dall'equazione y = kx + p, $k \neq 0$, possiamo ricondurla alla forma $(x - x_1)/(x_2 - x_1) = (y - y_1)/(y_2 - y_1)$ scrivendo x + (p/k) = y/k: quindi la retta passa per il punto $P_1 = (-p/k, 0)$ ed è parallela al vettore $\vec{v} = (1, k)$ In particolare la retta passa anche per il punto $P_2 = (x_2, y_2)$, con $x_2 - x_1 = 1$ e $y_2 - y_1 = k$: quindi $P_2 = (1 - p/k, k)$. Alternativamente si possono individuare due punti per cui la retta passa notando che, se y = kx + p, allora y = p per x = 0 e x = -p/k per y = 0, quindi i punti (-p/k, 0) e (0, p) appartengono alla retta \Longrightarrow la retta ha equazione (x + p/k)/(p/k) = y/p, che, moltiplicando per p/k, dà x + p/k = y/k.

Teorema 10.6. L'equazione cartesiana di una retta nel piano ha la forma ax+by+c=0, dove i coefficienti a e b non sono entrambi nulli.

Dimostrazione. Se $b \neq 0$ possiamo dividere l'equazione ax + by + c = 0 per b e troviamo y = -(a/b)x - (c/b) = kx + p, dove k = -a/b e p = -c/b, che è l'equazione cartesiana di una retta che non sia parallela all'asse y. Se b = 0 allora ax + c = 0, ovvero x = -c/a: quindi x è costante e l'equazione rappresenta una retta parallela all'asse y.

Osservazione: in conclusione, la retta passante per un punto $P = (x_0, y_0)$ e parallela al vettore $\vec{v} = (a, b)$ avrà quindi equazione

$$\frac{x - x_0}{a} = \frac{y - y_0}{b},$$

se a e b sono entrambi non nulli. Se a=0 e $b\neq 0$ allora la retta ha equazione $x=x_0$, $y\in\mathbb{R}$ ed è parallela all'asse y; se invece b=0 e $a\neq 0$ allora la retta ha equazione $y=y_0$, $x\in\mathbb{R}$ ed è quindi parallela all'asse x.

10.3 Vettori linearmente indipendenti nel piano

Definizione 10.7. Dati due vettori $\vec{v} = v_x \vec{i} + v_y \vec{j}$ e $\vec{w} = w_x \vec{i} + w_y \vec{j}$, diremo che i due vettori sono linearmente dipendenti se $\exists \alpha, \beta \in \mathbb{R}$ non entrambi nulli tali che $\alpha \vec{v} + \beta \vec{w} = \vec{0}$. Diremo che i due vettori sono linearmente indipendenti se $\alpha \vec{v} + \beta \vec{w} = \vec{0}$ è possibile solo se α e β sono entrambi nulli.

Esercizi:

- 1. Si dimostri che i vettori di componenti (1,0) e (0,1) sono linearmente indipendenti.
- 2. Si dimostri che i vettori di componenti (1,0) e (2,0) sono linearmente dipendenti.
- 3. Si discuta se i vettori di componenti (1,-1) e (-2,2) sono linearmente indipendenti.
- 4. Si discuta se i vettori di componenti (1,-1) e (2,2) sono linearmente indipendenti.

Soluzioni:

- 1. Si ha $\alpha(1,0) + \beta(0,1) = (\alpha,\beta) = (0,0)$ se e solo se $\alpha = \beta = 0$.
- 2. Si ha $\alpha(1,0) + \beta(2,0) = (\alpha + 2\beta,0) = (0,0)$ se e solo se $\alpha + 2\beta = 0$, ovvero $\beta \neq 0$ e $\alpha = -2\beta$ (per esempio $\beta = 1$ e $\alpha = -2$).
- 3. Si ha $\alpha(1,-1) + \beta(-2,2) = (\alpha 2\beta, -\alpha + 2\beta) = (0,0)$ se e solo se $\alpha = 2\beta$, con $\beta \neq 0$ ma per il resto arbitrario: i vettori sono linearmente dipendenti.
- 4. Si ha $\alpha(1,-1) + \beta(2,2) = (\alpha 2\beta, \alpha + 2\beta) = (0,0)$ se e solo se $\alpha = 2\beta = -2\beta$, che richiede $\beta = 0$ e quindi anche $\alpha = 0$: i vettori sono linearmente indipendenti.

Osservazioni:

- 1. Dati due vettori \vec{v} e \vec{w} , se uno dei due è il vettore nullo, allora essi sono linearmente dipendenti: infatti, se $\vec{w} = \vec{0}$, si ha $\alpha \vec{v} + \beta \vec{0} = \alpha \vec{v} = \vec{0}$ se $\alpha = 0$ indipendentemente dal valore di β (che quindi può essere diverso da zero).
- 2. Per essere linearmente dipendenti due vettori non nulli devono essere paralleli o antiparalleli, i.e. avere la stessa direzione: infatti se $\alpha \vec{v} + \beta \vec{w} = \vec{0}$ allora sia α che β devono essere diversi da zero (altrimenti uno dei due vettori dovrebbe essere nullo), quindi possiamo dividere l'equazione, per esempio, per α e ottenere $\vec{v} = \lambda \vec{w}$, con $\lambda = -\beta/\alpha \in \mathbb{R}$.
- 3. I versori \vec{i} e \vec{j} hanno la seguente proprietà:
 - sono linearmente indipendenti;
 - $\forall \vec{v} \; \exists v_x, v_y \in \mathbb{R}$ tali che $\vec{v} = v_x \vec{i} + v_y \vec{j}$; cfr. la Figura 10.5.

Quindi ogni vettore del piano si può scrivere come combinazione lineare dei vettori \vec{i} e \vec{j} . Si dice allora che $\{\vec{i}, \vec{j}\}$ costituisce una base per i vettori del piano.

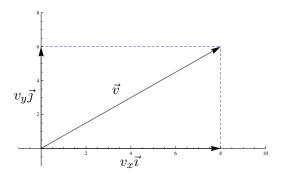


Figura 10.5: Scomposizione di un vettore \vec{v} nella base $\{\vec{i}, \vec{j}\}$.

Osservazioni:

- 1. Più in generale una qualsiasi coppia di vettori linearmente indipendenti costituisce una base per i vettori nel piano. In altre parole, dati due vettori \vec{v}_1 , \vec{v}_2 linearmente indipendenti, ogni altro vettore \vec{u} si può scrivere come loro combinazione lineare (i.e. esistono $\alpha, \beta \in \mathbb{R}$ tali che $\vec{u} = \alpha \vec{v}_1 + \beta \vec{v}_2$).
- 2. Se considero tre o più vettori nel piano, questi sono quindi necessariamente linearmente dipendenti.

10.4 Prodotto scalare nel piano

Definizione 10.8. Dati due vettori \vec{v} e \vec{w} si definisce prodotto scalare dei due vettori il numero reale

$$\vec{v} \cdot \vec{w} = |\vec{v}| \, |\vec{w}| \, \cos \varphi,$$

Osservazioni:

- 1. $\vec{v}, \vec{w} \neq \vec{0}$ e $\vec{v} \cdot \vec{w} = 0 \Longrightarrow \vec{v}$ e \vec{w} sono ortogonali (i.e. $\varphi = \pi/2$).
- 2. \vec{v} e \vec{w} sono paralleli (stessa direzione e stesso verso) $\Longrightarrow \varphi = 0 \Longrightarrow \vec{v} \cdot \vec{w} = |\vec{v}| \, |\vec{w}|$.
- 3. \vec{v} e \vec{w} sono antiparalleli (stessa direzione e verso opposto) $\Longrightarrow \varphi = \pi \Longrightarrow \vec{v} \cdot \vec{w} = -|\vec{v}| \, |\vec{w}|$.
- 4. Si noti che $|\vec{v}|\cos\varphi$ rappresenta la proiezione ortogonale del vettore \vec{v} sul vettore \vec{w} ; cfr. la Figura 10.6. Analogamente $|\vec{w}|\cos\varphi$ rappresenta la proiezione ortogonale di \vec{w} su \vec{v} .
- 5. Poiché i versori \vec{i} e \vec{j} sono ortogonali, si ha $\vec{i} \cdot \vec{i} = \vec{j} \cdot \vec{j} = 1$ e $\vec{i} \cdot \vec{j} = 0$.
- 6. Si ha $\vec{v} \cdot \vec{0} = 0$ per ogni vettore \vec{v} .

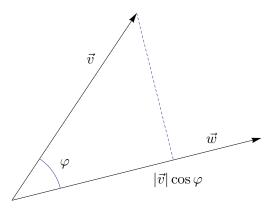


Figura 10.6: Prodotto scalare di due vettori \vec{v} e \vec{w} e proiezione ortogonale $|\vec{v}|\cos\varphi$.

Proprietà del prodotto scalare:

- 1. $\forall \vec{v}, \vec{w} \text{ si ha } \vec{v} \cdot \vec{w} = \vec{w} \cdot \vec{v}.$
- 2. $\forall \vec{v_1}, \vec{v_2}, \vec{w} \text{ si ha } (\vec{v_1} + \vec{v_2}) \cdot \vec{w} = \vec{v_1} \cdot \vec{w} + \vec{v_2} \cdot \vec{w}.$

- 3. $\forall \vec{v}_1, \vec{v}_2, \vec{w}_1 \vec{w}_2 \text{ si ha } (\vec{v}_1 + \vec{v}_2) \cdot (\vec{w}_1 + \vec{w}_2) = \vec{v}_1 \cdot \vec{w}_1 + \vec{v}_1 \cdot \vec{w}_2 + \vec{v}_2 \cdot \vec{w}_1 + \vec{v}_2 \cdot \vec{w}_2.$
- 4. $(\alpha \vec{v}) \cdot \vec{w} = \alpha (\vec{v} \cdot \vec{w})$.
- 5. $(\alpha \vec{v}) \cdot (\beta \vec{w}) = \alpha \beta (\vec{v} \cdot \vec{w})$.
- 6. $\vec{v} = v_x \vec{i} + v_y \vec{j} \in \vec{w} = w_x \vec{i} + w_y \vec{j} \Longrightarrow \vec{v} \cdot \vec{w} = v_x w_x + v_y w_y$.

Dimostrazioni:

- 1. Segue dalla definizione di prodotto scalare.
- 2. Si ha $(\vec{v}_1 + \vec{v}_2) \cdot \vec{w} = |\vec{v}_1 + \vec{v}_2| |\vec{w}| \cos \varphi$, dove φ è l'angolo tra i vettori $\vec{v}_1 + \vec{v}_2$ e \vec{w} , $\vec{v}_1 \cdot \vec{w} = |\vec{v}_1| |\vec{w}| \cos \varphi_1$, dove φ_1 è l'angolo tra i vettori \vec{v}_1 e \vec{w} , $\vec{v}_2 \cdot \vec{w} = |\vec{v}_2| |\vec{w}| \cos \varphi_2$, dove φ_2 è l'angolo tra i vettori \vec{v}_2 e \vec{w} . Si vede graficamente che $|\vec{v}_1 + \vec{v}_2| \cos \varphi = |\vec{v}_1| \cos \varphi_1 + |\vec{v}_2| \cos \varphi_2$ (cfr. la Figura 10.7): infatti $|\vec{v}_1 + \vec{v}_2| \cos \varphi$ è la proiezione del vettore $\vec{v}_1 + \vec{v}_2$ sul vettore \vec{w} ed è uguale alla somma della proiezione $|\vec{v}_1| \cos \varphi_1$ di \vec{v}_1 e della proiezione $|\vec{v}_2| \cos \varphi_1$ di \vec{v}_2 su \vec{w} .

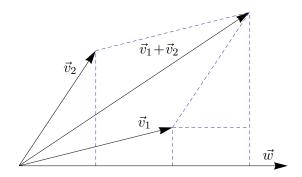


Figura 10.7: Dimostrazione della proprietà 2.

- 3. Segue dalle proprietà 1 e 2.
- 4. Se $\alpha = 0$ la relazione è ovvia. Se $\alpha \neq 0$, sia φ l'angolo tra \vec{v} e \vec{w} : se $\alpha \geq 0$ si ha $(\alpha \vec{v}) \cdot \vec{w} = |\alpha \vec{v}| |\vec{w}| \cos \varphi = \alpha |\vec{v}| |\vec{w}| \cos \varphi = \alpha \vec{v} \cdot \vec{w}$, se $\alpha < 0$ si ha $(\alpha \vec{v}) \cdot \vec{w} = -|\alpha \vec{v}| |\vec{w}| \cos \varphi = -|\alpha| |\vec{v}| |\vec{w}| \cos \varphi = \alpha |\vec{v}| |\vec{w}| \cos \varphi = \alpha \vec{v} \cdot \vec{w}$.
- 5. Segue dalla proprietà 1 e 4.
- 6. Segue dalle proprietà 4 e 5, utilizzando il fatto che $\vec{\imath} \cdot \vec{\imath} = \vec{\jmath} \cdot \vec{\jmath} = 1$ e $\vec{\imath} \cdot \vec{\jmath} = 0$.

Osservazioni:

- 1. Dato un vettore $\vec{v} = (a, b)$, per individuare un vettore \vec{w} ortogonale a \vec{v} basta imporre che i due vettori abbiano prodotto scalare nullo, i.e. $\vec{v} \cdot \vec{w} = 0$. Se $\vec{w} = (w_x, w_y)$ si deve avere $aw_x + bw_y = 0$: tale relazione è soddisfatta se scegliamo $w_x = -b$ e $w_y = a$. Quindi $\vec{w} = (-b, a)$ è ortogonale a $\vec{v} = (a, b)$.
- 2. La distanza d di un punto P da una retta r è la distanza di P dal punto Q di r più vicino a P: per calcolare d si individua prima la retta s ortogonale a r e passante per P, si trova quindi il punto Q di intersezione di r con s e si calcola infine la distanza tra i due punti P e Q; cfr. la Figura 10.8. Quindi se la retta ha equazione $(x-x_1)/(x_2-x_1)=(y-y_1)/(y_2-y_1)$ ed è quindi parallela al vettore (a,b), con $a=x_2-x_1$ e $b=y_2-y_1$, allora il vettore (-b,a) è ortogonale a r. Quindi la retta s ortogonale a r e passante per P ha equazione $(x-x_0)/(-b)=(y-y_0)/a$. Il punto d'intersezione tra s e r si trova risolvendo quindi il sistema di equazioni:

$$\begin{cases} \frac{(x-x_1)}{a} = \frac{(y-y_1)}{b}, \\ \frac{(x-x_0)}{-b} = \frac{(y-y_0)}{a}, \end{cases}$$

La soluzione (\bar{x}, \bar{y}) individua il punto Q e quindi $d = \sqrt{(x_0 - \bar{x})^2 + (y_0 - \bar{y})^2}$

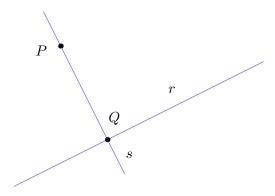


Figura 10.8: Distanza di un punto da una retta nel piano.

3. Se la retta ha equazione Ax + By + C = 0 la distanza d del punto $P = (x_0, y_0)$ dalla retta è espressa dalla formula

$$d = \frac{|Ax_0 + By_0 + C|}{\sqrt{A^2 + B^2}}.$$

Infatti, se $A, B \neq 0$, si può ragionare come segue a partire dall'Osservazione 2. Si riscrive l'equazione della retta come $x + (B/A)y + (C/A) = 0 \Longrightarrow x + (C/A) = 0$

 $-(B/A)y \Longrightarrow (x+(C/A))/B = y/(-A)$, che è l'equazione di una retta passante per il punto $P_1 = (-C/A, 0)$ e parallela al vettore $\vec{v} = (a, b) = (B, -A)$. Quindi la retta s è parallela al vettore $\vec{w} = (-b, a) = (A, B)$ e passa per il punto P: è quindi descritta dall'equazione $(x-x_0)/A = (y-y_0)/B$. Il punto Q si trova risolvendo il sistema

$$\begin{cases} (x + (C/A))/B = y/(-A), \\ (x - x_0)/A = (y - y_0)/B, \end{cases}$$

che possiamo riscrivere

$$\begin{cases} Ax + C + By = 0, \\ Bx - Bx_0 - Ay + Ay_0 = 0. \end{cases}$$

Moltiplicando la prima equazione per B e la seconda per A e facendone la differenza si trova $BC+B^2y+ABx_0+A^2y-A^2y_0=0$, mentre moltiplicando la prima equazione per A e la seconda per B e sommando si trova $A^2x+AC+B^2x-B^2x_0+ABy_0=0$, da cui si ottiene la soluzione

$$\begin{cases} \bar{x} = \frac{B^2 x_0 - ABy_0 - AC}{A^2 + B^2}, \\ \bar{y} = \frac{-ABx_0 + A^2 y_0 - BC}{A^2 + B^2}. \end{cases}$$

Quindi si ottiene

$$\bar{x} - x_0 = -\frac{A}{A^2 + B^2} (Ax_0 + By_0 + C), \quad \bar{y} - y_0 = -\frac{B}{A^2 + B^2} (Ax_0 + By_0 + C),$$

da cui segue

$$d = \sqrt{\frac{A^2}{(A^2 + B^2)^2} (Ax_0 + By_0 + C)^2 + \frac{B^2}{(A^2 + B^2)^2} (Ax_0 + By_0 + C)^2},$$

che implica immediatamente la formula per d data sopra.

4. Calcolare la distanza di un punto da una retta diventa banale se la retta è parallela a uno degli assi: per esempio se la retta ha equazione $x = x_1$ allora la distanza d del punto $P = (x_0, y_0)$ dalla retta è data semplicemente da $d = |x_1 - x_0|$; se la retta ha equazione $y = y_1$ allora la distanza è $d = |y_1 - y_0|$. Si noti che la formula dell'Osservazione 3 si può applicare anche in tal caso (infatti $A^2 + B^2 = 1$, mentre $Ax_0 + By_0 + C = x_0 - x_1$ se la retta ha equazione $x = x_1$ e $Ax_0 + By_0 + C = y_0 - y_1$ se la retta ha equazione $y = y_1$).

10.5 Vettori nello spazio

Quanto fatto prima si può ripetere per vettori in tre dimensioni. In particolare si considera $\mathbb{R}^3 = \mathbb{R} \times \mathbb{R} \times \mathbb{R}$ e si introducono tre versori $\vec{\imath}, \vec{\jmath}, \vec{k}$ nelle direzioni dei tre assi ortogonali. Diremo che $\vec{\imath}, \vec{\jmath}, \vec{k}$ sono i versori dello spazio: $\vec{\imath}$ è il versore dell'asse $x, \vec{\jmath}$ è il versore dell'asse y e \vec{k} è il versore dell'asse z. I vettori $\vec{\imath}, \vec{\jmath}, \vec{k}$ costuiscono una base di vettori nello spazio. Si può allora introdurre la somma di vettori (attraverso la stessa regola del parallelogramma) e il prodotto di un vettore per un numero reale.

Per ogni vettore \vec{v} si può scrivere

$$\vec{v} = v_x \vec{i} + v_y \vec{j} + v_z \vec{k},$$

per opportuni $v_x, v_y, v_z \in \mathbb{R}$. I numeri v_x, v_y, v_z si chiamano *componenti* del vettore \vec{v} . Possiamo anche scrivere $\vec{v} = (v_x, v_y, v_z)$, così stabilendo una corrispondenza biunivoca tra vettori e punti dello spazio. La lunghezza del vettore è data da $|\vec{v}| = \sqrt{v_x^2 + v_y^2 + v_z^2}$.

Due vettori \vec{v}_1 e \vec{v}_2 si dicono linearmente dipendenti se esistono $\alpha, \beta \in \mathbb{R}$, non entrambi nulli, tali che $\alpha \vec{v}_1 + \beta \vec{v}_2 = \vec{0}$, e linearmente indipendenti in caso contrario. Più in generale n vettori $\vec{v}_1, \ldots, \vec{v}_n$ si dicono linearmente dipendenti se esistono n numeri reali $\alpha_1, \ldots, \alpha_n$, non tutti nulli, tali che $\alpha_1 \vec{v}_1 + \ldots + \alpha_n \vec{v}_n = \vec{0}$. Diremo al contrario che n vettori $\vec{v}_1, \ldots, \vec{v}_n$ sono linearmente indipendenti se $\alpha_1 \vec{v}_1 + \ldots + \alpha_n \vec{v}_n = \vec{0}$ è possibile solo se $\alpha_1 = \ldots = \alpha_n = 0$.

Il prodotto scalare si introduce come nel caso del piano: dati due vettori \vec{v} e \vec{w} si ha

$$\vec{v} \cdot \vec{w} = |\vec{v}| \, |\vec{w}| \, \cos \theta,$$

dove θ è l'angolo tra i due vettori.

Valgono le stesse proprietà di pag. 194 del caso del piano; ora ovviamente la proprietà 6 è sostituita da

$$\vec{v} \cdot \vec{w} = v_x w_x + v_y w_y + v_z w_z,$$

se $\vec{v} = v_x \vec{\imath} + v_y \vec{\jmath} + v_z \vec{k}$ e $\vec{w} = w_x \vec{\imath} + w_y \vec{\jmath} + w_z \vec{k}$. Si ha quindi

$$\cos \theta = \frac{v_x w_x + v_y w_y + v_z w_z}{|\vec{v}| |\vec{w}|},$$

se θ è al solito l'angolo compreso tra i due vettori.

Osservazioni:

- 1. Tre vettori \vec{v}_1 , \vec{v}_2 e \vec{v}_3 nello spazio sono linearmente dipendenti se giacciono sul medesimo piano.
- 2. Nello spazio il numero massimo di vettori linearmente indipendenti è tre.

10.6 Prodotto vettoriale

Definizione 10.9. Tre vettori $\vec{v}_1, \vec{v}_2, \vec{v}_3$, con \vec{v}_3 ortogonale al piano individuato da \vec{v}_1 e \vec{v}_2 , fomano una terna levogira (o terna sinistrorsa) se un osservatore diretto lungo \vec{v}_3 vede il vettore \vec{v}_1 ruotare in verso antiorario (di un angolo minore di π) per sovrapporsi a \vec{v}_2 . Se anche \vec{v}_1 e \vec{v}_2 sono ortogonali tra loro si dice che la terna è una terna ortogonale levogira.

Osservazioni:

- 1. I tre versori $\vec{i}, \vec{j}, \vec{k}$ di un sistema di riferimento in \mathbb{R}^3 formano una terna ortogonale levogira; cfr. la Figura 10.9.
- 2. Perché tre vettori formino una terna destrogira è fondamentale l'ordine in cui vengono considerati: per esempio $\vec{j}, \vec{i}, \vec{k}$ non formano una terna levogira.

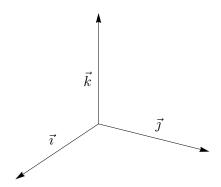


Figura 10.9: Terna ortogonale levogira costituita dai versori dello spazio.

Definizione 10.10. Dati due vettori \vec{v} e \vec{w} si definisce prodotto vettoriale dei due vettori il vettore $\vec{u} = \vec{v} \wedge \vec{w}$ che ha lunghezza $|\vec{u}| = |\vec{v}| |\vec{w}| \sin \theta$, dove θ è l'angolo più piccolo compreso tra i due vettori, direzione ortogonale al piano in cui giacciono \vec{v} e \vec{w} e verso tale che i tre vettori \vec{v} , \vec{w} , \vec{u} formano una terna levogira.

Osservazioni:

- 1. Il prodotto vettoriale di due vettori si ottiene come rappresentato in Figura 10.10.
- 2. Dati due vettori si possono considerare due angoli θ_1 e θ_2 compresi tra loro tali che $\theta_1 \in [0,\pi]$ e $\theta_2 = 2\pi \theta_1 \in [\pi,2\pi]$. L'angolo θ che interviene nella definizione di prodotto vettoriale è il più piccolo dei due, quindi $\theta = \theta_1$ (ovviamente se $\theta_1 = \pi$ anche $\theta_2 = \pi$ e quindi θ è uno qualsiasi di essi).

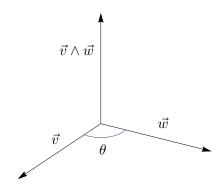


Figura 10.10: Prodotto vettoriale dei due vettori \vec{v} e \vec{w} .

- 3. Il verso del prodotto vettoriale $\vec{v} \wedge \vec{w}$ si può anche determinare con la regola della mano destra: tenendo la mano destra in modo che l'indice punti nel verso del vettore \vec{v} e il medio nel verso del vettore \vec{w} , allora il pollice, tenuto a novanta gradi rispetto all'indice, punterà nella direzione del vettore $\vec{v} \wedge \vec{w}$.
- 4. La lunghezza del vettore $\vec{v} \wedge \vec{w}$ è uguale all'area del parallelogramma individuato dai vettori \vec{v} e \vec{w} . Infatti l'area del parallelogramma è dato dal prodotto della base b per l'altezza h: se si considera come base il segmento individuato dal vettore \vec{v} si ha $b = |\vec{v}|$ e $h = |\vec{w}| \sin \theta$, dove θ è appunto l'angolo compreso tra i due vettori.
- 5. Se $\vec{w} = \vec{0}$ allora $\vec{u} \wedge \vec{w} = \vec{u} \wedge \vec{0} = \vec{0}$ per ogni vettore \vec{u} .
- 6. Si noti che il prodotto scalare è un'operazione che associa a due vettori un numero reale, mentre il prodotto vettoriale è un'operazione che associa a due vettori un terzo vettore.

Proprietà del prodotto vettoriale:

- 1. $\forall \vec{u} \text{ si ha } \vec{u} \wedge \vec{u} = \vec{0}.$
- 2. $\forall \vec{u}, \vec{v} \text{ si ha } \vec{u} \wedge \vec{v} = -\vec{v} \wedge \vec{u}.$
- 3. $\forall \vec{u}, \vec{v}, \vec{w} \text{ si ha } (\vec{u} + \vec{v}) \land \vec{w} = \vec{u} \land \vec{w} + \vec{v} \land \vec{w}.$
- 4. $\forall \vec{u}, \vec{v}, \vec{w}$ si ha $\vec{u} \wedge (\vec{v} + \vec{w}) = \vec{u} \wedge \vec{v} + \vec{u} \wedge \vec{w}$.
- 5. $\forall \vec{u}, \vec{v} \in \forall \alpha \in \mathbb{R} \text{ si ha } (\alpha \vec{u}) \land \vec{v} = \alpha(\vec{u} \land \vec{v}).$
- 6. $\forall \vec{u}, \vec{v}$ paralleli o antiparalleli tra loro si ha $\vec{u} \wedge \vec{v} = \vec{0}$.

7. $\forall \vec{u}, \vec{v} \text{ si ha } \vec{u} \cdot (\vec{u} \wedge \vec{v}) = \vec{v} \cdot (\vec{u} \wedge \vec{v}) = 0.$

Osservazioni:

1. Se si considerano i tre versori $\vec{\imath}, \vec{\jmath}, \vec{k}$ si ha

$$\vec{\imath} \wedge \vec{\imath} = \vec{0}, \quad \vec{\imath} \wedge \vec{\jmath} = \vec{k}, \quad \vec{\jmath} \wedge \vec{\imath} = -\vec{k},$$

$$\vec{\jmath} \wedge \vec{\jmath} = \vec{0}, \quad \vec{\jmath} \wedge \vec{k} = \vec{\imath}, \quad \vec{k} \wedge \vec{\jmath} = -\vec{\imath},$$

$$\vec{k} \wedge \vec{k} = \vec{0}, \quad \vec{k} \wedge \vec{\imath} = \vec{\jmath}, \quad \vec{\imath} \wedge \vec{k} = -\vec{\jmath}.$$

2. Se $\vec{u} = u_1 \vec{i} + u_2 \vec{j} + u_3 \vec{k}$ e $\vec{v} = v_1 \vec{i} + v_2 \vec{j} + v_3 \vec{k}$, si ha

$$\vec{u} \wedge \vec{v} = (u_2v_3 - u_3v_2)\vec{i} + (u_3v_1 - u_1v_3)\vec{j} + (u_1v_2 - u_2v_1)\vec{k}.$$

Questo segue immediatamente dall'osservazione precedente e dalle proprietà 3 e 4 del prodotto vettoriale. Le componenti del prodotto vettoriale di due vettori si possono esprimere formalmente come determinante di una matrice 3×3 ; cfr. §12.2.

10.7 Rette nello spazio

Siano $P_1 = (x_1, y_1, z_1)$ e $P_2 = (x_2, y_2, z_2)$ due punti in \mathbb{R}^3 e sia P = (x, y, z) un punto generico. Il punto P si troverà sulla retta passante per i punti P_1 e P_2 se $\overrightarrow{P_1P} = t\overrightarrow{P_1P_2}$, ovvero se valgono le equazioni

$$\begin{cases} x - x_1 = t (x_2 - x_1), \\ y - y_1 = t (y_2 - y_1), \\ z - z_1 = t (z_2 - z_1), \end{cases}$$

note come equazioni parametriche della retta nwello spazio. Se $x_2 \neq x_1, y_2 \neq y_1$ e $z_2 \neq z_1$, eliminando il parametro t, si trova

$$\frac{x-x_1}{x_2-x_1} = \frac{y-y_1}{y_2-y_1} = \frac{z-z_1}{z_2-z_1},$$

che rappresentano l'equazione cartesiana della retta nello spazio. Per costruzione tale retta è parallela al vettore $\overrightarrow{P_1P_2}$ ed è quindi parallela al vettore $\overrightarrow{v}=(x_2-x_1,y_2-y_1,z_2-z_1)$ (in particolare non è parallela a nessuno degli assi sotto le ipotesi fatte sulle coordinate dei punti).

Se al contrario, per esempio, $z_1=z_2$ allora la retta giace nel piano $z=z_1$. Se $x_1\neq x_2$ e $y_1\neq y_2$, è individuata dall'equazione

$$\frac{y-y_1}{y_2-y_1} = \frac{x-x_1}{x_2-x_1},$$

Osservazioni:

1. L'equazione di una retta passante per il punto $P = (x_0, y_0, z_0)$ e parallela al vettore (a, b, c) ha equazione:

$$\frac{x - x_0}{a} = \frac{y - y_0}{b} = \frac{z - z_0}{c},$$

purché i tre numeri a, b, c siano tutti non nulli. Se a = 0 e $b, c \neq 0$, allora la retta giace nel piano $x = x_0$ e è diretta lungo il vettore $\vec{v} = (0, b, c)$: quindi ha equazione

$$\frac{y-y_0}{b} = \frac{z-z_0}{c}, \qquad x = x_0.$$

2. Se b = 0 e $a, c \neq 0$ la retta ha equazione

$$\frac{x - x_0}{a} = \frac{z - z_0}{c}, \qquad y = y_0.$$

3. Se c = 0 e $a, b \neq 0$ la retta ha equazione

$$\frac{x - x_0}{a} = \frac{y - y_0}{b}, \qquad z = z_0.$$

4. Infine, se a = b = 0 e $c \neq 0$ la retta ha equazione $x = x_0$, $y = y_0$, $z \in \mathbb{R}$ (ed è quindi parallela all'asse z), se a = c = 0 e $b \neq 0$ la retta ha equazione $x = x_0$, $z = z_0$, $y \in \mathbb{R}$ (ed è quindi parallela all'asse y), se b = c = 0 e $a \neq 0$ la retta ha equazione $y = y_0$, $z = z_0$, $x \in \mathbb{R}$ (ed è quindi parallela all'asse x).

10.8 Piani

Dati due vettori $\overrightarrow{P_0P_1}$ e $\overrightarrow{P_0P_2}$, esiste un piano π che li contiene. Indichiamo con $\vec{n} = A\vec{i} + B\vec{j} + C\vec{k}$ il versore normale al piano π . Perché un punto P appartenga al piano π occorre che si abbia $\vec{n} \cdot \overrightarrow{P_0P} = 0$, ovvero

$$A(x-x_0) + B(y-y_0) + C(z-z_0) = 0.$$

10.8. PIANI 203

Quindi l'equazione cartesiana del piano è data da

$$Ax + By + Cz + D = 0,$$

$$dove D = -Ax_0 - By_0 - Cz_0.$$

Esempi:

- 1. x-y+3z+2=0 è l'equazione del piano con direzione normale (1,-1,3)
- 2. x = 0 è l'equazione del piano yz, y = 0 è l'equazione del piano xz, z = 0 è l'equazione del piano xy.

Osservazioni:

1. Si noti la profonda differenza tra le equazioni ax + by + c = 0 nel piano e Ax + By + Cz + D = 0 nello spazio. La prima rappresenta una retta nel piano, la seconda rappresenta un piano nello spazio. In particolare l'equazione ax + by + c = 0 in \mathbb{R}^3 rappresenta un piano (l'equazione è della forma Ax + By + Cz + D = 0, con A = a, B = b, C = 0 e D = c), più precisamente del piano π parallelo all'asse z che interseca il piano xy lungo la retta r che, in quel piano, ha equazione ax + by + c = 0; cfr. la Figura 10.11.

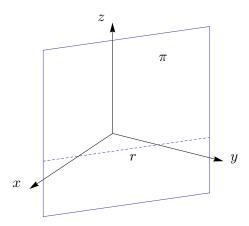


Figura 10.11: Intersezione del piano Ax + By + D = 0 con il piano xy.

2. Dato un punto P non appartenente al piano π , la distanza d di P dal piano è data dalla distanza tra il punto P e il punto Q del piano più vicino a P: per calcolare d si determina prima la retta ortogonale al piano π passante per P, si trova quindi il punto d'intersezione Q tra il piano π e la retta r e si calcola infine la distanza tra i due punti P e Q, ovvero la lunghezza del vettore \overrightarrow{PQ} ; cfr. la Figura 10.12. Quindi

se il piano ha equazione ax + by + cz + d = 0 e il punto ha coordinate $P = (x_0, y_0, z_0)$ si procede come segue:

- (1) il vettore $\vec{n} = (a, b, c)$ è ortogonale al piano;
- (2) la retta r deve passare per P e avere la stessa direzione di n, quindi ha equazione

$$\frac{x-x_0}{a} = \frac{y-y_0}{b} = \frac{z-z_0}{c};$$

- (3) imponendo che (x, y, z) risolva contemporaneamente l'equazione cartesiana della retta e l'equazione del piano si trovano le coordinate del punto Q;
- (4) il modulo del vettore \overrightarrow{PQ} è uguale a d.

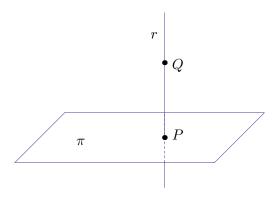


Figura 10.12: Distanza di un punto da un piano.

3. Se si considera il sistema di equazioni

$$\begin{cases} x - x_1 = (y - y_1) \frac{x_2 - x_1}{y_2 - y_1}, \\ y - y_1 = (z - z_1) \frac{y_2 - y_1}{z_2 - z_1}, \end{cases}$$

notiamo che ciascuna di esse rappresenta l'equazione di un piano e le due equazioni insieme rappresentano l'equazione di una retta: si tratta ovviamente della retta data dall'intersezione dei due piani.

10.9 Vettori in \mathbb{R}^n

Si può estendere la definizione di vettori e di prodotto scalare in \mathbb{R}^n , introducendo un insieme di versori $\{\vec{\imath}_1,\ldots,\vec{\imath}_n\}$ in \mathbb{R}^n , tale che $\vec{\imath}_k \cdot \vec{\imath}_k = 1$ per $k = 1,\ldots,n$ e $\vec{\imath}_j \cdot \vec{\imath}_k = 0$

10.10. ESERCIZI 205

se $j \neq k$. Allora ogni vettore \vec{v} in \mathbb{R}^n si può scomporre nella base $\{\vec{i}_1, \dots, \vec{i}_n\}$ scrivendo $\vec{v} = v_1 \vec{i}_1 + \dots + v_n \vec{i}_n$.

Dati due vettori $\vec{v} = v_1 \vec{i}_1 + \ldots + v_n \vec{i}_n$ e $\vec{w} = w_1 \vec{i}_1 + \ldots + w_n \vec{i}_n$ il prodotto scalare dei due vettori è $\vec{v} \cdot \vec{w} = v_1 w_1 + \ldots + v_n w_n$.

Dati m vettori $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_m$ in \mathbb{R}^n , diremo che i vettori sono linearmente indipendenti se si ha $\alpha_1 \vec{v}_1 + \alpha_2 \vec{v}_2 + \ldots + \alpha_m \vec{v}_m = 0$ se e solo se $\alpha_1 = \alpha_2 = \ldots = \alpha_m = 0$ e linearmente dipendenti in caso contrario. Se m > n i vettori sono necessariamente linearmente dipendenti. Se n = m e i vettori sono linearmente indipendenti, allora essi costituiscono una base in \mathbb{R}^n : ogni vettore si può esprimere in modo unico come loro combinazione lineare. L'insieme $\{\vec{v}_1, \ldots, \vec{v}_n\}$ costituisce quindi una base in \mathbb{R}^n .

10.10 Esercizi

- 1. Siano $\vec{v} = (2, -3, 1)$ e $\vec{w} = (1, -2, 0)$. Si calcolino:
 - (1) le coordinate del versore \hat{w} con la stessa direzione e lo stesso verso di \vec{w} ;
 - (2) la proiezione di \vec{v} su \vec{w} ;
 - (3) il coseno dell'angolo φ tra i vettori $\vec{v} + \vec{w}$ e $-\vec{w}$;
 - (4) l'area A del parallelogramma di vertici $\vec{0}$, \vec{v} , \vec{w} e $\vec{v} + \vec{w}$.
- 2. Sia $\vec{v} = (-1, 3)$. Si trovi un vettore \vec{w} tale che:
 - (1) \vec{w} sia ortogonale a \vec{v} e $|\vec{w}| = 3$.
 - (2) $\vec{v} \cdot \vec{w} = |\vec{v}| |\vec{w}|, |\vec{w}| = 10.$
 - (3) $\vec{v} \cdot \vec{w} = -2$, $|\vec{w}| = 2$.
 - (4) \vec{v} e \vec{w} formano un angolo $\pi/3$ e $|\vec{w}| = 2/\sqrt{10}$.
- 3. Siano $\vec{v} = (-2, 1)$ e $\vec{w} = (1, 2)$. Si calcoli:
 - (1) l'area A_1 del parallelogramma di vertici $0, -\vec{v}, -\vec{w} e \vec{v} \vec{w};$
 - (2) l'area A_2 del parallelogramma di vertici $0, -\vec{v}, \vec{w} \in \vec{w} \vec{v};$
 - (3) l'area A_3 del triangolo di vertici $0, -\vec{v} \in \vec{w}$.
- 4. Sia $\vec{v} = (1, 3, 2)$. Si calcoli:
 - (1) il versore \hat{w} ortogonale a \vec{v} giacente sul piano xy;
 - (2) la proiezione del vettore $\vec{u} = (1, -1, 2)$ su \vec{v} ;
 - (3) il coseno dell'angolo φ tra i vettori \vec{u} e \vec{v} ;
 - (4) il prodotto vettoriale $\vec{v} \wedge \vec{u}$.
- 5. Dati i vettori $\vec{v}_1 = (2,4)$, $\vec{v}_2 = (-5,1)$ e $\vec{v}_3 = (-2,1)$, si calcolino tutti i possibili prodotti scalari che si ottengono prendendo due tra i tre vettori e si determini se ci sono due vettori ortogonali.
- 6. Si determini per quale valore di k i vettori $\vec{v}_1=(k,-1,3), \ \vec{v}_2=(k,2k,-5)$ sono ortogonali.

- 7. Si determini se i vettori \vec{v}_1 , \vec{v}_2 e \vec{v}_3 sono linearmente dipendenti e, in caso di risposta affermativa, si esprima uno dei tre come combinazione lineare degli altri due:
 - (1) $\vec{v}_1 = (1, 0, -1), \ \vec{v}_2 = (0, 1, 2), \ \vec{v}_3 = (1, 1, 3);$
 - (2) $\vec{v}_1 = (1, 2, 3), \ \vec{v}_2 = (-1, 0, 1), \ \vec{v}_3 = (0, 0, 1);$
 - (3) $\vec{v}_1 = (0, 3, 3), \ \vec{v}_2 = (1/2, 1, 2), \ \vec{v}_3 = (1/2, -1, 0).$
- 8. Siano $\vec{v} = (1, -3, 2)$ e $\vec{w} = (-1, 2, 2)$. Si calcolino:
 - (1) la lunghezza di \vec{v} e di \vec{w} ;
 - (2) il versore \hat{v} con la stessa direzione e lo stesso verso di \vec{v} ;
 - (3) il versore \hat{w} con la stessa direzione e lo stesso verso di \vec{w} ;
 - (4) il prodotto scalare $\vec{v} \cdot (\vec{v} \vec{w})$;
 - (5) il prodotto vettoriale $\vec{v} \wedge \vec{w}$;
 - (6) l'area A del parallelogramma di vertici $\vec{0}$, \vec{v} , \vec{w} e $\vec{v} + \vec{w}$.
- 9. Si scrivano l'equazione cartesiana e le equazioni parametriche della retta del piano passante per i punti $P_1 = (1, 4)$ e $P_2 = (3, 1)$.
- 10. Si trovi l'equazione della retta r del piano xy passante per il punto P=(6,1) e ortogonale al vettore $\vec{v}=(1,1)$.
- 11. Si trovi la distanza d del punto P = (2,1) dalla retta r di equazione y x + 4 = 0.
- 12. Si trovi la distanza d del punto P = (1,1) dalla retta r di equazione y + x + 1 = 0.
- 13. Si calcoli la distanza d del punto P=(2,-3,4) dal piano π di equazione x+2y+2z=13.
- 14. Si scriva l'equazione cartesiana della retta r data dall'intersezione dei piani x+y+z=0 e x-y-2z=1.
- 15. Nel piano xy siano date la retta r di equazione x-2y+2=0 e il punto $P=(x_0,y_0)$ di coordinate $x_0=3$ e $y_0=0$.
 - (1) Si determini un vettore \vec{v} parallelo alla retta r,
 - (2) Si determini un vettore \vec{w} ortogonale a \vec{v} .
 - (3) Si determini la retta s ortogonale a r e passante per il punto P.
 - (4) Si calcolino le coordinate del punto d'intersezione Q tra le due rette r e s.
 - (5) Si calcoli la distanza d del punto P dalla retta r.
 - (6) Si determini la retta t parallela a r e passante per il punto P.
- 16. Nel piano xy siano date la retta r di equazione 4x 3y + 6 = 0 e il punto P = (3, 5).
 - (1) Si determini un vettore \vec{v} parallelo alla retta r.
 - (2) Si determini un vettore \vec{w} ortogonale a \vec{v} .
 - (3) Si determini la retta s ortogonale a r e passante per il punto P.
 - (4) Si calcolino le coordinate del punto d'intersezione Q tra le due rette r e s.

10.10. ESERCIZI 207

- (5) Si calcoli la distanza d del punto P dalla retta r.
- (6) Si determini, nello spazio xyz, la distanza d_1 del punto $P_1 = (3, 5, 1)$ da r.
- 17. Si calcoli la distanza d del punto P=(1,1,1) dal piano π di equazione x-4y+2z=20.
- 18. Si calcoli la distanza d del punto P=(2,0,-2) dal piano π di equazione x+3y+2z+2=0.
- 19. Siano dati i due vettori nello spazio $\vec{v} = (2, 3, 3)$ e $\vec{w} = (3, 1, 2)$.
 - (1) Si determi il vettore $\vec{a} = 2\vec{v} 3\vec{w}$;
 - (2) Si calcoli il prodotto scalare $\vec{v} \cdot \vec{w}$;
 - (3) Si determini l'angolo φ compreso tra i due vettori \vec{v} e \vec{w} ;
 - (4) Si calcoli il prodotto vettoriale $\vec{v} \wedge \vec{w}$ e si dimostri che $\vec{a} \wedge \vec{w} = 2\vec{v} \wedge \vec{w}$.
 - (5) Si verifichi che \vec{v} e \vec{w} sono linearmente indipendenti e si determini un vettore \vec{z} tale che \vec{v} , \vec{w} e \vec{z} siano linearmente dipendenti.
- 20. Siano dati i due vettori nello spazio $\vec{v} = (1, 2, 0)$ e $\vec{w} = (1, 0, 2)$.
 - (1) Si determino i vettori $\vec{a} = \vec{v} + \vec{w}$ e $\vec{b} = 3\vec{v} \vec{w}$;
 - (2) Si calcoli il prodotto scalare $\vec{v} \cdot \vec{w}$;
 - (3) Si determini l'angolo φ compreso tra i vettori \vec{v} e \vec{w} ;
 - (4) Si calcoli il prodotto vettoriale $\vec{v} \wedge \vec{w}$.
 - (5) Si discuta se i vettori \vec{v} , \vec{w} e \vec{a} sono linearmente indipendenti.

Soluzioni.

- 1. (1) $\hat{w} = (1/\sqrt{5}, -2/\sqrt{5}, 0)$; (2) $\vec{v} \cdot \hat{w} = 8/\sqrt{5}$; (3) $\vec{v} + \vec{w} = (3, -5, 1)$ e $-\vec{w} = (-1, 2, 0)$ $\implies \cos \varphi = (\vec{v} + \vec{w}) \cdot (-\vec{w})/|\vec{v} + \vec{w}| |\vec{w}| = -13/5\sqrt{7}$; (4) $\vec{v} \wedge \vec{w} = (2, 1, -1) \implies A = |\vec{v} \wedge \vec{w}| = \sqrt{6}$.
- $2. \ (1) \ \vec{v} \cdot \vec{w} = -w_x + 3w_y = 0, \ |\vec{w}|^2 = w_x^2 + w_y^2 = 3^2 = 9 \Longrightarrow \vec{w} = (-9/\sqrt{10}, -3/\sqrt{10})$ oppure $\vec{w} = (9/\sqrt{10}, 3/\sqrt{10}); \ (2) \ |\vec{v}| = \sqrt{10}, \ \vec{w} = \alpha \vec{v} \Longrightarrow \vec{w} = \sqrt{10} \ \vec{v}; \ (3) \ \vec{v} \cdot \vec{w} = -w_x + 3w_y = -2, \ |\vec{w}|^2 = w_x^2 + w_y^2 = 2^2 = 4 \Longrightarrow \vec{w} = (-8/5, -6/5)$ oppure $\vec{w} = (2, 0);$ $(4) \ \vec{v} \cdot \vec{w} = -w_x + 3w_y = \sqrt{10} \cdot (2/\sqrt{10}) \cdot \cos(\pi/3) = 1 \ \text{e} \ |\vec{w}|^2 = w_x^2 + w_y^2 = (2/\sqrt{10})^2 = 2/5 \Longrightarrow \vec{w} = ((-1-3\sqrt{3})/10, (3-\sqrt{3})/10)$ oppure $\vec{w} = ((-1+3\sqrt{3})/10, (3+\sqrt{3})/10).$
- 3. Possiamo considerare i vettori in \mathbb{R}^3 ponendo $\vec{v} = (-2, 1, 0)$ e $\vec{w} = (1, 2, 0)$, quindi: $(1) \ \vec{v} \wedge \vec{w} = (0, 0, -5) \Longrightarrow A_1 = |(-\vec{v}) \wedge (-\vec{w})| = |\vec{v} \wedge \vec{w}| = 5$; $(2) \ A_2 = |(-\vec{v}) \wedge \vec{w}| = |\vec{v} \wedge \vec{w}| = 5$; $(3) \ A_3 = A_2/2 = |\vec{v} \wedge \vec{w}|/2 = 5/2$.
- 4. (1) $\hat{w} = (w_x, w_y, w_z)$ deve soddisfare le condizioni: $\hat{w} \cdot \vec{v} = w_x + 3w_y + 2w_z = 0, w_x^2 + w_y^2 + w_z^2 = 1$ e $w_z = 0 \Longrightarrow \hat{w} = (-3/\sqrt{10}, 1/\sqrt{10}, 0)$ oppure $\hat{w} = (3/\sqrt{10}, -1/\sqrt{10}, 0)$; (2) $|\vec{v}| = \sqrt{14} \Longrightarrow \vec{u} \cdot \vec{v}/|\vec{v}| = 2/\sqrt{14}$; (3) $\cos \varphi = \vec{u} \cdot \vec{v}/|\vec{v}| |\vec{u}| = 2/\sqrt{14 \cdot 6} = 1/\sqrt{21}$; (4) $\vec{v} \wedge \vec{u} = (8, 0, -4)$.

- 5. $\vec{v}_1 \cdot \vec{v}_2 = -6$, $\vec{v}_1 \cdot \vec{v}_3 = 0$, $\vec{v}_2 \cdot \vec{v}_3 = 11 \Longrightarrow v_1$ e v_3 sono ortogonali.
- 6. $\vec{v}_1 \cdot \vec{v}_2 = k^2 2k 15 = 0$ se $k = 1 \pm 4 \Longrightarrow k = 5$ oppure k = -3.
- 7. (1) Scrivendo $\alpha_1 \vec{v}_1 + \alpha_2 \vec{v}_2 + \alpha_3 \vec{v}_3 = 0$ si trova $\alpha_1 = \alpha_2 = \alpha_3 = 0 \Longrightarrow$ i vettori sono linearmente indipendenti; (2) scrivendo $\alpha_1 \vec{v}_1 + \alpha_2 \vec{v}_2 + \alpha_3 \vec{v}_3 = 0$ si trova $\alpha_1 = \alpha_2 = \alpha_3 = 0 \Longrightarrow$ i vettori sono linearmente indipendenti; (3) scrivendo $\alpha_1 \vec{v}_1 + \alpha_2 \vec{v}_2 + \alpha_3 \vec{v}_3 = 0$ si trova che l'equazione è soddisfatta richiedendo che sia $3\alpha_1 = -2\alpha_2$ e $\alpha_3 = -\alpha_2$: per esempio, se $\alpha_2 = -3$ otteniamo $\alpha_1 = 2$, $\alpha_2 = -3$, $\alpha_3 = 3 \Longrightarrow$ i vettori sono linearmente dipendenti e, in particolare, si può scrivere uno qualsiasi di essi come combinazione lineare degli altri due (per esempio $\vec{v}_1 = (3/2)\vec{v}_2 (3/2)\vec{v}_3$).
- 8. $|\vec{v}| = \sqrt{14} \text{ e } |\vec{w}| = 3$; (2) $\hat{v} = (1/\sqrt{14}, -3/\sqrt{14}, 2/\sqrt{14})$; (3) $\hat{w} = (-1/3, 2/3, 2/3)$; (4) $\vec{v} \vec{w} = (2, -5, 0) \implies \vec{v} \cdot (\vec{v} \vec{w}) = 17$; (5) $\vec{v} \wedge \vec{w} = (-10, -4, -1)$; (6) $A = |\vec{v} \wedge \vec{w}| = \sqrt{117}$.
- 9. Le equazioni parametriche sono x = 1 + 2t, y = 4 3t. Poiché i punti hanno sia coordinate x che coordinate y diverse tra loro possiamo scrivere $(x 1)/(3 1) = (y 4)/(1 4) \Longrightarrow$ l'equazione cartesiana della retta è 3x + 2y 11 = 0.
- 10. La retta r è parallela a un qualsiasi vettore \vec{w} ortogonale a \vec{v} . Il vettore $\vec{w} = (w_x, w_y)$ deve esserte tale che $\vec{v} \cdot \vec{w} = v_x w_x + v_y w_y = w_x + w_y = 0 \Longrightarrow w_y = -w_x$, quindi, per esempio, $\vec{w} = (-1,1) \Longrightarrow$ la retta r dovrà essere parallela a \vec{w} e passare per P, quindi avrà equazione (x-6)/(-1) = (y-1)/1, da cui si ottiene l'equazione cartesiana x + y 7 = 0.
- 11. La retta r ha equazione x = y+4, quindi passa per il punto R = (0, -4) ed è parallela al vettore $\vec{v} = (1, 1)$. Quindi ogni retta ortogonale a r deve avere la direzione del vettore $\vec{w} = (-1, 1)$ ortogonale a \vec{v} . La retta s passante per P e ortogonale a r ha quindi equazione (x 2)/(-1) = (y 1)/1, ovvero -x + 2 = y 1. Il punto Q di intersezione tra le due rette r e s ha coordinate (\bar{x}, \bar{y}) , dove (\bar{x}, \bar{y}) risolve il sistema di equazioni

$$\begin{cases} x - y - 4 = 0, \\ x + y - 3 = 0, \end{cases}$$

ovvero $\bar{x} = 7/2$ e $\bar{y} = -1/2$. Quindi $d = \sqrt{(2-7/2)^2 + (1+1/2)^2} = 3/\sqrt{2}$.

12. La retta r ha equazione x+1=-y, quindi passa per il punto R=(-1,0) ed è parallela al vettore $\vec{v}=(1,-1)$. Quindi il vettore $\vec{w}=(1,1)$ è ortogonale a r. La retta s passante per P e parallela a \vec{w} ha quindi equazione (x-1)/1=(y-1)/1, ovvero x=y. Il punto Q di intersezione tra le due rette r e s ha coordinate (\bar{x},\bar{y}) , dove (\bar{x},\bar{y}) risolve il sistema di equazioni

$$\begin{cases} x + y + 1 = 0, \\ x - y = 0, \end{cases}$$

10.10. ESERCIZI 209

ovvero
$$\bar{x} = \bar{y} = -1/2$$
. Quindi $d = \sqrt{(1+1/2)^2 + (1+1/2)^2} = 3/\sqrt{2}$.

13. Il vettore $\vec{n}=(1,2,2)$ è ortogonale al piano. La retta r parallela a \vec{n} e passante per il punto P ha equazione cartesiana (x-2)/1=(y+3)/2=(z-4)/2. Il punto d'intersezione della retta r con il piano sarà il punto Q di coordinate (x,y,z) tale che x-2=(y+3)/2, x-2=(z-4)/2 (poiché appartiene alla retta r) e x+2y+2z=13 (poiché appartiene al piano). Risolvendo il sistema

$$\begin{cases} 2x - 4 = y + 3, \\ 2x - 4 = z - 4, \\ x + 2y + 2z = 13, \end{cases}$$

si trova $Q=(3,-1,6)\Longrightarrow$ la distanza d tra P e π è data dalla distanza tra i due punti P e Q ed è quindi uguale a $|\overrightarrow{PQ}|$, dove $|\overrightarrow{PQ}| = (3-2,-1+3,6-4) = (1,2,2)$, quindi d=3.

14. Sommando le equazioni dei due piani otteniamo 2x-z=1, mentre la loro differenza dà 2y+3z=-1. Possiamo riscrivere le due equazioni nella forma

$$x - \frac{1}{2} = \frac{y + \frac{1}{2}}{-3} = \frac{z}{2},$$

che rappresenta dunque l'equazione cartesiana della retta parallela al vettore $\vec{v} = (1, -3, 2)$ e passante per il punto P = (1/2, -1/2, 0).

15. (1) Scrivendo l'equazione della retta r nella forma x=2y-2=(y-1), ovvero x/2=y-1, si vede che r è la retta passante per il punto R=(0,1) e parallela al vettore $\vec{v}=(a,b)=(2,1)$. (2) Si ha $\vec{w}=(-b,a)=(-1,2)$. (3) La retta s ha equazione $(x-x_0)/(-b)=(y-y_0)/a$, quindi (x-3)/(-1)=y/2, ovvero 3-x=y/2, che possiamo riscrivere 2x+y-6=0. (4) Le coordinate \bar{x},\bar{y} del punto Q si ottengono risolvendo il sistema di equazioni

$$\begin{cases} x - 2y + 2 = 0, \\ 2x + y - 6 = 0, \end{cases}$$

quindi $(\bar{x}, \bar{y}) = (2, 2)$. (5) Si ha $d = \sqrt{(x_0 - \bar{x})^2 + (y_0 - \bar{y})^2} = \sqrt{5}$. (6) L'equazione della retta $t \in (x - x_0)/a = (y - y_0)/b$, quindi (x - 3)/2 = y, ovvero x - 2y - 3 = 0.

- 16. (1) $\vec{v} = (a, b) = (3, 4)$. (2) $\vec{w} = (-b, a) = (-4, 3)$. (3) 3x + 4y 29 = 0. (4) Q = (63/25, 134/25). (5) d = 3. (6) $d_1 = \sqrt{10}$.
- 17. Il vettore $\vec{n} = (1, -4, 2)$ è ortogonale al piano. La retta r parallela a \vec{n} e passante per il punto P ha equazione cartesiana (x-1)/1 = (y-1)/(-4) = (z-1)/2. Il

punto d'intersezione della retta r con il piano sarà il punto Q di coordinate (x, y, z) tale che -4(x-1) = y-1, 2(x-1) = z-1 (poiché appartiene alla retta r) e x-4y+2z=20 (poiché appartiene al piano). Risolvendo il sistema

$$\begin{cases}
-4x + 4 = y - 1, \\
2x - 2 = z - 1, \\
x - 4y + 2z = 20,
\end{cases}$$

si trova $Q=(2,-3,3)\Longrightarrow$ la distanza d tra P e π è data dalla distanza tra i due punti P e Q ed è quindi uguale a $|\overrightarrow{PQ}|$, dove $|\overrightarrow{PQ}| = (2-1,-3-1,3-1) = (1,-4,2)$, quindi $d=\sqrt{21}$.

18. Il vettore $\vec{n}=(1,3,2)$ è ortogonale al piano π . La retta r parallela a \vec{n} e passante per il punto P ha equazione cartesiana (x-2)/1=y/3=(z+2)/2. Il punto d'intersezione della retta r con il piano sarà il punto Q di coordinate (x,y,z) tale che 3(x-2)=y, 2(x-2)=z+2 (poiché appartiene alla retta r) e x+3y+2z+2=0 (poiché appartiene al piano). Risolvendo il sistema

$$\begin{cases} 3x - 6 = y, \\ 2x - 4 = z + 2, \\ x + 3y + 2z + 2 = 0, \end{cases}$$

si trova $Q = (2, 0, -2) \Longrightarrow$ il punto Q coincide con il punto P, quindi P appartiene al piano $\pi \Longrightarrow$ la distanza tra il punto P e il piano π è d = 0.

- 19. (1) $\vec{a} = (-5, 3, 0)$. (2) $\vec{v} \cdot \vec{w} = 15$. (3) $\varphi = \arccos{(15/(2\sqrt{77}))}$. (4) $\vec{v} \wedge \vec{w} = (3, 5, -7)$. (5) $\vec{a} \wedge \vec{w} = 2\vec{v} \wedge \vec{w} 3\vec{w} \wedge \vec{w} = 2\vec{v} \wedge \vec{w} = (6, 10, -14)$, poiché $\vec{w} \wedge \vec{w} = \vec{0}$. (6) Scrivendo $\alpha \vec{v} + \beta \vec{w} = \vec{0}$ si trova $\alpha = \beta = 0$; si può scegliere per esempio $\vec{z} = \vec{a}$, in modo che \vec{v} , $\vec{w} \in \vec{z}$ siano linearmente dipendenti.
- 20. (1) $\vec{a} = (2,2,2)$, $\vec{b} = (2,6,-2)$. (2) $\vec{v} \cdot \vec{w} = 1$. (3) $\varphi = \arccos(1/5)$. (4) $\vec{v} \wedge \vec{w} = (4,-2,-2)$. (5) I vettori \vec{v} , \vec{w} e \vec{a} siano linearmente dipendenti poiché $\vec{a} = \vec{v} + \vec{w}$ e quindi $\alpha \vec{v} + \beta \vec{w} + \vec{a} = \vec{0}$ per $(\alpha, \beta, \gamma) = (1,1,-1)$.

11 | Matrici e sistemi lineari

11.1 Matrici

Definizione 11.1. Si chiama matrice $n \times m$ una tabella A di $n \cdot m$ numeri disposti su n righe e m colonne:

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1m} \\ a_{21} & a_{22} & \dots & a_{2m} \\ \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nm} \end{pmatrix},$$

dove $a_{ij} \in \mathbb{R}$ si chiama l'elemento della i-esima riga e j-esima colonna.

Osservazioni:

- 1. Se n=m=1 la matrice A è costuitita dal solo elemento a_{11} , quindi si riduce a un numero reale.
- 2. Se n=m la matrice si dice matrice quadrata. In tal caso gli elementi a_{ii} si chiamano elementi diagonali e il loro insieme costituisce la diagonale della matrice. Gli elementi a_{ij} , con $i \neq j$, si chiamano elementi fuori dalla diagonale.

Definizione 11.2. Siano A e B due matrici $n \times m$ di elementi a_{ij} e b_{ij} , rispettivamente. Si definisce somma delle due matrici, e si indica con C = A + B, la matrice $n \times m$ di elementi $c_{ij} = a_{ij} + b_{ij}$.

Esempio:

$$A = \begin{pmatrix} 1 & -1 & 3 \\ 1/2 & 1/5 & 0 \\ -2 & 1 & 1/3 \end{pmatrix}, B = \begin{pmatrix} 1 & 1 & 2 \\ 1 & -2 & 1 \\ 4 & 1/2 & 1/2 \end{pmatrix} \Longrightarrow C = A + B = \begin{pmatrix} 2 & 0 & 5 \\ 3/2 & -9/5 & 1 \\ 2 & 3/2 & 5/6 \end{pmatrix}.$$

Definizione 11.3. Sia A una matrice $n \times m$ di elementi a_{ij} e sia α un numero reale. Si indica con αA la matrice $n \times m$ di elementi αa_{ij} .

Esempio:

$$A = \begin{pmatrix} 2 & -1 \\ 0 & 3 \end{pmatrix}, \quad \alpha = 2 \implies \alpha A = \begin{pmatrix} 4 & -2 \\ 0 & 6 \end{pmatrix}.$$

Definizione 11.4. Una matrice i cui elementi siano tutti 0 si chiama matrice nulla e si indica con 0.

Definizione 11.5. Una matrice quadrata che abbia gli elementi diagonali tutti uguali a 1 e quelli fuori dalla diagonale tutti uguali a zero si chiama matrice identità e si indica con 1.

Quindi, la matrice identità, nel caso 2×2 e 3×3 , è, rispettivamente,

$$\mathbb{1} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \qquad \mathbb{1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Definizione 11.6. Una matrice quadrata si dice diagonale se tutti gli elementi fuori dalla diagonale sono nulli.

Osservazione 11.7. Sia la matrice identità che la matrice quadrata nulla sono matrici diagonali. La matrice nulla costituisce l'elemento neutro della somma di matrici: se A è una qualsiasi matrice $n \times m$ e 0 è la matrice nulla $n \times m$ si ha A + 0 = 0 + A = A. Vedremo che la matrice identità costituisce l'elemento neutro del prodotto di matrici che sarà introdotto nel prossimi paragrafo.

Osservazione 11.8. A volta, per maggiore chiarezza si indica con $O_{n,m}$ la matrice nulla $n \times m$. Analogamente, nal caso di matrici quadrate, $O_n = O_{n,n}$ e $\mathbb{1}_n$ indicano, rispettivamente, la matrice nulla e la matrice identità $n \times n$. Noi useremo la notazione breve 0 e $\mathbb{1}$: quale sia il numero di righe e di colonne si capirà volta per volta dal contesto.

11.2 Prodotto di matrici

Definizione 11.9. Sia A una matrice $n \times m$ di elementi a_{ij} e B una matrice $m \times p$ di elementi b_{ij} . Si definisce prodotto delle due matrici, e si indica con C = AB, la matrice $n \times p$ di elementi $c_{ij} = \sum_{k=1}^{m} a_{im}b_{mj}$.

Osservazioni:

- 1. Il prodotto di due matrici è chiamato anche prodotto righe per colonne.
- 2. Il prodotto di una matrice $n \times h$ per una matrice $r \times s$ si può considerare solo se h = r. In particolare si può sempre effettuare il prodotto di matrici quadrate che abbiano lo stesso numero di righe (e quindi di colonne).

213

Proprietà del prodotto tra matrici:

- 1. Date tre matrici A, B, C che possono essere moltiplicate tra loro si ha A(B+C) = AB + AC.
- 2. Date due matrici A, B che possono essere moltiplicate tra loro e $\alpha \in \mathbb{R}$ si ha $A(\alpha B) = \alpha(AB)$.
- 3. Date tre matrici A, B, C che possono essere moltiplicate tra loro si ha A(BC) = (AB)C.
- 4. Sia A una matrice $n \times n$ e siano α, β due numeri reali: dati due vettori \vec{v} e \vec{w} in \mathbb{R}^n si ha $A(\alpha \vec{v} + \beta \vec{w}) = \alpha A \vec{v} + \beta A \vec{w}$.

Osservazioni:

- 1. Sia 0 la matrice nulla $n \times n$. Sia A una qualsiasi matrice $n \times n$: si ha 0A = A0 = 0.
- 2. Sia $\mathbbm{1}$ la matrice identità $n \times n$. Si verifica facilmente che, se A è una qualsiasi matrice $n \times n$, si ha $\mathbbm{1} A = A \mathbbm{1} = A$: quindi la matrice identità costituisce l'elemento neutro del prodotto d matrici.
- 3. Nel caso di matrici quadrate $n \times n$, date due matrici A e B, si può considerare sia il prodotto AB sia il prodotto BA. In generale si ha $AB \neq BA$, i.e. il prodotto di matrici non è commutativo.
- 4. Quando si considera il prodotto di matrici quadrate bisogna quindi specificare se il prodotto è a destra o a sinistra: date due matrici quadrate A e B, se moltiplichiamo A per B a destra otteniamo la matrice AB, se moltiplichiamo A per B a sinistra otteniamo la matrice BA.
- 5. Un vettore \vec{v} in \mathbb{R}^n può essere visto come una matrice $n \times 1$ (matrice colonna). Se A è una matrice $n \times n$ possiamo allora considerare il prodotto $A\vec{v}$ che definisce una matrice $n \times 1$, i.e. un vettore. Quindi si può considerare il prodotto di una matrice per un vettore e il risultato è un vettore.
- 6. In particolare, se \vec{v} è un vettore in \mathbb{R}^n e A è una matrice $n \times n$, mentre $A\vec{v}$ definisce un vettore, la scrittura $\vec{v}A$ non ha invece alcun senso.
- 7. Una matrice quadrata A può essere moltiplicata per se stessa: in tal caso si scrive $A^2 = AA$. Analogamente A^k è il prodotto di A per se stessa k volte; in particolare $A^0 = \mathbb{1}$ e $A^1 = A$.

8. Si noti che in generale A^k non ha nulla a che fare con la matrice i cui elementi sono le potenze a^k_{ij} degli elementi a_{ij} di A. Per esempio si ha

$$A = \begin{pmatrix} 1 & 2 \\ 4 & 3 \end{pmatrix} \implies A^2 = AA = \begin{pmatrix} 9 & 8 \\ 16 & 17 \end{pmatrix} \neq \begin{pmatrix} 1 & 4 \\ 16 & 9 \end{pmatrix},$$

dove l'ultima matrice è la matrice i cui elementi sono i quadrati degli elementi di A.

9. Il prodotto di matrici si comporta in modo molto diverso dal prodotto di numeri. Per esempio, se $a \neq 0$ è un numero reale, allora a^2 è sempre strettamente positivo. Il quadrato di una matrice non ha in generale alcuna proprietà di positività. Per esempio

$$A = \begin{pmatrix} 1 & -1 \\ 1 & -1 \end{pmatrix} \implies A^2 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix},$$

quindi il quadrato di una matrice $A \neq 0$ può essere la matrice nulla.

10. Se $B=A^k$ per qualche $k\in\mathbb{N}$ allora $A\in B$ commutano: $A^kA=AA^k=A^{k+1}$.

Esempi:

1. Date le matrici

$$A = \begin{pmatrix} 1 & -1 \\ 2 & 1 \end{pmatrix}, \qquad B = \begin{pmatrix} 1 & 3 \\ -2 & 1/2 \end{pmatrix},$$

si ha

$$AB = \begin{pmatrix} 3 & 5/2 \\ 0 & 13/2 \end{pmatrix}, \qquad BA = \begin{pmatrix} 7 & 2 \\ -1 & 5/2 \end{pmatrix}.$$

2. Date le matrici

$$A = \begin{pmatrix} 1 & 3 & 1 \\ 1 & 0 & 2 \\ 1 & 0 & 0 \end{pmatrix}, \qquad B = \begin{pmatrix} 3 & 1 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix},$$

si ha

$$AB = \begin{pmatrix} 4 & 4 & 5 \\ 5 & 1 & 3 \\ 3 & 1 & 1 \end{pmatrix}, \qquad BA = \begin{pmatrix} 5 & 9 & 5 \\ 2 & 0 & 2 \\ 2 & 3 & 1 \end{pmatrix}.$$

3. Data la matrice

$$A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix},$$

si ha

$$A^2 = \begin{pmatrix} 2 & 2 \\ 2 & 2 \end{pmatrix}, \quad A^3 = \begin{pmatrix} 4 & 4 \\ 4 & 4 \end{pmatrix}, \quad A^4 = \begin{pmatrix} 8 & 8 \\ 8 & 8 \end{pmatrix}, \quad \dots, \quad A^k = \begin{pmatrix} 2^{k-1} & 2^{k-1} \\ 2^{k-1} & 2^{k-1} \end{pmatrix}.$$

11.2. PRODOTTO DI MATRICI

215

4. Data la matrice

$$A = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 2 \\ 0 & 1 & 1 \end{pmatrix},$$

si ha

$$A^{2} = \begin{pmatrix} 2 & 2 & 2 \\ 2 & 4 & 4 \\ 1 & 2 & 3 \end{pmatrix}, \quad A^{3} = \begin{pmatrix} 4 & 6 & 6 \\ 6 & 10 & 12 \\ 3 & 6 & 7 \end{pmatrix}, \quad A^{4} = \begin{pmatrix} 10 & 16 & 18 \\ 16 & 28 & 32 \\ 9 & 16 & 19 \end{pmatrix}.$$

Osservazioni:

- 1. Ovviamente due matrici possono commutare. Un esempio banale è se una delle due matrici è la matrice nulla o la matrice identità.
- 2. Un esempio meno banale si ottiene se

$$A = \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}, \qquad B = \begin{pmatrix} 1 & 0 \\ 0 & 4 \end{pmatrix}.$$

Si ha in tal caso

$$AB = BA = \begin{pmatrix} 2 & 0 \\ 0 & 12 \end{pmatrix}.$$

3. Un esempio ancora meno banale (con matrici non diagonali) è

$$A = \begin{pmatrix} 1 & 1 \\ 2 & 5 \end{pmatrix}, \quad B = \begin{pmatrix} 6 & -1 \\ -2 & 2 \end{pmatrix} \implies AB = BA = \begin{pmatrix} 4 & 1 \\ 2 & 8 \end{pmatrix}.$$

4. In generale, date due matrici 2×2

$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}, \quad B = \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix},$$

perché esse commutino occorre che sia

$$a_{12}b_{21} = a_{21}b_{12}, \quad (a_{11} - a_{22})b_{12} = (b_{11} - b_{22})a_{12}, \quad (a_{11} - a_{22})b_{21} = (b_{11} - b_{22})a_{21},$$

che, se gli elementi fuori dalla diagonale sono tutti non nulli, possiamo riscrivere

$$\frac{a_{21}}{a_{12}} = \frac{b_{21}}{b_{12}}, \qquad \frac{a_{11} - a_{22}}{a_{21}} = \frac{b_{11} - b_{22}}{b_{21}}.$$

11.3 Determinante di una matrice

È possibile dare una definizione assiomatica di determinante di una matrice quadrata, da cui si fanno poi discendere le varie proprietà. Alternativamente, si può una definizione ricorsiva (o per ricorsione). Seguiremo questa seconda strada.

Vedremo che il determinante di una matrice $n \times n$ si può scrivere in termini dei determinanti di matrici $(n-1) \times (n-1)$. Quindi una volta che abbiamo definito il determinante di una matrice 1×1 e abbiamo fissato come passare da una matrice $(n-1) \times (n-1)$ a una matrice $n \times n$, possiamo scrivere il determinante di una matrice quadrata qualsiasi.

Definizione 11.10. Sia A una matrice 1×1 . Si definisce determinante di A il numero det $A = a_{11}$, dove $A = a_{11}$.

Definizione 11.11. Sia A una matrice 2×2 . Si definisce determinante di A il numero

$$\det A = \det \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} = a_{11}a_{22} - a_{12}a_{21}.$$

Definizione 11.12. Sia A una matrice 3×3 . Si definisce determinante di A il numero

$$\det A = a_{11} \det \begin{pmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{pmatrix} - a_{12} \det \begin{pmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{pmatrix} + a_{13} \det \begin{pmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{pmatrix}.$$

Definizione 11.13. Sia A una matrice $n \times n$. Si indica con A_{ij} la matrice $(n-1) \times (n-1)$ ottenuta da A togliendo la i-esima riga e la j-esima colonna. Si definisce matrice complementare dell'elemento a_{ij} la matrice A_{ij} .

Osservazioni:

1. Possiamo scrivere il determinante di una matrice 3×3 come

$$\det A = a_{11} \det A_{11} - a_{12} \det A_{12} + a_{13} \det A_{13} = \sum_{k=1}^{3} (-1)^{1+k} a_{1k} \det A_{1k}.$$

2. La formula sopra esprime il determinante sviluppato secondo la prima riga. Si può definire anche il determinante sviluppato secondo la seconda riga o la terza riga, dati da

$$\sum_{k=1}^{3} (-1)^{2+k} a_{2k} \det A_{2k}, \qquad \sum_{k=1}^{3} (-1)^{3+k} a_{3k} \det A_{3k},$$

rispettivamente. Si può allora dimostrare che le tre quantità coincidono con $\det A$.

3. Si può anche definire il determinante sviluppato secondo una delle tre colonne come

$$\sum_{k=1}^{3} (-1)^{1+k} a_{k1} \det A_{k1}, \qquad \sum_{k=1}^{3} (-1)^{2+k} a_{k2} \det A_{k2}, \quad \sum_{k=1}^{3} (-1)^{3+k} a_{k3} \det A_{k3},$$

rispettivamente. Di nuovo le tre espressioni coincidono con $\det A$, così che il determinante risulta essere una proprietà intrinseca della matrice A.

4. Dalle Definizioni 11.11 e 11.12 si vede che il determinante di una matrice 3×3 di elementi a_{ij} è

$$\det A = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{12}a_{21}a_{33} - a_{13}a_{22}a_{31} - a_{11}a_{23}a_{32}.$$

Un metodo mnemonico per calcolare il determinante è dato dalla regola di Sarrus: (1) si costruisce una matrice rettangolare 3×5 ottenuta da A aggiungendo una quarta e quinta colonna uguali alla prima e seconda colonna, rispettivamente:

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} & a_{11} & a_{12} \\ a_{21} & a_{22} & a_{23} & a_{21} & a_{22} \\ a_{31} & a_{32} & a_{33} & a_{31} & a_{32} \end{pmatrix},$$

- (2) si calcola il prodotto degli elementi delle tre diagonali che partono dai primi tre elementi della prima riga verso destra (diagonali principali);
- (3) si calcola il prodotto degli elementi delle tre diagonali che partono dagli ultimi tre elementi della prima riga verso sinistra (diagonali secondarie);
- (4) la differenza dei due prodotti è uguale al determinante di A.
- 5. La regola di Sarrus vale per matrici 3×3 e non si estende a matrici più grandi.
- 6. Il prodotto vettoriale di due vettori $\vec{v} = v_x \vec{i} + v_y \vec{j} + v_z \vec{k}$ e $\vec{w} = w_x \vec{i} + w_y \vec{j} + w_z \vec{k}$ si può interpretare come determinante sviluppato secondo la prima riga della "matrice"

$$\begin{pmatrix} \vec{i} & \vec{j} & \vec{k} \\ v_x & v_y & v_z \\ w_x & w_y & w_z \end{pmatrix}.$$

Infatti, formalmente, il determinante della matrice è dato da

$$\vec{i} \det \begin{pmatrix} v_y & v_z \\ w_y & w_z \end{pmatrix} - \vec{j} \det \begin{pmatrix} v_x & v_z \\ w_x & w_z \end{pmatrix} + \vec{k} \det \begin{pmatrix} v_x & v_y \\ w_x & w_y \end{pmatrix}$$
$$= (v_y w_z - v_z w_y) \vec{i} + (v_z w_x - v_x w_z) \vec{j} + (v_x w_z - v_z w_x) \vec{k}.$$

Si noti che non si tratta realmente di una matrice perché in base alla Definizione 11.1 gli elementi di un matrice devono essere numeri reali. Tuttavia è utile scrivere il prodotto vettoriale in questa forma.

Esempio: Data la matrice

$$A = \begin{pmatrix} 1 & -1 & 2 \\ 0 & 3 & 1 \\ 2 & 4 & 1 \end{pmatrix},$$

se calcoliamo il determinante sviluppato lungo la prima riga otteniamo:

$$\det A = 1 \cdot (3-4) - (-1) \cdot (0-2) + 2 \cdot (0-6) = -1 - 2 - 12 = -15.$$

Lo sviluppo del determinante lungo la seconda riga è dato da

$$\det A = (-0) \cdot (-1 - 8) + (3) \cdot (1 - 4) + (-1) \cdot (4 + 2) = 0 - 9 - 6 = -15,$$

mentre il suo sviluppo lungo la terza colonna è dato da

$$\det A = (2) \cdot (0-6) + (-1) \cdot (4+2) + (1) \cdot (3-0) = -12 - 6 + 3 = -15,$$

Infine, per applicare la regola di Sarrus, scrivendo

$$\begin{pmatrix} 1 & -1 & 2 & 1 & -1 \\ 0 & 3 & 1 & 0 & 3 \\ 2 & 4 & 1 & 2 & 4 \end{pmatrix},$$

otteniamo

$$\det A = 1 \cdot 3 \cdot 1 + (-1) \cdot 1 \cdot 2 + 2 \cdot 0 \cdot 4 - 2 \cdot 3 \cdot 2 - 1 \cdot 1 \cdot 4 - (-1) \cdot 0 \cdot 1 = 3 - 2 + 0 - 12 - 4 - 0 = -15.$$

Definizione 11.14. Sia A una matrice $n \times n$. Si definisce determinante di A il numero

$$\det A = \sum_{k=1}^{n} (-1)^{i+k} a_{ik} \det A_{ik},$$

dove la riga i-esima si può scegliere in modo arbitrario.

Osservazioni:

- 1. La formula nella Definizione 11.14 rappresenta lo svillupo del determinante secondo la i-esima riga. Il risultato quindi non dipende dalla particolare riga scelta.
- 2. La formula nella Definizione 11.14 è anche nota come regola di Laplace per il calcolo del determinante.
- 3. Si può anche considerare o sviluppo del determinante rispetto a una qualsiasi colonna j. Il risultato non dipende dalla particolare colonna scelta ed è uguale allo sviluppo secondo una delle righe: quindi

$$\det A = \sum_{k=1}^{n} (-1)^{j+k} a_{kj} \det A_{kj}.$$

A livello pratico, se vogliamo calcolare il determinante di una matrice, conviene scegliere la riga o la colonna in corrispondenza della quale lo sviluppo risulta più semplice. Per esempio può semplificare il conto scegliendo la riga o la colonna che contenga il maggior numero di zeri.

- 4. Se n=3 l'espressione sopra per il determinante si riduce a quella della Definizione 11.12 se i=1 e a quelle dell'Osservazione 2 di pag. 216 se i=2 o i=3. Analogamente lo sviluppo secondo una colonna considerato all'Osservazione precedente si riduce a quello dell'Osservazione 3 di pag. 217.
- 5. Se n=2 l'espressione sopra si riduce a quella della Definizione 11.11.
- 6. Quindi otteniamo una definizione ricorsiva del determinante di una matrice quadrata $n \times n$ se poniamo:

$$\begin{cases} \det A = A, & n = 1 \\ \det A = \sum_{k=1}^{n} (-1)^{i+k} a_{ik} \det A_{ik} = \sum_{i=1}^{n} (-1)^{i+k} a_{ik} \det A_{ik}, & n \ge 2. \end{cases}$$

- 7. Se A è una matrice diagonale allora il suo determinante è dato dal prodotto degli elementi diagonali: det $A = a_{11} \dots a_{nn}$. In particolare det $\mathbb{1} = 1$.
- 8. Se moltiplichiamo per un numero reale α una matrice $n \times n$ il suo determinante si moltiplica per α^n : $\det(\alpha A) = \alpha^n \det A$.

Proprietà dei determinanti:

- 1. Se una matrice quadrata A ha una riga o una colonna i cui elementi sono tutti nulli allora det A = 0.
- 2. Se una matrice quadrata A ha due righe o due colonne proporzionali allora det A=0.
- 3. Se una matrice quadrata A ha una riga o una colonna che sia combinazione lineare di due o più altre righe o colonne, rispettivamente, allora det A = 0.
- 4. Se in una matrice quadrata A a una riga o una colonna si aggiunge una combinazione lineare di altre righe o colonne, rispettivamente, il suo determinante non cambia.

Esempio: Data la matrice

$$A = \begin{pmatrix} 1 & 3 & 7 \\ 2 & 1 & 4 \\ 0 & 5 & 10 \end{pmatrix},$$

si ha det A=0. Questo è in accordo con la proprietà 3, poiché la terza colonna è combinazione lineare della prima e della seconda, con coefficienti 1 e 2: $7=1+2\cdot3$, $4=2+2\cdot2$ e $10=0+2\cdot5$.

Teorema 11.15. Siano $A \in B$ due matrici $n \times n$. Si ha $\det(AB) = \det A \cdot \det B$.

Osservazioni:

- 1. Il Teorema 11.15 è noto come teorema di Binet.
- 2. Iterando la proprietà precedente, se A_1, A_2, \ldots, A_k sono k matrici $n \times n$, si ha $\det(A_1 A_2 \ldots A_k) = \det A_1 \cdot \det A_2 \cdot \ldots \cdot \det A_k$.

Esercizi:

- 1. Si calcolino i determinanti delle matrici AB e BA dell'esempio 1 del paragrafo precedente e si verifichi che sono uguali.
- 2. Si calcolino i determinanti delle matrici AB e BA dell'esempio 2 del paragrafo precedente e si verifichi che sono uguali.
- 3. Si calcolino i determinanti delle matrici A^k dell'esempio 3 del paragrafo precedente.
- 4. Si verifichi esplicitamente, a partire dalle espressioni delle matrici A, A^2 , A^3 e A^4 dell'esempio 4 del paragrafo precedente, che det $A^2 = (\det A)^2$, $\det A^3 = (\det A)^3$ e $\det A^4 = (\det A)^4$.

Soluzioni:

- 1. Si ha det $AB = 3 \cdot 13/2 = 39/2$ e det $BA = 7 \cdot (5/2) + 2 = 35/2 + 2 = 39/2$.
- 2. Sviluppando i determinanti secondo la prima riga si trova det $AB = 4 \cdot (1-3) 4 \cdot (5-9) + 5 \cdot (5-3) = -8 + 16 + 10 = 18$ e det $BA = 5 \cdot (0-6) 9 \cdot (2-4) + 5 \cdot (6-0) = -30 + 18 + 30 = 18$.
- 3. Per l'osservazione 2 dopo il teorema di Binet si ha $\det A^k = (\det A)^k = 0^k = 0$.
- 4. Sviluppando i determinanti secondo la prima riga si trova det A = -1 1 + 0 = -2, det $A^2 = 8 4 + 0 = 4$, det $A^3 = -8 + 36 36 = -8$ e det $A^4 = 200 256 + 72 = 16$. Si noti che, più grande è il valore di k più grandi sono i numeri coinvolti e più laborioso diventa il calcolo; tuttavia se siamo interessati solo al valore del determinante e non alla forma esplicita della matrice, il conto è molto semplice: per esempio, se k = 10, il teorema di Binet ci permette di concludere immediatamente che det $A^10 = (-2)^{10} = 2^52^5 = 32^2 = 1024$.

11.4 Matrice inversa

Definizione 11.16. Data una matrice A di elementi a_{ij} consideriamo la matrice i cui elementi di indici ij sono uguali agli elementi a_{ji} di A. Tale matrice sarà chiamata la matrice trasposta di A e sarà indicata con A^T .

Proprietà della matrice trasposta:

- 1. Se le matrici A, B possono essere sommate tra loro si ha $(A+B)^T = A^T + B^T$.
- 2. Data una matrice $A \in \alpha \in \mathbb{R}$ si ha $(\alpha A)^T = \alpha A^T$.
- 3. Se A, B sono due matrici che possono essere moltiplicate tra loro anche B^T e A^T possono essere moltiplicate tra loro e si ha $(AB)^T = B^T A^T$.
- 4. Se A è una matrice quadrata si ha det $A^T = \det A$.

Definizione 11.17. Data una matrice quadrata A, si chiama inversa di A la matrice B, se esiste, tale che AB = BA = 1. Se esiste, la matrice inversa di A è indicata con A^{-1} .

Teorema 11.18. Data una matrice A, se esiste, la matrice inversa A^{-1} è unica.

Dimostrazione. Poiché A^{-1} è la matrice inversa di A si ha $AA^{-1} = \mathbb{1}$. Sia B una matrice tale che $AB = BA = \mathbb{1}$. Si ha allora $B = B\mathbb{1} = B(AA^{-1}) = BAA^{-1} = \mathbb{1}A^{-1}$, quindi necessariamente $B = A^{-1}$.

Definizione 11.19. Sia A una matrice $n \times n$. Indichiamo con \tilde{A} la matrice $(n-1) \times (n-1)$ di elementi $\tilde{a}_{ij} = (-1)^{i+j} \det A_{ij}$, dove A_{ij} è la matrice complementare dell'elemento a_{ij} (cfr. la Definizione 11.13). Gli elementi \tilde{a}_{ij} si chiamano cofattori o complementi algebrici e \tilde{A} si chiama matrice dei cofattori o matrice dei complementi algebrici.

Osservazione: possiamo riscrivere il determinante di una matrice $n \times n$ (si ricordi la Definizione 11.14) come

$$\det A = \sum_{k=1}^{n} a_{ik} \, \tilde{a}_{ik},$$

dove l'indice i è completamente arbitrario (cfr. l'osservazione 3 di pag. 218).

Teorema 11.20. Data una matrice A tale che det $A \neq 0$, esiste A^{-1} e risulta

$$A^{-1} = \frac{1}{\det A} \tilde{A}^T,$$

dove \tilde{A}^T è la trasposta della matrice dei cofattori.

Definizione 11.21. Una matrice A si dice non singolare se det $A \neq 0$. Una matrice A si dice invertibile se esiste A^{-1} .

Osservazioni:

1. In virtù del Teorema 11.20 una matrice è invertibile se e solo se è non singolare.

- 2. Per calcolare l'inversa di una matrice A, si procede quindi come segue. Si calcola innanzitutto il determinante della matrice e si verifica se la matrice è invertibile. Se det A ≠ 0, si calcolano quindi i determinanti delle matrici complementari A_{ij} degli elementi a_{ij} di A (cfr. la definizione 11.13). Si costruisce allora la matrice A i cui elementi ã_{ij} sono i cofattori, cioè i determinanti delle matrici complementari a meno del segno che è + se i + j è pari e − se i + j è dispari. Si considera quindi la trasposta di à e si divide ogni elemento per det A. La matrice che si ottiene è l'inversa di A.
- 3. Quando si calcola l'inversa A^{-1} di una matrice A, una semplice verifica consiste nel controllare che il prodotto delle due matrici A e A^{-1} dia l'identità, ovvero che risulti $AA^{-1} = \mathbb{1}$.
- 4. Data una matrice A, si pùo sempre considerare la sua trasposta: se A è una matrice $n \times m$, allora A^T è una matrice $m \times n$. Invece la matrice inversa di A si può definire solo se n = m, ovvero se la matrice A è quadrata, e det $A \neq 0$.

Esempi:

1. Si consideri la matrice

$$A = \begin{pmatrix} 1 & 0 \\ 1 & 2 \end{pmatrix}.$$

Si ha det $A=2\neq 0$ e quindi la matrice è invertibile. Si trova:

$$\tilde{A} = \begin{pmatrix} 2 & -1 \\ 0 & 1 \end{pmatrix} \Longrightarrow \tilde{A}^T = \begin{pmatrix} 2 & 0 \\ -1 & 1 \end{pmatrix} \Longrightarrow A^{-1} = \begin{pmatrix} 1 & 0 \\ -1/2 & 1/2 \end{pmatrix}.$$

2. Si consideri la matrice

$$A = \begin{pmatrix} 1 & 0 & -1 \\ 1 & 1 & 2 \\ -1 & 3 & 1 \end{pmatrix}.$$

Si ha det $A = -9 \neq 0$ e quindi la matrice è invertibile. Si trova:

$$\tilde{A} = \begin{pmatrix} -5 & -3 & 4 \\ -3 & 0 & -3 \\ 1 & -3 & 1 \end{pmatrix} \Longrightarrow \tilde{A}^T = \begin{pmatrix} -5 & -3 & 1 \\ -3 & 0 & -3 \\ 4 & -3 & 1 \end{pmatrix} \Longrightarrow A^{-1} = \begin{pmatrix} 5/9 & 1/3 & -1/9 \\ 1/3 & 0 & 1/3 \\ -4/9 & 1/3 & -1/9 \end{pmatrix}.$$

Proprietà della matrice inversa:

- 1. Se A, B sono due matrici invertibili che possono essere moltiplicate tra loro anche B^{-1} e A^{-1} possono essere moltiplicate tra loro e si ha $(AB)^{-1} = B^{-1}A^{-1}$.
- 2. Se A è una matrice quadrata si ha $\det A^{-1} = 1/\det A$.

Osservazioni:

- 1. La matrice nulla 0 non è invertibile.
- 2. La matrice $\mathbb{1}$ è invertibile (poiché det $\mathbb{1} = 1$; cfr. l'Osservazione 7 di pag. 219) e la sua inversa è la matrice stessa (i.e. $\mathbb{1}^{-1} = \mathbb{1}$), come si verifica immediatamente.
- 3. La proprietà $\det A^{-1} = 1/\det A$ segue immediatamente dal fatto che $A^{-1}A = 1$ (per definizione di inversa) e dalla proprietà dei determinanti $\det(A^{-1}A) = \det A^{-1} \cdot \det A$. Infatti si ha $1 = \det 1 = \det(A^{-1}A) = \det A^{-1} \cdot \det A$.
- 4. La proprietà $(AB)^{-1} = B^{-1}A^{-1}$ si dimostra come segue: data la matrice C = AB la sua inversa $C^{-1} = (AB)^{-1}$ deve soddisfare $C^{-1}C = \mathbb{1}$, quindi $C^{-1}AB = \mathbb{1} \Longrightarrow C^{-1}A = \mathbb{1}B^{-1} = B^{-1} \Longrightarrow C^{-1} = C^{-1}AA^{-1} = B^{-1}A^{-1} \Longrightarrow C^{-1} = B^{-1}A^{-1}$.

11.5 Matrici simmetriche

Definizione 11.22. Una matrice quadrata A di elementi a_{ij} si dice simmetrica se coincide con la sua trasposta, i.e se $A = A^T$.

Osservazioni:

- 1. Una matrice A è quindi simmetrica se $a_{ji} = a_{ij} \ \forall i, j = 1, \dots, n$.
- 2. La matrice nulla e la matrice identità sono matrici simmetriche.
- 3. Più in generale ogni matrice diagonale è simmetrica.
- 4. Si verifica facilmente che l'inversa di una matrice simmetrica è simmetrica. Dimostrazione: se A è simmetrica si ha $\mathbb{1} = (A^{-1}A)^T = A^T(A^{-1})^T = A(A^{-1})^T$, quindi $(A^{-1})^T = A^{-1}$, per l'unicità dell'inversa (cfr. il Teorema 11.18).

11.6 Sistemi di equazioni lineari

Consideriamo il sistema di due equazioni lineari

$$\begin{cases} a_{11}x + a_{12}y = b_1, \\ a_{21}x + a_{22}y = b_2, \end{cases}$$

dove i numeri $a_{11}, a_{12}, a_{21}, a_{22}, b_1, b_2$ sono noti. Risolvere il sistema significa trovare i valori x e y per i quali le due equazioni sono soddisfatte.

Se moltiplichiamo la prima equazione per a_{21} e la seconda per a_{11} otteniamo

$$\begin{cases} a_{21}a_{11}x + a_{21}a_{12}y = a_{21}b_1, \\ a_{11}a_{21}x + a_{11}a_{22}y = a_{11}b_2, \end{cases}$$

così che se sottraiamo la prima equazione dalla seconda troviamo

$$(a_{11}a_{22} - a_{21}a_{12}) y = a_{11}b_2 - a_{21}b_1,$$

ovvero, se $a_{11}a_{22} - a_{21}a_{12} \neq 0$,

$$y = \frac{a_{11}b_2 - a_{21}b_1}{a_{11}a_{22} - a_{21}a_{12}}.$$

Se definiamo

$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix},$$

la condizione $a_{11}a_{22} - a_{21}a_{12} \neq 0$ si può riscrivere det $A \neq 0$.

Analogamente se moltiplichiamo la prima equazione per a_{22} e la seconda per a_{12} otteniamo

$$\begin{cases} a_{22}a_{11}x + a_{22}a_{12}y = a_{22}b_1, \\ a_{12}a_{21}x + a_{12}a_{22}y = a_{12}b_2, \end{cases}$$

così che se consideriamo la differenza tra la prima e la seconda equazione troviamo

$$(a_{11}a_{22} - a_{12}a_{21}) x = a_{22}b_1 - a_{12}b_2,$$

e quindi, sotto la stessa condizione det $A \neq 0$,

$$x = \frac{a_{22}b_1 - a_{12}b_2}{a_{11}a_{22} - a_{21}a_{12}}.$$

Possiamo riscrivere allora la soluzione nella forma

$$x = \frac{\det \begin{pmatrix} b_1 & a_{12} \\ b_2 & a_{22} \end{pmatrix}}{\det \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}}, \qquad y = \frac{\det \begin{pmatrix} a_{11} & b_1 \\ a_{21} & b_2 \end{pmatrix}}{\det \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}}.$$

Possiamo riassumere il risultato nel seguente enunciato.

Teorema 11.23. Dato il sistema di equazioni lineari

$$\begin{cases} a_{11}x + a_{12}y = b_1, \\ a_{21}x + a_{22}y = b_2, \end{cases}$$

se $a_{11}a_{22} - a_{12}a_{21} \neq 0$ allora la soluzione è data da

$$x = \frac{\det \begin{pmatrix} b_1 & a_{12} \\ b_2 & a_{22} \end{pmatrix}}{\det \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}}, \qquad y = \frac{\det \begin{pmatrix} a_{11} & b_1 \\ a_{12} & b_2 \end{pmatrix}}{\det \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}}.$$

Possiamo riformulare il problema nel modo seguente. Riscriviamo il sistema di equazioni nella forma

$$\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \end{pmatrix},$$

ovvero, se $\vec{u} = x\vec{i} + y\vec{j}$ e $\vec{b} = b_1\vec{i} + b_2\vec{j}$, nella forma

$$A\vec{u} = \vec{b}$$

Sotto l'ipotesi det $A \neq 0$, esiste la matrice inversa

$$A^{-1} = \frac{1}{\det A} \begin{pmatrix} a_{22} & -a_{12} \\ -a_{21} & a_{11} \end{pmatrix} = \frac{1}{a_{11}a_{22} - a_{12}a_{21}} \begin{pmatrix} a_{22} & -a_{12} \\ -a_{21} & a_{11} \end{pmatrix},$$

quindi possiamo scrivere

$$\vec{u} = A^{-1}\vec{b}.$$

Se confrontiamo tale espressione con l'espressione della soluzione data dal Teorema 11.23, vediamo subito che le due espressioni coincidono.

Si possono apprezzare i vantaggi di questo secondo modo di procedere se consideriamo sistemi di più equazioni lineari, per esempio

$$\begin{cases} a_{11}x + a_{12}y + a_{13}z = b_1, \\ a_{21}x + a_{22}y + a_{23}z = b_2, \\ a_{31}x + a_{32}y + a_{33}z = b_3, \end{cases}$$

dove a_{ij} e b_i sono noti e x, y, z vanno determinati. Se introduciamo la matrice

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix},$$

possiamo riscrivere il sistema nella forma

$$A\vec{u} = \vec{b}$$
,

dove ora $\vec{u} = x\vec{i} + y\vec{j} + z\vec{k}$ e $\vec{b} = b_1\vec{i} + b_2\vec{j} + b_3\vec{k}$.

Se supponiamo che si abbia $\det A \neq 0$ allora la matrice A è invertibile e quindi la soluzione è data da

$$\vec{u} = A^{-1}\vec{b}$$
.

Si verifica immediatamente che possiamo riscrivere la soluzione come rapporto di due determinanti. Vale infatti il seguente risultato, analogo al Teorema 11.23.

Teorema 11.24. Dato il sistema di equazioni lineari

$$\begin{cases} a_{11}x + a_{12}y + a_{13}z = b_1, \\ a_{21}x + a_{22}y + a_{23}z = b_2, \\ a_{31}x + a_{32}y + a_{33}z = b_3, \end{cases}$$

 $se \ {\rm det} \ A \neq 0 \ \ allora \ la \ soluzione \ \grave{e} \ \ data \ \ da$

$$x = \frac{\det \begin{pmatrix} b_1 & a_{12} & a_{13} \\ b_2 & a_{22} & a_{23} \\ b_3 & a_{32} & a_{33} \end{pmatrix}}{\det A} \qquad y = \frac{\det \begin{pmatrix} a_{11} & b_1 & a_{13} \\ a_{21} & b_2 & a_{23} \\ a_{31} & b_2 & a_{33} \end{pmatrix}}{\det A}, \qquad z = \frac{\det \begin{pmatrix} a_{11} & a_{12} & b_1 \\ a_{21} & a_{22} & b_2 \\ a_{31} & a_{32} & b_3 \end{pmatrix}}{\det A}.$$

Rispetto al Teorema 11.24, la formulazione in termini della matrice inversa di A può risultare più vantaggiosa dal punto di vista pratico.

Esempio: se consideriamo il sistema

$$\begin{cases} 2x - y + \frac{1}{2}z = 3, \\ x + z = 2, \\ -3x + 2y - z = 0, \end{cases}$$

si ha

$$A = \begin{pmatrix} 2 & -1 & \frac{1}{2} \\ 1 & 0 & 1 \\ -3 & 2 & -1 \end{pmatrix},$$

e $\vec{b} = 3\vec{\imath} + 2\vec{\jmath} + 0\vec{k} = (3, 2, 0)$. Si verifica facilmente che det $A = -1 \neq 0$: per trovare la soluzione dobbiamo quindi calcolare A^{-1} . Con le notazioni di §12.5, si trova

$$\tilde{A} = \begin{pmatrix} -2 & -2 & 2 \\ 0 & -\frac{1}{2} & -1 \\ -1 & -\frac{3}{2} & 1 \end{pmatrix} \Longrightarrow \tilde{A}^T = \begin{pmatrix} -2 & 0 & -1 \\ -2 & -\frac{1}{2} & -\frac{3}{2} \\ 2 & -1 & 1 \end{pmatrix} \Longrightarrow A^{-1} = \begin{pmatrix} 2 & 0 & 1 \\ 2 & \frac{1}{2} & \frac{3}{2} \\ -2 & 1 & -1 \end{pmatrix}.$$

In conclusione si ha

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 2 & 0 & 1 \\ 2 & \frac{1}{2} & \frac{3}{2} \\ -2 & 1 & -1 \end{pmatrix} \begin{pmatrix} 3 \\ 2 \\ 0 \end{pmatrix} = \begin{pmatrix} 6 \\ 7 \\ -4 \end{pmatrix},$$

quindi la soluzione è x = 6 y = 7 e z = -4.

In risultato discusso sopra in \mathbb{R}^3 si estende al caso di sistemi di n equazioni lineari: vale il seguente risultato (noto come teorema di Cramer).

Teorema 11.25. Dato il sistema di equazioni lineari

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1, \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2, \\ \dots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n, \end{cases}$$

se det $A \neq 0$, dove A è la matrice dei coefficienti a_{ij} , allora la soluzione è data da

$$\det \begin{pmatrix} a_{11} & a_{12} & \dots & b_1 & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & b_2 & \dots & a_{2n} \\ \dots & \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & b_n & \dots & a_{nn} \end{pmatrix}$$

$$x_i = \frac{det \begin{pmatrix} a_{11} & a_{12} & \dots & b_1 & \dots & a_{1n} \\ \dots & \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & b_n & \dots & a_{nn} \end{pmatrix}}{\det A}, \quad i = 1, \dots, n,$$

dove i coefficienti b_1, b_2, \ldots, b_n occupano la i-esima colonna.

Osservazioni:

- 1. Il metodo di soluzione dei sistemi di equazioni lineari mediante le formule del Teorema 11.25 prende il nome di *metodo di Cramer*.
- 2. Analogamente ai casi precedenti con n=2 e n=3, anche nel caso $n\in\mathbb{N}$ qualsiasi, si può riscrivere il sistema di equazioni nella forma

$$A\vec{u} = \vec{b},$$

dove ora A è la matrice $n \times n$ di elementi a_{ij} , $\vec{u} = x_1 \vec{i}_1 + \ldots + x_n \vec{i}_n$ e $\vec{b} = b_1 \vec{i}_1 + \ldots + b_n \vec{i}_n$, dove $\{\vec{i}_1, \ldots, \vec{i}_n\}$ è una base per i vettori in \mathbb{R}^n . Se $\det A \neq 0$ allora la matrice A è invertibile e quindi la soluzione è data da

$$\vec{u} = A^{-1}\vec{b}.$$

- 3. Se det $A \neq 0$ il sistema di equazioni del Teorema 11.25, che possiamo riscrivere come $A\vec{u} = \vec{b}$ per l'osservazione precedente, se $\vec{b} = \vec{0}$, ammette come unica soluzione $\vec{u} = \vec{0}$. Infatti se det $A \neq 0$ esiste sempre un'unica soluzione $\vec{u} = A^{-1}\vec{b}$ e quindi $\vec{u} = A^{-1}\vec{0} = \vec{0}$ se $\vec{b} = \vec{0}$.
- 4. Nel caso in cui si abbia $\det A = 0$ la situazione è più complessa: o non ci sono soluzioni o si possono avere infinite soluzioni, come mostrano gli esempi seguenti.

Esempi:

1. Dato il sistema

$$\begin{cases} 2x + y = 1, \\ 4x + 2y = 2, \end{cases}$$

si ha

$$A = \begin{pmatrix} 2 & 1 \\ 4 & 2 \end{pmatrix},$$

quindi det A=4-4=0. In questo caso si vede subito che la seconda equazione si ottiene dalla prima moltiplicandola per 2, quindi in realtà il sistema è equivalente alla sola equazione 2x+y=1 che ammette infinite soluzioni. Infatti, per ogni $\bar{x} \in \mathbb{R}$, se fissiamo $\bar{y}=1-2\bar{x}$, allora $(\bar{x},1-2\bar{x})$ è una soluzione.

2. Si consideri il sistema

$$\begin{cases} 2x + y = 1, \\ 4x + 2y = 0, \end{cases}$$

dove la matrice A è la stessa dell'esempio precedente, quindi det A=0. In questo caso non esistono soluzioni: infatti $4x+2y=2(2x+y)=2\cdot 1=2\neq 0$.

Osservazioni:

- 1. Si noti che nel caso dell'esempio la matrice A ha due righe proporzionali. È una regola generale, anche per n > 2, che se una matrice $n \times n$ ha due righe proporzionali allora il suo determinante è nullo (cfr. la proprietà 2 di §12.2 a pag. 219).
- 2. Se A è una matrice 2×2 con det A = 0 allora sia le sue righe che le sue colonne sono proporzionali tra loro: infatti se det A = 0 si ha $a_{11}a_{22} a_{12}a_{21} = 0$ e quindi $a_{11}a_{22} = a_{12}a_{21}$. Quindi sono possibili due casi:
 - la matrice ha una riga o una colonna di elementi nulli (e quindi l'asserto segue immediatamente) oppure
 - tutti gli elementi sono non nulli e si ha

$$\frac{a_{11}}{a_{12}} = \frac{a_{21}}{a_{22}}, \qquad \frac{a_{11}}{a_{21}} = \frac{a_{12}}{a_{22}};$$

la prima relazione implica che le righe sono proporzionali tra loro e la seconda che le colonne sono proporzionali tra loro.

3. Quindi, dato un sistema di due equazioni lineari della forma $A\vec{u} = \vec{b}$, se det A = 0 le due righe di A sono proporzionali, i.e. $\exists \alpha \in \mathbb{R}$ tale che $a_{21}x + a_{22}y = \alpha(a_{11}x + a_{12}y)$. Allora, se $b_2 = \alpha b_1$, le due equazioni sono equivalenti all'unica equazione $a_{11}x + a_{12}y = b_1$ ed esistono infinite soluzioni, mentre se $b_2 \neq \alpha b_1$ le due equazioni sono incompatibili e non esistono soluzioni.

4. In particolare, se A è una matrice 2×2 tale che det A = 0, il sistema $A\vec{u} = \vec{b}$ con $\vec{b} = \vec{0}$ ammette sempre soluzione. Più precisamente esiste sempre una soluzione $\vec{u} \neq \vec{0}$ e ogni vettore con la direzione di \vec{u} (cioè parallelo a \vec{u}) è anch'esso soluzione.

11.7 Autovalori e autovettori di matrici 2×2

Sia

$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$$

una matrice 2×2 . Consideriamo la matrice

$$A - \lambda \mathbb{1} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} - \lambda \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} a_{11} - \lambda & a_{12} \\ a_{21} & a_{22} - \lambda \end{pmatrix},$$

dove $\mathbb{1}$ è la matrice identità 1×1 .

Il polinomio di secondo grado in λ dato da

$$P_2(\lambda) = \det(A - \lambda \mathbb{1}) = \lambda^2 - (a_{11} + a_{22}) \lambda + a_{11}a_{22} - a_{12}a_{21},$$

prende il nome di polinomio caratteristico di A e le sue radici

$$\lambda = \frac{a_{11} + a_{22} \pm \sqrt{(a_{11} + a_{22})^2 - 4(a_{11}a_{22} - a_{12}a_{21})}}{2}$$

si chiamano gli *autovalori* di A.

Gli autovalori di A sono o entrambi reali (distinti o coincidenti) o complessi coniugati, i.e. della forma $\lambda = a \pm ib$, con $a, b \in \mathbb{R}$ (cfr. i risultati di §1.8). La situazione è illustrata dai seguenti esempi.

Esempi:

- 1. Se $A = \begin{pmatrix} 1 & 1 \\ 2 & 1 \end{pmatrix}$ si ha $P_2(\lambda) = \lambda^2 2\lambda 1 = 0$, quindi gli autovalori di A sono $\lambda_1 = 1 + \sqrt{2}$ e $\lambda_2 = 1 \sqrt{2}$.
- 2. Se $A = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$ si ha $P_2(\lambda) = \lambda^2 2\lambda + 2 = 0$, quindi gli autovalori di A sono $\lambda_1 = 1 + i$ e $\lambda_2 = 1 i$, dove $i = \sqrt{-1}$ è l'unità immaginaria.
- 3. Se $A = \begin{pmatrix} 1 & 2 \\ 2 & 3 \end{pmatrix}$ si ha $P_2(\lambda) = \lambda^2 4\lambda 1 = 0$, quindi gli autovalori di A sono $\lambda_1 = 2 + \sqrt{5}$ e $\lambda_2 = 2 \sqrt{5}$.
- 4. Se $A = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$ si ha $P_2(\lambda) = \lambda^2 4\lambda + 4 = 0$, quindi gli autovalori di A sono $\lambda_1 = \lambda_2 = 2$.

Osservazioni:

1. Come mostra l'esempio 2 gli autovalori possono non essere reali. Questo succede quando il discriminante

$$\Delta = (a_{11} + a_{22})^2 - 4(a_{11}a_{22} - a_{12}a_{21})$$

dell'equazione $P_2(\lambda) = 0$ è negativo.

2. Se la matrice A è simmetrica allora gli autovalori sono sempre reali. Infatti se $a_{12}=a_{21}$ il discriminante Δ diventa

$$\Delta = a_{11}^2 + a_{22}^2 - 2a_{11}a_{22} + 4a_{12}^2 = (a_{11} - a_{22})^2 + 4a_{12}^2$$

e quindi $\Delta \geq 0$. In particolare le due radici coincidono solo se $a_{11} = a_{22}$ e $a_{12} = 0$ (cfr. l'esempio 4); in qualsiasi altro caso la matrice ha autovalori distinti.

Data la matrice A e il vettore $\vec{v} = (v_1, v_2)$ si può considerare il vettore $\vec{w} = A\vec{v}$. Si ha

$$\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = \begin{pmatrix} a_{11}v_1 + a_{12}v_2 \\ a_{21}v_1 + a_{22}v_2 \end{pmatrix},$$

quindi $\vec{w} = (a_{11}v_1 + a_{12}v_2, a_{21}v_1 + a_{22}v_2)$. In generale il vettore $A\vec{v}$ non ha la stessa direzione di \vec{v} , quindi non è proporzionale a \vec{v} . Diremo che un vettore non nullo \vec{v} è un autovettore di A se esiste $\lambda \in \mathbb{R}$ tale che $A\vec{v} = \lambda\vec{v}$. L'ultima relazione si può riscrivere $(A - \lambda \mathbb{1})\vec{v} = \vec{0}$: poiché $\vec{v} \neq \vec{0}$ allora la matrice $A - \lambda \mathbb{1}$ deve essere singolare, i.e. $\det(A - \lambda \mathbb{1}) = 0$, quindi λ deve essere un autovalore di A. Diremo allora che \vec{v} è l'autovettore corrispondente (o associato o relativo) all'autovalore λ .

Scrivendo la relazione $(A - \lambda \mathbb{1})\vec{v} = \vec{0}$ per componenti otteniamo

$$\begin{pmatrix} a_{11} - \lambda & a_{12} \\ a_{21} & a_{22} - \lambda \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix},$$

ovvero il sistema di equazioni

$$\begin{cases} (a_{11} - \lambda) v_1 + a_{12}v_2 = 0, \\ a_{21}v_1 + (a_{22} - \lambda) v_2 = 0. \end{cases}$$

Poiché $\det(A - \lambda \mathbb{1}) = 0$ (poiché λ è un autovalore) allora le due equazioni non sono indipendenti e quindi il sistema ammette una soluzione $(v_1, v_2) \neq (0, 0)$.

Osservazioni:

1. Il fatto che $\det(A - \lambda \mathbb{1}) = 0$ implica dunque che esiste sempre almeno una soluzione dell'equazione $\det(A - \lambda \mathbb{1})\vec{v} = \vec{0}$, quindi per ogni autovalore λ di A esiste sempre almeno un autovettore corrispondente a λ ; cfr. l'Osservazione 4 di pag. 229.

- 2. Di fatto il sistema ammette infinite soluzioni: infatti se \vec{v} è un autovettore, allora ogni vettore della forma $\alpha \vec{v}$, con $\alpha \neq 0$, è un autovettore corrispondente allo stesso autovalore λ . Infatti si ha $A(\alpha \vec{v}) = \alpha(A\vec{v}) = \alpha(\lambda \vec{v}) = \lambda(\alpha \vec{v})$.
- 3. L'autovettore corrispondente a un autovalore λ individua quindi una direzione nel piano. Si può allora indicare l'autovettore scegliendo il versore in quella direzione.
- 4. Quindi quando si dice che "esiste un solo autovettore" corrispondente all'autovalore λ si intende che esiste un'unica direzione tale i vettori \vec{v} con quella direzione risolvono l'equazione $A\vec{v} = \lambda \vec{v}$. Analogamente se si dice che "esistono due autovettori" corrispondenti a λ si intende che esistono due direzioni distinte tali che tutti i vettori \vec{v}_1 e \vec{v}_2 con quelle direzioni risolvono l'equazione $A\vec{v} = \lambda \vec{v}$.
- 5. Sull'autovettore \vec{v} associato all'autovalore λ la matrice agisce come il prodotto per il numero reale λ .
- 6. Perché il vettore $\vec{w} = A\vec{v}$ sia diretto come \vec{v} occorre quindi che \vec{v} sia un autovettore di A e in tal caso si ha $\vec{w} = \lambda \vec{v}$, dove λ è l'autovalore a cui corrisponde \vec{v} .

Esempi:

- 1. Consideriamo la matrice dell'esempio 1 di pag. 229. Si trova che l'autovettore corrispondente all'autovalore $\lambda_1 = 1 + \sqrt{2}$ è $\vec{v}_1 = (1, \sqrt{2})$ (e ogni altro vettore a esso proporzionale), mentre l'autovettore corrispondente all'autovalore $\lambda_2 = 1 \sqrt{2}$ è $\vec{v}_2 = (1, -\sqrt{2})$ (e ogni altro vettore a esso proporzionale).
- 2. Nel caso dell'esempio 4 si vede facilmente che ogni vettore è un autovettore: possiamo allora scegliere (arbitrariamente) due vettori linearmente indipendenti, per esempio i versori $\vec{v}_1 = (1,0)$ e $\vec{v}_2 = (0,1)$ come autovettori corrispondenti all'autovalore $\lambda = 2$. Lo stesso argomento si applica a qualsiasi matrice che sia proporzionale all'identità.

11.8 Autovalori e autovettori di matrici $n \times n$

Le definizioni date in §11.6 si possono generalizzare al caso di matrici $n \times n$.

Definizione 11.26. Sia A una matrice $n \times n$, data da

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1m} \\ a_{21} & a_{22} & \dots & a_{2m} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nm} \end{pmatrix}.$$

Si definisce polinomio caratteristico di A il polinomio di grado n

$$P_n(\lambda) = \det(A - \lambda \mathbb{1}),$$

dove ora 1 è la matrice identità $n \times n$, e si chiamano autovalori di A le radici del polinomio caratteristico. Dato un autovalore λ di A si chiama autovettore corrispondente a λ il vettore \vec{v} tale che $A\vec{v} = \lambda \vec{v}$.

Teorema 11.27. Se A è una matrice simmetrica, allora i suoi autovalori sono reali. inoltre essa ammette n autovettori che sono a due a due ortogonali.

Osservazioni:

- 1. Sia A una matrice $n \times n$. Siano $\lambda_1, \ldots, \lambda_n$ gli autovalori di A. A ogni autovalore λ_k corrisponde un autovettore \vec{v}_k : se quindi gli autovalori della matrice A sono tutti distinti, allora la matrice A ammette n autovettori distinti $\vec{v}_1, \ldots, \vec{v}_k$. Si può anche dimostrare che, in tale caso, gli autovettori sono linearmente indipendenti e quindi $\{\vec{v}_1, \ldots, \vec{v}_n\}$ costituisce una base in \mathbb{R}^n (che viene chiamata base degli autovettori).
- 2. Se invece la matrice ha p autovalori coincidenti, i.e. se esiste una radice λ di molteplicità p del polinomio caratteristico, allora il numero di autovettori corrispondenti a λ può andare da 1 a p (a seconda della matrice).
- 3. Se tuttavia la matrice A è simmetrica allora il Teorema 11.27 assicura che, indipendentemente dal valore degli autovalori (quindi anche in caso di autovalori coincidenti) il numero di autovettori è sempre n. Inoltre gli autovettori sono a due a due ortogonali: se $\vec{v}_1, \ldots, \vec{v}_n$ sono gli n autovettori, si ha $\vec{v}_i \cdot \vec{v}_j = 0$ per ogni $i \neq j$.
- 4. Se n=3 il polinomio caratteristico ha la forma

$$P_3(\lambda) = \det \begin{pmatrix} a_{11} - \lambda & a_{12} & a_{13} \\ a_{21} & a_{22} - \lambda & a_{23} \\ a_{31} & a_{32} & a_{33} - \lambda \end{pmatrix}$$

e ammette tre radici $\lambda_1, \lambda_2, \lambda_3$ (non necessariamente reali). Il vettore $\vec{v} = (v_1, v_2, v_3)$ è un autovettore corrispondente all'autovalore λ , dove $\lambda \in \{\lambda_1, \lambda_2, \lambda_3\}$, se è non nullo e risolve il sistema di equazioni

$$\begin{cases} (a_{11} - \lambda) v_1 + a_{12}v_2 + a_{13}v_3 = 0, \\ a_{21}v_1 + (a_{22} - \lambda) v_2 + a_{23}v_3 = 0 \\ a_{31}v_1 + a_{32}v_2 + (a_{33} - \lambda) v_3 = 0. \end{cases}$$

Esempio: si consideri la matrice

$$A = \begin{pmatrix} 1 & -1 & -3 \\ 0 & 2 & 1 \\ 0 & 0 & -2 \end{pmatrix}.$$

Il polinomio caratteristico è $P_3(\lambda) = -(1 - \lambda)(2 - \lambda)(2 + \lambda)$, quindi gli autovalori di A sono $\lambda_1 = 1$, $\lambda_2 = 2$ e $\lambda_3 = -2$. L'autovettore corrispondente a $\lambda = 1$ si trova risolvendo il sistema

$$\begin{cases}
-v_2 - 3v_3 = 0, \\
v_2 + v_3 = 0, \\
-3v_3 = 0,
\end{cases}$$

quindi $(v_1, v_2, v_3) = (v_1, 0, 0) \Longrightarrow \vec{v}_1 = (1, 0, 0)$. L'autovettore corrispondente a $\lambda = 2$ si trova risolvendo il sistema

$$\begin{cases}
-v_1 - v_2 - 3v_3 = 0, \\
v_3 = 0, \\
-4v_3 = 0,
\end{cases}$$

quindi $(v_1, v_2, v_3) = (v_1, -v_1, 0) \Longrightarrow \vec{v}_1 = (1, -1, 0)$. L'autovettore corrispondente a $\lambda = -2$ si trova risolvendo il sistema

$$\begin{cases} 3v_1 - v_2 - 3v_3 = 0, \\ 4v_2 + v_3 = 0, \\ 0 = 0, \end{cases}$$

quindi $(v_1, v_2, v_3) = (-11v_2/3, v_2, -4v_2) \Longrightarrow \vec{v}_1 = (-11, 3, -12).$

Osservazioni:

- 1. Data una matrice A, la sua inversa A^{-1} ha gli stessi autovettori di A, corrispondenti ad autovalori che sono gli inversi degli autovalori di A: $A\vec{v} = \lambda \vec{v} \Longrightarrow A^{-1}\vec{v} = \lambda^{-1}\vec{v}$.
- 2. L'affermazione precedente si dimostra verificando che se $A\vec{v} = \lambda \vec{v}$ allora $A^{-1}\vec{v} = (1/\lambda)\vec{v}$. Partendo dalla relazione $A\vec{v} = \lambda \vec{v}$ e moltiplicando a sinistra per A^{-1} otteniamo

$$\vec{v} = A^{-1}A\vec{v} = A^{-1}\lambda\vec{v} = \lambda A^{-1}\vec{v}.$$

Poiché la matrice è invertibile, si ha $\lambda \neq 0$: se infatti $\lambda = 0$ fosse un autovalore il corrispondente autovettore \vec{v} sarebbe tale che tale che $A\vec{v} = 0\vec{v} = \vec{0}$ e quindi $\vec{v} = A^{-1}\vec{0} = \vec{0}$, che non è possibile (cfr. anche l'Osservazione 4 di pag. 236). Quindi si può dividere per λ la relazione $\vec{v} = \lambda A^{-1}\vec{v}$, così ottenendo $(1/\lambda)\vec{v} = A^{-1}\vec{v}$.

- 3. Analogamente A^2 ha gli stessi autovettori di A e autovalori che sono dati dai quadrati degli autovalori di A. Infatti, se $A\vec{v} = \lambda\vec{v}$, si ha $A^2\vec{v} = AA\vec{v} = A\lambda\vec{v} = \lambda A\vec{v} = \lambda\lambda\vec{v} = \lambda\lambda\vec{v} = \lambda^2\vec{v}$.
- 4. Più in generale, se $A\vec{v} = \lambda \vec{v}$ (ovvero \vec{v} è l'autovettore di A associato all'autovalore λ), allora si ha $A^k\vec{v} = \lambda^k\vec{v}$.

11.9 Diagonalizzazione di una matrice 2×2

Sia A una matrice 2×2 e siano λ_1, λ_2 i suoi autovalori. In questo caso alcune delle proprietà viste in §11.6 si possono verificare per calcolo esplicito.

Proprietà degli autovettori di matrici 2×2 :

- 1. Se $\lambda_1 \neq \lambda_2$ allora gli autovettori \vec{v}_1, \vec{v}_2 corrispondenti sono linearmente indipendenti.
- 2. Se $\lambda_1 = \lambda_2 = \lambda$ possono esserci o due o un solo autovettore corrispondente a λ , a seconda della matrice.
- 3. Se A è simmetrica allora ammette sempre due autovettori ortogonali.

Dimostrazioni:

- 1. Se i due vettori \vec{v}_1, \vec{v}_2 fossero linearmente dipendenti allora dovrebbero essere proporzionali (cfr. l'Osservazione 2 di pag. 193), i.e. $\vec{v}_2 = \alpha \vec{v}_1$ per qualche $\alpha \in \mathbb{R}$. Ma se così fosse si avrebbe $A\vec{v}_2 = A\alpha\vec{v}_1 = \alpha A\vec{v}_1 = \alpha \lambda_1 \vec{v}_1 = \lambda_1 \alpha \vec{v}_1 = \lambda_1 \vec{v}_2$; d'altra parte $A\vec{v}_2 = \lambda_2 \vec{v}_2$, quindi si troverebbe $\lambda_1 \vec{v}_2 = \lambda_2 \vec{v}_2$ che non è possibile se $\lambda_1 \neq \lambda_2$.
- 2. Consideriamo le due matrici

$$A_1 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \qquad A_2 = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}.$$

In entrambi i casi si ha $\lambda_1 = \lambda_2 = 1$. Nel primo caso ogni vettore del piano è un autovettore (si ragiona come fatto per l'Esempio 2 di pag. 231), quindi due autovettori linearmente indipendenti sono, per esempio, $\vec{v}_1 = (1,0)$ e $\vec{v}_2 = (0,1)$. Nel secondo caso c'è un solo autovettore corrispondente all'autovalore 1, che è dato da $\vec{v} = (0,1)$.

3. Se A è simmetrica, i suoi autovalori λ_1 e λ_2 sono reali (cfr. l'Osservazione di pag. 234). Se $\lambda_1 \neq \lambda_2$ siano $\vec{v}_1 = (v_{11}, v_{12})$ e $\vec{v}_2 = (v_{21}, v_{22})$ gli autovettori corrispondenti. Se A è simmetrica si verifica facilmente che $\vec{v}_1 \cdot A\vec{v}_2 = \vec{v}_2 \cdot A\vec{v}_1$; infatti si ha

$$\begin{aligned} \vec{v}_1 \cdot A \vec{v}_2 &= v_{11} a_{11} v_{21} + v_{11} a_{12} v_{22} + v_{12} a_{21} v_{21} + v_{12} a_{22} v_{22}, \\ \vec{v}_2 \cdot A \vec{v}_1 &= v_{21} a_{11} v_{11} + v_{21} a_{12} v_{12} + v_{22} a_{21} v_{11} + v_{22} a_{22} v_{12}, \end{aligned}$$

e si vede subito che le due espressioni sono uguali se A è simmetrica (i.e. se $a_{12}=a_{21}$). D'altra parte $\vec{v}_1 \cdot A\vec{v}_2 = \vec{v}_1 \cdot \lambda_2 \vec{v}_2 = \lambda_2 \vec{v}_1 \cdot \vec{v}_2$ e, analogamente $\vec{v}_2 \cdot A\vec{v}_1 = \vec{v}_2 \cdot \lambda_1 \vec{v}_1 = \lambda_1 \vec{v}_2 \cdot \vec{v}_1 = \lambda_1 \vec{v}_1 \cdot \vec{v}_2$. Quindi $\vec{v}_1 \cdot A\vec{v}_2 = \vec{v}_2 \cdot A\vec{v}_1$ implica $\lambda_1 \vec{v}_1 \cdot \vec{v}_2 = \lambda_2 \vec{v}_1 \cdot \vec{v}_2$, ovvero $(\lambda_1 - \lambda_2)\vec{v}_1 \cdot \vec{v}_2 = 0$. Perciò se $\lambda_1 \neq \lambda_2$ si ha $\vec{v}_1 \cdot \vec{v}_2 = 0$, i.e. \vec{v}_1 e \vec{v}_2 sono ortogonali. D'altra parte se $\lambda_1 = \lambda_2$ allora la matrice è proporzionale all'identità (cfr. l'Osservazione 3 di pag. 234) e quindi ogni vettore è un autovettore (cfr. l'Esempio 2 di pag. 231): in particolare si possono scegliere due autovettori ortogonali.

Osservazioni:

- 1. La proprietà 1 vale più in generale per matrici $n \times n$; cfr. l'Osservazione 1 di pag. 232.
- 2. Anche la proprietà 3 vale più in generale per matrici $n \times n$ cfr. l'Osservazione 3 di pag. 232.

Sia A una matrice 2×2 con autovalori λ_1 e λ_2 . Supponiamo che esistano due autovettori distinti, i.e. due vettori linearmente indipendenti $\vec{v}_1 = (v_{11}, v_{12})$ e $\vec{v}_2 = (v_{21}, v_{22})$ tali che $A\vec{v}_1 = \lambda_1\vec{v}_1$ e $A\vec{v}_2 = \lambda_2\vec{v}_2$, i.e.

$$\begin{cases} a_{11}v_{11} + a_{12}v_{12} = \lambda_1 v_{11}, \\ a_{21}v_{11} + a_{22}v_{12} = \lambda_1 v_{12}, \end{cases} \begin{cases} a_{11}v_{21} + a_{12}v_{22} = \lambda_2 v_{21}, \\ a_{21}v_{21} + a_{22}v_{22} = \lambda_2 v_{22}. \end{cases}$$

In tal caso $\{\vec{v}_1, \vec{v}_2\}$ costituisce una base per i vettori del piano. Questo vuol dire che ogni vettore del piano si può scomporre come combinazione lineare dei vettori \vec{v}_1 e \vec{v}_2 , i.e. per ogni vettore \vec{v} esistono $\alpha, \beta \in \mathbb{R}$ tali che $\vec{v} = \alpha \vec{v}_1 + \beta \vec{v}_2$. Si ha allora

$$A\vec{v} = A(\alpha \vec{v}_1 + \beta \vec{v}_2) = \alpha A\vec{v}_1 + \beta A\vec{v}_2 = \alpha \lambda_1 \vec{v}_1 + \beta \lambda_2 \vec{v}_2.$$

In altre parole, lavorando nella base $\{\vec{v}_1, \vec{v}_2\}$, la matrice A agisce come se moltiplicasse le componenti dei vettori per dei numeri reali. Può quindi essere più conveniente lavorare nella base $\{\vec{v}_1, \vec{v}_2\}$ in cui la matrice A agisce come una matrice diagonale. Ci si può quindi porre il problema di come si passa dalla matrice A alla matrice diagonale i cui elementi siano gli autovalori di A.

Definiamo la matrice C le cui colonne siano costituite dai vettori \vec{v}_1 e \vec{v}_2 :

$$C = \begin{pmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{pmatrix} = \begin{pmatrix} v_{11} & v_{21} \\ v_{12} & v_{22} \end{pmatrix}.$$

Poiché i vettori \vec{v}_1 e \vec{v}_2 sono linearmente indipendenti non possono avere la stessa direzione. Quindi le due colonne di C non sono proporzionali e quindi il determinante di C non può essere nullo (per l'Osservazione 2 di pag. 228 questo implicherebbe appunto che le colonne di C sono proporzionali) \Longrightarrow det $C \neq 0 \Longrightarrow C$ è invertibile.

Poiché i vettori \vec{v}_1, \vec{v}_2 sono linearmente indipendenti, $\{\vec{v}_1, \vec{v}_2\}$ costituisce una base. Se scriviamo

$$\vec{v}_1 = v_{11}\vec{i} + v_{12}\vec{j}, \qquad \vec{v}_2 = v_{21}\vec{i} + v_{22}\vec{j},$$

possiamo notare che

$$\begin{pmatrix} \vec{v}_1 \\ \vec{v}_2 \end{pmatrix} = C^T \begin{pmatrix} \vec{i} \\ \vec{j} \end{pmatrix}, \qquad C^T = \begin{pmatrix} v_{11} & v_{12} \\ v_{21} & v_{22} \end{pmatrix},$$

quindi C è la trasposta della matrice del cambiamento di base che fa passare dalla base $\{\vec{i}, \vec{j}\}$ alla base degli autovettori $\{\vec{v}_1, \vec{v}_2\}$.

Possiamo riscrivere le due equazioni

$$A\vec{v}_1 = \lambda_1 \vec{v}_1, \qquad A\vec{v}_2 = \lambda_2 \vec{v}_2$$

come un'unica equazione nella forma

$$AC = CD, \qquad D = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}.$$

Infatti si ha

$$AC = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} v_{11} & v_{21} \\ v_{12} & v_{22} \end{pmatrix} = \begin{pmatrix} a_{11}v_{11} + a_{12}v_{12} & a_{11}v_{21} + a_{12}v_{22} \\ a_{21}v_{11} + a_{22}v_{12} & a_{21}v_{21} + a_{22}v_{22} \end{pmatrix},$$

$$CD = \begin{pmatrix} v_{11} & v_{21} \\ v_{12} & v_{22} \end{pmatrix} \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix} = \begin{pmatrix} \lambda_1 v_{11} & \lambda_2 v_{21} \\ \lambda_1 v_{12} & \lambda_2 v_{22} \end{pmatrix}.$$

Poiché la matrice C è invertibile possiamo moltiplicare a sinistra per C^{-1} la relazione AC = CD, così da ottenere

$$D = C^{-1}AC.$$

La matrice D è diagonale e ha come elementi diagonali gli autovalori di A. Si dice in tal caso che la matrice A è diagonalizzabile e che la matrice C diagonalizza la matrice A.

Osservazioni:

1. Poiché $\det(C^{-1}AC) = \det C^{-1} \cdot \det A \cdot \det C = (1/\det C) \cdot \det A \cdot \det C = \det A$, si ha

$$\det A = \det D = \lambda_1 \lambda_2$$

ovvero il determinante di una matrice 2×2 diagonalizzabile è uguale al prodotto degli autovalori.

- 2. Analogamente, se A è una matrice 3×3 , con autovalori $\lambda_1, \lambda_2, \lambda_3$, si può dimostrare che risulta det $A = \lambda_1 \lambda_2 \lambda_3$.
- 3. In realtà la proprietà appena vista è generale: se A è una matrice $n \times n$ e $\lambda_1, \lambda_2, \ldots, \lambda_n$ sono i suoi autovalori, allora si ha $\det A = \lambda_1 \lambda_2 \ldots \lambda_n$ (ovvero il determinante di una matrice è uguale al prodotto dei suoi autovalori).
- 4. In particolare se una matrice A è invertibile allora è non singolare, i.e. $\det A \neq 0$, e quindi i suoi autovalori devono essere tutti diversi da zero.

11.10 Esercizi

1. Date le matrici

$$A = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 2 \end{pmatrix}, \qquad B = \begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 3 & 2 \end{pmatrix},$$

si calcolino le matrici $A+B^T$, AB e BA.

2. Data la matrice

$$A = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix},$$

si calcoli:

- (1) A^{T} ,
- $(2) \det A,$
- (3) $A\vec{v}$, dove $\vec{v} = (1, 1)$,
- $(4) A^{-1},$
- (5) $\det A^4$.

3. Dato il sistema

$$\begin{cases} x + 3y = 1, \\ x + 2y = 2, \end{cases}$$

si riscriva il sistema nella forma $A\vec{u} = \vec{b}$, con $\vec{u} = (x, y)$, e si trovi il vettore \vec{u} che risolve l'equazione.

4. Data la matrice

$$A = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix},$$

si calcolino:

- $(1) A^{-1}$,
- (2) gli autovalori e gli autovettori di A,
- (3) la matrice che diagonalizza A.

5. Date le matrici

$$A = \begin{pmatrix} k & -1 \\ 0 & 2 \end{pmatrix}, \qquad B = \begin{pmatrix} 1 & -k \\ 3 & 1 \end{pmatrix},$$

si determini k perché si abbia

$$AB = \begin{pmatrix} -5 & -5 \\ 6 & 2 \end{pmatrix}.$$

6. Date le matrici

$$A = \begin{pmatrix} -1 & 2 & 0 \\ 0 & 1/2 & 1 \end{pmatrix}, \qquad B = \begin{pmatrix} 3 & 2 & 0 \\ 1 & -1 & 0 \\ 2 & -2 & 1 \end{pmatrix}, \qquad C = \begin{pmatrix} -3/2 & 5 \\ 0 & -2 \\ -2 & 0 \end{pmatrix},$$

si calcolino tutti i possibili prodotti.

7. Dato il sistema

$$\begin{cases} x - y + 2z = 1, \\ 2x + z = 0, \\ -x - 2y = 2, \end{cases}$$

si trovi la soluzione (x, y, z) usando il metodo di Cramer.

8. Dato il sistema

$$\begin{cases} x - y + z = 1, \\ x + y + z = 0, \\ x - z = 1, \end{cases}$$

- (1) si riscriva il sistema nella forma $A\vec{u} = \vec{b}$ e lo si risolva calcolando la matrice inversa di A;
- (2) si risolva il sistema usando il metodo di Cramer.

9. Data la matrice

$$A = \begin{pmatrix} 2 & -1 \\ 1 & -2 \end{pmatrix},$$

- (1) si calcolare autovalori e autovettori di A;
- (2) si diagonalizzi A.

10. Data la matrice

$$A = \begin{pmatrix} -1 & 0 \\ 2 & -3 \end{pmatrix},$$

- (1) si calcolino autovalori e autovettori di A;
- (2) si diagonalizzi A.

11. Data la matrice

$$A = \begin{pmatrix} 1/2 & 0 \\ 1 & -1 \end{pmatrix},$$

- (1) si calcoli l'inversa di A;
- (2) si calcolino autovalori e autovettori di A;
- (3) si diagonalizzi A;
- (4) si calcolino autovalori e autovettori di A^{-1} .

12. Data la matrice

$$A = \begin{pmatrix} -1 & 1/4 \\ 2 & 1 \end{pmatrix},$$

- (1) si calcoli l'inversa di A;
- (2) si calcolino autovalori e autovettori di A;
- (3) si diagonalizzi A;
- (4) si calcolino autovalori e autovettori di A^{-1} .
- 13. Si risolva il sistema

$$\begin{cases} 3x + 2y + 4z = 1, \\ 2x - y + z = 0, \\ x + 2y + 3z = 1, \end{cases}$$

usando il metodo di Cramer.

14. Si consideri il sistema

$$\begin{cases} x + 3y + 2z = 1, \\ 7x + 2y + 2z = 2, \\ 4y + 2z = 1, \end{cases}$$

- e si determini la soluzione (x, y, z)
- (1) usando il metodo di Cramer;
- (2) attraverso il calcolo della matrice inversa.
- 15. Data la matrice

$$A = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 2 \\ 0 & 1 & 1 \end{pmatrix},$$

- (1) si calcolino autovalori e autovettori di A;
- (2) si diagonalizzi A;
- (3) si verifichi che A è invertibile e si calcoli la matrice inversa A^{-1} .
- 16. Data la matrice

$$A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix},$$

- (1) si calcolino autovalori e autovettori di A;
- (2) si diagonalizzi A.
- 17. Data la matrice

$$A = \begin{pmatrix} 1 & 7 & 2 \\ 4 & 7 & 1 \\ 1 & 4 & 1 \end{pmatrix},$$

- (1) se ne calcoli il determinante;
- (2) se ne calcolino gli autovalori;
- (3) si calcoli A^2 e det A^2 .
- 18. Data la matrice

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 2 \\ 1 & 1 & 4 \end{pmatrix},$$

- (1) si calcolino gli autovalori di A;
- (2) si calcolino gli autovettori di A;
- (3) si calcoli il determinante di A e si discuta se A sia invertibile.
- 19. Data la matrice

$$A = \begin{pmatrix} 1 & 1 & 2 \\ 2 & 1 & 0 \\ 1 & 1 & \alpha \end{pmatrix}, \qquad \alpha \in \mathbb{R},$$

- (1) si determini il valore di α per il quale la matrice non è invertibile;
- (2) per il valore di α trovato al punto (4.1) si calcolino gli autovalori di A;
- (3) si calcoli l'autovettore associato a uno degli autovalori trovati al punto (2).
- 20. Date le matrici

$$A = \begin{pmatrix} 1 & 3 \\ 3 & 1 \end{pmatrix}, \qquad B = \begin{pmatrix} 0 & 0 \\ 3 & 0 \end{pmatrix},$$

- (1) si calcolino le matrici S = A + B e M = AB e N = BA;
- (2) si calcoli C^5 , dove $C = M^T N^T$ (T indica la matrice trasposta);
- (3) si calcolino gli autovalori di A;
- (4) si calcolino gli autovalori di B;
- (5) si calcolino gli autovettori di A e di B.
- 21. Data la matrice

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 6 & 9 \\ 1 & 1 & 1 \end{pmatrix},$$

- (1) si verifichi che la matrice è singolare;
- (2) se ne calcolino gli autovalori;
- (3) si determinino due sottomatrici 2×2 che siano una singolare e una non singolare.
- 22. Data la matrice

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix},$$

- (1) si calcoli A^2 ;
- (2) si calcolino gli autovalori di A, in particolare si verifichi che $\lambda = 0$ è un autovalore;

11.10. ESERCIZI 241

- (3) si determini un autovettore associato all'autovalore $\lambda = 0$;
- (4) si determinino gli altri autovettori di A.

23. Data la matrice

$$A = \begin{pmatrix} 1 & 2 & 0 \\ 1 & 1 & 1 \\ 4 & 5 & 3 \end{pmatrix},$$

- (1) si calcoli det A e se ne deduca che $\lambda_1 = 0$ è un autovalore di A;
- (2) si determinino gli altri autovalori λ_1 e λ_2 di A;
- (3) si determini l'autovettore di A associato all'autovalore λ_1 ;
- (4) si determinino gli altri autovettori della matrice A.

24. Data la matrice

$$A = \begin{pmatrix} 1 & 2 & 1 \\ 5 & 4 & 3 \\ 2 & 1 & 1 \end{pmatrix},$$

- (1) si calcoli det A e se ne deduca che A ha autovalore $\lambda_1 = 0$;
- (2) si determinino gli altri due autovalori λ_2 e λ_3 di A;
- (3) si determini l'autovettore di A associato all'autovalore λ_1 ;
- (4) si determinino gli autovalori della matrice A^2 .

Soluzioni:

1.
$$A + B^T = \begin{pmatrix} 2 & 1 & 4 \\ 1 & 2 & 4 \end{pmatrix}$$
, $AB = \begin{pmatrix} 4 & 2 \\ 8 & 5 \end{pmatrix}$, $BA = \begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & 3 \\ 5 & 2 & 7 \end{pmatrix}$.

2.
$$A^T = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}$$
, $\det A = 1$, $A\vec{v} = (2,3)$, $A^{-1} = \begin{pmatrix} 2 & -1 \\ -1 & 1 \end{pmatrix}$, $\det A^4 = 1$.

3.
$$\begin{pmatrix} 1 & 3 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}, A^{-1} = \begin{pmatrix} -2 & 3 \\ 1 & -1 \end{pmatrix}, \vec{u} = (4, -1).$$

4.
$$A^{-1} = \frac{1}{3} \begin{pmatrix} -1 & 2 \\ 2 & -1 \end{pmatrix}, P_2(\lambda) = \lambda^2 - 2\lambda - 3 = 0 \Longrightarrow \begin{cases} \lambda_1 = -1, & \vec{v}_1 = (1, -1), \\ \lambda_2 = 3, & \vec{v}_2 = (1, 1), \end{cases}$$

$$C = \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} \Longrightarrow C^{-1} = \frac{1}{2} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \Longrightarrow C^{-1}AC = \begin{pmatrix} -1 & 0 \\ 0 & 3 \end{pmatrix}.$$

5.
$$AB = \begin{pmatrix} k-3 & -k^2-1 \\ 6 & 2 \end{pmatrix} \implies k-3 = -5, -k^2-1 = -5 \implies k = -2.$$

6.
$$AB = \begin{pmatrix} -1 & -4 & 0 \\ 5/2 & -5/2 & 1 \end{pmatrix}, AC = \begin{pmatrix} 3/2 & -9 \\ -2 & -1 \end{pmatrix}, BC = \begin{pmatrix} -9/2 & 11 \\ -3/2 & 7 \\ -5 & 14 \end{pmatrix},$$

$$CA = \begin{pmatrix} 3/2 & -1/2 & 5 \\ 0 & -1 & -2 \\ 2 & -4 & 0 \end{pmatrix}.$$

7.
$$A = \begin{pmatrix} 1 & -1 & 2 \\ 2 & 0 & 1 \\ -1 & -2 & 0 \end{pmatrix} \implies \det A = -5 \implies x = -\frac{1}{5} \det \begin{pmatrix} 1 & -1 & 2 \\ 0 & 0 & 1 \\ 2 & -2 & 0 \end{pmatrix} = 0,$$

$$y = -\frac{1}{5} \det \begin{pmatrix} 1 & 1 & 2 \\ 2 & 0 & 1 \\ -1 & 2 & 0 \end{pmatrix} = -1, \ z = -\frac{1}{5} \det \begin{pmatrix} 1 & -1 & 1 \\ 2 & 0 & 0 \\ -1 & -2 & 2 \end{pmatrix} = 0.$$

8. (1)
$$A = \begin{pmatrix} 1 & -1 & 1 \\ 1 & 1 & 1 \\ 1 & 0 & -1 \end{pmatrix} \implies \begin{pmatrix} 1 & -1 & 1 \\ 1 & 1 & 1 \\ 1 & 0 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \implies \det A = -4,$$

$$A^{-1} = \frac{1}{4} \begin{pmatrix} 1 & 1 & 2 \\ -2 & 2 & 0 \\ 1 & 1 & -2 \end{pmatrix} \implies (x, y, z) = (3/4, -1/2, -1/4);$$

$$(2) \ x = -\frac{1}{4} \det \begin{pmatrix} 1 & -1 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & -1 \end{pmatrix} = 3/4, \ y = -\frac{1}{4} \det \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & -1 \end{pmatrix} = -1/2,$$

$$z = -\frac{1}{4} \det \begin{pmatrix} 1 & -1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix} = -1/4.$$

9. (1)
$$\begin{cases} \lambda_1 = -\sqrt{3}, & \vec{v}_1 = (1, 2 + \sqrt{3}), \\ \lambda_2 = \sqrt{3}, & \vec{v}_2 = (1, 2 - \sqrt{3}); \end{cases}$$
(2)
$$C = \begin{pmatrix} 1 & 1 \\ 2 + \sqrt{3} & 2 - \sqrt{3} \end{pmatrix} \Longrightarrow C^{-1} = \frac{1}{2\sqrt{3}} \begin{pmatrix} \sqrt{3} - 2 & -1 \\ \sqrt{3} + 2 & 1 \end{pmatrix}$$

$$\Longrightarrow C^{-1}AC = \begin{pmatrix} -\sqrt{3} & 0 \\ 0 & \sqrt{3} \end{pmatrix}.$$

10. (1)
$$\begin{cases} \lambda_1 = -1, & \vec{v}_1 = (1, 1), \\ \lambda_2 = -3, & \vec{v}_2 = (0, 1); \end{cases}$$
(2) $C = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \Longrightarrow C^{-1} = \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix} \Longrightarrow C^{-1}AC = \begin{pmatrix} -1 & 0 \\ 0 & -3 \end{pmatrix}.$

11.10. ESERCIZI 243

11. (1)
$$A^{-1} = \begin{pmatrix} 2 & 0 \\ 2 & -1 \end{pmatrix}$$
;
(2) $\begin{cases} \lambda_1 = -1, & \vec{v}_1 = (0, 1), \\ \lambda_2 = 1/2, & \vec{v}_2 = (3, 2); \end{cases}$
(3) $C = \begin{pmatrix} 0 & 3 \\ 1 & 2 \end{pmatrix} \Longrightarrow C^{-1} = \frac{1}{3} \begin{pmatrix} -2 & 3 \\ 1 & 0 \end{pmatrix} \Longrightarrow C^{-1}AC = \begin{pmatrix} -1 & 0 \\ 0 & 1/2 \end{pmatrix}$;
(4) gli autovalori e autovettori della matrice inversa sono: $\lambda_1 = 2, \lambda_2 = -1$ e $\vec{v}_1 = (0, 1), \vec{v}_2 = (3, 2)$, rispettivamente (cfr. l'osservazione 1 di pag. 233).

12. (1)
$$A^{-1} = \frac{2}{3} \begin{pmatrix} -1 & 1/4 \\ 2 & 1 \end{pmatrix}$$
;
(2) $\begin{cases} \lambda_1 = -\sqrt{3/2}, & \vec{v}_1 = (1, 4 - 2\sqrt{6}), \\ \lambda_2 = \sqrt{3/2}, & \vec{v}_2 = (1, 4 + 2\sqrt{6}); \end{cases}$
(3) $C = \begin{pmatrix} 1 & 1 \\ 4 - 2\sqrt{6} & 4 + 2\sqrt{6} \end{pmatrix} \Longrightarrow \det C = 4\sqrt{6}$
 $\Longrightarrow C^{-1} = \frac{1}{4\sqrt{6}} \begin{pmatrix} 4 + 2\sqrt{6} & -1 \\ -4 + 2\sqrt{6} & 1 \end{pmatrix} \Longrightarrow C^{-1}AC = \begin{pmatrix} -\sqrt{3/2} & 0 \\ 0 & \sqrt{3/2} \end{pmatrix}$;
(4) gli autovalori e autovettori della matrice inversa sono:

$$\begin{cases} \lambda_1 = -\sqrt{2/3}, & \vec{v}_1 = (1, 4 - 2\sqrt{6}), \\ \lambda_2 = \sqrt{2/3}, & \vec{v}_2 = (1, 4 + 2\sqrt{6}). \end{cases}$$

13.
$$A = \begin{pmatrix} 3 & 2 & 4 \\ 2 & -1 & 1 \\ 1 & 2 & 3 \end{pmatrix} \implies \det A = -5 \implies x = -\frac{1}{5} \det \begin{pmatrix} 1 & 2 & 4 \\ 0 & -1 & 1 \\ 1 & 2 & 3 \end{pmatrix} = -\frac{1}{5},$$

$$y = -\frac{1}{5} \det \begin{pmatrix} 3 & 1 & 4 \\ 2 & 0 & 1 \\ 1 & 1 & 3 \end{pmatrix} = 0, \ z = -\frac{1}{5} \det \begin{pmatrix} 3 & 2 & 1 \\ 2 & -1 & 0 \\ 1 & 2 & 1 \end{pmatrix} = \frac{2}{5}.$$

14. (1) Scrivendo il sistema nella forma
$$A\vec{u} = \vec{b}$$
 si ha $A = \begin{pmatrix} 1 & 3 & 2 \\ 7 & 2 & 2 \\ 0 & 4 & 2 \end{pmatrix} \Longrightarrow \det A = 10,$ quindi $x = \frac{1}{10} \det \begin{pmatrix} 1 & 3 & 2 \\ 2 & 2 & 2 \\ 1 & 4 & 2 \end{pmatrix} = \frac{1}{5}, \ y = \frac{1}{10} \det \begin{pmatrix} 1 & 1 & 2 \\ 7 & 2 & 2 \\ 0 & 1 & 2 \end{pmatrix} = \frac{1}{5},$ $z = \frac{1}{10} \det \begin{pmatrix} 1 & 3 & 1 \\ 7 & 2 & 2 \\ 0 & 4 & 1 \end{pmatrix} = \frac{1}{10}.$

$$(2) A^{-1} = \frac{1}{10} \begin{pmatrix} -4 & 2 & 2 \\ -14 & 2 & 12 \\ 28 & -4 & -19 \end{pmatrix} \implies \vec{u} = A^{-1} \vec{b} = \frac{1}{10} \begin{pmatrix} -4 & 2 & 2 \\ -14 & 2 & 12 \\ 28 & -4 & -19 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$$
$$\implies \vec{u} = (1/5, 1/5, 1/10).$$

15. (1) Il polinomio caratteristico è

$$P_3(\lambda) = (1 - \lambda)[(1 - \lambda)^2 - 2] - (1 - \lambda) = (1 - \lambda)(\lambda^2 - 2\lambda - 2),$$

quindi gli autovalori e autovettori sono $\lambda_1 = 1$, $\lambda_2 = 1 + \sqrt{3}$, $\lambda_3 = 1 - \sqrt{3}$ e, rispettivamente, $\vec{v}_1 = (-2, 0, 1)$, $\vec{v}_2 = (1, \sqrt{3}, 1)$, $\vec{v}_3 = (1, -\sqrt{3}, 1)$.

$$(2) C = \begin{pmatrix} -2 & 1 & 1 \\ 0 & \sqrt{3} & -\sqrt{3} \\ 1 & 1 & 1 \end{pmatrix} \Longrightarrow C^{-1} = \begin{pmatrix} -1/3 & 0 & 1/3 \\ 1/6 & 1/2\sqrt{3} & 1/3 \\ 1/6 & -1/2\sqrt{3} & 1/3 \end{pmatrix}$$
$$\Longrightarrow C^{-1}AC = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1+\sqrt{3} & 0 \\ 0 & 0 & 1-\sqrt{3} \end{pmatrix}.$$

(3) Poiché det $A = \lambda_1 \lambda_2 \lambda_3 = (1 + \sqrt{3})(1 - \sqrt{3}) = -2 \neq 0$, la matrice è invertibile. Si ha

$$\tilde{A} = \begin{pmatrix} -1 & -1 & 1 \\ -1 & 1 & -1 \\ 2 & -2 & 0 \end{pmatrix} \implies \tilde{A}^T = \begin{pmatrix} -1 & -1 & 2 \\ -1 & 1 & -2 \\ 1 & -1 & 0 \end{pmatrix} \implies A^{-1} = \begin{pmatrix} 1/2 & 1/2 & -1 \\ 1/2 & -1/2 & 1 \\ -1/2 & 1/2 & 0 \end{pmatrix}.$$

16. (1) Il polinomio caratteristico è

$$P_2(\lambda) = (1 - \lambda)^2 - 1 = \lambda^2 - 2\lambda = \lambda(\lambda - 2)$$

quindi gli autovalori e autovettori sono $\lambda_1=2,\,\lambda_2=0$ e, rispettivamente, $\vec{v}_1=(1,1),\,\vec{v}_2=(-1,1).$

$$(2) C = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \Longrightarrow C^{-1} = \frac{1}{2} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} \Longrightarrow C^{-1}AC = \begin{pmatrix} 2 & 0 \\ 0 & 0 \end{pmatrix}.$$

- 17. (1) $\det A = 0$;
 - (2) Gli autovalori sono $\lambda_1 = (9 + \sqrt{157})/2, \ \lambda_2 = (9 \sqrt{157})/2, \ \lambda_3 = 0.$

(3)
$$A^2 = \begin{pmatrix} 31 & 64 & 11 \\ 33 & 81 & 16 \\ 18 & 39 & 7 \end{pmatrix}$$
 e det $A^2 = (\det A)^2 = 0$.

- 18. (1) Gli autovalori sono $\lambda_1=5,\,\lambda_2=1$ e $\lambda_3=0.$
 - (2) Gli autovettori sono $\vec{v}_1 = (2, 3, 5), \ \vec{v}_2 = (2, 1, -1)$ e $\vec{v}_3 = (-1, 1, 0)$.
 - (3) $\det A = 0 \Longrightarrow A$ non è invertibile.

11.10. ESERCIZI 245

- 19. (1) det $A = 2 \alpha \Longrightarrow A$ non è invertibile per $\alpha = 2$.
 - (2) Per $\alpha = 2$ gli autovalori sono $\lambda_1 = 2 + \sqrt{3}$, $\lambda_2 = 2 \sqrt{3}$ e $\lambda_3 = 0$.
 - (3) Gli autovettori sono $\vec{v}_1 = (-1, -1 + \sqrt{3}, 1), \vec{v}_2 = (1, -1 \sqrt{3}, 1)$ e $\vec{v}_3 = (2, -4, 1)$.

20. (1)
$$S = \begin{pmatrix} 1 & 3 \\ 6 & 1 \end{pmatrix}, M = \begin{pmatrix} 9 & 0 \\ 3 & 0 \end{pmatrix} \in N = \begin{pmatrix} 0 & 0 \\ 3 & 9 \end{pmatrix}.$$

$$(2) C = \begin{pmatrix} 9 & 0 \\ 0 & -9 \end{pmatrix} \Longrightarrow C = \begin{pmatrix} 9^5 & 0 \\ 0 & -9^5 \end{pmatrix}.$$

- (3) Gli autovalori di A sono $\lambda_1 = 4$ e $\lambda_2 = -2$.
- (4) Gli autovalori di B sono $\lambda_1 = \lambda_2 = 0$.
- (5) Gli autovettori di A sono $\vec{v}_1 = (1,1)$ e $\vec{v}_2 = (-1,1)$; B ha un solo autovettore $\vec{v}_1 = (0,1)$.
- 21. (1) $\det A = 0$;
 - (2) Gli autovalori sono $\lambda_1 = 4 + \sqrt{21}$, $\lambda_2 = 4 \sqrt{21}$ e $\lambda_3 = 0$.
 - (3) Una sotto matrice non singolare è $C = \begin{pmatrix} 3 & 6 \\ 1 & 1 \end{pmatrix}$, una singolare è $C = \begin{pmatrix} 1 & 2 \\ 3 & 6 \end{pmatrix}$.

22. (1)
$$A^2 = \begin{pmatrix} 3 & 3 & 3 \\ 3 & 3 & 3 \\ 3 & 3 & 3 \end{pmatrix}$$
.

- (2) Gli autovalori sono $\lambda_1 = 3, \ \lambda_2 = \lambda_3 = 0.$
- (3) Se $\vec{v}_3 = (x, y, z)$ è un autovettore associato all'autovalore 0, richiedendo che si abbia $A\vec{v}_3 = \vec{0}$, si trova x + y + z = 0; una soluzione si ottiene imponendo z = 1 e y = 0, che dà x = -1, quindi l'autovettore è $\vec{v}_3 = (-1, 1, 0)$.
- (4) L'altro autovettore associato all'autovalore 0, per esempio, è $\vec{v}_2 = (-1, 0, 1)$. L'autovettore associato a $\lambda_1 = 3$ è $\vec{v}_1 = (1, 1, 1)$.
- 23. (1) $\det A = 0 \Longrightarrow \text{gli autovalori } \lambda_1, \ \lambda_2 \in \lambda_3 \text{ sono tali che } \lambda_1 \lambda_2 \lambda_3 = \det A \text{ (cfr. l'osservazione 3 di pag. 236), quindi } \lambda_1 = 0 \text{ è un autovalore.}$
 - (2) Gli autovalori di A sono $\lambda_1 = \lambda_2 = 0$ e $\lambda_3 = 5$.
 - (3) A $\lambda_1 = 0$ è associato l'autovettore (-2, 1, 1).
 - (4) L'autovettore associato a $\lambda_3=5$ è (1,2,7); non esistono altri autovettori associati a $\lambda_1=0$.
- 24. (1) $\det A = 0 \Longrightarrow \text{gli autovalori } \lambda_1, \ \lambda_2 \in \lambda_3 \text{ sono tali che } \lambda_1 \lambda_2 \lambda_3 = \det A \text{ (cfr. l'osservazione 3 di pag. 236), quindi } \lambda_1 = 0 \text{ è un autovalore.}$
 - (2) Gli altri autovalori di A sono $\lambda_2 = 3 + \sqrt{15}$ e $\lambda_3 = 3 \sqrt{15}$.
 - (3) L'autovettore associato a $\lambda_1 = 0$ è (-1, -1, 3).
 - (4) Gi autovalori di A^2 sono i quadrati degli autovalori di A (cfr. l'osservazione 3 di pag. 233), quindi sono 0, $14 + 6\sqrt{15}$ e $14 6\sqrt{15}$.

12 | Integrali

12.1 Integrali definiti

Sia $f:[a,b]\to\mathbb{R}$ una funzione continua. Siano M e m il massimo e il minimo di f in [a,b], rispettivamente (per il Teorema di Weierstrass sappiamo che esistono). Suddividiamo il segmento [a,b] in n parti nel modo seguente: fissiamo $a=x_0< x_1< x_2< \ldots < x_{n-1}< x_n=b$ e poniamo $\Delta x_1=x_1-x_0, \ \Delta x_2=x_2-x_1, \ldots, \ \Delta x_n=x_n-x_{n-1}$. Indichiamo con M_1 e m_1 il massimo e il minimo di f in $[x_0,x_1]$, con M_2 e m_2 il massimo e il minimo di f in $[x_1,x_2],\ldots$, con M_n e m_n massimo e il minimo di f in $[x_{n-1},x_n]$.

Definizione 12.1. Le due somme

$$\underline{s}_n = m_1 \Delta x_1 + m_2 \Delta x_2 + \ldots + m_n \Delta x_n = \sum_{i=1}^n m_i \Delta x_i,$$

$$\overline{s}_n = M_1 \Delta x_1 + M_2 \Delta x_2 + \ldots + M_n \Delta x_n = \sum_{i=1}^n M_i \Delta x_i,$$

si chiamano, rispettivamente, somma integrale inferiore e somma integrale superiore.

Osservazioni:

- 1. Se $f(x) \ge 0 \ \forall x \in [a, b]$, la somma integrale inferiore rappresenta l'area della figura inscritta in f, mentre la somma integrale superiore rappresenta l'area della figura circoscritta a f; cfr. la Figura 12.1.
- 2. Poiché $m_i \leq M_i$ per i = 1, ..., n si ha $\underline{s}_n \leq \overline{s}_n$, dove il segno = vale se e solo se la funzione f è costante.
- 3. Poiché $m_i \geq m$ per $i = 1, \ldots, n$ si ha

$$\underline{s}_n \ge m\Delta x_1 + \ldots + m\Delta x_n \ge m (\Delta x_1 + \ldots + \Delta x_n) = m (b-a).$$

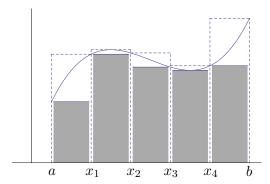


Figura 12.1: Somma integrale inferiore e somma integrale superiore.

4. Poiché $M_i \leq M$ per $i = 1, \ldots, n$ si ha

$$\overline{s}_n \leq M\Delta x_1 + \ldots + M\Delta x_n \leq M (\Delta x_1 + \ldots + \Delta x_n) = M (b-a)$$
.

Definizione 12.2. Per ogni i = 1, ..., n si scelga un punto $\xi_i \in [x_{i-1}, x_i]$. La somma

$$s_n = f(\xi_1) \Delta x_1 + \ldots + f(\xi_n) \Delta x_n = \sum_{i=1}^n f(\xi_i) \Delta x_i$$

prende il nome di somma integrale.

Osservazioni:

- 1. Sia le somme integrali superiore e inferiore che la somma integrale dipendono dalla suddivisione dell'intervallo.
- 2. La somma integrale dipende anche dalla scelta dei punti ξ_1, \ldots, ξ_n .
- 3. Poiché $\xi_i \in [x_{i-1}, x_i]$ si ha $m_i \leq f(\xi_i) \leq M_i$, quindi

$$\sum_{i=1}^{n} m_i \Delta x_i \le \sum_{i=1}^{n} f(\xi_i) \Delta x_i \le \sum_{i=1}^{n} M_i \Delta x_i,$$

ovvero

$$\underline{s}_n \le s_n \le \overline{s}_n$$
.

4. Per n fissato il numero degli intervalli è finito, quindi possiamo considerare $\max_i \Delta x_i$. Al crescere di n il numero degli intervalli aumenta: possiamo per esempio infittire i punti in modo tale che $\max_i \Delta x_i$ divenga sempre più piccolo. Si può allora considerare il limite della somma integrale per suddivisioni dell'intervallo [a, b] in intervalli di ampiezze Δx_i tali che $\max_i \Delta x_i \to 0$. Ovviamente in tale limite $n \to +\infty$.

Definizione 12.3. Data una funzione $f:[a,b] \to \mathbb{R}$ continua, se per ogni suddivisione dell'intervallo [a,b] in n segmenti $[x_{i-1},x_i]$ e per ogni scelta dei punti $\xi_i \in [x_{i-1},x_i]$, nel limite in cui $\max_i \Delta x_i$ tende a 0, la somma integrale s_n tende a uno stesso limite s, allora tale limite s chiama integrale definito della funzione f(x) sul segmento [a,b] e s indica con

$$s = \lim_{\max_i \Delta x_i \to 0} \sum_{i=1}^n f(\xi_n) \, \Delta x_i = \int_a^b f(x) \, \mathrm{d}x.$$

Diremo anche che a è l'estremo inferiore e b è l'estremo superiore dell'integrale, e che [a,b] è l'intervallo di integrazione.

Definizione 12.4. Se il limite s esiste la funzione f si dice integrabile in [a, b].

Teorema 12.5. Sia $f:[a,b] \to \mathbb{R}$ una funzione continua. Allora f è integrabile in [a,b].

Osservazioni:

1. Finora abbiamo assunto a < b. Per consistenza si definisce

$$\int_b^a f(x) dx = -\int_a^b f(x) dx, \qquad \int_a^a f(x) dx = 0,$$

che permette di considerare anche i casi a > b e a = b.

2. Se $f(x) \ge 0$ in [a, b] allora l'integale $\int_a^b f(x) \, dx$ rappresenta geometricamente l'area della regione racchiusa tra l'asse x, il grafico della funzione f(x) e i due segmenti verticali che uniscono i punti (a, f(a)) e (b, f(b)) ai punti (a, 0) e (b, 0), rispettivamente; cfr. la Figura 12.2.

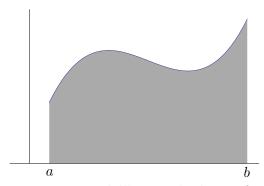


Figura 12.2: Interpretazione dell'integrale di una funzione positiva.

Esempi:

1. Se f(x) = k, con k costante, data una suddivisione qualsiasi di [a, b] in intervalli $[x_{i-1}, x_i]$ e scelti comunque i punti $\xi_i \in [x_{i-1}, x_i]$, si ha

$$s_n = \sum_{i=1}^n f(\xi_i) \, \Delta x_i = k \sum_{i=1}^n (x_i - x_{i-1}) = k(b-a),$$

dove $\Delta x_i = x_i - x_{i-1}$, quindi $\int_a^b k \, d\mathbf{x} = \lim_{\max_i \Delta x_i \to 0} s_n = k \, (b-a)$; cfr. la Figura 12.3.

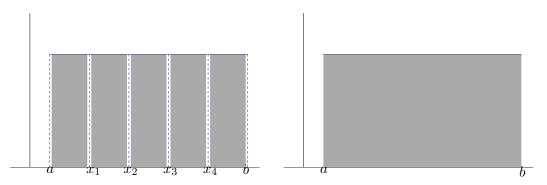


Figura 12.3: Somme integrale di f(x) = k.

2. Se f(x) = x consideriamo una suddivisione di [a, b] in n intervalli, tutti con la stessa ampiezza $\Delta x = (b - a)/n$: $x_0 = a$, $x_1 = a + \Delta x$, $x_2 = a + 2\Delta x$, ..., $x_n = a + n\Delta x = b$, e scegliamo i punti ξ_i nel modo seguente: $\xi_1 = a$, $\xi_2 = a + \Delta x$, ..., $\xi_n = a + (n-1)\Delta x = b - \Delta x$. Si ha allora

$$s_{n} = \xi_{1} \Delta x + \xi_{2} \Delta x + \dots + \xi_{n} \Delta x = (\xi_{1} + \xi_{2} + \dots + \xi_{n}) \Delta x$$

$$= (a + (a + \Delta x) + \dots + (a + (n - 1)\Delta x)) \Delta x$$

$$= (na + (1 + \dots + (n - 1)) \Delta x) \Delta x$$

$$= \left(na + \frac{n(n - 1)}{2} \Delta x\right) \Delta x = n\Delta x a + \frac{n(n - 1)}{2} (\Delta x)^{2}$$

$$= (n\Delta x) a + \frac{n - 1}{2n} (n\Delta x)^{2} = (b - a) a + \frac{n - 1}{2n} (b - a)^{2},$$

dove abbiamo usato il fatto che

$$1+2\ldots+(n-1)=\sum_{i=1}^{n-1}i=\frac{n(n-1)}{2}.$$

Poiché $\Delta x_i = \Delta x = (b-a)/n$ per ogni i, il limite di s_n per $\max_i \Delta x_i \to 0$ si può riscrivere come limite per $n \to \infty$, e si ottiene quindi

$$\lim_{\max_{i} \Delta x_{i} \to 0} s_{n} = \lim_{n \to +\infty} \left((b-a) a + \frac{n-1}{2n} (b-a)^{2} \right) = a (b-a) + \frac{1}{2} (b-a)^{2}$$
$$= (b-a) \left(a + \frac{b-a}{2} \right) = (b-a) \left(\frac{b+a}{2} \right) = \frac{1}{2} \left(b^{2} - a^{2} \right).$$

In conclusione
$$\int_a^b x \, dx = \lim_{\max_i \Delta x_i \to 0} s_n = \frac{1}{2} (b^2 - a^2)$$
; cfr. la Figura 12.4

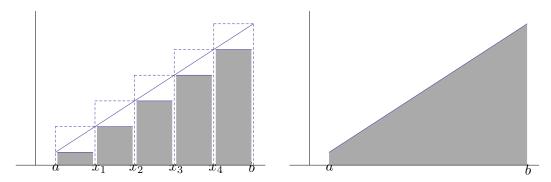


Figura 12.4: Somme integrale di f(x) = x.

12.2 Proprietà degli integrali definiti

1. f continua in [a,b] e $\alpha \in \mathbb{R} \Longrightarrow \int_a^b \alpha f(x) dx = \alpha \int_a^b f(x) dx$.

2.
$$f \in g$$
 continue in $[a,b] \Longrightarrow \int_a^b (f(x) + g(x)) dx = \int_a^b f(x) dx + \int_a^b g(x) dx$.

3.
$$f \in g$$
 continue in $[a,b] \in f(x) \ge g(x) \ \forall x \in [a,b] \Longrightarrow \int_a^b f(x) \, \mathrm{d}x \ge \int_a^b g(x) \, \mathrm{d}x$.

4.
$$f$$
 continua in $[a,b]$ e $f(x) \ge 0 \ \forall x \in [a,b] \Longrightarrow \int_a^b f(x) \, \mathrm{d}x \ge 0$.

5. f continua in $[a,b] \Longrightarrow m(b-a) \le \int_a^b f(x) dx \le M(b-a)$, dove $m \in M$ sono il minimo e il massimo, rispettivamente, di f in [a,b].

Dimostrazioni:

1. Si ha

$$\int_{a}^{b} \alpha f(x) dx = \lim_{\max \Delta x_{i} \to 0} \sum_{i=0}^{n} \alpha f(\xi_{i}) \Delta x_{i}$$
$$\lim_{\max \Delta x_{i} \to 0} \alpha \sum_{i=0}^{n} f(\xi_{i}) \Delta x_{i} = \alpha \lim_{\max \Delta x_{i} \to 0} \sum_{i=0}^{n} f(\xi_{i}) \Delta x_{i} = \alpha \int_{a}^{b} f(x) dx.$$

2. Se h(x) = f(x) + g(x), effettuando la stessa suddivisione in intervalli per le due funzioni e scegliendo gli stessi punti ξ_i per entrambe, si vede che la somma integrale per h è data dalla somma delle somme integrali di f e g:

$$\int_{a}^{b} h(x) dx = \int_{a}^{b} (f(x) + g(x)) dx = \lim_{\max \Delta x_{i} \to 0} \sum_{i=0}^{n} (f(\xi_{i}) + g(\xi_{i})) \Delta x_{i}$$
$$\lim_{\max \Delta x_{i} \to 0} \sum_{i=0}^{n} f(\xi_{i}) \Delta x_{i} + \lim_{\max \Delta x_{i} \to 0} \sum_{i=0}^{n} g(\xi_{i}) \Delta x_{i} = \int_{a}^{b} f(x) dx + \int_{a}^{b} g(x) dx.$$

3. Effettuando la stessa suddivisione in intervalli e la stessa scelta dei punti ξ_i per le due funzioni f e g, si trova

$$\int_a^b f(x) dx = \lim_{\max \Delta x_i \to 0} \sum_{i=0}^n f(\xi_i) \Delta x_i \ge \lim_{\max \Delta x_i \to 0} \sum_{i=0}^n g(\xi_i) \Delta x_i = \int_a^b g(x) dx.$$

- 4. Segue dalla proprietà 3 con la funzione g(x) = 0.
- 5. Segue di nuovo dalla proprietà 3 notando che $m \leq f(x) \leq M$ in [a,b].

Teorema 12.6.
$$f$$
 continua in $[a,b] \Longrightarrow \exists \xi \in (a,b)$ tale che $\int_a^b f(x) dx = f(\xi) (b-a)$.

Dimostrazione. Per la proprietà 5 si ha

$$m \le \frac{1}{b-a} \int_a^b f(x) \, \mathrm{d}x \le M.$$

Poiché è continua, la funzione f assume tutti i valori compresi tra m e M (per il Teorema 6.5), quindi esiste un punto $\xi \in (a,b)$ tale che

$$f(\xi) = \frac{1}{b-a} \int_a^b f(x) \, \mathrm{d}x,$$

da cui segue l'asserto.

Osservazione: il teorema è noto come teorema della media.

Teorema 12.7.
$$f$$
 continua in I e $a,b,c \in I \Longrightarrow \int_a^b f(x) dx = \int_a^c f(x) dx + \int_c^b f(x) dx$.

253

12.3 Integrali indefiniti

Definizione 12.8. Si dice che una funzione F è una primitiva della funzione f in [a,b] se F è derivabile in (a,b) e $F'(x) = f(x) \ \forall x \in (a,b)$.

Esempi:

- 1. $F(x) = \frac{1}{2}x^2$ è una primitiva di f(x) = x.
- 2. $F(x) = \frac{1}{3}x^3$ è una primitiva di $f(x) = x^2$.
- 3. $F(x) = e^x$ è una primitiva di $f(x) = e^x$.
- 4. $F(x) = \sin x$ è una primitiva di $f(x) = \cos x$.

Osservazione: una funzione f(x) ammette infinite primitive. Infatti se F(x) è una primitiva, anche F(x) + c, con c costante arbitraria, è una primitiva.

Teorema 12.9. Siano $F_1(x)$ e $F_2(x)$ due primitive della funzione f(x) in [a,b]. Allora $F_1(x) - F_2(x)$ è costante.

Dimostrazione. Poiché $F_1'(x) = F_2'(x) = f(x)$ in [a, b] si ha $F_1'(x) - F_2'(x) = 0$ in [a, b], quindi la funzione $\varphi(x) = F_1(x) - F_2(x)$ ha derivata nulla in [a, b]. Per il Teorema 8.3 (di Lagrange) per ogni $x \in [a, b]$ esiste $\xi \in [a, x]$ tale che

$$\varphi(x) - \varphi(a) = \varphi'(\xi) (x - a),$$

quindi, poiché $\varphi'(x) = 0$ per ogni $x \in [a, b]$, si trova $\varphi(x) = \varphi(a) \ \forall x \in [a, b]$, ovvero $\varphi(x)$ è costante in [a, b].

Definizione 12.10. L'insieme delle primitive di una funzione f(x) si chiama integrale indefinito di f e si indica con $\int f(x) dx$.

Osservazione: quindi, se F(x) è una primitiva di f(x), si ha $\int f(x) dx = F(x) + c$, dove c è una costante arbitraria.

Teorema 12.11. f continua in $[a,b] \Longrightarrow \Phi(x) = \int_a^x f(t) dt$ è una primitiva di f.

Dimostrazione. Il rapporto incrementale della funzione Φ è dato da

$$\frac{\Delta\Phi}{\Delta x} = \frac{1}{\Delta x} \left(\int_{a}^{x+\Delta x} f(t) dt - \int_{a}^{x} f(t) dt \right) = \frac{1}{\Delta x} \int_{x}^{x+\Delta x} f(t) dt,$$

dove $\Delta \Phi = \Phi(x + \Delta x) - \Phi(x)$. Per il Teorema 12.6, si ha $\int_x^{x + \Delta x} f(t) dt = f(\xi) \Delta x$, per un opportuno ξ compreso tra x e $x + \Delta x$ (ovvero $\xi \in (x, x + \Delta x)$ se $\Delta x > 0$ e $\xi \in (x + \Delta x, x)$ se $\Delta x < 0$). Quindi

$$\frac{\Delta\Phi}{\Delta x} = \frac{1}{\Delta x} \left(f(\xi) \Delta x \right) = f(\xi) \quad \Longrightarrow \quad \Phi'(x) = \lim_{\Delta x \to 0} \frac{\Delta\Phi}{\Delta x} = \lim_{\Delta x \to 0} f(\xi) = f(x),$$

dove si è usato che $\xi \to x$ per $\Delta x \to 0$ (per la continuità di f).

Teorema 12.12. Sia f una funzione continua in [a,b] e sia F una sua primitiva. Allora si ha $\int_a^b f(x) dx = F(b) - F(a)$.

Dimostrazione. La funzione $\Phi(x) = \int_a^x f(t) dt$ è anch'essa una primitiva di f per il Teorema 12.11. Quindi $\int_a^x f(t) dt = F(x) + c$, dove c è una costante, per il Teorema 12.9. D'altra parte $0 = \int_a^a f(t) dt = F(a) + c$, quindi c = -F(a). Segue che $\int_a^x f(t) dt = F(x) - F(a)$. Se si pone x = b si ottiene l'asserto.

Osservazioni:

- 1. Il teorema è noto come teorema fondamentale del calcolo integrale.
- 2. Usualmente si scrive $F(b) F(a) = F(x)\Big|_a^b$.
- 3. Il teorema fornisce una regola per calcolare l'integrale definito di una funzione: si deve prima trovare una qualsiasi primitiva di f e quindi si calcola la differenza tra i valori che essa assume in corrispondenza degli estremi di integrazione.

12.4 Tabella di integrali indefiniti

1.
$$\int x^{\alpha} dx = \frac{x^{\alpha+1}}{\alpha+1} + c, \text{ dove } \alpha \neq -1.$$

$$2. \int \frac{\mathrm{d}x}{x} = \ln|x| + c.$$

$$3. \int \sin x \, \mathrm{d}x = -\cos x + c.$$

$$4. \int \cos x \, \mathrm{d}x = \sin x + c.$$

$$5. \int \frac{\mathrm{d}x}{\cos^2 x} = \operatorname{tg} x + c.$$

6.
$$\int \frac{\mathrm{d}x}{\sin^2 x} = -\cot x + c.$$

7.
$$\int \operatorname{tg} x \, \mathrm{d}x = -\ln|\cos x| + c.$$

8.
$$\int \cot x \, dx = \ln|\sin x| + c.$$

9.
$$\int e^x dx = e^x + c.$$

10.
$$\int a^x dx = \frac{a^x}{\ln a} + c$$
, dove $a > 0$, $a \neq 1$.

11.
$$\int \frac{\mathrm{d}x}{1+x^2} = \arctan x + c.$$

12.
$$\int \frac{\mathrm{d}x}{1-x^2} = \frac{1}{2} \ln \left| \frac{x+1}{x-1} \right| + c.$$

13.
$$\int \frac{\mathrm{d}x}{\sqrt{1-x^2}} = \arcsin x + c.$$

14.
$$\int \frac{\mathrm{d}x}{\sqrt{x^2 + a}} = \ln \left| x + \sqrt{x^2 + a} \right| + c.$$

Osservazioni:

- 1. Le formule sopra seguono dalle espressioni trovate in §7.1 e §7.4 per le derivate delle funzioni elementari principali, a eccezione delle formule 7, 8, 12 e 14, che possono comunque essere verificate esplicitamente per derivazione della primitiva.
- 2. L'integrale 7 si può ottenere mediante il metodo di integrazione per sostituzione che sarà descritto più avanti (cfr. §13.1), con la sostituzione $t = \cos x$.
- 3. Analogamente l'integrale 8 si può ottenere mediante il metodo di integrazione per sostituzione, con la sostituzione $t = \sin x$.

- 4. L'integrale 12 si può ottenere mediante il metodo di integrazione delle funzioni razionali che sarà descritto più avanti (cfr. in particolare l'Osservazione 1 di pag 270).
- 5. Anche l'integrale 14 si può ottenere tramite una sostituzione, però meno semplice dei casi 7 e 8. Infatti, se a=1, si può introdurre una variabile t tale che

$$x = \frac{1}{2} \left(t - \frac{1}{t} \right),$$

così che

$$\sqrt{1+x^2} = \sqrt{1+\frac{1}{4}\left(t^2-2+\frac{1}{t^2}\right)} = \frac{1}{2}\sqrt{\left(t+\frac{1}{t}\right)^2} = \frac{1}{2}\frac{t^2+1}{t},$$
$$dx = \frac{1}{2}\left(1+\frac{1}{t^2}\right)dt = \frac{1}{2}\frac{t^2+1}{t^2}dt,$$

da cui si ottiene

$$\int \frac{\mathrm{d}x}{\sqrt{x^2 + a}} = \int \frac{\mathrm{d}t}{t} = \ln t + c.$$

Invertendo la relazione che lega x e t si trova

$$t^2 - 2xt - 1 \implies t = x \pm \sqrt{x^2 + 1} \implies t = x + \sqrt{x^2 + 1}$$

dove la determinazione con il segno – va scartata poiché dobbiamo calcolare il logaritmo di t. Il caso $a \neq 1$ si pùo ricondurre al caso a = 1 tramite la sostituzione $x = y\sqrt{a}$.

6. Mentre le derivate di funzioni elementari sono sempre funzioni elementari, non è vero che ogni integrale indefinito si possa esprimere in termini di funzioni elementari. Per esempio

$$\int e^{-x^2} dx, \qquad \int \frac{\sin x}{x} dx, \qquad \int \frac{dx}{\ln x}, \qquad \int \sqrt{1 - k^2 \sin^2 x} dx, \quad \text{con } 0 < k < 1,$$

rappresentano funzioni di natura nuova rispetto a quelle incontrate finora. In particolare la primitiva

$$\Phi(x) = \frac{2}{\sqrt{\pi}} \int e^{-x^2} dx + c$$

di $2e^{-x^2}/\sqrt{\pi}$ che si annulla in x=0, i.e.

$$\Phi(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt,$$

prende il nome di funzione degli errori di Gauss, mentre la primitiva

$$\int \sqrt{1 - k^2 \sin^2 x} \, \mathrm{d}x + c, \quad \text{con } 0 < k < 1,$$

che si annulla in x = 0, i.e.

$$\int_0^x \sqrt{1 - k^2 \sin^2 t} \, \mathrm{d}t, \quad \text{con } 0 < k < 1,$$

prende il nome di integrale ellittico (incompleto del secondo tipo).

13 | Metodi di integrazione

13.1 Integrazione per sostituzione

Supponiamo di voler calcolare l'integrale $\int_a^b f(x) dx$. Se F(x) è una primitiva di f(x), i.e. F'(x) = f(x), si ha

$$\int f(x) dx = F(x) + c \qquad \Longrightarrow \qquad \int_a^b f(x) dx = F(b) - F(a).$$

Supponiamo anche che si abbia $x = \varphi(t)$, dove $\varphi : [\alpha, \beta] \to [a, b]$ è una funzione biunivoca (e quindi invertibile) di classe C^1 (e quindi derivabile). Indichiamo con G(t) la funzione composta $G(t) = F(\varphi(t))$. Si ha allora $G'(t) = F'(\varphi(t)) \varphi'(t) = f(\varphi(t)) \varphi'(t)$, per la regola di derivazione della funzione composta. Quindi G(t) è una primitiva della funzione $f(\varphi(t)) \varphi'(t)$:

$$\int f(\varphi(t)) \varphi'(t) dt = G(t) + c \qquad \Longrightarrow \qquad \int_{\alpha}^{\beta} f(\varphi(t)) \varphi'(t) dt = G(\beta) - G(\alpha).$$

D'altra parte, poiché $\varphi : [\alpha, \beta] \to [a, b]$ e quindi, in particolare, $\varphi(\alpha) = a$ e $\varphi(\beta) = b$, si ha $G(\beta) = F(\varphi(\beta)) = F(b)$ e $G(\beta) = F(\varphi(\alpha)) = F(a)$, così che possiamo concludere che

$$\int_{a}^{b} f(x) dx = \int_{\alpha}^{\beta} f(\varphi(t)) \varphi'(t) dt.$$

Osservazioni:

1. La discussione sopra mostra che, a livello di integrali indefiniti, si ha

$$\int f(x) dx = F(x) + c = G(t) + c = \int f(\varphi(t)) \varphi'(t) dt,$$

poiché $F(x)=F(\varphi(t))=G(t),$ e quindi

$$\int f(x) dx = \int f(\varphi(t)) \varphi'(t) dt.$$

Una volta calcolato G(t) si trova F(x) esprimendo t in funzione di x attraverso la funzione inversa di φ , i.e. $F(x) = G(\varphi^{-1}(x))$.

- 2. Possiamo interpretare l'espressione sopra dicendo che, formalmente, $dx = \varphi'(t)dt$.
- 3. Spesso può essere utile definire x in termini di t, scrivendo $t = \psi(x)$. Si ha allora $\psi(x) = \varphi^{-1}(x)$ ovvero $\varphi(x) = \psi^{-1}(x)$.
- 4. Per la regola di derivazione della funzione inversa (cfr. §7.3) si ha allora $\varphi'(t) = 1/\psi'(x)$, quindi formalmente possiamo scrivere $\psi'(x)dx = dt$.

Esempi:

1.
$$\int 2x \cos x^2 dx = \int \cos t dt = \sin t + c = \sin x^2 + c \text{ (sostituzione } t = x^2\text{)}.$$

2.
$$\int \frac{1}{x^2 + 3} dx = \frac{1}{3} \int \frac{1}{1 + \frac{x^2}{3}} dx = \frac{\sqrt{3}}{3} \int \frac{1}{1 + t^2} dt = \frac{\arctan t}{\sqrt{3}} + c = \frac{1}{\sqrt{3}} \arctan \frac{x}{\sqrt{3}} + c.$$

3.
$$\int_{1}^{2} \frac{x}{1+x^{2}} dx = \frac{1}{2} \int_{2}^{5} \frac{1}{t} dt = \frac{1}{2} (\ln 5 - \ln 2) = \ln \sqrt{\frac{5}{2}} \text{ (sostituzione } t = 1 + x^{2}).$$

4.
$$\int_{1}^{2} \frac{x}{1+x^{4}} dx = \frac{1}{2} \int_{1}^{4} \frac{1}{1+t^{2}} dt = \frac{1}{2} (\operatorname{arctg} 4 - \operatorname{arctg} 1) \text{ (sostituzione } t = x^{2}).$$

5.
$$\int \frac{1}{x^2 + a^2} dx = \frac{1}{a} \operatorname{arctg} \frac{x}{a} + c \text{ (sostituzione } t = \frac{x}{a}\text{)}.$$

6.
$$\int \frac{\mathrm{d}x}{a^2 - x^2} = \frac{1}{2a} \ln \left| \frac{x+a}{x-a} \right| + c \text{ (sostituzione } t = \frac{x}{a} \text{)}.$$

7.
$$\int \frac{\mathrm{d}x}{\sqrt{a^2 - x^2}} = \arcsin \frac{x}{a} + c \text{ (sostituzione } t = \frac{x}{a}\text{)}.$$

8.
$$\int \cos^2 x \, dx = \int \frac{1 + \cos 2x}{2} \, dx = \frac{1}{2} \left(x + \frac{1}{2} \int \cos t \, dt \right) = \frac{1}{2} \left(x + \frac{1}{2} \sin 2x \right) = \frac{x + \sin x \cos x}{2}$$
 (si è usata prima la formula $\cos^2 x = \frac{1 + \cos 2x}{2}$, poi si è effettuata la sostituzione $t = 2x$ per calcolare l'integrale di $\cos 2x$, infine si è usata la formula $\sin 2x = 2 \sin x \cos x$).

9.
$$\int \sqrt{1-x^2} \, \mathrm{d}x = \int \sqrt{1-\sin^2\theta} \, \cos\theta \, \mathrm{d}\theta = \int \cos^2\theta \, \mathrm{d}\theta = \frac{1}{2} \Big(\arcsin x + x\sqrt{1-x^2} \Big)$$
 (sostituzione: prima $x = \sin\theta$, poi $\theta = \alpha/2$; si è anche tenuto conto che la funzione $\sqrt{1-x^2}$ è definita per $|x| \le 1 \Longrightarrow \theta \in [-\pi/2, \pi/2] \Longrightarrow \cos\theta \ge 0 \Longrightarrow \sqrt{\cos^2\theta} = |\cos\theta| = \cos\theta$).

10.
$$\int_0^1 \sqrt{1 - x^2} \, dx = \int_0^{\pi/2} \sqrt{1 - \sin^2 \theta} \cos \theta \, d\theta = \int_0^{\pi/2} \cos^2 \theta \, d\theta = \int_0^{\pi/2} \frac{1 + \cos 2\theta}{2} \, d\theta$$
$$= \frac{\pi}{4} + \frac{1}{4} \int_0^{\pi} \cos \alpha \, d\alpha = \frac{\pi}{4} + \frac{1}{4} \left(\sin \pi - \sin \theta \right) = \frac{\pi}{4}$$

(sostituzione: prima $x = \sin \theta$, poi si procede come nell'esempio precedente, usando il fatto che $\cos \theta \ge 0$ per $\theta \in [0, \pi/2]$; oppure si applica direttamente la 9).

11.
$$\int_{1}^{3} \frac{2x+2}{x^{2}+2x+1} dx = \int_{4}^{16} \frac{1}{t} dt = \ln 16 - \ln 4 = \ln 4 \text{ (sostituzione } t = x^{2}+2x+1).$$

12.
$$\int_{2}^{3} \frac{dx}{x^{2} - 2x + 2} = \int_{2}^{3} \frac{dx}{(x - 1)^{2} + 1} = \int_{1}^{2} \frac{dt}{1 + t^{2}} = \operatorname{arctg} 2 - \operatorname{arctg} 1 \text{ (sostituzione } t = x - 1).$$

13.
$$\int \frac{\mathrm{d}x}{ax^2 + bx + c} = \frac{1}{a} \int \frac{\mathrm{d}x}{\left(x + \frac{b}{2a}\right)^2 + \frac{4ac - b^2}{4a^2}} \Longrightarrow$$

(I) se
$$\frac{4ac-b^2}{4a^2} > 0$$
 allora

$$\int \frac{\mathrm{d}x}{ax^2 + bx + c} = \frac{1}{a} \int \frac{\mathrm{d}x}{t^2 + k^2} = \frac{1}{ak} \operatorname{arctg} \left(\frac{t}{k} + c \right) = \frac{1}{ak} \operatorname{arctg} \left(\frac{1}{k} \left(x + \frac{b}{2a} \right) \right) + c,$$

dove $k^2 = \frac{4ac - b^2}{4a^2}$ (sostituzione: prima $t = x + \frac{b}{2a}$, poi si usa la 5);

(II) se
$$\frac{4ac - b^2}{4a^2} < 0$$
 allora

$$\int \frac{\mathrm{d}x}{ax^2 + bx + c} = \frac{1}{a} \int \frac{\mathrm{d}x}{t^2 - k^2} = -\frac{1}{2ak} \ln \left| \frac{x + \frac{b}{2a} + k}{x + \frac{b}{2a} - k} \right| + c,$$

dove $k^2 = -\frac{4ac - b^2}{4a^2}$ (sostituzione: prima $t = x + \frac{b}{2a}$, poi si usa la 6).

14.
$$\int_{-1}^{0} \frac{dx}{4x^{2} - 4x + 2} = \frac{1}{4} \int_{-1}^{0} \frac{dx}{\left(x - \frac{1}{2}\right)^{2} + \frac{1}{4}} \implies \text{si applica la 13, caso (I), con } k = 1/2 \text{ e}$$
$$t = x - \frac{1}{2} \implies \int_{-1}^{0} \frac{dx}{4x^{2} - 4x + 2} = \frac{1}{2} \left(\arctan(-1) - \arctan(-3) \right).$$

15.
$$\int \frac{Ax+B}{ax^2+bx+c} dx = \int \frac{\frac{A}{2a}(2ax+b) + \left(B - \frac{Ab}{2a}\right)}{ax^2+bx+c} dx$$

$$= \frac{A}{2a} \int \frac{2ax+b}{ax^2+bx+c} dx + \left(B - \frac{Ab}{2a}\right) \int \frac{1}{ax^2+bx+c} dx$$

$$= \frac{A}{2a} \ln|ax^2 + bx + c| + \left(B - \frac{Ab}{2a}\right) \int \frac{1}{ax^2+bx+c} dx,$$

e l'ultimo integrale si calcola usando la 13.

16.
$$\int \frac{x}{x^2 + x - 1} dx = \frac{1}{2} \ln|x^2 + x - 1| - \frac{1}{2} \int \frac{dx}{x^2 + x - 1}$$
$$= \frac{1}{2} \ln|x^2 + x - 1| + \frac{1}{2\sqrt{5}} \ln\left|\frac{x + \frac{1}{2} + \sqrt{\frac{5}{4}}}{x + \frac{1}{2} - \sqrt{\frac{5}{4}}}\right| + c$$

(si sono usate prima la 15 e poi la 13, caso (II), con $k^2 = 5/4$ per calcolare il secondo integrale).

17.
$$\int \frac{x}{x^2 + x + 1} dx = \frac{1}{2} \int \frac{2x + 1}{x^2 + x + 1} dx - \frac{1}{2} \int \frac{1}{x^2 + x + 1} dx, \text{ dove}$$

$$\frac{1}{2} \int \frac{2x + 1}{x^2 + x + 1} dx = \frac{1}{2} \ln|x^2 + x + 1| + c = \frac{1}{2} \ln(x^2 + x + 1) + c,$$

$$\frac{1}{2} \int \frac{1}{x^2 + x + 1} dx = \frac{1}{2} \int \frac{1}{\left(x + \frac{1}{2}\right)^2 + \frac{3}{4}} dx = \frac{2}{3} \int \frac{1}{\left(\frac{2}{\sqrt{3}} \left(x + \frac{1}{2}\right)\right)^2 + 1} dx$$

$$= \frac{1}{\sqrt{3}} \operatorname{arctg} \left(\frac{2}{\sqrt{3}} \left(x + \frac{1}{2}\right)\right) + c, \text{ da cui segue che}$$

$$\int \frac{x}{x^2 + x + 1} dx = \frac{1}{2} \ln(x^2 + x + 1) - \frac{1}{\sqrt{3}} \operatorname{arctg} \left(\frac{2x + 1}{\sqrt{3}}\right) + c.$$

18.
$$\int \frac{x+1}{x^2+4x+5} dx = \frac{1}{2} \ln(x^2+4x+5) - \arctan(x+2) + c.$$

19.
$$\int \frac{x}{\sqrt{a^2 - x^2}} dx = -\int dt = -t + c = -\sqrt{a^2 - x^2} + c$$
 (sostituzione $t = \sqrt{a^2 - x^2}$).

20.
$$\int \frac{x}{\sqrt{1+x^2}} dx = \int dt = t + c = \sqrt{1+x^2} + c$$
 (sostituzione $t = \sqrt{1+x^2}$).

Osservazioni:

- 1. Nell'Esempio 13 la condizione $(4ac-b^2)/4a^2 > 0$ implica che il polinomio ax^2+bx+c non ha radici reali. Al contrario la condizione $(4ac-b^2)/4a^2 < 0$ si presenta quando le radici sono reali. In tal caso l'integrale si può calcolare anche come sarà discusso in §13.3 a proposito dell'integrazione di funzioni razionali. Il caso in cui si abbia $(4ac-b^2)/4a^2=0$ si riconduce invece al caso 1 di §12.4, con $\alpha=-2$.
- 2. Gli integrali di $\cos^2 x$ e di $\sqrt{1-x^2}$, visti negli Esempi 8 e 9, si possono calcolare anche con il metodo di integrazione per parti (cfr. gli Esempi 7 e 10 di §13.2).

13.2 Integrazione per parti

Ricordiamo che, date due funzioni derivabili f e g, si ha (fg)' = f'g + fg'. Quindi integrando si ottiene

$$f(x)g(x) = \int f'(x) g(x) dx + \int f(x) g'(x) dx.$$

Si trova quindi

$$\int f'(x) g(x) dx = f(x)g(x) - \int f(x) g'(x) dx,$$

che è nota come formula di integrazione per parti.

Esempi:

1.
$$\int x \sin x \, dx = -x \cos x + \int \cos x \, dx = -x \cos x + \sin x + c.$$

2.
$$\int \ln x \, \mathrm{d}x = x \ln x - \int \mathrm{d}x = x \ln x - x + c.$$

3.
$$\int x \ln x \, dx = \frac{x^2}{2} \ln x - \int \frac{x}{2} \, dx = \frac{x^2}{2} \ln x - \frac{x^2}{4} + c.$$

4.
$$\int x e^x dx = x e^x - \int e^x dx = x e^x - e^x + c$$
.

5.
$$\int x^2 e^x dx = x^2 e^x - 2 \int x e^x dx = e^x (x^2 - 2x + 2) + c.$$

6.
$$\int (x^2 + 7x - 5) \cos 2x \, dx = (x^2 + 7x - 5) \frac{\sin 2x}{2} - \frac{1}{2} \int (2x + 7) \sin 2x \, dx$$
$$= (x^2 + 7x - 5) \frac{\sin 2x}{2} + (2x + 7) \frac{\cos 2x}{4} - \frac{\sin 2x}{4} + c.$$

7.
$$\int \sqrt{1-x^2} \, dx = x\sqrt{1-x^2} - \int x \left(-\frac{x}{\sqrt{1-x^2}} \right) dx$$
$$= x\sqrt{1-x^2} - \int \frac{1-x^2}{\sqrt{1-x^2}} dx + \int \frac{dx}{\sqrt{1-x^2}}$$
$$= x\sqrt{1-x^2} - \int \sqrt{1-x^2} \, dx + \arcsin x + c, \text{ da cui si ottiene}$$
$$\int \sqrt{1-x^2} \, dx = \frac{1}{2} x\sqrt{1-x^2} + \frac{1}{2} \arcsin x + c \text{ (cfr. anche l'esempio 9 di pag. 260)}.$$

8.
$$\int e^{ax} \cos bx \, dx = e^{ax} \frac{b \sin bx + a \cos bx}{a^2 + b^2} + c.$$

9.
$$\int e^{ax} \sin bx \, dx = e^{ax} \frac{a \sin bx - b \cos bx}{a^2 + b^2} + c$$
.

10.
$$\int \cos^2 x \, dx = \int \cos x \, \frac{d}{dx} (\sin x) \, dx = \cos x \sin x + \int \sin^2 x \, dx$$
$$= \cos x \sin x + \int (1 - \cos^2 x) \, dx, \text{ da cui si ottiene}$$
$$\int \cos^2 x \, dx = \sin x \cos x + x - \int \cos^2 x \, dx \Longrightarrow \int \cos^2 x \, dx = \frac{x + \sin x \cos x}{2}.$$

11.
$$\int \sin^2 x \, \mathrm{d}x = \frac{x - \sin x \cos x}{2}.$$

13.3 Integrazione di funzioni razionali

Definizione 13.1. Le funzioni razionali del tipo

1.
$$\frac{A}{x-a}$$
, 2. $\frac{A}{(x-a)^k}$, 3. $\frac{Ax+B}{x^2+px+q}$, 4. $\frac{Ax+B}{(x^2+px+q)^k}$

dove $k \in \mathbb{N}$, $k \ge 2$, e A, B, p, q sono costanti reali tali che $p^2 - 4q < 0$, prendono il nome di elementi semplici (o fratti semplici).

Osservazioni:

- 1. La condizione $p^2 4q < 0$ assicura che il polinomio $x^2 + px + q$ non ha radici reali.
- 2. Alla luce dei risultati visti in precedenza, è immediato calcolare le primitive degli elementi semplici. Infatti per i primi tre elementi semplici si ha

$$\int \frac{A}{x-a} dx = A \ln|x-a| + c,$$

$$\int \frac{A}{(x-a)^k} dx = -\frac{A}{(k-1)(x-a)^{k-1}} + c,$$

$$\int \frac{Ax+B}{x^2+px+q} dx = \frac{A}{2} \ln|x^2+px+q| + \frac{2B-Ap}{\sqrt{4q-p^2}} \arctan \frac{2x+p}{\sqrt{4q-p^2}} + c,$$

dove si sono usati i risultati 1 e 2 di 12.4 (con la sostituzione t=x-a) e le formule degli esempi 13 e 15 di §13.1, mentre l'integrale dell'ultimo elemento semplice può essere discusso come segue.

3. Si ha
$$\int \frac{Ax+B}{(x^2+px+q)^k} dx = \frac{A}{2} J_k + \left(B - \frac{Ap}{2}\right) I_k$$
, dove
$$J_k = \int \frac{2x+p}{(x^2+px+q)^k} dx, \qquad I_k = \int \frac{1}{(x^2+px+q)^k} dx.$$

Il primo integrale si calcola immediatamente e dà

$$J_k = \frac{1}{(1-k)(x^2 + px + q)^{k-1}} + c.$$

Il secondo, ponendo t = x + p/2 e $m^2 = q - p^2/4 > 0$, si riscrive

$$I_k = L_k, \qquad L_k = \int \frac{\mathrm{d}t}{(t^2 + m^2)^k} = \frac{1}{m^2} \int \frac{\mathrm{d}t}{(t^2 + m^2)^{k-1}} - \frac{1}{m^2} \int \frac{t^2 \mathrm{d}t}{(t^2 + m^2)^k},$$

dove, integrando per parti, si trova

$$\int \frac{t^2 dt}{(t^2 + m^2)^k} = -\frac{1}{2(k-1)} \left(\frac{t}{(t^2 + m^2)^{k-1}} - \int \frac{dt}{(t^2 + m^2)^{k-1}} \right).$$

In conclusione

$$L_k = \frac{t}{2m^2(k-1)(t^2+m^2)^{k-1}} + \frac{2k-3}{2m^2(k-1)}L_{k-1},$$

che fornisce un modo iterativo di calcolare L_k , fino a ridursi a

$$L_1 = \int \frac{\mathrm{d}t}{t^2 + m^2} = \frac{1}{m} \operatorname{arctg} \frac{t}{m} + c.$$

Esprimendo poi $t \in m$ in funzione di x, p, q si trova il valore di I_k .

4. Per esempio, per k=2, si trova

$$\int \frac{Ax+B}{(x^2+px+q)^2} dx$$

$$= \frac{Bp-2Aq+2Bx-Apx}{(4q-p^2)(x^2+px+x^2)} + \frac{2(Ap-2B)}{(4q-p^2)^{3/2}} \operatorname{arctg}\left(\frac{p+2x}{\sqrt{4q-p^2}}\right) + c.$$

Esempi:

1.
$$\int \frac{4}{(x-3)^3} \, \mathrm{d}x = -\frac{2}{(x-3)^2}.$$

2.
$$\int \frac{2x+3}{6x^2+5x+2} dx = \frac{1}{6} \ln \left| 6x^2+5x+2 \right| + \frac{13}{3\sqrt{23}} \arctan \frac{12x+5}{\sqrt{23}} + c.$$

3.
$$\int \frac{2x-1}{x^2+2x+5} dx = \ln |x^2+2x+5| - \frac{3}{2} \arctan \frac{x+1}{2} + c.$$

4.
$$\int \frac{x-1}{(x^2+2x+3)^2} dx = -\frac{x+2}{2(x^2+2x+3)} - \frac{\sqrt{2}}{4} \operatorname{arctg} \frac{x+1}{\sqrt{2}} + c.$$

Definizione 13.2. Una funzione razionale P(x)/Q(x) si dice regolare se il grado del numeratore è inferiore al grado del denominatore.

Teorema 13.3. Una funzione non regolare si può sempre scrivere come somma di un polinomio e di una funzione razionale regolare. In altre parole, se P(x)/Q(x) non è regolare, allora esistono polinomi M(x), F(x), f(x) tali che

$$\frac{P(x)}{Q(x)} = M(x) + \frac{F(x)}{f(x)},$$

dove F ha grado inferiore a quello di f. Inoltre si ha f(x) = Q(x).

Osservazione: per determinare i polinomi M(x) e F(x) si deve effettuare la divisione tra i due polinomi P(x) e Q(x): M(x) è il quoziente e F(x) è il resto della divisione.

Esempi:

1.
$$\frac{x^2}{x+1} = x - 1 + \frac{1}{x+1}$$
.

2.
$$\frac{x^2 + 2x + 2}{x^2 - 1} = 1 + \frac{2x + 3}{x^2 - 1}$$
.

3.
$$\frac{x^4 + 5x}{x^3 + x + 1} = x + \frac{4x - x^2}{x^3 + x + 1}$$
.

4.
$$\frac{x^3 + 3x^2 + x + 1}{x^2 - x + 3} = x + 4 + \frac{2x - 11}{x^3 + 3x^2 + x + 1}.$$

Teorema 13.4. Sia F(x)/f(x) una funzione razionale regolare e sia x=a una radice reale di molteplicità k di f(x), i.e. $f(x)=(x-a)^k f_1(x)$, dove $f_1(a) \neq 0$. Allora si ha

$$\frac{F(x)}{f(x)} = \frac{A_1}{(x-a)^k} + \frac{F_1(x)}{(x-a)^{k-1}f_1(x)},$$

dove A_1 è una costante e F_1 è un polinomio di grado inferiore a quello di $(x-a)^{k-1}f_1(x)$.

Teorema 13.5. Sia F(x)/f(x) una funzione razionale regolare e sia x=a una radice reale di molteplicità k di f(x). Allora si ha

$$\frac{F(x)}{f(x)} = \frac{A_1}{(x-a)^k} + \frac{A_2}{(x-a)^{k-1}} + \dots + \frac{A_k}{x-a} + \frac{F_k(x)}{f_k(x)},$$

dove A_1, A_2, \ldots, A_k sono costanti e $F_k(x)/f_k(x)$ è una funzione razionale regolare.

Dimostrazione. Si applica k volte di seguito il Teorema 13.4 rispetto alla radice x=a.

Teorema 13.6. Sia F(x)/f(x) una funzione razionale regolare e sia $f(x) = (x^2 + px + q)^k \varphi_1(x)$, dove $\varphi_1(x)$ non è divisibile per $x^2 + px + q$. Allora si ha

$$\frac{F(x)}{f(x)} = \frac{M_1 x + N_1}{(x^2 + px + q)^k} + \frac{\Phi_1(x)}{(x^2 + px + q)^{k-1} \varphi_1(x)},$$

dove M_1, N_1 sono costanti e $\Phi_1(x)$ è un polinomio di grado inferiore a quello di $(x^2 + px + q)^{k-1}\varphi_1(x)$.

Teorema 13.7. Sia F(x)/f(x) una funzione razionale regolare e sia $f(x) = (x^2 + px + q)^k \varphi_1(x)$, dove $\varphi_1(x)$ non è divisibile per $x^2 + px + q$. Allora si ha

$$\frac{F(x)}{f(x)} = \frac{M_1 x + N_1}{(x^2 + px + q)^k} + \frac{M_2 x + N_2}{(x^2 + px + q)^{k-1}} + \dots + \frac{M_k x + N_k}{x^2 + px + q} + \frac{\Phi_k(x)}{\varphi_k(x)},$$

dove $M_1, N_1, M_2, N_2, \ldots, M_k, N_k$ sono costanti e $\Phi_k(x)/\varphi_k(x)$ è una funzione razionale regolare.

Dimostrazione. Si applica iterativamente il Teorema 13.6.

Teorema 13.8. Ogni funzione razionale regolare si può scrivere come somma di elementi semplici.

Dimostrazione. Sia F(x)/f(x) una funzione razionale regolare. Possiamo fattorizzare f(x) scrivendo (cfr. §1.8)

$$f(x) = (x-a)^{\alpha}(x-b)^{\beta}\dots(x^2+px+q)^{\mu}(x^2+sx+r)^{\nu}\dots$$

dove si è tenuto conto che il coefficiente del monomio di ordine più alto di f(x) si pùo associare a F(x) (in altre parole se $f(x) = a_n x^n + \dots$ possiamo ridefinire $\bar{F}(x) = F(x)/a_n$ e $\bar{f}(x) = f(x)/a_n = x^n + \dots$).

Allora applicando iterativamente i Teoremi 13.5 e 13.7, otteniamo che F(x)/f(x) si può scrivere come

$$\frac{F(x)}{f(x)} = \frac{A_1}{(x-a)^{\alpha}} + \frac{A_2}{(x-a)^{\alpha-1}} + \dots + \frac{A_{\alpha}}{x-a}$$

$$+ \frac{B_1}{(x-b)^{\beta}} + \frac{B_2}{(x-b)^{\beta-1}} + \dots + \frac{B_{\beta}}{x-b}$$

$$+ \dots + \frac{M_1x + N_1}{(x^2 + px + q)^{\mu}} + \frac{M_2x + N_2}{(x^2 + px + q)^{\mu-1}} + \dots + \frac{M_{\mu}x + N_{\mu}}{x^2 + px + q}$$

$$+ \frac{P_1x + Q_1}{(x^2 + rx + s)^{\nu}} + \frac{P_2x + Q_2}{(x^2 + rx + s)^{\nu-1}} + \dots + \frac{P_{\nu}x + Q_{\nu}}{x^2 + rx + s}$$

$$+ \dots + \dots + \dots + \dots + \dots$$

dove i coefficienti $A_1,A_2,\ldots,B_1,B_2,\ldots,M_1,N_1,M_2,N_2,\ldots,P_1,Q_1,P_2,Q_2,\ldots$ vanno determinati imponendo che le due espressioni siano uguali.

Osservazioni:

1. Il procedimento per determinare i coefficienti qui descritto prende il nome di metodo dei coefficienti indeterminati.

2. In principio il metodo dei coefficienti indeterminati permette di scomporre ogni funzione razionale regolare in somma di elementi semplici. Ovviamente quello che può essere difficile, da un punto di vista pratico, è determinare le radici del polinomio f(x) a denominatore.

Esempi:

1.
$$\frac{x^2+2}{(x+1)^3(x-2)} = -\frac{1}{(x+1)^3} + \frac{1}{3(x+1)^2} - \frac{2}{9(x+1)} + \frac{2}{9(x-2)}.$$

2.
$$\frac{x+3}{x(x-2)(x+2)} = -\frac{3}{4x} + \frac{1}{8(x+2)} + \frac{5}{8(x-2)}$$

3.
$$\frac{x^3 + x^2 + x + 1}{(x - 1)^2 x^2} = \frac{1}{x^2} + \frac{3}{x} + \frac{4}{(x - 1)^2} - \frac{2}{x - 1}.$$

4.
$$\frac{x^4 - x + 2}{x(x+2)^4} = \frac{1}{8x} - \frac{10}{(x+2)^4} + \frac{23}{2(x-2)^3} - \frac{25}{4(x+2)^2} + \frac{7}{8(x+2)}.$$

5.
$$\frac{x+1}{(x-1)(x^2+2)} = \frac{2}{3(x-1)} + \frac{1-2x}{3(x^2+2)}$$

6.
$$\frac{1}{x(x^2+1)^2} = \frac{1}{x} - \frac{x}{(x^2+1)^2} - \frac{x}{(x^2+1)}$$
.

I risultati visti finora permettono di calcolare l'integrale di qualsiasi funzione regolare. Infatti, data una funzione razionale P(x)/Q(x), per prima cosa applichiamo il Teorema 13.3 per scrivere P(x)/Q(x) = M(x) + F(x)/f(x), con f(x) = Q(x). La funzione M(x) si integra facilmente essendo un polinomio. Utilizzando il Teorema 13.8 si scompone quindi F(x)/f(x) in somma di elementi semplici, dei quali sappiamo calcolare l'integrale (cfr. le osservazioni dopo la Definizione 13.1).

Esempi:

1.
$$\int \frac{x^2 + 2}{(x+1)^3(x-2)} dx = \frac{1}{2} \frac{1}{(x+1)^2} - \frac{1}{3(x+1)} - \frac{2}{9} \ln|x+1| + \frac{2}{9} \ln|x-2| + c.$$

2.
$$\int \frac{x}{(x^2+1)(x-1)} dx = \frac{1}{2} \ln|x-1| - \frac{1}{4} \ln(x^2+1) + \frac{1}{2} \arctan x + c.$$

3.
$$\int \frac{x^4 + 4x^3 + 11x^2 + 12x + 8}{(x^2 + 2x + 3)^2(x + 1)} dx = \frac{-(x + 2)}{2(x^2 + 2x + 3)} - \frac{\sqrt{2}}{4} \arctan \left(\frac{x + 1}{\sqrt{2}} + \ln|x + 1| + c \right)$$

4.
$$\int \frac{x^4 - x + 2}{x(x+2)^4} = \frac{1}{8} \ln|x| + \frac{10}{3(x+2)^3} - \frac{23}{4(x-2)^2} + \frac{25}{4(x+2)} + \frac{7}{8} \ln|x+2| + c.$$

5.
$$\int \frac{x+1}{(x-1)(x^2+2)} dx = \frac{2}{3} \ln|x-1| - \frac{1}{3} \ln(x^2+2) + \frac{1}{3\sqrt{2}} \operatorname{arctg} \frac{x}{\sqrt{2}} + c.$$

6.
$$\int \frac{dx}{x^2(x^2+1)} = -\frac{1}{x} - \arctan x + c.$$

7.
$$\int \frac{x^3 + x^2 + x + 1}{(x - 1)^2 x^2} \, dx = -\frac{1}{x} + 3 \ln|x| - \frac{4}{x - 1} - \ln|x - 1| + c.$$

8.
$$\int \frac{1}{x(x^2+1)^2} dx = \ln|x| + \frac{1}{2} \frac{1}{1+x^2} - \frac{1}{2} \ln(1+x^2) + c.$$

Osservazioni:

1. Se riconsideriamo l'integrale dell'Esempio 12 di §12.4, possiamo notare che si può scomporre $1/(a^2-x^2)$ in elementi semplici, i.e.

$$\frac{1}{a^2 - x^2} = \frac{1}{2a} \left(\frac{1}{x+a} - \frac{1}{x-a} \right),$$

quindi si trova

$$\int \frac{\mathrm{d}x}{a^2 - x^2} = \frac{1}{2a} \left(\int \frac{1}{x+a} - \int \frac{1}{x-a} \right) = \frac{1}{2a} \left(\ln|x+a| - \ln|x-a| \right) + c,$$

i.e.

$$\int \frac{\mathrm{d}x}{a^2 - x^2} = \frac{1}{2a} \ln \left| \frac{x+a}{x-a} \right| + c,$$

in accordo con quanto già trovato.

2. In particolare l'integrale 12 di §13.4 si può ottenere in questo modo.

13.4 Esercizi

1. Si calcoli
$$\int \frac{\mathrm{d}x}{x(\ln x + 1)}.$$

2. Si calcoli
$$\int_0^1 \frac{\mathrm{d}x}{x^2 + 4x + 3}.$$

3. Si calcoli
$$\int \left(\sqrt{x} + (x+2)^{3/2} + \frac{1}{x^2} \right) dx$$
.

4. Si calcoli
$$\int_0^{\pi/2} \sqrt{\sin x} \cos x \, dx.$$

13.4. ESERCIZI

271

5. Si calcoli
$$\int \frac{x+2}{x^2 - 5x + 6} dx.$$

6. Si calcoli
$$\int \sqrt{2^x - 1} \, \mathrm{d}x$$
.

7. Si calcoli
$$\int \frac{e^x}{\sqrt{1-e^{2x}}} dx$$
.

8. Si calcoli
$$\int \arccos x (1 + \arccos x) dx$$
.

9. Si calcoli
$$\int \frac{x-1}{2x^3 - 4x^2 - 6x} dx.$$

10. Si calcoli
$$\int_1^4 \frac{\ln x}{\sqrt{x}} dx$$
.

11. Si calcoli
$$\int \frac{\mathrm{d}x}{1 + \mathrm{tg}\,x}$$
.

12. Si calcoli
$$\int \frac{\sin \sqrt{x}}{\sqrt{x}} dx$$
.

13. Si calcoli
$$\int \frac{\sqrt{x}}{2 + \sqrt{x}} dx$$
.

14. Si calcoli
$$\int \ln^2 x \, dx$$
.

15. Si calcoli
$$\int \frac{\mathrm{d}x}{\sin x}$$
.

16. Si calcoli
$$\int \frac{\mathrm{d}x}{1+\sin x}$$
.

17. Si calcoli
$$\int \frac{\mathrm{d}x}{x\sqrt{x+1}}$$
.

18. Si calcoli
$$\int \sin(\ln x) dx$$
.

19. Si calcoli
$$\int \frac{\ln(1+x)}{x^2} dx$$
.

20. Si calcoli
$$\int \frac{\mathrm{d}x}{\sqrt{x(1-x)}}.$$

21. Si calcoli
$$\int e^{3x} e^{e^x} dx$$
.

22. Si calcoli
$$\int_0^1 \sqrt{x} e^{\sqrt{x}} dx$$
.

23. Si calcoli
$$\int_0^1 \frac{x^3 + x^2 + 2}{x^2 + 3} dx$$
.

24. Si calcoli
$$\int \frac{\ln x}{x^3} dx$$
.

25. Si calcoli
$$\int_0^{\pi/2} \sin^2 x \, \cos^5 x \, \mathrm{d}x.$$

26. Si calcoli
$$\int \frac{x\sqrt{x^2-3}}{x^2+1} dx$$
.

27. Si dimostri che
$$\int \frac{e^{2x}}{e^{2x} + 1} dx = 1.$$

28. Si calcoli
$$\int x\sqrt{x+1}dx$$
.

Soluzioni:

1.
$$\int \frac{\mathrm{d}x}{x(\ln x + 1)} = \ln|\ln x + 1| + c.$$

2.
$$\int \frac{\mathrm{d}x}{x^2 + 4x + 3} = \int \frac{\mathrm{d}x}{(x+1)(x+3)} = \frac{1}{2} \int \frac{\mathrm{d}x}{x+1} - \frac{1}{2} \int \frac{\mathrm{d}x}{x+3}$$
$$= \frac{1}{2} (\ln|x+1| - \ln|x+3|) + c \Longrightarrow \int_0^1 \frac{\mathrm{d}x}{x^2 + 4x + 3} = \frac{1}{2} (\ln|x+1| - \ln|x+3|) \Big|_0^1$$
$$= \frac{1}{2} (\ln 2 - \ln 4 + \ln 3) = \frac{1}{2} \ln \frac{3}{2}.$$

3.
$$\int \left(\sqrt{x} + (x+2)^{3/2} + \frac{1}{x^2}\right) dx$$
$$= \int \sqrt{x} dx + \int (x+2)^{3/2} dx + \int \frac{dx}{x^2} = \frac{2}{3}x^{3/2} + \frac{2}{5}(x+2)^{5/2} - \frac{1}{x} + c.$$

4.
$$\int_0^{\pi/2} \sqrt{\sin x} \cos x \, dx = \frac{2}{3} (\sin x)^{3/2} \Big|_0^{\pi/2} = \frac{2}{3}.$$

5.
$$\int \frac{x+2}{x^2 - 5x + 6} dx = 5 \ln|x - 3| - 4 \ln|x - 2| + c.$$

13.4. ESERCIZI 273

6. Con la sostituzione $2^x - 1 = t^2$ si ottiene

$$\int \sqrt{2^x - 1} \, \mathrm{d}x = \frac{2}{\ln 2} \int \frac{t^2}{t^2 + 1} \, \mathrm{d}t,$$

dove si è usato che

$$x = \log_2(t^2 + 1) = \frac{1}{\ln 2} \ln(t^2 + 1) \implies dx = \frac{1}{\ln 2} \frac{2t}{t^2 + 1}.$$

Si ha quindi

$$\int \frac{t^2}{t^2 + 1} dt = \int dt - \int \frac{1}{t^2 + 1} dt = t - \arctan t + c,$$

da cui si ricava

$$\int \sqrt{2^x - 1} \, dx = \frac{2}{\ln 2} \left(\sqrt{2^x - 1} - \arctan \sqrt{2^x - 1} \right) + c.$$

7.
$$\int \frac{e^x}{\sqrt{1 - e^{2x}}} dx = \arcsin e^x + c.$$

8.
$$\int \arccos x (1 + \arccos x) dx = \int \arccos x dx + \int \arccos^2 x dx, \text{ dove}$$

$$\int \arccos x dx = x \arccos x - \sqrt{1 - x^2} + c, \int \arccos^2 x dx$$

$$= x \arccos^2 x - 2\sqrt{1 - x^2} \arccos x - 2x + c \Longrightarrow \int \arccos x (1 + \arccos x) dx$$

$$= x \arccos x (1 + \arccos x) - \sqrt{1 - x^2} (1 + 2 \arccos x) - 2x + c.$$

9.
$$\int \frac{x-1}{2x^3 - 4x^2 - 6x} dx = \frac{1}{12} \int \frac{dx}{x-3} + \frac{1}{6} \int \frac{dx}{x} - \frac{1}{4} \int \frac{dx}{x+1}$$
$$= \frac{1}{12} \ln|x-3| + \frac{1}{6} \ln|x| - \frac{1}{4} \ln|x+1| + c.$$

10.
$$\int \frac{\ln x}{\sqrt{x}} dx = 2\sqrt{x} (\ln|x| - 2) \Longrightarrow$$
$$\int_{1}^{4} \frac{\ln x}{\sqrt{x}} dx = 2\sqrt{x} (\ln|x| - 2) \Big|_{1}^{4} = 4 (\ln 4 - 2) + 4 = 4 (\ln 4 - 1).$$

11. Con la sostituzione tg x = t si ottiene

$$\int \frac{\mathrm{d}x}{1 + \operatorname{tg} x} = \int \frac{\mathrm{d}t}{(1 + t)(1 + t^2)},$$

dove si è usato che $x=\operatorname{arctg} t \Longrightarrow \mathrm{d} x=\frac{\mathrm{d} t}{1+t^2}.$ Si ha quindi

$$\int \frac{\mathrm{d}t}{(1+t)(1+t^2)} = \frac{1}{2} \int \frac{\mathrm{d}t}{1+t} - \frac{1}{2} \int \frac{t-1}{(1+t)^2} \mathrm{d}t,$$

dove

$$\int \frac{\mathrm{d}t}{1+t} = \ln|1+t| + c, \quad \int \frac{t}{1+t^2} \mathrm{d}t = -\frac{1}{2} \ln|1+t^2| + c, \quad \int \frac{\mathrm{d}t}{1+t^2} = \arctan t + c,$$

da cui si ottiene

$$\int \frac{\mathrm{d}t}{(1+t)(1+t^2)} = \frac{1}{2}\ln|1+t| - \frac{1}{4}\ln|1+t^2| + \frac{1}{2}\arctan t + c$$

e quindi

$$\int \frac{\mathrm{d}x}{1 + \lg x} = \frac{1}{2} \ln|1 + \lg x| - \frac{1}{4} \ln|1 + \lg^2 x| + \frac{x}{2} + c$$

$$= \frac{1}{2} \left(\ln \left| \frac{1 + \lg x}{\sqrt{1 + \lg^2 x}} \right| + x \right) + c = \frac{1}{2} \left(\ln|\sin x + \cos x| + x \right) + c.$$

12.
$$\int \frac{\sin\sqrt{x}}{\sqrt{x}} dx = -2\cos\sqrt{x} + c.$$

13. Con la sostituzione $\sqrt{x} = t$ si ottiene

$$\int \frac{\sqrt{x}}{2+\sqrt{x}} dx = 2 \int \frac{t^2}{2+t} dt,$$

dove

$$\frac{t^2}{2+t} = t - 2 + \frac{4}{2+t},$$

da cui si ha

$$\int \frac{t^2}{2+t} dt = \int t dt - 2 \int dt + 4 \int \frac{dt}{2+t} = \frac{t^2}{2} - 2t + 4 \ln|2+t| + c$$

e quindi

$$\int \frac{\sqrt{x}}{2 + \sqrt{x}} dx = x - 4\sqrt{x} + 8\ln|2 + \sqrt{x}| + c.$$

14.
$$\int \ln^2 x \, dx = x \ln^2 x - 2x \ln x + 2x + c.$$

13.4. ESERCIZI 275

15.
$$\int \frac{\mathrm{d}x}{\sin x} = \int \frac{\mathrm{d}x}{\sin\left(\frac{x}{2} + \frac{x}{2}\right)} = \int \frac{\mathrm{d}x}{2\sin(x/2)\cos(x/2)} = \int \frac{\mathrm{d}t}{\sin t \cos t}, \text{ dove } t = x/2.$$
Quindi
$$\int \frac{\mathrm{d}t}{\sin t \cos t} = \int \frac{\mathrm{d}t}{\operatorname{tg} t \cos^2 t} = \ln|\operatorname{tg}t| + c \Longrightarrow \int \frac{\mathrm{d}x}{\sin x} = \ln|\operatorname{tg}(x/2)| + c.$$

16.
$$\int \frac{\mathrm{d}x}{1+\sin x} = \int \frac{1-\sin x}{1-\sin^2 x} dx = \int \frac{1-\sin x}{\cos^2 x} dx = \int \frac{\mathrm{d}x}{\cos^2 x} - \int \frac{\sin x}{\cos^2 x} dx$$
$$= \operatorname{tg} x - \frac{1}{\cos x} + c.$$

17. Con la sostituzione $\sqrt{x+1} = t$ si ottiene

$$\int \frac{\mathrm{d}x}{x\sqrt{x+1}} = 2 \int \frac{\mathrm{d}t}{t^2 - 1},$$

dove si è usato che $x = t^2 - 1 \Longrightarrow dx = 2tdt$. Quindi

$$\int \frac{\mathrm{d}t}{t^2 - 1} = \frac{1}{2} \int \frac{\mathrm{d}t}{t - 1} - \frac{1}{2} \int \frac{\mathrm{d}t}{t + 1} = \frac{1}{2} \left(\ln|t - 1| - \ln|t + 1| \right) + c,$$

così che

$$\int \frac{\mathrm{d}x}{x\sqrt{x+1}} = \ln|\sqrt{x+1} - 1| - \ln|\sqrt{x+1} + 1| + c.$$

- 18. Con la sostituzione $x = e^t$ si ha $\int \sin(\ln x) dx = \int \sin t e^t = \frac{1}{2} (e^t \sin t e^t \cos t) + c$ $\implies \int \sin(\ln x) dx = \frac{1}{2} (x \sin(\ln x) - x \cos(\ln x)) + c.$
- 19. $\int \frac{\ln(1+x)}{x^2} dx = -\frac{\ln(1+x)}{x} + \int \frac{dx}{x(1+x)}, \text{ dove } \frac{1}{x(1+x)} = \frac{1}{x} \frac{1}{1+x}$ $\implies \int \frac{\ln(1+x)}{x^2} dx = -\frac{\ln(1+x)}{x} + \ln|x| \ln|1+x| + c.$
- 20. Con la sostituzione $\sqrt{x} = t$ si ottiene

$$\int \frac{\mathrm{d}x}{\sqrt{x(1-x)}} = 2 \int \frac{\mathrm{d}t}{\sqrt{1-t^2}},$$

dove si è usato che $x=t^2\Longrightarrow \mathrm{d}x=2t\mathrm{d}t.$ Quindi

$$\int \frac{\mathrm{d}t}{\sqrt{1-t^2}} = \arcsin t + c \quad \Longrightarrow \quad \int \frac{\mathrm{d}x}{\sqrt{x(1-x)}} = 2\arcsin \sqrt{x} + c.$$

21. Con la sostituzione $e^x = t$ si trova

$$\int e^{3x} e^{e^x} dx = \int t^2 e^t dt = e^{e^x} (e^{2x} - 2e^x + 2) + c,$$

dove si è usato l'Esempio 5 di §13.2.

22. Con la sostituzione $\sqrt{x} = t$ si ha

$$\int \sqrt{x} e^{\sqrt{x}} dx = 2 \int t^2 e^t dt = 2e^{\sqrt{x}} (x - 2\sqrt{x} + 2) + c,$$

dove si è usato l'Esempio 5 di §13.2.

23. Si ha

$$\frac{x^3 + x^2 + 2}{x^2 + 3} = x + 1 - \frac{3x}{x^2 + 3} - \frac{1}{x^2 + 3},$$

quindi

$$\int \frac{x^3 + x^2 + 2}{x^2 + 3} dx = \frac{x^2}{2} + x - \frac{3}{2} \ln(x^2 + 3) - \frac{1}{\sqrt{3}} \arctan \frac{x}{\sqrt{3}},$$

da cui si ottiene

$$\int_0^1 \frac{x^3 + x^2 + 2}{x^2 + 3} dx = \frac{3}{2} \left(1 - \ln \frac{4}{3} \right) - \frac{1}{\sqrt{3}} \arctan \frac{1}{\sqrt{3}}.$$

24. Si trova
$$\int \frac{\ln x}{x^3} dx = -\frac{\ln x}{2x^2} - \frac{1}{4x^2}$$
.

25. Si ha

$$\int \sin^2 x \, \cos^5 x \, \mathrm{d}x = \int \left(\sin^2 x \, \cos x\right) \cos^4 x \, \mathrm{d}x = \int \left(\frac{1}{3} \sin^3 x\right)' \cos^4 x \, \mathrm{d}x,$$

e quindi, integrando per parti si ottiene

$$\int \sin^2 x \, \cos^5 x \, dx = \frac{1}{3} \sin^3 x \, \cos^4 x + \frac{4}{3} \int \sin^4 x \, \cos^3 x \, dx$$

$$= \frac{1}{3} \sin^3 x \, \cos^4 x + \frac{4}{3} \int \sin^2 x \, \left(1 - \cos^2 x\right) \cos^3 x \, dx$$

$$= \frac{1}{3} \sin^3 x \, \cos^4 x + \frac{4}{3} \int \sin^2 x \cos^3 x \, dx - \frac{4}{3} \int \sin^2 x \cos^5 x \, dx,$$

che implica

$$\frac{7}{3} \int \sin^2 x \, \cos^5 x \, dx = \frac{1}{3} \sin^3 x \, \cos^4 x + \frac{4}{3} \int \sin^2 x \cos^3 x \, dx.$$

13.4. ESERCIZI 277

Ci si è così ridotti a calcolare l'integrale $\int \sin^2 x \cos^3 x \, dx$, che può essere discusso in modo simile. Si ha infatti

$$\int \sin^2 x \, \cos^3 x \, \mathrm{d}x = \int \left(\sin^2 x \, \cos x\right) \cos^2 x \, \mathrm{d}x = \int \left(\frac{1}{3} \sin^3 x\right)' \cos^2 x \, \mathrm{d}x,$$

e quindi, integrando di nuovo per parti,

$$\int \sin^2 x \, \cos^3 x \, dx = \frac{1}{3} \sin^3 x \, \cos^2 x + \frac{2}{3} \int \sin^4 x \, \cos x \, dx$$
$$= \frac{1}{3} \sin^3 x \, \cos^2 x + \frac{2}{3} \int \sin^2 x \, (1 - \cos^2 x) \cos x \, dx$$
$$= \frac{1}{3} \sin^3 x \, \cos^2 x + \frac{2}{3} \int \sin^2 x \cos x \, dx - \frac{2}{3} \int \sin^2 x \cos^3 x \, dx,$$

che implica

$$\frac{5}{3} \int \sin^2 x \, \cos^3 x \, dx = \frac{1}{3} \sin^3 x \, \cos^2 x + \frac{2}{3} \int \sin^2 x \cos x \, dx$$
$$= \frac{1}{3} \sin^3 x \, \cos^2 x + \frac{2}{9} \sin^3 x + c.$$

Unendo i risultati, otteniamo

$$\int \sin^2 x \, \cos^5 x \, dx = \frac{3}{7} \left(\frac{1}{3} \sin^3 x \, \cos^4 x + \frac{4}{3} \int \sin^2 x \cos^3 x \, dx \right)$$
$$= \frac{3}{7} \left(\frac{1}{3} \sin^3 x \, \cos^4 x + \frac{4}{3} \frac{3}{5} \left(\frac{1}{3} \sin^3 x \, \cos^2 x + \frac{2}{9} \sin^3 x \right) \right) + c$$

In conclusione

$$\int_0^{\pi/2} \sin^2 x \, \cos^5 x \, dx = \frac{3}{7} \frac{4}{3} \frac{3}{5} \frac{2}{9} = \frac{8}{105}$$

26. Con la sostituzione $t = \sqrt{x^2 - 3}$ si trova

$$\int \frac{x\sqrt{x^2 - 3}}{x^2 + 1} dx = \int \frac{t^2}{t^2 + 4} dt = \int dt - 4 \int \frac{dt}{t^2 + 4} = t - 2\operatorname{arctg} \frac{t}{2} + c,$$
quindi
$$\int \frac{x\sqrt{x^2 - 3}}{x^2 + 1} dx = \sqrt{x^2 - 3} - 2\operatorname{arctg} \left(\frac{\sqrt{x^2 - 3}}{2}\right) + c.$$

27. Con la sostituzione $t = e^{2x}$ si trova

$$\int \frac{e^{2x}}{e^{2x} + 1} dx = \frac{1}{2} \int \frac{t}{t+1} \frac{dt}{t} = \frac{1}{2} \int \frac{dt}{t+1} = \frac{1}{2} \ln|t+1| + c = \frac{1}{2} \ln\left(e^{2x} + 1\right) + c,$$

dove si è usato che $t={\rm e}^{2x}\Longrightarrow 2x=\ln t=x=(1/2)\ln t=\varphi(t),$ così che $\varphi'(t)=1/2t.$ Si ha quindi

$$\int_{-1}^{1} \frac{e^{2x}}{e^{2x} + 1} dx = \frac{1}{2} \ln \left(e^{2x} + 1 \right) \Big|_{-1}^{1} = \frac{1}{2} \left(\ln(e^{2} + 1) - \ln(e^{-2} + 1) \right)$$
$$= \frac{1}{2} \ln \frac{e^{2} + 1}{e^{-2} + 1} = \frac{1}{2} \ln \frac{e(e + e^{-1})}{e^{-1}(e^{-1} + e)} = \frac{1}{2} \ln e^{2} = \ln e = 1.$$

28. Con la sostituzione $t = \sqrt{1+x}$ (e quindi $x = t^2 - 1$), si trova

$$\int x\sqrt{1+x} \, dx = \int (t^2 - 1)t \, 2t \, dt = 2 \int (t^2 - 1)t^2 \, dt = 2 \int t^4 \, dt - 2 \int t^2 \, dt$$
$$= \frac{2}{5}t^5 - \frac{2}{3}t^3 + c = \frac{2}{5}(1+x)^{5/2} - \frac{2}{3}(1+x)^{3/2} + c,$$

così che

$$\int_{1}^{3} x\sqrt{1+x} \, \mathrm{d}x = \frac{2}{5} (1+x)^{5/2} - \frac{2}{3} (1+x)^{3/2} \bigg|_{1}^{3} = \frac{2}{5} \left(4^{5/2} - 2^{5/2} \right) - \frac{2}{3} \left(4^{3/2} - 2^{3/2} \right).$$

14 | Formula di Taylor

14.1 Approssimazioni di funzioni con polinomi

La formula di Taylor serve per approssimare una funzione nell'intorno di un punto. Ricordiamo il teorema di Lagrange (Teorema 8.3): se f è derivabile in un intorno di x_0 allora si ha $f(x) = f(x_0) + f'(\xi)(x - x_0)$ per un opportuno ξ . Quindi, per x vicino a x_0 , possiamo dire che f(x) è vicino al valore $f(x_0)$ e l'errore che si compie nell'approssimare f(x) con $f(x_0)$ è infinitesimo di ordine 1 per $x \to x_0$ (cfr. §6.5): quindi più x è vicino a x_0 , più piccole è l'errore.

La formula di Taylor generalizza il teorema di Lagrange e permette di approssimare una funzione sufficientemente regolare entro la precisione che si vuole.

Sia f una funzione derivabile almeno n+1 volte in un intervallo I contenente il punto x_0 . Vogliamo determinare un polinomio $P_n(x)$ di ordine n tale che il valore che esso assume in x_0 sia uguale al valore della funzione f in x_0 e, allo stesso tempo, le sue prime n derivate in x_0 siano uguali alle derivate corrispondenti della funzione f in x_0 . In formule richiediamo quindi:

$$f(x_0) = P_n(x_0), \quad f'(x_0) = P'_n(x_0), \quad f''(x_0) = P''_n(x_0), \quad \dots, \quad f^{(n)}(x_0) = P^{(n)}_n(x_0).$$

Scriviamo il polinomio $P_n(x)$ nella forma

$$P_n(x) = C_0 + C_1 (x - x_0) + C_2 (x - x_0)^2 + \ldots + C_n (x - x_0)^n = \sum_{k=0}^n C_k (x - x_0)^k,$$

con i coefficienti C_k da determinare in modo che le relazioni sopra siano soddisfatte. Calcolando le derivate di $P_n(x)$ si trova:

$$\begin{cases}
P'_n(x) = C_1 + 2C_2(x - x_0) + 3C_3(x - x_0)^2 + \dots + nC_n(x - x_0)^{n-1}, \\
P''_n(x) = 2C_2 + 3 \cdot 2C_3(x - x_0) + 4 \cdot 3C_4(x - x_0)^2 + \dots + n \cdot (n-1)C_n(x - x_0)^{n-2}, \\
P'''_n(x) = 3 \cdot 2C_3 + 4 \cdot 3 \cdot 2C_4(x - x_0) + \dots + n \cdot (n-1) \cdot (n-2)C_n(x - x_0)^{n-3}, \\
\dots \\
P_n^{(n-1)}(x) = (n-1) \cdot (n-2) \dots 2C_{n-1} + n \cdot (n-1) \dots 2C_n(x - x_0), \\
P_n^{(n)}(x) = n \cdot (n-1) \dots 2C_n,
\end{cases}$$

così che, imponendo $P^{(k)}(x_0) = f^{(k)}(x_0)$ per $k = 0, \dots, n$, troviamo

$$\begin{cases} f(x_0) = P_n(x_0) = C_0, \\ f'(x_0) = P'_n(x_0) = C_1, \\ f''(x_0) = P''_n(x_0) = 2 C_2 = 2! C_2, \\ f'''(x_0) = P'''_n(x_0) = 3 \cdot 2C_3 = 3! C_3, \\ \dots \\ f^{(n-1)}(x_0) = P_n^{(n-1)}(x_0) = (n-1) \cdot (n-2) \dots 2C_{n-1} = (n-1)! C_{n-1}, \\ f^{(n)}(x_0) = P_n^{(n)}(x_0) = n \cdot (n-1) \dots 2C_n = n! C_n, \end{cases}$$

che possiamo scrivere in modo compatto come

$$C_k = \frac{1}{k!} f^{(k)}(x_0), \qquad k = 0, \dots, n.$$

In conclusione il polinomio $P_n(x)$ avrà la forma

$$P_n(x) = \sum_{k=0}^n \frac{1}{k!} f^{(k)}(x_0) (x - x_0)^k.$$

Chiamiamo $R_n(x)$ la differenza tra la funzione f(x) e il polinomio $P_n(x)$,

$$R_n(x) = f(x) - P_n(x).$$

Possiamo quindi scrivere

$$f(x) = P_n(x) + R_n(x) = \sum_{k=0}^{n} \frac{1}{k!} f^{(k)}(x_0) (x - x_0)^k + R_n(x).$$

La funzione $R_n(x)$ si chiama resto di ordine n.

Scriviamo

$$R_n(x) = \frac{1}{(n+1)!} (x - x_0)^{n+1} Q(x),$$

con Q(x) da determinare. Per t compreso tra x_0 e x (i.e. $t \in (x_0, x)$ se $x > x_0$ e $t \in (x, x_0)$ se $x < x_0$) definiamo la funzione

$$F(t) = f(x) - f(t) - \frac{x - t}{1}f'(t) - \frac{(x - t)^2}{2!}f''(t) - \dots - \frac{(x - t)^n}{n!}f^{(n)}(t) - \frac{(x - t)^{n+1}}{(n+1)!}Q(x).$$

Se calcoliamo la derivata di F(t) rispetto a t troviamo

$$F'(t) = -f'(t) + f'(t) - \frac{x-t}{1}f''(t) + \frac{2(x-t)}{2!}f''(t) - \frac{(x-t)^2}{2!}f'''(t) - \dots + \frac{n(x-t)^{n-1}}{n!}f^{(n)}(t) - \frac{(x-t)^n}{n!}f^{(n+1)}(t) + \frac{(n+1)(x-t)^n}{(n+1)!}Q(x),$$

che si può semplificare in

$$F'(t) = \frac{(x-t)^n}{n!} f^{(n+1)}(t) + \frac{(n+1)(x-t)^n}{(n+1)!} Q(x).$$

Inoltre si ha, per costruzione, $F(x_0) = F(x) = 0$: possiamo quindi applicare il Teorema 8.1 (di Rolle), per concludere che esiste ξ , compreso tra x_0 e x tale che $F'(\xi) = 0$. Per tale valore $t = \xi$ si ha quindi

$$F'(\xi) = \frac{(x-\xi)^n}{n!} f^{(n+1)}(\xi) + \frac{(n+1)(x-\xi)^n}{(n+1)!} Q(x) = 0,$$

da cui si deduce $Q(x) = f^{(n+1)}(\xi)$. Quindi otteniamo la seguente espressione per il resto (nota come forma di Lagrange per il resto)

$$R_n(x) = \frac{1}{(n+1)!} (x - x_0)^{n+1} f^{(n+1)}(\xi),$$

dove ξ è un opportuno valore compreso tra x_0 e x (quindi fissato x_0 è funzione di x). In conclusione possiamo scrivere

$$f(x) = \sum_{k=0}^{n} \frac{1}{n!} f^{(n)}(x_0) (x - x_0)^k + \frac{1}{(n+1)!} (x - x_0)^{n+1} f^{(n+1)}(\xi),$$

che è chiamata formula di Taylor con il resto di Lagrange. Nel caso in cui sia $x_0 = 0$ la formula è talvolta chiamata formula di MacLaurin.

Se approssimiamo una funzione f(x), per x vicino a un valore x_0 , con un polinomio di ordine n, troviamo che l'approssimazione diventa sempre migliore all'aumentare di n. Per esempio, se se $f(x) = e^x$, si ha (cfr. §14.2 più avanti):

$$P_1(x) = 1 + x,$$

$$P_2(x) = 1 + x + \frac{x^2}{2!},$$

$$P_3(x) = x + \frac{x^2}{2!} + \frac{x^3}{3!},$$

$$P_4(x) = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!},$$

$$P_5(x) = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \frac{x^5}{5!},$$

$$P_6(x) = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \frac{x^5}{5!} + \frac{x^6}{6!},$$

e così via. Al crescere di n i polinomi $P_n(x)$ costituiscono, per x vicino a $x_0 = 0$, un'approssimazione sempre migliore di f(x); cfr. la Figura 14.1. Ovviamente, per ogni $n \in \mathbb{N}$,

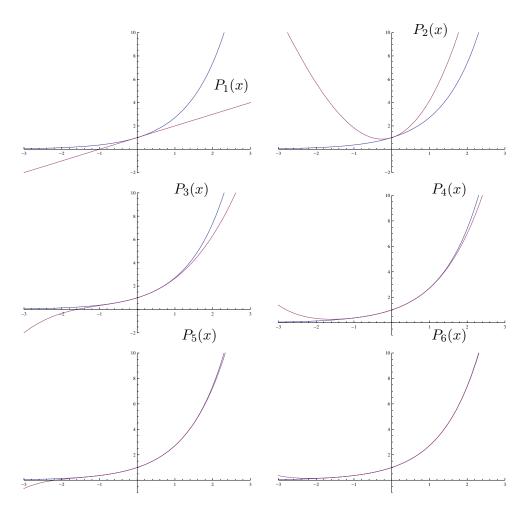


Figura 14.1: Confronto tra $f(x) = e^x$ e i polinomi approssimanti fino all'ordine 6.

per x grande le funzioni e^x e $P_n(x)$ sono molto diverse. Si vede comunque dalla figura che per x piccolo (in realtà fino a $|x|\approx 3$) già il polinomio $P_6(x)$ costituisce un'ottima approssimazione di e^x .

Analogamente, se $f(x) = \sin x$, si ha (cfr. §14.3 più avanti):

$$P_{1}(x) = P_{2}(x) = x,$$

$$P_{3}(x) = P_{4}(x) = x - \frac{x^{3}}{3!},$$

$$P_{5}(x) = P_{6}(x) = x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!},$$

$$P_{7}(x) = P_{8}(x) = x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} - \frac{x^{7}}{7!},$$

$$P_{9}(x) = P_{10}(x) = x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} - \frac{x^{7}}{7!} + \frac{x^{9}}{9!},$$

$$P_{11}(x) = P_{12}(x) = x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} - \frac{x^{7}}{7!} + \frac{x^{9}}{9!} - \frac{x^{11}}{11!},$$

e così via. Se confrontiamo la funzione $\sin x$ con i polinomi di ordine dispari $P_1(x)$, $P_3(x)$, $P_5(x)$ e $P_5(x)$ si ha la situazione rappresentata in Figura 14.2. Di nuovo si ha un'ottima approssimazione in tutto l'intervallo $[-\pi,\pi]$ già a n=11.

14.2 Formula di MacLaurin di funzioni elementari

14.2.1 Formula di MacLaurin per la funzione e^x

Se $f(x) = e^x$ si ha $f'(x) = e^x$. Derivando ulteriormente si vede che $f^{(n)}(x) = e^x$ per ogni $n \in \mathbb{N}$. Quindi per $x_0 = 0$ si trova la formula di MacLaurin

$$e^{x} = \sum_{k=0}^{n} \frac{x^{k}}{k!} + R_{n}(x)$$

$$= 1 + x + \frac{1}{2!}x^{2} + \frac{1}{3!}x^{3} + \frac{1}{4!}x^{4} + \dots + \frac{1}{n!}x^{n} + R_{n}(x),$$

dove

$$R_n(x) = \frac{1}{(n+1)!} x^{n+1} e^{\xi},$$

per ξ opportuno compreso tra 0 e x. Si può dimostrare che per ogni $x \in \mathbb{R}$ si ha $R_n(x) \to 0$ per $n \to +\infty$.

14.2.2 Formula di MacLaurin per la funzione $\sin x$

Se $f(x) = \sin x$ si ha $f'(x) = \cos x$ e $f''(x) = -\sin x$. Quindi iterando si trova $f'''(x) = -\cos x$, $f^{(4)}(x) = \sin x$, e così via. In particolare si vede che le derivate dispari sono, alternativamente, $f^{(n)}(x) = \cos x$ (per $n = 1, 5, 9, 13, \ldots$) e $f^{(n)}(x) = -\cos x$ (per $n = 1, 5, 9, 13, \ldots$) e $f^{(n)}(x) = -\cos x$ (per $n = 1, 5, 9, 13, \ldots$) e $f^{(n)}(x) = -\cos x$ (per $n = 1, 5, 9, 13, \ldots$) e $f^{(n)}(x) = -\cos x$ (per $n = 1, 5, 9, 13, \ldots$) e $f^{(n)}(x) = -\cos x$ (per $n = 1, 5, 9, 13, \ldots$) e $f^{(n)}(x) = -\cos x$ (per $n = 1, 5, 9, 13, \ldots$) e $f^{(n)}(x) = -\cos x$ (per $n = 1, 5, 9, 13, \ldots$) e $f^{(n)}(x) = -\cos x$ (per $n = 1, 5, 9, 13, \ldots$) e $f^{(n)}(x) = -\cos x$ (per $n = 1, 5, 9, 13, \ldots$)

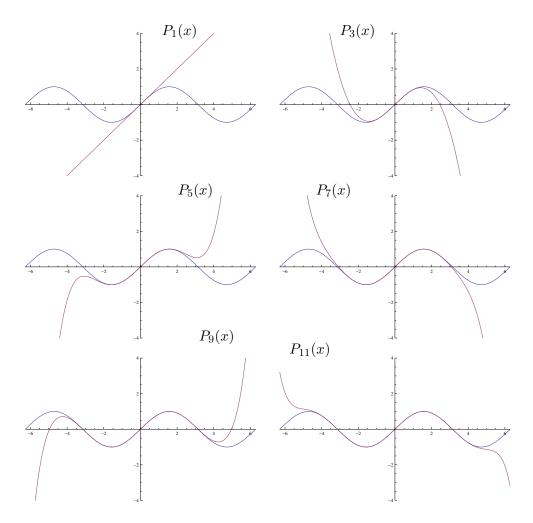


Figura 14.2: Confronto tra $f(x) = \sin x$ e i polinomi approssimanti fino all'ordine 11.

 $3,7,11,15,\ldots$), mentre la derivate pari sono, alternativamente, $f^{(n)}(x) = \sin x$ (per $n = 0,4,8,12,\ldots$) e $f^{(n)}(x) = -\sin x$ (per $n = 2,6,10,14,\ldots$). Calcolate in $x = x_0 = 0$ le derivate pari sono quindi tutte nulle, mentre le derivate dispari sono alternativamente uguali a 1 e - 1. Per n = 2k + 1 possiamo quindi scrivere $f^{(2k+1)}(0) = (-1)^k$. Quindi si trova la formula di MacLaurin

$$\sin x = \sum_{k=0}^{n} \frac{(-1)^k x^{2k+1}}{(2k+1)!} + R_{2n+1}(x)$$

$$= x - \frac{1}{3!} x^3 + \frac{1}{5!} x^5 - \frac{1}{7!} x^7 + \dots + \frac{(-1)^n}{(2n+1)!} x^{2n+1} + R_{2n+1}(x),$$

dove

$$R_{2n+1}(x) = \frac{(-1)^{n+1}}{(2n+2)!} x^{2n+2} \sin \xi,$$

per ξ opportuno compreso tra 0 e x. Anche in questo caso per ogni $x \in \mathbb{R}$ si ha $R_{2n+1}(x) \to 0$ per $n \to +\infty$.

14.2.3 Formula di MacLaurin per la funzione $\cos x$

Se $f(x) = \cos x$ si ha $f'(x) = -\sin x$ e $f''(x) = -\cos x$. Quindi, ragionando analogamente a quanto fatto per $\sin x$, iterando si trova $f'''(x) = \sin x$, $f^{(4)}(x) = \cos x$, e così via. In particolare si vede che le derivate prime sono, alternativamente, $f^{(n)}(x) = -\sin x$ (per $n = 1, 5, 9, 13, \ldots$) e $f^{(n)}(x) = \sin x$ (per $n = 3, 7, 11, 15, \ldots$), mentre la derivate pari sono, alternativamente, $f^{(n)}(x) = \cos x$ (per $n = 0, 4, 8, 12, \ldots$) e $f^{(n)}(x) = -\cos x$ (per $n = 2, 6, 10, 14, \ldots$). Calcolate in $x = x_0 = 0$ le derivate dispari sono quindi tutte nulle, mentre le derivate pari sono alternativamente uguali a 1 e - 1. Per n = 2k possiamo quindi scrivere $f^{(2k)}(0) = (-1)^k$. Quindi si trova la formula di MacLaurin

$$\cos x = \sum_{k=0}^{n} \frac{(-1)^k x^{2k}}{(2k)!} + R_{2n}(x)$$
$$= 1 - \frac{1}{2!} x^2 + \frac{1}{4!} x^4 - \frac{1}{6!} x^6 + \dots + \frac{(-1)^n}{(2n)!} x^{2n} + R_{2n}(x),$$

dove

$$R_{2n}(x) = \frac{(-1)^{n+1}}{(2n+1)!} x^{2n+1} \sin \xi,$$

per ξ opportuno compreso tra 0 e x. Anche in questo caso per ogni $x \in \mathbb{R}$ si ha $R_{2n}(x) \to 0$ per $n \to +\infty$.

14.2.4 Formula di MacLaurin per la funzione 1/(1-x)

Partendo dall'identità

$$\frac{1}{1-x} = 1 + x + x^2 + x^3 + x^4 + \dots + x^n + \frac{x^{n+1}}{1-x},$$

che si verifica facilmente scrivendo

$$1 + x + x^{2} + x^{3} + x^{4} + \dots + x^{n} = \frac{(1 - x)(1 + x + x^{2} + x^{3} + x^{4} + \dots + x^{n})}{1 - x}$$
$$= \frac{1 + x + x^{2} + x^{3} + \dots + x^{n} - x - x^{2} - x^{3} - x^{4} - \dots - x^{n+1}}{1 - x} = \frac{1 - x^{n+1}}{1 - x},$$

si ottiene lo sviluppo di 1/(1-x), con un'espressione esplicita del resto:

$$\frac{1}{1-x} = \sum_{k=0}^{n} x^k + R_n(x) = 1 + x + x^2 + x^3 + x^4 + \dots + x^n + R_n(x),$$

286

dove

$$R_n(x) = \frac{x^{n+1}}{1-x}.$$

Osservazione: Nel caso della funzione f(x) = 1/(1-x) si vede immediatamente che un polinomio $P_n(x)$ approosima bene la funzione, tanto più quanto più grande è n, purché x sia piccolo (cioè vicino a 0). Per esempio, se x = 0.1, si ha $f(0.1) = 1/0.9 = 1.\overline{1} = 1.111111111...$, mentre

$$P_0(0.1) = 1$$
, $P_1(0.1) = 1.1$, $P_2(0.1) = 1.11$, $P_3(0.1) = 1.111$, $P_4(0.1) = 1.1111$,

e cosìvia. D'altra parte, se invece x è vicino a 1, f(x) tende a $+\infty$, mentre $P_n(x)$ tende a n+1: quindi il polinomio non costituisce più una buona approssimazione della funzione.

14.2.5 Formula di MacLaurin per la funzione 1/(1+x)

Partendo dalla formula di MacLaurin per 1/(1-x) e sostituendo -x a x si trova

$$\frac{1}{1+x} = \sum_{k=0}^{n} (-1)^k x^k + R_n(x) = 1 - x + x^2 - x^3 + x^4 + \dots + (-1)^n x^n + R_n(x),$$

dove

$$R_n(x) = (-1)^{n+1} \frac{x^{n+1}}{1+x}.$$

14.2.6 Formula di MacLaurin per la funzione $1/(1-x^2)$

Partendo dalla formula di MacLaurin per 1/(1-x) e sostituendo x^2 a x si trova

$$\frac{1}{1-x^2} = \sum_{k=0}^{n} x^{2k} + R_{2n}(x) = 1 + x^2 + x^4 + x^6 + x^8 + \dots + x^{2n} + R_{2n}(x),$$

dove

$$R_{2n}(x) = \frac{x^{2(n+1)}}{1 - x^2}.$$

14.2.7 Formula di MacLaurin per la funzione $1/(1+x^2)$

Partendo dalla formula di MacLaurin per 1/(1+x) e sostituendo x^2 a x si trova

$$\frac{1}{1+x^2} = \sum_{k=0}^{n} (-1)^k x^{2k} + R_{2n}(x) = 1 - x^2 + x^4 - x^6 + x^8 + \dots + (-1)^n x^{2n} + R_{2n}(x),$$

dove

$$R_{2n}(x) = (-1)^{2(n+1)} \frac{x^{2(n+1)}}{1+x^2}.$$

14.2.8 Formula di MacLaurin per la funzione ln(1+x)

Partendo dalla formula di MacLaurin per 1/(1+x), sostituendo t a x e quindi integrando t tra 0 e x si trova

$$\ln(1+x) = \int_0^x \frac{dt}{1+t} = \sum_{k=0}^n (-1)^k \int_0^x t^k dt + \int_0^x R_n(t) dt$$
$$= \sum_{k=0}^n (-1)^k \frac{x^{k+1}}{k+1} + (-1)^{n+1} \int_0^x \frac{t^{n+1}}{1+t} dt,$$

quindi si ha

$$\ln(1+x) = \sum_{k=0}^{n} (-1)^k \frac{x^{k+1}}{k+1} + R_n(x)$$
$$= x - \frac{1}{2}x^2 + \frac{1}{3}x^3 - \frac{1}{4}x^4 + \dots + (-1)^n \frac{1}{n+1}x^{n+1} + R_n(x),$$

dove

$$R_n(x) = (-1)^{n+1} \int_0^x \frac{t^{n+1}}{1+t} dt.$$

14.2.9 Formula di MacLaurin per la funzione $\operatorname{arctg} x$

Partendo dalla formula di MacLaurin per $1/(1+x^2)$, sostituendo t a x e quindi integrando t tra 0 e x si trova

$$\operatorname{arctg} x = \int_0^x \frac{\mathrm{d}t}{1+t^2} = \sum_{k=0}^n (-1)^k \int_0^x t^{2k} \, \mathrm{d}t + \int_0^x R_n(t) \, \mathrm{d}t$$
$$= \sum_{k=0}^n (-1)^k \frac{x^{2k+1}}{2k+1} + (-1)^{n+1} \int_0^x \frac{t^{2(n+1)}}{1+t^2} \, \mathrm{d}t,$$

quindi si ha

$$\arctan x = \sum_{k=0}^{n} (-1)^k \frac{x^{2k+1}}{k+1} + R_n(x)$$
$$= x - \frac{1}{2}x^3 + \frac{1}{5}x^5 - \frac{1}{7}x^7 + \dots + (-1)^n \frac{1}{n+1}x^{2n+1} + R_n(x),$$

dove

$$R_n(x) = (-1)^{n+1} \int_0^x \frac{t^{2n+1}}{1+t^2} dt.$$

14.2.10 Formula di MacLaurin per altre funzioni elementari

Più in generale, data una qualsiasi funzione elementare, se ne può calcolare la formula di Taylor o di MacLaurin fino all'ordine voluto applicando direttamente la formula vista alla fine di §14.1.

Esempi:

1.
$$\sqrt{1+x} = 1 + \frac{1}{2}x - \frac{1}{8}x^2 + \frac{1}{16}x^3 - \frac{5}{128}x^4 + \dots$$

2.
$$\frac{1}{\sqrt{1+x}} = 1 - \frac{1}{2}x + \frac{3}{8}x^2 - \frac{5}{16}x^3 + \frac{35}{128}x^4 + \dots$$

3.
$$(1+x)^{3/2} = 1 + \frac{3}{2}x + \frac{3}{8}x^2 - \frac{1}{16}x^3 + \frac{3}{128}x^4 + \dots$$

4.
$$(1+x)^{-3/2} = 1 - \frac{3}{2}x + \frac{15}{8}x^2 - \frac{35}{16}x^3 + \frac{315}{128}x^4 + \dots$$

5.
$$\operatorname{tg} x = x + \frac{1}{3}x^3 + \frac{2}{15}x^5 - \frac{17}{315}x^7 + \frac{62}{2835}x^9 + \dots$$

6.
$$\arcsin x = x + \frac{1}{6}x^3 + \frac{3}{40}x^5 + \frac{5}{112}x^7 + \frac{35}{1152}x^9 + \dots$$

7.
$$\arccos x = \frac{\pi}{2} - x - \frac{1}{6}x^3 - \frac{3}{40}x^5 - \frac{5}{112}x^7 - \frac{35}{1152}x^9 + \dots$$

8.
$$\frac{1}{2} \ln \frac{1+x}{1-x} = x + \frac{1}{3}x^3 + \frac{1}{5}x^5 + \frac{1}{7}x^7 + \frac{1}{9}x^9 + \dots$$

Osservazioni:

1. A volte può essere utile applicare iterativamente le formule. Per esempio lo sviluppo di tg x si può anche calcolare come segue: (1) si scrive tg $x = \sin x/\cos x$, (2) si calcola la formula di MacLaurin sin x e di cos x, (3) poiché cos $x = 1 + \alpha(x)$, dove

$$\alpha(x) = -\frac{1}{2}x^2 + \frac{1}{4!}x^4 - \frac{1}{6!}x^6 + \dots,$$

si scrive $1/\cos x$ utilizzando la formula di MacLaurin della funzione 1/(1+x), con x sostituita da $\alpha(x)$. Quindi si ha

$$tg x = \frac{\sin x}{\cos x} = \frac{x - \frac{x^3}{3!} + \frac{x^5}{5!} + \dots}{1 - \frac{x^2}{2!} + \frac{x^4}{4!} + \dots} = \frac{x - \frac{x^3}{3!} + \frac{x^5}{5!} + \dots}{1 - \left(\frac{x^2}{2!} + \frac{x^4}{4!} + \dots\right)}$$

$$= \left(x - \frac{x^3}{3!} + \frac{x^5}{5!} + \dots\right) \left(1 + \left(\frac{x^2}{2!} + \frac{x^4}{4!} + \dots\right) + \left(\frac{x^2}{2!} + \frac{x^4}{4!} + \dots\right)^2 + \dots\right),$$

da cui si ottiene la formula dell'Esempio 5.

2. In particolare si può calcolare la formula di Taylor di qualsiasi funzione composta f(g(x)): prima si calcola la formula di Taylor f(y), con y = g(x) in un intorno di $y_0 = g(x_0)$, ottenendo un polinomio in $y - y_0$, poi si scrive la formula di Taylor di y in ciascun termine del polinomio:

$$f(g(x)) = f(g(x_0)) + f'(g(x_0)) (g(x) - g(x_0)) + \frac{1}{2!} f''(g(x_0)) (g(x) - g(x_0))^2 + \dots$$

$$= f(g(x_0)) + f'(g(x_0)) \left(g'(x_0) (x - x_0) + \frac{1}{2!} g''(x_0) (x - x_0)^2 + \dots\right)$$

$$+ \frac{1}{2!} f''(g(x_0)) \left(g'(x_0) (x - x_0) + \frac{1}{2!} g''(x_0) (x - x_0)^2 + \dots\right)^2 + \dots$$

Esempi:

1.
$$e^x \sin x = x + x^2 + \frac{1}{3}x^3 - \frac{1}{30}x^5 - \frac{1}{90}x^6 + \dots$$

2.
$$e^x \cos x = 1 + x - \frac{1}{3}x^3 - \frac{1}{6}x^4 - \frac{1}{30}x^5 + \dots$$

3.
$$e^{\sin x} = 1 + x + \frac{1}{2}x^2 - \frac{1}{8}x^4 - \frac{1}{15}x^5 + \dots$$

4.
$$e^{\cos x} = e\left(1 - \frac{1}{2}x^2 + \frac{1}{6}x^4 - \frac{31}{720}x^6 + \ldots\right).$$

14.3 Calcolo di limiti mediante la formula di Taylor

La formula di Taylor può essere utilizzata per calcolare i limiti. Risulta infatti essere un metodo molto efficiente per trattare le forme indeterminate, al pari dei Teoremi di de l'Hôpital studiati in §8.2.

Osservazioni:

1. Se le formule di MacLaurin di due funzioni f(x) e g(x) iniziano rispettivamente dall'ordine n e dall'ordine m (ovvero $f(x) = a x^n + \dots$ e $g(x) = b x^m + \dots$, con $a, b \neq 0$), allora si ha

$$\lim_{x \to 0} \frac{f(x)}{g(x)} = \begin{cases} 0, & n \ge m, \\ +\infty, & n < m, & a/b > 0, \\ -\infty, & n < m, & a/b < 0, \\ a/b, & n = m. \end{cases}$$

Infatti se n = m, f(x) e g(x) sono infinitesimi dello stesso ordine; se n > m, f(x) è infinitesimo di ordine più alto di g(x) e se n < m, g(x) è infinitesimo di ordine più alto di f(x).

2. In pratica, se si vuole utilizzare la formula di Taylor per calcolare il limite

$$\lim_{x \to 0} \frac{f(x)}{g(x)},$$

conviene scegliere, tra f(x) e g(x), la funzione per la quale sia più facile calcolare la formula di Taylor. Supponiamo che tale funzione sia g(x). Se ne calcola allora la formula di Taylor e si trova $g(x) = b x^m + \ldots$, per qualche $m \geq 1$ e $b \neq 0$. Si calcola allora la formula di Taylor per f(x) fino all'ordine m. Se tutti i termini dello sviluppo sono nulli, allora $f(x) = a x^n + \ldots$, per qualche n > m, quindi il limite è 0. Se invece si trova $f(x) = a x^n$ per qualche $a \neq 0$ e $n \leq m$, si ragiona come segue: se n = m il limite vale a/b, mentre se n < m il limite vale $+\infty$ se a e b hanno lo stesso segno e $+\infty$ se a e b hanno segno opposto. Analogamente se si parte dalla formula di Taylor di f(x) e si trova $f(x) = a x^n + \ldots$, per qualche $n \geq 1$ e $a \neq 0$, si calcola poi la formula di Taylor di g(x) e si ragiona in modo simile.

Esempi:

1.
$$\lim_{x \to 0} \frac{e^x - \sin x + \cos x - 2}{x^3} = \frac{1}{3}.$$

2.
$$\lim_{x \to 0} \frac{e^x - \sin^2 x - \cos x - x}{2x^3} = \frac{1}{12}.$$

3.
$$\lim_{x \to 0} \frac{e^x (\sin x - 1) + \cos x}{x^3} = \frac{1}{6}.$$

4.
$$\lim_{x \to 0} \frac{e^x - 1 - x}{1 - \cos x} = 1.$$

5.
$$\lim_{x \to 0} \frac{e^x - e^{-x} - 2x}{x - \sin x} = 2.$$

6.
$$\lim_{x \to 0} \frac{\ln(1+x) - \sin x + x^2}{e^x - x - \cos x} = \frac{1}{2}.$$

7.
$$\lim_{x \to 0} \left(\frac{1}{\sin x} - \frac{1}{x} \right) = 0.$$

$$8. \lim_{x \to 0} \frac{\sin x}{x} = 1.$$

9.
$$\lim_{x \to 0} \frac{e^x - 1}{x} = 1.$$

10.
$$\lim_{x \to 0} \frac{e^{\sin x^2} - \sqrt{1 + 2\sin^2 x} - \frac{x^4}{3}}{x^2 \sin^2 x} = 1.$$

11.
$$\lim_{x \to 0} \frac{1 - \cos x}{x^2} = \frac{1}{2}.$$

12.
$$\lim_{x \to 0} \frac{\ln(1 + \sin x)}{\sin(\ln(1 + x))} = 1.$$

Soluzioni:

1. Si ha
$$e^x - \sin x + \cos x - 2 = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} - x + \frac{x^3}{6} + 1 - \frac{x^2}{2} - 2 + \dots$$
, da cui segue
$$\lim_{x \to 0} \frac{e^x - \sin x + \cos x - 2}{x^3} = \lim_{x \to 0} \frac{(x^3/3) + \dots}{x^3} = \frac{1}{3}.$$

2. Si ha
$$e^x - \sin^2 x - \cos x - x = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} - x^2 - 1 + \frac{x^2}{2} - x + \dots$$
, da cui si ottiene
$$\lim_{x \to 0} \frac{e^x - \sin^2 x - \cos x - x}{2x^3} = \lim_{x \to 0} \frac{(x^3/6) + \dots}{2x^3} = \frac{1}{12}.$$

3. Si ha

$$e^{x} (\sin x - 1) + \cos x$$

$$= \left(1 + x + \frac{x^{2}}{2} + \frac{x^{3}}{6} + \dots\right) \left(x - \frac{1}{6}x^{3} - 1 + \dots\right) + 1 - \frac{x^{2}}{2} + \dots$$

$$= x - \frac{x^{3}}{6} - 1 + x^{2} - x + \frac{x^{3}}{2} - \frac{x^{2}}{6} + 1 - \frac{x^{2}}{2} + \dots = \frac{x^{6}}{6} + \dots,$$

da cui si ottiene $\lim_{x\to 0} \frac{e^x (\sin x - 1) + \cos x}{x^3} = \lim_{x\to 0} \frac{(x^3/6) + \dots}{x^3} = \frac{1}{6}$.

4. Si ha

$$e^{x} - 1 - x = \frac{x^{2}}{2} + \dots, \qquad 1 - \cos x = \frac{x^{2}}{2} + \dots,$$

da cui segue il risultato.

5. Si ha

$$e^{x} - e^{-x} - 2x = 1 + x + \frac{x^{2}}{2} + \frac{x^{3}}{6} - 1 + x - \frac{x^{2}}{2} + \frac{x^{3}}{6} - 2x + \dots = \frac{x^{3}}{3} + \dots,$$

$$x - \sin x = x - x + \frac{x^{3}}{6} + \dots = \frac{x^{3}}{6} + \dots,$$

da cui segue il risultato.

6. Si ha

$$\ln(1+x) - \sin x + x^2 = \left(x - \frac{x^2}{2} + \dots\right) - \left(x + \dots\right) + x^2 = \frac{x^2}{2} + \dots,$$

$$e^x - x - \cos x = 1 + x + \frac{x^2}{2} - x - 1 + \frac{x^2}{2} + \dots = x^2 + \dots,$$

da cui segue il risultato.

7. Scrivendo

$$\frac{1}{\sin x} - \frac{1}{x} = \frac{x - \sin x}{x \sin x},$$

si ha $x - \sin x = x - x + \frac{x^3}{6} + \dots = \frac{x^3}{6} + \dots$ e $x \sin x = x^2 + \dots$, da cui segue il risultato.

8.
$$\sin x = x - \frac{x^3}{6} + \dots \Longrightarrow \lim_{x \to 0} \frac{\sin x}{x} = 1.$$

9.
$$e^x - 1 = 1 + x - 1 + \dots = x + \dots \Longrightarrow \lim_{x \to 0} \frac{e^x - 1}{x} = 1.$$

10. Si ha

$$e^{\sin x^2} = 1 + (\sin x^2) + \frac{1}{2}(\sin x^2)^2 + \dots = 1 + (x^2 + \dots) + \frac{1}{2}(x^2 + \dots)^2 + \dots$$

$$= 1 + x^2 + \frac{1}{2}x^4 + \dots,$$

$$\sqrt{1 + 2\sin^2 x} = 1 + \frac{1}{2}(2\sin^2 x) - \frac{1}{8}(2\sin^2 x)^2 + \dots = 1 + (\sin x)^2 - \frac{1}{2}(\sin x)^4 + \dots$$

$$= 1 + x^2 - \frac{5}{6}x^4 + \dots,$$

$$x^2 \sin^2 x = x^4 + \dots,$$

da cui si ottiene $e^{\sin x^2} - \sqrt{1 + 2\sin^2 x} - x^4/3 = x^4 + \dots$ e $x^2 \sin^2 x = x^4 + \dots$, che implica il risultato.

11.
$$\cos x = 1 - \frac{x^2}{2} + \dots \Longrightarrow 1 - \cos x = \frac{x^2}{2} + \dots \Longrightarrow \lim_{x \to 0} \frac{1 - \cos x}{x^2} = \frac{1}{2}.$$

12. Si ha

$$\ln(1+\sin x) = \sin x - \frac{1}{2}(\sin x)^2 + \dots = x - \frac{x^3}{3!} - \frac{1}{2}(x - \frac{x}{3!} + \dots)^2 + \dots = x + \dots$$

$$\sin(\ln(1+x)) = \ln(1+x) - \frac{1}{3}(\ln(1+x))^3 + \dots$$

$$= x - \frac{x^2}{2} - \frac{1}{3!}\left(x - \frac{x^2}{2} + \dots\right) + \dots = x + \dots,$$

da cui si ottiene il risultato.

Osservazioni:

- 1. I limiti 4, 5 e 6 sono già stati discussi in §8.2, applicando i Teoremi di de l'Hôpital. Analogamente il limite 7 è stato discusso in §8.3.
- 2. I limiti 8 e 9 sono i limiti notevoli discussi 3 e 5, visti a pag. 75 e a pag. 86, rispettivamente.

14.4. ESERCIZI 293

14.4 Esercizi

1. $\lim_{x\to 0} \frac{\cos(\sin x) - \cos x}{x^2 \sin(x^2)}$ (cfr. l'esercizio 16 di §8.4).

2.
$$\lim_{x \to 0} \frac{e^x \sin x + e^{-x} \sin x - 2x \cos x}{x - \sin x}$$
.

3.
$$\lim_{x \to 0} \frac{e^{\sin x^2} - 2 + \cos x}{x \left(e^x - e^{-x}\right)}.$$

4.
$$\lim_{x \to 0} \frac{e^{\arctan x} - 1}{\sqrt{1+x} - \sqrt{1-x}}$$
.

5.
$$\lim_{x\to 0} \frac{(e^x - x - 1)\ln(1 + x)}{(1 - \cos x)\sin x}$$
.

6.
$$\lim_{x\to 0} \frac{e^{\sin x} - \cos x - \ln(1+x)}{\sqrt{1+x^2} - \cos x}$$
.

7.
$$\lim_{x \to 0} \frac{e^x - e^{3x} + e^{2x} - \cos 2x}{\sin x - x}.$$

8.
$$\lim_{x \to 0} \frac{e^{e^x - e^{-x}} - e^{2x}}{x^3}.$$

Soluzioni.

1. Si ha

$$\cos(\sin x) = 1 - \frac{1}{2}(\sin x)^2 + \frac{1}{4!}(\sin x)^4 + \dots = 1 - \frac{1}{2}x^2 + \frac{1}{6}x^4 + \frac{1}{4!}x^4 + \dots,$$

$$\cos x = 1 - \frac{1}{2}x^2 + \frac{1}{4!}x^4 + \dots,$$

$$x^2 \sin(x^2) = x^4 + \dots$$

da cui si ottiene che il limite è: 1/6.

2. Si ha

$$\sin x = x - \frac{x^3}{3!} + \dots,$$

$$e^x \sin x = \left(1 + x + \frac{x^2}{2!} + \dots\right) \left(x - \frac{x^3}{3!} + \dots\right),$$

$$e^{-x} \sin x = \left(1 - x + \frac{x^2}{2!} + \dots\right) \left(x - \frac{x^3}{3!} + \dots\right),$$

$$x \cos x = x \left(1 - \frac{x^2}{2!} + \dots\right),$$

quindi il imite è: 10.

3. Si ha

$$x\left(e^{x} - e^{-x}\right) = x\left(1 + x + \frac{x^{2}}{2!} - 1 + x - \frac{x^{2}}{2!} + \dots\right) = x\left(2x + \dots\right) = 2x^{2} + \dots,$$

$$e^{\sin x^{2}} = 1 + (\sin x^{2}) + \dots = 1 + x^{2} + \dots,$$

$$\cos x = 1 - \frac{x^{2}}{2!} + \dots,$$

quindi il limite è: 3/4.

4. Si ha

$$e^{\arctan x} = 1 + \arctan x + \dots = 1 + (x + \dots) + \dots = 1 + x + \dots,$$

$$\sqrt{1 + x} = 1 + \frac{x}{2} - \frac{x^2}{2} + \dots,$$

$$\sqrt{1 - x} = 1 - \frac{x}{2} - \frac{x^2}{2} + \dots,$$

quindi il limite è: 1.

5. Si ha

$$e^{x} - x - 1 = \left(1 + x + \frac{x^{2}}{2!} + \dots\right) - x - 1 = \frac{x^{2}}{2} + \dots,$$

$$\ln(1+x) = x - \frac{x^{2}}{2} + \dots = x + \dots,$$

$$(1 - \cos x) \sin x = \left(\frac{x^{2}}{2} + \dots\right) \left(x - \frac{x^{3}}{3!} + \dots\right) = \frac{x^{3}}{2} + \dots,$$

quindi il limite è: 1.

14.4. ESERCIZI 295

6. Si ha

$$e^{\sin x} = 1 + \sin x + \frac{(\sin x)^2}{2!} + \dots = 1 + x + \frac{x^2}{2} + \dots,$$

$$\cos x = 1 - \frac{x^2}{2!} + \dots,$$

$$\ln(1+x) = x - \frac{x^2}{2} + \dots,$$

$$\sqrt{1+x^2} - \cos x = \left(1 + \frac{x^2}{2} + \dots\right) - \left(1 - \frac{x^2}{2!} + \dots\right) = x^2 + \dots,$$

quindi il limite è: 3/2.

7. Si ha

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots = 1 + x + \frac{x^{2}}{2} + \frac{x^{3}}{6} + \dots,$$

$$e^{2x} = 1 + 2x + \frac{4x^{2}}{2!} + \frac{8x^{3}}{3!} + \dots + 2x + 2x^{2} + \frac{4x^{3}}{3} + \dots,$$

$$e^{3x} = 1 + 3x + \frac{9x^{2}}{2!} + \frac{27x^{3}}{3!} + \dots + 1 + 3x + \frac{9x^{2}}{2} + \frac{9x^{3}}{2} + \dots,$$

$$\cos 2x = 1 - \frac{4x^{2}}{2!} + \dots = 1 - 2x^{2}$$

$$\sin x - x = x - \frac{x^{3}}{3!} - x + \dots = -\frac{x^{3}}{6} + \dots,$$

quindi il limite è: 18.

8. Si ha

$$e^{x} - e^{-x} = \left(1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots\right) - \left(1 - x + \frac{x^{2}}{2!} - \frac{x^{3}}{3!} + \dots\right) = 2x + \frac{x^{3}}{3} + \dots,$$

$$e^{e^{x} - e^{-x}} = 1 + (e^{x} - e^{-x}) + \frac{(e^{x} - e^{-x})^{2}}{2!} + \frac{(e^{x} - e^{-x})^{3}}{3!} + \dots$$

$$= 1 + \left(2x + \frac{x^{3}}{3} + \dots\right) + \frac{1}{2}\left(4x^{2} + \dots\right) + \frac{1}{3!}\left(8x^{3} + \dots\right) + \dots$$

$$= 1 + 2x + 2x^{2} + \frac{5}{3}x^{3} + \dots,$$

$$e^{2x} = 1 + 2x + \frac{4x^{2}}{2} + \frac{8x^{3}}{3!} + \dots = 1 + 2x + 2x^{2} + \frac{4x^{3}}{3} + \dots,$$

quindi il limite è: 1/3.

Bibliografia

- [1] Nikolaj S. Piskunov Calcolo differenziale e integrale Vol. 1, Editori Riuniti, Roma, 2010.
- [2] Enrico Giusti, Analisi Matematica 1, Bollati Boringhieri, Torini, 1988.
- [3] Enrico Giusti, Esercizi e Complementi di Analisi Matematica Volume 1, Bollati Boringhieri, Torini, 1991.
- [4] Jaures P. Cecconi, Guido Stampacchia, Analisi Matematica Volume 1, Liguori Editore, Napoli, 1974.
- [5] Jaures P. Cecconi, Livio C. Piccinini, Guido Stampacchia, Esercizi e Problemi di Analisi Matematica Volume 1, Liguori Editore, Napoli, 1979.
- [6] S. Lang, Algebra lineare, Boringhieri, 1970.

Indice analitico

Α

base degli autovettori, 219 addizione, 15, 16 base del logaritmo, 33 approssimazione di una funzione con un base dell'esponenziale, 33 polinomio, 261 base di vettori in \mathbb{R}^n , 195 arcocosecante, 60 base di vettori nel piano, 184 arcocoseno, 60 base di vettori nello spazio, 189 arcocotangente, 61 arcosecante, 60 \mathbf{C} arcoseno, 60 arcotangente, 61 ascissa, 26 campo di definizione, 30 asintoto, 125 campo di esistenza, 30 obliquo, 125 codominio, 31 orizzontale, 125 coefficiente angolare, 35 verticale, 125 coefficiente binomiale, 11 cofattore, 209 asse combinazione, 12 x, 26combinazione lineare di vettori, 184, 195 y, 26complemento algebrico, 209 delle ascisse, 26 componenti di un vettore, 180 delle ordinate, 26 componenti di un vettore nello spazio, 189 reale, 15, 20 composizione di funzioni, 58 assi concavità, 36 cartesiani, 26 continuità dei numeri reali, 16, 18 coordinati, 26 continuità della funzione inversa, 90 assioma controimmagine, 57 di completezza, 18 coordinate nel piano, 26, 180 di continuità, 18 corrispondenza biunivoca, 16 di Dedekind, 18 cosecante, 33, 43 autovalore, 217, 219 coseno, 33, 42 autovettore, 218, 219 cotangente, 33, 43

В

D

derivata, 95 derivata della funzione composta, 100 derivata della funzione inversa, 101 derivata di ordine n, 103 derivata seconda, 102 determinante, 202 diagonalizazione, 223 dicotomia, 17 differenza di insiemi, 9 differenza di vettori, 181 dimostrazione per assurdo, 71 direzione di un vettore, 179 discontinuità eliminabile, 88 discriminante, 36 diseguaglianza trangolare, 28 disequazione di primo grado, 38 disequazione di secondo grado, 39 distanza, 65 distanza di un punto da un piano nello spazio, 194 distanza di un punto da una retta nel piano, 187, 188 dominio, 30

\mathbf{E}

elementi diagonali, 201
elementi fuori dalla diagonale, 201
elementi semplici, 248
elemento di matrice, 201
elemento inverso, 13, 16
elemento neutro del prodotto, 13, 16
elemento neutro dell'addizione, 13, 16
elemento opposto, 13, 16
elemento reciproco, 16
elemento separatore, 17
equazione cartesiana del piano nello spazio,
193

equazione cartesiana della retta nel piano, 182, 183 equazione cartesiana della retta nello spazio, equazione di primo grado, 35 equazione di secondo grado, 36 equazioni parametriche della retta nel piano, 182 equazioni parametriche della retta nwello spazio, 192 esponente, 33 esponenziale, 33, 47 estremo di integrazione, 235 estremo inferiore di un insieme, 26 estremo inferiore di una funzione, 70 estremo superiore di un insieme, 26 estremo superiore di una funzione, 70

\mathbf{F}

fattoriale, 11 fattorizzazione di un polinomio, 23 forma di Lagrange per il resto, 263 forma indeterminata, 109, 110 formula del binomio, 11 formula di integrazione per parti, 246 formula di McLaurin, 263 formula di Newton, 11 formula di Taylor, 263 formule di addizione, 43 formule di bisezione, 44 formule di prostaferesi, 44 formule di Werner, 44 fratti semplici, 248 funzione, 30 funzione algebrica, 61 funzione bigettiva, 57 funzione biiettiva, 57 funzione biunivoca, 57 funzione composta, 58, 100

INDICE ANALITICO 301

 \mathbf{G} funzione concava, 123 funzione continua, 83 funzione convessa, 123 grafico, 32 funzione crescente, 58, 117 grafico della funzione inversa, 59 funzione decrescente, 58, 117 funzione degli errori di Gauss, 242 T funzione derivabile, 95 funzione derivata, 95 immagine, 57 funzione di classe C^{∞} , 103 infinitesimo, 91 funzione di classe C^n , 103 infinitesimo dello stesso ordine, 91 funzione discontinua, 86 infinitesimo di ordine inferiore, 91 funzione dispari, 50 infinitesimo di ordine superiore, 91 funzione elementare, 61 insieme aperto, 18 insieme complementare, 9 funzione elementare principlae, 33 insieme inferiormente limitato, 26 funzione identità, 59 insieme superiormente limitato, 26 funzione illimitata, 69 insieme totalmente ordinato, 15 funzione iniettiva, 57 insieme vuoto, 9 funzione integrabile, 235 integrale definito, 234 funzione inversa, 59, 101 integrale ellittico, 242 funzione invertibile, 59 integrale indefinito, 239 funzione irrazionale, 61 integrazione di funzioni razionali, 248 integrazione per parti, 246 funzione limitata, 69 integrazione per sostituzione, 243 funzione limitata inferiormente, 70 intersezione di insiemi, 9 funzione limitata superiormente, 70 intervallo, 18 funzione monotona, 58 intervallo aperto, 18 funzione pari, 50 intervallo aperto a destra, 18 funzione periodica, 32 intervallo aperto a sinistra, 18 funzione razionale, 61 intervallo chiuso, 18 intervallo di integrazione, 235 funzione razionale regolare, 249 intervallo illimitato, 18 funzione strettamente crescente, 58, 117 intervallo limitato, 18 funzione strettamente decrescente, 58, 117 intorno, 65 funzione strettamente monotona, 58 inverso, 16 funzione suriettiva, 57 funzione trascendente, 61 \mathbf{L} funzione trigonometrica, 33, 42 funzione trigonometrica inversa, 60 limite, 66 funzione univoca, 30

limite destro, 69 limite sinistro, 69 limiti notevoli, 75 logaritmo, 33, 49 logartitmo naturale, 50 lunghezza di un vettore, 179

\mathbf{M}

maggiorante, 26 massimo assoluto, 122 massimo assoluto di una funzione, 88 massimo di un insieme, 26 massimo di una funzione, 70 massimo relativo di una funzione, 118 massimo relativo forte di una funzione, 118 massimo relativo proprio di una funzione, 118 massimo relativo stretto di una funzione, 118 matrice, 201 matrice complementare, 202 matrice dei cofattori, 209 matrice dei complementi algebrici, 209 matrice diagonale, 202 matrice diagonlizzabile, 223 matrice identità, 202 matrice inversa, 209 matrice invertibile, 209 matrice non singolare, 209 matrice nulla, 202 matrice quadrata, 201 matrice simmetrica, 211 matrice trasposta, 209 metodo dei coefficienti indeterminati, 251 metodo di Cramer, 215 minimo assoluto, 122 minimo assoluto di una funzione, 88 minimo di un insieme, 26 minimo di una funzione, 70

minimo relativo di una funzione, 118 minimo relativo forte di una funzione, 118 minimo relativo proprio di una funzione, 118 minimo relativo stretto di una funzione, 118 minorante, 26 modulo, 27, 65 modulo di un vettore, 179 molteplicità algebrica di una radice, 24 moltiplicazione, 15

N

numeri complessi, 20
numeri immaginari puri, 20
numeri interi, 13
numeri irrazionali, 15
numeri naturali, 10
numeri primi tra loro, 13
numeri razionali, 13
numeri reali, 15
numero complesso coniugato, 20
numero di Eulero, 77
numero di Nepero, 48, 77
numero intero negativo, 13
numero intero non negativo, 13
numero intero non positivo, 13
numero intero positivo, 13

\mathbf{O}

opposto, 16 ordinamento totale, 17 ordinata, 26 ordine di derivazione, 103 ordine di infinitesimo, 91 origine, 15, 26 INDICE ANALITICO 303

\mathbf{P}

parabola, 36, 51 parte immaginaria, 20 parte reale, 20 periodo, 32 periodo fondamentale, 32 permutazione, 11 piano, 193 piano cartesiano, 26 piano complesso, 20 polinomio, 61 polinomio caratteristico, 217, 219 potenza, 33 primitiva, 238 prodotto, 16 prodotto a destra di matrici, 206 prodotto a sinsitra di matrici, 206 prodotto cartesiano, 9, 25 prodotto di matrici, 206 prodotto di numeri naturali, 10 prodotto righe per colonne, 206 prodotto scalare nel piano, 185 prodotto scalare nello spazio, 189 prodotto vettoriale, 190, 203 proprietà antisimmetrica, 17 proprietà associativa del prodotto, 10, 16 proprietà associativa dell'addizione, 10, 16 proprietà commutativa del prodotto, 10, 16 proprietà commutativa dell'addizione, 10, 16 proprietà distributiva, 10, 16 proprietà riflessiva, 17 proprietà transitiva, 17 punto di applicazione di un vettore, 179 punto di discontinuità di prima specie, 88 punto di discontinuità di seconda specie, 88 punto di discontinuità essenziale, 88 punto di flesso, 124 punto di flesso obliquo, 124 punto di flesso orizzontale, 120, 124

punto di massimo assoluto, 88
punto di massimo locale, 118
punto di massimo relativo, 118
punto di massimo relativo forte, 118
punto di massimo relativo proprio, 118
punto di massimo relativo stretto, 118
punto di minimo relativo stretto, 118
punto di minimo assoluto, 88
punto di minimo locale, 118
punto di minimo relativo, 118
punto di minimo relativo forte, 118
punto di minimo relativo proprio, 118
punto di minimo relativo proprio, 118
punto estremale, 119
punto stazionario, 119

\mathbf{R}

radice di un polinomio, 23 radice di un'equazione, 23 radice quadrata, 15 rapporto incrementale, 95 reciproco, 16 regola del parallelogramma, 180, 189 regola della mano destra, 191 regola di Laplace, 204 regola di Sarrus, 203 regola grafica per la funzione inversa, 59 regole di derivazione, 98 resto, 262 resto di Lagrange, 263 retta, 35, 182 retta nel piano, 182 retta nello spazio, 192 retta tangente, 97 riflessione rispetto a un asse, 50 riflessione rispetto all'origine, 51 riflessione rispetto alla bisettrice, 59

\mathbf{S}

secante, 33, 43
seno, 33, 42
sezione, 17
sistema di riferimento, 25
sistema lineare, 211
somma, 16
somma di numeri naturali, 10
somma di vettori, 180, 181, 189
somma integrale, 234
somma integrale inferiore, 233
somma integrale superiore, 233
sviluppo del determinante, 203

\mathbf{T}

tangente, 33, 43 teorema degli zeri di una funzione continua, teorema dei carabinieri, 71 teorema dei valori intermedi, 89 teorema del confronto, 71 teorema della media, 238 teorema della permanenza del segno, 90 teorema di Abel-Ruffini, 24 teorema di Binet, 207 teorema di Cauchy, 109 teorema di Cramer, 214 teorema di de l'Hôpital, 114 teorema di Fermat, 119 teorema di Lagrange, 108 teorema di Rolle, 107 teorema di Weierstrass, 88 teorema fondamentale del calcolo integrale, 240 teorema fondamentale dell'algebra, 23 terna levogira, 190 terna ortogonale levogira, 190

terna sinistrorsa, 190

traslazione, 51

U

unione di insiemi, 9 unità immaginaria, 20

\mathbf{V}

valore assoluto, 27 variabile, 30 verso di un vettore, 179 versore in \mathbb{R}^n , 195 versore nel piano, 179 versori nello spazio, 190 vettore, 179 vettore nello spazio, 189 vettore nullo, 181 vettori antiparalleli, 179 vettori linearmente dipendenti, 184, 189 vettori paralleli, 179

\mathbf{Z}

zero, 10 zero di un'equazione, 23