Corso di Laurea in Matematica – Anno Accademico 2023/2024 FM440 - Sistemi dinamici

ESERCIZI - TERZA SETTIMANA

ESERCIZIO 1. Costruire una sequenza in $\{0,1\}^{\mathbb{Z}}$ tale che tutte le stringhe di lunghezza $\leq N_0$ abbiano frequenze definite e positive.

ESERCIZIO 2. Siano k > 0 e $f : \{0, ..., n\}^k \to \{0, ..., n\}$, e si fissi arbitrariamente $(..., \sigma_{-2}, \sigma_{-1}) \in \{0, ..., n\}^{\mathbb{Z} < 0}$. Per ogni $i \geq 0$ si definisca induttivamente $\sigma_i = f(\sigma_{i-1, ..., \sigma_{i-k}})$ e sia $\sigma := \{\sigma_h\}_{h \in \mathbb{Z}}$. Mostrare che σ ha entropia nulla, i.e. "non è possibile costruire sequenza complesse con un algoritmo finito".

ESERCIZIO 3. Sia $\sigma \in \{0,1\}^{\mathbb{Z}}$ una sequenza con distribuzione di Bernoulli B(1/3,2/3). Mostrare che

$$s(\sigma) = -\frac{1}{3}\log\frac{1}{3} - \frac{2}{3}\log\frac{2}{3}.$$

ESERCIZIO 4. Si consideri la sequenza $\sigma \in \{0,1\}^{\mathbb{Z}}$ costituita di n_0 volte "zero", seguiti da n_0 volte "uno", seguito da n_1 volte "zero" e cosi' via, con n_j tali che

$$\lim_{k \to +\infty} \frac{n_{k+1}}{n_0 + \ldots + n_k} = 0.$$

Mostrare che σ ha frequenze definite e calcolarne l'entropia.