Corso di laurea in Matematica

Sistemi dinamici – Primo Modulo

Prova d'esonero del 22-12-2000

Svolgere a scelta due dei tre seguenti esercizi:

ESERCIZIO 1. Si consideri il sistema meccanico unidimensionale che descrive un punto materiale di massa m = 1, soggetto alla forza di energia potenziale

$$V(x) = e^{2x^2} (2x^2 - 1) (x^2 - 1)^2.$$

- (1.1) Scrivere l'equazione del moto.
- (1.2) Verificare che l'energia $E(x,y) = y^2/2 + V(x)$, con $y = \dot{x}$, è una costante del moto.
- (1.3) Determinare i punti d'equilibrio del sistema dinamico corrispondente.
- (1.4) Discuterne la natura.
- (1.5) Determinare analiticamente la curva di livello che corrisponde al valore E=0 dell'energia.
- (1.6) Discutere qualitativamente le curve di livello nel piano $(x, y) = (x, \dot{x})$.
- (1.7) Verificare che la traiettoria con condizioni iniziali $(x(0), \dot{x}(0)) = (0, \sqrt{2})$ è periodica.
- (1.8) Scriverne il periodo T come integrale definito.
- (1.9) Stimare il periodo T.

ESERCIZIO 2. Si consideri un punto materiale di massa m=1 soggetto a una forza centrale di energia potenziale

$$V(\rho) = -\frac{1}{2\rho^4} + \frac{1}{6\rho^6} + \frac{\alpha}{2\rho^2},$$

con $\alpha \in \mathbb{R}$. Si discuta il moto della variabile $\rho(t)$, rispondendo alle domande seguenti al variare del parametro α e del modulo L del momento angolare del sistema.

- (1) Scrivere l'equazione del moto per la variabile ρ e il sistema dinamico associato.
- (2) Determinare i punti d'equilibrio e discuterne la stabilità.
- (3) Disegnare il grafico del potenziale efficace.
- (4) Analizzare qualitativamente le orbite nel piano $(\rho, \dot{\rho})$.
- (5) Determinare le traiettorie periodiche nel piano $(\rho, \dot{\rho})$.
- (6) Discutere le condizioni sotto le quali in generale il moto complessivo del sistema è periodico.

ESERCIZIO 3. Dato un sistema di riferimento $\kappa = Oxyz$ (sistema assoluto), si consideri anche un sistema di riferimento mobile $K = O'\xi\eta\zeta$ (sistema relativo), la cui origine O' si muove nel piano (x,y) lungo il profilo $y(x) = x^3 - 6x^2 + 9x$; la componente lungo l'asse x del vettore che individua il punto O' varia secondo la legge $x_{O'}(t) = t$.

L'asse ζ di K si mantiene sempre paralello all'asse z di κ , mentre l'asse ξ si mantiene sempre tangente alla curva y = y(x).

Un punto materiale P di massa m=1 si muove lungo l'asse ξ con legge oraria $\xi(t)=a\sin bt$, con a,b costanti positive.

- (1) Scrivere la trasformazione rigida $D: K \to \kappa$ come composizione di una traslazione C con una rotazione B, i.e. D = CB, e determinare C e B.
- (2) Scrivere la soluzione delle equazioni del moto $\mathbf{q}(\mathbf{t})$ nel sistema assoluto e $\mathbf{Q}(\mathbf{t})$ nel sistema mobile.
- (3) Determinare la velocità assoluta \mathbf{v} .
- (4) Determinare la velocità relativa \mathbf{v}' .
- (5) Determinare la componente traslatoria della velocità di trascinamento $\mathbf{v_0}$.
- (6) Determinare la componente rotatoria della velocità di trascinamento $\mathbf{v}_{\mathbf{T}}$.
- (7) Determinare la forza di Coriolis che agisce sul punto P.
- (8) Determinare la forza centrifuga che agisce sul punto P.