Corso di laurea in Matematica - Anno Accademico 2004/2005

FM1 - Equazioni differenziali e meccanica

SECONDA PROVA D'ESONERO (31-05-2005)

CORREZIONE

Esercizio 2.

2.1. Studio dell'energia potenziale. Si ha

$$V(x) = \frac{2}{\pi} \arctan f(x), \qquad f(x) = a \frac{x^2}{2} - \frac{x^3}{3},$$

e quindi

$$V'(x) = \frac{2}{\pi} \frac{f'(x)}{1 + f^2(x)},$$

$$V''(x) = \frac{2}{\pi} \left(\frac{f''(x)}{1 + f^2(x)} - \frac{2f(x)(f'(x))^2}{(1 + f^2(x))^2} \right)$$

$$= \frac{2}{\pi} \frac{1}{(1 + f^2(x))^2} \left((1 + f^2(x))f''(x) - 2f(x)(f'(x))^2 \right),$$

dove

$$f'(x) = ax - x^2 = x (a - x),$$

 $f''(x) = a - 2x,$

così che si vede che V'(x) = 0 se e solo se f'(x) = 0, che richiede x = 0 oppure x = a. Inoltre, in corrispondenza di un punto stazionario x_0 (dove $f'(x_0) = 0$) si ha

$$V''(x_0) = \frac{2}{\pi} \frac{f''(x_0)}{1 + f^2(x_0)},$$

e quindi $V''(x_0)$ ha il segno di $f''(x_0)$. Risulta allora f''(0) = a e f''(a) = -a. Inoltre

$$\lim_{x \to \pm \infty} V(x) = \mp 1.$$

Si vede inoltre che, se a>0, si ha V'(x)>0 per $x\in(0,a)$ e V'(x)<0 per x<0 e x>a, mentre se a<0, si ha V'(x)>0 per $x\in(a,0)$ e V'(x)<0 per x<a e x>0. Infine se a=0 si ha V'(x)<0 per ogni $x\neq a$.

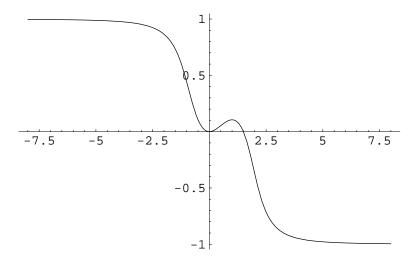


Figura 1. Grafico della funzione V(x) per a > 0.

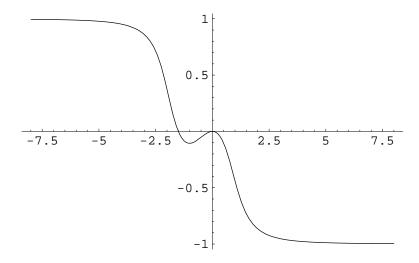


Figura 2. Grafico della funzione V(x) per a < 0.

In conclusione se $a \neq 0$ si hanno due punti stazionari: se a > 0 il punto x = 0 è un punto di minimo e il punto x = a è un punto di massimo.

Se a < 0 il punto x = 0 è un punto di massimo e il punto x = a è un punto di minimo.

Se invece a=0 si ha un unico punto critico, x=0, che è un punto di flesso orizzontale.

Il grafico della funzione V(x) è rappresentato in Figura 1 per a > 0, in Figura 2 per a < 0 e in Figura 3 per a = 0.

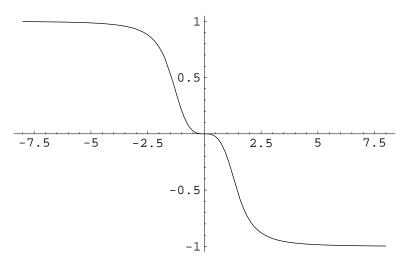


Figura 3. Grafico della funzione V(x) per a=0.

2.2. Punti d'equilibrio. Il sistema dinamico associato si scrive

$$\begin{cases} \dot{x} = y, \\ \dot{y} = -V'(x), \end{cases}$$

quindi i punti d'equilibrio sono i punti $P = (x_0, 0)$, con x_0 punto stazionario di V(x).

Per a > 0 abbiamo due punti d'equilibrio, $P_1 = (0,0)$ e $P_2 = (a,0)$.

Anche per a < 0 abbiamo due punti d'equilibrio, $P_1 = (a, 0)$ e $P_2 = (0, 0)$.

Per a = 0 c'è un solo punto d'equilibrio $P_0 = (0, 0)$.

2.3. Stabilità dei punti d'equilibrio. Per a > 0 troviamo che P_1 è un punto d'equilibrio stabile per il teorema di Dirichlet (perché corrispondente a un punto di minimo isolato per V(x)), mentre P_2 è un punto d'equilibrio instabile (perché corrispondente a un punto di massimo isolato per V(x)).

Per a < 0, di nuovo, P_1 è un punto d'equilibrio stabile per il teorema di Dirichlet e P_2 è un punto d'equilibrio instabile.

Per a = 0 il punto P_0 è un punto d'equilibrio instabile (perché corrispondente a un punto di flesso orizzontale per V(x)).

2.4. Analisi qualitativa. Nel piano $(x, y) = (x, \dot{x})$, per a > 0, si trova la situazione rappresentata in Figura 4, dove sono rappresentate le curve di livello

$$\Gamma_E = \left\{ (x, y) \in \mathbb{R}^2 : \frac{1}{2}y^2 + V(x) = E \right\}$$

del sistema. Solo valori E > -1 sono possibili. I versi di percorrenza delle orbite sono sempre da sinistra a destra nel semipiano superiore e da destra a sinistra nel semipiano inferiore (poiché $y = \dot{x}$): le stesse considerazioni valgono per le figure successive.

Per 1 > E > V(a) ed E < 0 le curve di livello hanno un'unica componente connessa, costituita da un'orbita aperta. Per $0 \le E < V(a)$ le curve di livello Γ_E hanno due componenti connesse: una aperta e una chiusa. Se E > 0 quest'ultima è percorsa da una traiettoria periodica, mentre per E = 0 si riduce al solo punto d'equilibrio P_1 . Infine per $E \ge 1$ ogni curva di livello Γ_E è costituita da due componenti connesse, una nel semipiano superiore e una nel semipiano inferiore, entrambe costituite da un'orbita aperta.

Per E=V(a) la curva di livello interseca l'asse x in x=a con tangente obliqua (poiché $V''(a)\neq 0$): essa contiene quattro orbite: il punto d'equilibrio instabile P_2 , due orbite illimitate (una asintotica a P_2 per $t\to\infty$ e all'infinito per $t\to-\infty$, l'altra asintotica a P_2 per $t\to-\infty$ e all'infinito per $t\to\infty$) e un'orbita omoclina asintotica a P_2 .

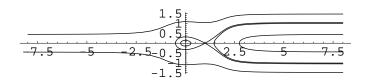


Figura 4. Analisi qualitativa per a > 0.

Per a<0 si ha la situazione rappresentata in Figura 5. Di nuovo si deve avere E>-1.

Per 1 > E > 0 ed E < V(a) le curve di livello hanno un'unica componente connessa, costituita da un'orbita aperta. Per $0 > E \ge V(a)$ le curve di livello Γ_E hanno due componenti connesse: una aperta e una chiusa. Se E > V(a) quest'ultima è percorsa da una traiettoria periodica, mentre per E = V(a) si riduce al solo punto d'equilibrio P_1 . Infine per $E \ge 1$ ogni curva di livello Γ_E è costituita da due componenti connesse, una nel semipiano superiore e una nel semipiano inferiore, entrambe costituite da un'orbita aperta.

Per E=0 la curva di livello interseca l'asse x in x=0 con tangente obliqua (poiché $V''(0) \neq 0$): essa contiene quattro orbite: il punto d'equilibrio instabile P_2 , due orbite illimitate (una asintotica a P_2 per $t \to \infty$ e all'infinito per $t \to -\infty$, l'altra asintotica a P_2 per $t \to -\infty$ e all'infinito per $t \to \infty$) e un'orbita omoclina asintotica a P_2 .

Per a=0 si ha la situazione rappresentata in Figura 6. Di nuovo si deve avere E>-1. Per E=0 la curva di livello interseca l'asse x in x=0 formando una cuspide (poiché V''(0)=0). Tutte le curve di livello Γ_E contengono un'unica curva aperta, tranne che per E=: in tal caso Γ_0 contiene il punto d'equilibrio P_0 e due orbite aperte, una asintotica a P_0 per $t\to\infty$ e all'infinito per $t\to-\infty$, l'altra

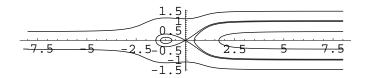


Figura 5. Analisi qualitativa per a < 0.

asintotica a P_0 per $t \to -\infty$ e all'infinito per $t \to \infty$ Per E > 1 si hanno due orbite aperte, una nel semipiano superiore e una nel semipiano inferiore.

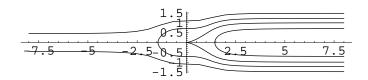


Figura 6. Analisi qualitativa per a = 0.

2.5. Traiettoria con energia nulla. Sia a=-1. Il dato iniziale (x(0),y(0)) con x(0)=-1 ed energia E=0 si trova sulla curva di livello contenente il punto d'equilibrio instabile. Quale che sia il valore iniziale di y(0) (sono possibili due valori, uno positivo e uno negativo), la traiettoria tende asinoticamente (sia per $t\to\infty$ sia per $t\to-\infty$) a x=0. Quindi non esiste alcun T finito tale che x(T)=0.

Esercizio 4.

4.1. Trasformazione rigida. Si ha

$$\mathbf{r} = \mathbf{q}_{O'} = (0, a \sin t, 0),$$

е

$$B = B^{(3)}(\theta(t)) = \begin{pmatrix} \cos \theta(t) & -\sin \theta(t) & 0\\ \sin \theta(t) & \cos \theta(t) & 0\\ 0 & 0 & 1 \end{pmatrix},$$

con $\dot{\theta}(t) = \omega(t) = a \sin t$, che implica $\theta(t) = -a \cos t + c$, dove la costante c va scelta in modo tale che si abbia $\theta(0) = 0$: quindi $c = a \in \theta(t) = \alpha(1 - \cos t)$.

Quindi $\mathbf{q} = B\mathbf{Q} + \mathbf{r}$ con $\mathbf{Q} = (1, 0, 0)$, che dà

$$\mathbf{q}(t) = (\cos \theta(t), \sin \theta(t) + a \sin t, 0),$$

$$con \theta(t) = a(1 - \cos t).$$

4.2. Velocità assoluta. Si ha

$$\mathbf{v} = \dot{\mathbf{q}} = (-a\sin\theta(t)\sin t, a\cos\theta(t)\sin t + a\cos t, 0).$$

4.3. Velocità relativa. Si ha

$$\mathbf{v}' = B\dot{\mathbf{Q}} = \mathbf{0} = (0, 0, 0).$$

4.4. Componente traslatoria della velocità di trascinamento. Si ha

$$\mathbf{v}_0 = \dot{\mathbf{r}} = (0, a\cos t, 0).$$

4.5. Componente rotatoria della velocità di trascinamento. Si ha

$$\mathbf{v}_T = [\boldsymbol{\omega}, \mathbf{q} - \mathbf{r}],$$

dove $\boldsymbol{\omega} = (0, 0, \dot{\theta}(t)) = (0, 0, a \sin t) e \mathbf{q} - \mathbf{r} = (\cos \theta(t), \sin \theta(t), 0)$. Quindi

$$\mathbf{v}_T = (-a\sin\theta(t)\sin t, a\cos\theta(t)\sin t, 0).$$

4.6. Forza di Coriolis. Si ha

$$\mathbf{F}_{\mathrm{Cor}} = -2\left[\boldsymbol{\Omega}, \dot{\mathbf{Q}}\right] = \mathbf{0},$$

dove $\Omega = B^{-1}\omega = (0, 0, a \sin t)$.

4.7. Forza centrifuga. Si ha

$$\mathbf{F}_{\mathrm{cf}} = -\left[\boldsymbol{\Omega}, \left[\boldsymbol{\Omega}, \mathbf{Q} \right] \right],$$

dove $\mathbf{Q}=(1,0,0).$ Quindi $[\boldsymbol{\varOmega},\mathbf{Q}]=(0,a\sin t,0),$ e $[\boldsymbol{\varOmega},[\boldsymbol{\varOmega},\mathbf{Q}]]=(-a^2\sin^2 t,0,0)$ che

implica

$$\mathbf{F}_{\mathrm{cf}} = -\left[\boldsymbol{\Omega}, \left[\boldsymbol{\Omega}, \mathbf{Q}\right]\right] = (a^2 \sin^2 t, 0, 0).$$