Corso di laurea in Matematica - Anno Accademico 2008/2009 FM1 - Equazioni differenziali e meccanica

PRIMA PROVA D'ESONERO (17-04-2009)

CORREZIONE

Esercizio 1.

1.1. Gli autovalori di A sono gli zeri del poninomio

$$(1-\lambda)^2 - \mu = 0,$$

quindi

$$\lambda_1(\mu) = 1 + \sqrt{\mu}, \qquad \lambda_2(\mu) = 1 - \sqrt{\mu}.$$

Per $\mu = 0$ si ha $\lambda_1(0) = \lambda_2(0) = 1$, quindi la soluzione x(t) è della forma

$$x(t) = (x_1(t), x_2(t)) = e^t (A + Bt),$$

con $A = (A_1, A_2)$ e $B = (B_1, B_2)$ tali che

$$\dot{x}_1 = x_1, \qquad \dot{x}_1 = x_1 + x_2,$$

e x(0) = (a, b). Quindi

$$e^{t} (A_{1} + B_{1}) + e^{t} t B_{1} = e^{t} (A_{1}) + e^{t} t (B_{1}),$$

 $e^{t} (A_{2} + B_{2}) + e^{t} t B_{2} = e^{t} (A_{1} + A_{2}) + e^{t} t (B_{1} + B_{2}),$

ovvero

$$A_1 + B_1 = A_1,$$

 $B_1 = B_1,$
 $A_2 + B_2 = A_1 + A_2,$
 $B_2 = B_1 + B_2.$

Inoltre si ha

$$x_1(0) = A_1 = a,$$
 $x_2(0) = A_2 = b.$

Si trova quindi

$$B_1 = 0,$$
 $B_2 = A_1 = a$ \implies $A = (a, b),$ $B = (0, a).$

In conclusione si ha

$$x(t) = e^t (a, b + at).$$

1.2. Per $\mu > 0$ gli autovalori sono distinti, quindi la soluzione è della forma

$$x(t) = (x_1(t), x_2(t)) = e^t (Ae^{\gamma t} + Be^{-\gamma t}), \qquad \gamma = \sqrt{\mu},$$

con $A = (A_1, A_2)$ e $B = (B_1, B_2)$ tali che

$$\dot{x}_1 = x_1 + \mu x_2, \qquad \dot{x}_1 = x_1 + x_2,$$

e x(0) = (a, b). Quindi

$$\begin{split} & e^{t}e^{\gamma t}A_{1}\left(1+\gamma\right)+e^{t}e^{-\gamma t}B_{1}\left(1-\gamma\right)=e^{t}e^{\gamma t}\left(A_{1}+\mu A_{2}\right)+e^{t}e^{-\gamma t}\left(B_{1}+\mu B_{2}\right), \\ & e^{t}e^{\gamma t}A_{2}\left(1+\gamma\right)+e^{t}e^{-\gamma t}B_{2}\left(1-\gamma\right)=e^{t}e^{\gamma t}\left(A_{1}+A_{2}\right)+e^{t}e^{-\gamma t}\left(B_{1}+B_{2}\right), \end{split}$$

ovvero

$$A_1 + \gamma A_1 = A_1 + \mu A_2,$$

$$B_1 - \gamma B_1 = B_1 + \mu B_2,$$

$$A_2 + \gamma A_2 = A_1 + A_2,$$

$$B_2 - \gamma B_2 = B_1 + B_2.$$

Inoltre si ha

$$x_1(0) = A_1 + B_1 = a,$$
 $x_2(0) = A_2 + B_2 = b.$

Risulta (tenendo conto che $\mu = \gamma^2$)

$$A_1 = \gamma A_2, \qquad B_1 = -\gamma B_2,$$

e quindi

$$A_1 + B_1 = a,$$
 $A_1 - B_1 = \gamma b,$

da cui si ottiene

$$A_1 = \frac{1}{2}(a + \gamma b), \qquad B_1 = \frac{1}{2}(a - \gamma b), \qquad A_2 = \frac{1}{2\gamma}(a + \gamma b), \qquad B_1 = -\frac{1}{2\gamma}(a - \gamma b).$$

In conclusione

$$x(t) = e^{t} \left(\frac{1}{2} (a + \gamma b) e^{\gamma t} + \frac{1}{2} (a - \gamma b) e^{-\gamma t}, \frac{1}{2\gamma} (a + \gamma b) e^{\gamma t} - \frac{1}{2\gamma} (a - \gamma b) e^{-\gamma t} \right).$$

1.3. Possiamo riscrivere $x(t)=x(t,x_0,\mu)$ per $\mu>0$ nella forma

$$x(t, x_0, \mu) = e^t \left(a \left(\frac{e^{\gamma t} + e^{-\gamma t}}{2} \right) + \gamma b \left(\frac{e^{\gamma t} - e^{-\gamma t}}{2} \right), a \left(\frac{e^{\gamma t} - e^{-\gamma t}}{2\gamma} \right) + b \left(\frac{e^{\gamma t} + e^{-\gamma t}}{2} \right) \right),$$

Per t fissato si ha

$$\frac{\mathrm{e}^{\gamma t} + \mathrm{e}^{-\gamma t}}{2} = 1 + O(\gamma), \qquad \frac{\mathrm{e}^{\gamma t} - \mathrm{e}^{-\gamma t}}{2} = \gamma t + O(\gamma^2),$$

quindi per $\mu \to 0$ si ha

$$x_1(t, x_0, \mu) \to a e^t, \qquad x_2(t, x_0, \mu) \to (at + b) e^t,$$

ovvero $x(t, x_0, \mu) \to x(t, x_0, 0)$ indipendentemente dal valore del dato iniziale x_0 .

Esercizio 2.

2.1. Punti d'equilibrio. Si ha

$$\begin{cases} \dot{x} = 2x (y^2 - 1), \\ \dot{y} = 2y (x^2 - 1), \end{cases}$$

così che si ha $\dot{y}=0$ o per y=0 o per $x=\pm 1$, e $\dot{x}=0$ o per x=0 o per $y=\pm 1$.

Se y=0 si ha quindi x=0, mentre se $x=\pm 1$ si ha $y=\pm 1$. In conclusione abbiamo i cinque punti d'equilibrio (0,0), (-1,-1), (-1,1), (1,-1), (1,1).

2.2. Stabilità dei punti d'equilibrio. Possiamo riscrivere il sistema come

$$\begin{cases} \dot{x} = 2xy^2 - 2x \\ \dot{y} = 2yx^2 - 2y, \end{cases}$$

quindi la matrice del sistema linearizzato nell'intorno del punto d'equilibrio (x_0, y_0) è data da

$$A(x_0, y_0) = \begin{pmatrix} 2y_0^2 - 2 & 4x_0y_0 \\ 4x_0y_0 & 2x_0^2 - 2 \end{pmatrix}.$$

Si ha

$$A(0,0) = \begin{pmatrix} -2 & 0 \\ 0 & -2 \end{pmatrix}, \qquad A(1,1) = A(-1,-1) = \begin{pmatrix} 0 & 4 \\ 4 & 0 \end{pmatrix}, \qquad A(-1,1) = A(1,-1) = \begin{pmatrix} 0 & -4 \\ -4 & 0 \end{pmatrix},$$

quindi A(0,0) ha autovalore -2 con molteplicità 2, mentre $A(\pm 1,\pm 1)$ ha autovalori ± 4 .

Poiché gli autovalori di A(0,0) sono entrambi negativi possiamo concludere che (0,0) è un punto d'equilibrio asintoticamente stabile. Poiché $A(\pm 1, \pm 1)$ ha almeno un autovalore positivo possiamo concludere che i punti (-1,-1), (-1,1), (1,-1) e (1,1) sono punti d'equilibrio instabile.

2.3. Analisi qualitativa. Per studiare le traiettorie del sistema consideriamo le curve di livello

$$\Sigma_c = \left\{ (x, y) \in \mathbb{R}^2 : V(x, y) = c \right\}$$

della funzione V(x,y), tenendo conto che le traiettorie attraversano ortogonalmente tali curve.

Innazitutto studiamo le curve di livello che contengono i punti d'equilibrio instabile.

Si ha $V(\pm 1, \pm 1) = 0$, quindi

$$\Sigma_{0} = C_{1} \cup C_{2} \cup C_{3} \cup_{4},$$

$$C_{1} = \left\{ (x, y) \in \mathbb{R}^{2} : x = 1 \right\}, \qquad C_{2} = \left\{ (x, y) \in \mathbb{R}^{2} : x = -1 \right\},$$

$$C_{3} = \left\{ (x, y) \in \mathbb{R}^{2} : y = 1 \right\}, \qquad C_{4} = \left\{ (x, y) \in \mathbb{R}^{2} : y = -1 \right\},$$

quindi Σ_0 è costituita dall'unione di quattro rette.

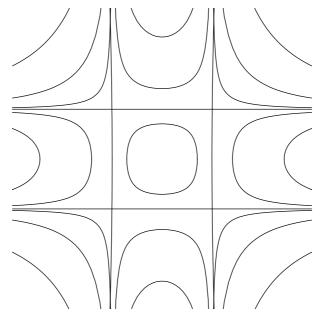


Figura 1. Curve di livello della funzione V(x,y).

Usando la continuità della funzione V possiamo disegnare le altre curve di livello. Si trova la situazione rappresentata in Figura 1.

Come suggerito dal testo, si verifica immediatamente che le curve $y=\pm x$ sono invarianti. Infatti se poniamo y=x troviamo

$$\dot{x} = 2x(x^2 - 1) = 2y(y^2 - 1) = \dot{y},$$

quindi se x(0) = y(0) si ha x(t) = y(t) per ogni t per cui la soluzione è definita. Analogamente, se poniamo y = -x troviamo

$$\dot{x} = 2x(x^2 - 1) = -2y(y^2 - 1) = -\dot{y},$$

quindi anche la retta y = -x è invariante. Inoltre sia sulla curva y = x sia sulla curva y = -x si ha $\dot{x} > 0$ se e solo se x > 1 oppure se -1 < x < 0.

Anche le rette x=0 e y=0 sono invarianti. Infatti se poniamo x=0 troviamo

$$\dot{x} = 0, \qquad \dot{y} = -2y,$$

e quindi x(t) = 0 se x(0) = 0; inoltre sulla retta x = 0 si ha $\dot{y} > 0$ se e solo se y < 0. Analogamente, se poniamo y = 0 troviamo

$$\dot{x} = -2x, \qquad \dot{y} = 0,$$

e quindi y(t) = 0 se y(0) = 0; inoltre sulla retta y = 0 si ha $\dot{x} > 0$ se e solo se x < 0.

Le altre traiettorie si ottengono utilizzando la dipendenza continua dai dati iniziali e tenendo conto che le traiettorie devono attraversare ortogonalmente le curve di livello disegnate in Figura 1. Si ha quindi la situazione rappresentata in Figura 2.

Esercizio 3.

3.1. Indichiamo con $B_r(x)$ l'intorno di raggio r e centro in x, i.e. $B_r(x) = \{y \in \mathbb{R}^n : |y - x| < r\}$, con \overline{A} la

chiusura dell'insieme A, e con $\varphi(t,x)$ la soluzione di $\dot{x} = f(x)$ con dato iniziale x.

Per definizione di stabilità per ogni $\varepsilon > 0$ esiste $\delta > 0$ tale che se $\bar{x} \in B_{\delta}(x_0)$ allora $\varphi(t, \bar{x}) \in B_{\varepsilon}(x_0)$ per ogni $t \geq 0$. Fissato $\varepsilon > 0$ si ponga $B = B_{\delta}(x_0)$. Quindi $\varphi(t, \bar{x}) \in B_{\varepsilon}(x_0) \subset \overline{B_{\varepsilon}(x_0)} \ \forall t \geq 0$. Da ogni successione di punti $\varphi(t_k, \bar{x})$, con $\{t_k\}$ crescente e divergente, si può quindi estrarre, usando la compattezza, una sottosuccessione convergente $\varphi(t_{k_j}, \bar{x})$ a un punto $y \in \overline{B_{\varepsilon}(x_0)}$. Quindi $y \in L_{\omega}(\bar{x})$, ovvero $L_{\omega}(\bar{x}) \neq \emptyset$.

3.2. Si ragiona come nella dimostrazione del teorema di Ljapunov (Capitolo 4, paragrafo 18.19), e si ottiene $L_{\omega}(x) = x_0$.

Esercizio 4.

4.1. In una dimensione, un esempio possibile è dato da

$$\dot{\theta} = \cos \theta - 1, \qquad \theta \in \mathbb{T} = \mathbb{R}/2\pi\mathbb{Z},$$

(cfr. Capitolo 4, Osservazione 16.6). In due dimensioni si può considerare

$$\begin{cases} \dot{\theta} = \cos \theta - 1, \\ \dot{x} = -x, \end{cases} \quad (\theta, x) \in \mathbb{T} \times \mathbb{R}.$$

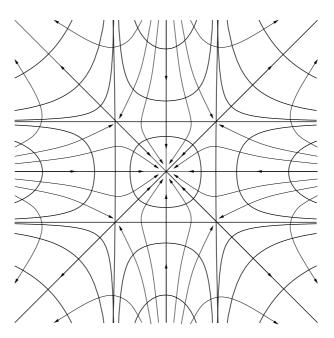


Figura 2. Analisi qualitativa del sistema.

4.2. In due dimensioni, si può considerare

$$\dot{x} = Ax, \qquad A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}.$$

Le soluzioni sono della forma

$$x(t) = \alpha \cos t + \beta \sin t,$$

con le costanti α, β che dipendono dai dati inziali. Si ha infatti

$$|x(t)| = |x(0)| \quad \forall t \in \mathbb{R},$$

quindi l'origine è un punto d'equilibrio stabile.

In una dimensione l'unica possibilità è il caso banale $\dot{x}=0$, le cui soluzioni sono $x(t)=x(0) \ \forall t \in \mathbb{R}$.

Esercizio 5.

5.1. Per n = 1 la matrice A si riduce a uno scalare A < 0, quindi $\lambda = A$. Se B = 0, la soluzione è data da $x(t) = e^{At}x_0$, dove $x_0 = x(0)$ è il dato iniziale. Quindi le traiettorie decadono verso l'origine con velocità esponenziale.

5.2. Per n=1 se $B\neq 0$, la soluzione si trova con il metodo di variazione delle costanti, ed è quindi

$$x(t) = e^{At} \left(x_0 + \int_0^t ds e^{-As} B(s) \right).$$

Quindi se $|B(t)| \le e^{c_0 t}$ per $t \ge 0$ si ha, per $t \ge 0$,

$$|x(t)| \le e^{At} \left(|x_0| + \int_0^t ds \, e^{(-A+c_0)s} \right) \le e^{At} |x_0| + \frac{e^{c_0t} - e^{At}}{c_0 - A},$$

purché $c_0 - A \neq 0$, mentre $|x(t)| \leq e^{At} (|x_0| + t)$ se $c_0 - A = 0$, ovvero se $c_0 = A$. Quindi x(t) tende a zero per $t \to \infty$ se $c_0 < 0$. La convergenza è ancora esponenziale, tranne che per $c_0 = A$, nel qual caso c'è una piccola correzione lineare in t.

5.3. Perché le solzuioni rimangano limitate è sufficiente che si abbia $c_0 \le 0$. Infatti per $c_0 = 0$ l'analisi al punto (5.2) dà $|x(t)| \le e^{At}x_0 + (1 - e^{At})/|A|$, e quindi $|x(t)| \le |x_0| + |A|^{-1}$ per ogni $t \ge 0$.

5.4. Per n qualsiasi si può sempre scrivere la soluzione nella forma

$$x(t) = e^{At} \left(x_0 + \int_0^t ds \, e^{-As} B(s) \right).$$

Possiamo inoltre introdurre il vettore C(t) tale che $B(t) = e^{c_0 t} C(t)$, con $|C(t)| \le 1$.

La matrice A si può scrivere A = S + N, con S semisemplice e N nilpotente tali che [S, N] = 0. Quindi $e^{At} = e^{St}e^{Nt}$. Inoltre esiste una matrice invertibile Q tale che $D = QSQ^{-1}$ è diagonale e $D = \text{diag}(\lambda_1, \ldots, \lambda_n)$, se $\lambda_1, \ldots, \lambda_n$ sono gli autovalori di A. Si ha quindi $Qe^{St}Q^{-1} = e^{Dt} = \text{diag}\{e^{\lambda_1 t}, \ldots, e^{\lambda_n t}\}$, e $Qe^{-St}Q^{-1} = e^{-Dt} = \text{diag}\{e^{-\lambda_1 t}, \ldots, e^{-\lambda_n t}\}$, dove $\lambda_k < -c < 0$ per ogni $k = 1, \ldots, n$.

Possiamo quindi scrivere

$$x(t) = Q^{-1} \left(Q e^{At} Q^{-1} Q x_0 + Q e^{At} Q^{-1} \int_0^t ds \, Q e^{-As} Q^{-1} Q B(s) \right)$$
$$= Q^{-1} \left(e^{Dt} Q e^{Nt} x_0 + e^{Dt} Q e^{Nt} Q^{-1} \int_0^t ds \, e^{-Ds} Q e^{-Ns} B(s) \right),$$

dove

$$Qe^{Nt}x_0 = P(t), Qe^{-Nt}B(t) = P'(t)e^{c_0t},$$

con P(t) e P'(t) vettori opportuni, le cui componenti $P_k(t)$, k = 1, ..., n sono polinomi di grado $\leq n$ in t. Scritta per componenti quindi la soluione x(t) è data quindi da

$$x_k(t) = \sum_{i=1}^n (Q^{-1})_{ki} e^{\lambda_i t} P_i(t) + \sum_{i,j=1}^n (Q^{-1})_{ki} e^{\lambda_i t} (Q e^{Nt} Q^{-1})_{ij} \int_0^t ds \, e^{-\lambda_j s} P_j'(s) e^{c_0 s}.$$

Il primo termine

$$\sum_{i=1}^{n} (Q^{-1})_{ki} e^{\lambda_i t} P_i(t)$$

decade a zero esponenzialmente indipendentemente da c_0 poiché $\lambda_k < -c < 0$ per $k = 1, \dots, n$. Nel secondo termine si ha per ogni $j = 1, \dots, n$

$$\int_{0}^{t} ds \, e^{-\lambda_{j} s} P'_{j}(s) e^{c_{0} s} = e^{-\lambda_{j} t} P''_{j}(t) e^{c_{0} t} + c_{j},$$

dove c_j è costante in t e $P_j''(t)$ è un polinomio in t. Se $c_0 \neq \lambda_j$ allora $P_j''(t)$ ha lo stesso grado di $P_j'(t)$, se invece $c_0 = \lambda_j$ il grado di $P_j''(t)$ è maggiore di uno del grado di $P_j'(t)$.

Quindi il secondo termine si può riscrivere

$$\sum_{i,j=1}^{n} (Q^{-1})_{ki} e^{\lambda_i t} (Q e^{Nt} Q^{-1})_{ij} c_j + \sum_{i,j=1}^{n} e^{\lambda_i t - \lambda_j t + c_0 t} (Q e^{Nt} Q^{-1})_{ij} P_j''(t) (Q^{-1})_{ki},$$

dove il primo termine di nuovo tende a zero esponenzialmente. Nel secondo termine possiamo invece stimare per t grande

$$|(Qe^{Nt}Q^{-1})_{ij}| \le C_0t^n, \qquad |P''_j(t)| \le C_0t^n, \qquad |(Q^{-1})_{ki}| \le C_0,$$

per un'opportuna costante C_0 . Quindi possiamo stimare il secondo termine del secondo termine con

$$C_0^3 t^{2n} \sum_{i,j=1}^n e^{\lambda_i t - \lambda_j t + c_0 t} \le n^2 C_0^3 t^{2n} \max_{i,j=1,\dots,m} e^{\lambda_i t - \lambda_j t + c_0 t}.$$

Quindi abbiamo che x(t) tende a zero se

$$c_0 < \max_{j=1,\dots,n} \lambda_j - \min_{j=1,\dots,n} \lambda_j \le -c - \min_{j=1,\dots,n} \lambda_j.$$

Ovviamente per n=1 ritroviamo la condizione $c_0 < 0$.

Esercizio 6.

6.1. Costante del moto. Cerchiamo la costante del moto H(x,y) richiedendo che si abbia

$$H_y = \frac{\partial H}{\partial y} = \dot{x} = 4y(x^2 + y^2) = 4yx^2 + 4y^3, \qquad H_x = \frac{\partial H}{\partial x} = -\dot{y} = 4x(x^2 + y^2 - 2) = 4x^3 + 4xy^2 - 8x.$$

Integrando la prima equazione rispetto a y si ottiene

$$H(x,y) = 2x^2y^2 + y^4 + c_1(x),$$

dove $c_1(x)$ è una funzione arbitraria di x, e integrando la seconda equazione rispetto a x si ottiene

$$H(x,y) = x^4 + 2x^2y^2 - 4x^2 + c_2(y),$$

dove $c_2(y)$ è una funzione arbitraria di y. Eguagliando le due espressioni si ottiene

$$H(x,y) = x^4 + 2x^2y^2 + y^4 - 4x^2 + c,$$

definita a meno di una costante arbitraria c, che possiamo porre uguale a 0 per semplicità.

Possiamo riscrivere la funzione H(x, y) come

$$H(x,y) = (x^2 + y^2)^2 - (2x)^2 = (x^2 + y^2 + 2x)(x^2 + y^2 - 2x).$$

6.2. Punti d'equilibrio. Si ha $\dot{x}=0$ per y=0 oppure $x^2+y^2=0$, i.e. x=y=0. Se x=y=0 anche $\dot{y}=0$, quindi x=y=0 è un punto d'equilibrio. Se y=0 e $x\neq 0$ allora $\dot{y}=0$ per $x^2+y^2=x^2=2$, i.e. per $x=\pm\sqrt{2}$.

Si hanno quindi 3 punti d'equilibrio (0,0), $(\sqrt{2},0)$, $(-\sqrt{2},0)$.

6.3.1. Stabilità dei punti d'equilibrio. Parte I. La matrice A(x, y) del sistema linearizzato nell'intorno del punto d'equilibrio (x_0, y_0) è data da

$$A(x_0, y_0) = \begin{pmatrix} H_{xy}(x_0, y_0) & H_{yy}(x_0, y_0) \\ -H_{xx}(x_0, y_0) & -H_{xy}(x_0, y_0) \end{pmatrix},$$

dove

$$H_{xx}(x_0, y_0) := \frac{\partial^2 H}{\partial x^2}(x_0, y_0) = 12x_0^2 + 4y_0^2 - 8,$$

$$H_{xy}(x_0, y_0) := \frac{\partial^2 H}{\partial x \partial y}(x_0, y_0) = 8x_0 y_0,$$

$$H_{yy}(x_0, y_0) := \frac{\partial^2 H}{\partial y^2}(x_0, y_0) = 4x_0^2 + 12y_0^2,$$

dove abbiamo usato che $H_{xy} = H_{yx}$. Si ottiene

$$A(0,0) = \begin{pmatrix} 0 & 0 \\ 8 & 0 \end{pmatrix}, \qquad A(\sqrt{2},0) = \begin{pmatrix} 0 & 8 \\ -16 & 0 \end{pmatrix}, \qquad A(-\sqrt{2},0) = \begin{pmatrix} 0 & 8 \\ -16 & 0 \end{pmatrix},$$

quindi in tutti e quattro i casi abbiamo autovalori con parte reale nulla, così che non possiamo concludere nulla sulla stabilità dei quattro punti d'equilibrio.

6.4.1. Analisi qualitativa. Parte I. Prima di continuare lo studio della stabilità dei due punti d'equilibrio iniziamo a studiare le curve di livello

$$\Sigma_c = \left\{ (x, y) \in \mathbb{R}^2 : H(x, y) = c \right\},\,$$

iniziando dai valori che corrispondono ai punti d'equilibrio trovati.

Si ha H(0,0) = 0, mentre $H(\sqrt{2},0) = H(-\sqrt{2},0) = -4$.

Si vede subito che Σ_0 è data dall'unione di due circonferenze:

$$\Sigma_0 = C_1 \cup C_2,$$

$$C_1 = \left\{ (x, y) \in \mathbb{R}^2 : x^2 + y^2 + 2x = 0 \right\}, \qquad C_2 = \left\{ (x, y) \in \mathbb{R}^2 : x^2 + y^2 - 2x = 0 \right\}.$$

Scrivendo

$$x^{2} + y^{2} + 2x = x^{2} + 2x + 1 + y^{2} - 1 = (x+1)^{2} + y^{2} - 1 = 0,$$

$$x^{2} + y^{2} - 2x = x^{2} - 2x + 1 + y^{2} - 1 = (x-1)^{2} + y^{2} - 1 = 0,$$

si vede che C_1 è una circonferenza di raggio 1 e centro (-1,0), mentre C_2 è una circonferenza di raggio 1 e centro (1,0). Le due circonferenze si intersecano nell'origine, i.e. in corrispondenza del punto d'equilibrio (0,0); cfr. la Figura 3.

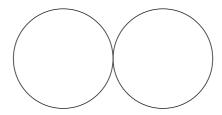


Figura 3. Curva di livello Σ_0 .

Per determinare i versi di percorrenza sulle circonferenze si ragiona come segue. Su C_1 si ha $x^2 + y^2 + 2x = 0$ quindi

$$-2 \le x \le 0, \qquad \dot{x} = -8xy,$$

quindi $\dot{x}>0$ per x<0 e y>0, mentre $\dot{x}<0$ per x,y<0. Invece su \mathcal{C}_2 si ha $x^2+y^2-2x=0$ quindi

$$0 < x < 2, \qquad \dot{x} = 8xy,$$

quindi $\dot{x} > 0$ per x, y > 0, mentre $\dot{x} < 0$ per x > 0 e y < 0.

6.3.2. Stabilità dei punti d'equilibrio. Parte II. Lo studio di Σ_0 ci permette di concludere che l'origine è un punto d'equilibrio instabile. Per studiare la stabilità degli altri due punti d'equilibrio possiamo applicare il teorema di Ljapunov.

Poiché $H(\pm\sqrt{2},0) = -4 < 0$ e H(x,y) = 0 per $(x,y) \in \mathcal{C}_1 \cup \mathcal{C}_2$ possiamo concludere che $(\pm\sqrt{2},0)$ sono due punti di minimo isolato per la funzione H. Definiamo allora la funzione di Ljapunov W(x,y) = H(x,y) + 4. Si ha $W(\sqrt{2},0) = 0$ e, inoltre, W(x,y) > 0 e $\dot{W}(x,y) = \dot{H}(x,y) = 0$ in $B \setminus \{(\sqrt{2},0)\}$, dove B indica un intorno del punto $(\sqrt{2},0)$. Quindi il teorema di Ljapunov ci assicura che $(\sqrt{2},0)$ è un punto d'equilibrio stabile.

Analogamente si ragiona per il punto $(-\sqrt{2},0)$, e si conclude che anche $(-\sqrt{2},0)$ è un punto d'equilibrio stabile.

6.4.2. Analisi qualitativa. Parte II. Le altre curve di livello si ottengono facilmente per continuità, tenendo conto che la funzione H(x,y) è una funzione regolare: quindi cambiando di poco il valore della costante c le curve di livello Σ_c cambiano di poco. Inoltre le curve di livello sono regolari in tutti i punti (x,y) in cui $(H_x(x,y),H_y(x,y)) \neq 0$. Poiché gli unici punti in cui si annulla il gradiente di H sono i punti d'equilbrio, possiamo concludere che tutte le curve di livello Σ_c , con $c \notin \{0,-4\}$, sono regolari. Si ha quindi la situazione rappresentata in Figura 4.

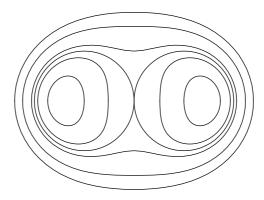


Figura 4. Analisi qualitativa del sistema.

I versi di percorrenza si ottengono, utilizzando la dipendenza continua dai dati iniziali, dallo studio dei versi di percorrenza lungo le curve di livello Σ_0 . Altrimenti, più semplicemente, basta notare che si ha $\dot{x} = 4y(x^2 + y^2) > 0$ nel semipiano y > 0 e $\dot{x} < 0$ nel semipiano y < 0. Quindi le traiettorie sono dirette da sinistra a destra nel semipiano superiore e da destra a sinistra nel semipiano inferiore.