Corso di laurea in Matematica Sistemi dinamici – Primo Modulo / Secondo Modulo

Prova d'esame 13-07-99

Due punti materiali P_1 e P_2 , entrambi di massa m, sono vincolati a muoversi su un piano, sottoposti ai seguenti vincoli:

- il punto P_2 si muove lungo una sbarra lineare omogenea S di massa M e lunghezza 2ℓ il cui centro O è fisso:
- il punto P_1 è collegato ai punti O e P_2 tramite due sbarre rettilinee S_1 e S_2 , entrambe di lunghezza ℓ e massa trascurabile (nulla).

Inoltre il punto P_2 è unito al punto O tramite una molla di costante elastica k > 0 e lunghezza a riposo trascurabile (nulla).

Si assuma che all'istante iniziale il punto P_2 non coincida con O.

Si scelgano come variabili lagrangiane l'angolo φ che la sbarra forma con l'asse x di un sistema cartesiano (O, x, y) e l'angolo θ che la sbarra S_1 forma rispetto alla sbarra S.

- (1) Scrivere la lagrangiana del sistema e le corrispondenti equazioni di Eulero-Lagrange.
- (2) Dedurre quindi che la variabile φ è ciclica e applicare il metodo di Routh per ridurre il sistema a un sistema a 1 grado di libertà.
- (3*) Verificare che l'energia cinetica è una forma quadratica definita positiva nella velocità.
- (4) Nel caso $m = \ell = k = 1$ e M = 0, determinare le posizioni d'equilibrio del sistema a 1 grado di libertà ottenuto al punto (2) e discuterne la stabilità, limitandosi ai casi che si possono risolvere attraverso un'analisi al secondo ordine.
- (5*) Come al punto (4), per i casi che non possono essere risolti mediante l'analisi al secondo ordine.
- (6) A che tipo di moto per il sistema a 2 gradi di libertà corrispondono le posizioni d'equilibrio trovate al punto (4) ?
- (7*) In generale esprimere le soluzioni delle equazioni del moto per il sistema a 2 gradi di libertà in termini di integrali definiti. [Suggerimento. Si tenga conto che la lagrangiana è definita a meno di una derivata totale.]
- (8*) Discutere cosa succede qualora si considerino anche dati iniziali tali che P_2 coincida con O all'istante iniziale.