Corso di laurea in Matematica Sistemi dinamici – Primo Modulo

Prova d'esame 05-09-00

ESERCIZIO 1. Si consideri il sistema di equazioni differenziali lineari

$$\dot{x} = Ax$$
, $x \in \mathbb{R}^2$, $A = \begin{pmatrix} 1 & 3 \\ 1 & -1 \end{pmatrix}$,

con condizioni iniziali x(0) = (1, 1). Si trovi la soluzione x(t).

ESERCIZIO 2. Sia dato il sistema dinamico planare

$$\begin{cases} \dot{x} = 2y - \sin x ,\\ \dot{y} = y \cos x , \end{cases}$$

 $con x \in \mathbb{T} = \mathbb{R}/2\pi\mathbb{Z} \text{ e } y \in \mathbb{R}.$

- (2.1) Determinare una costante del moto H(x,y) tale che H(0,0)=0.
- (2.2) Determinare le curve di livello.
- (2.3) Determinare i punti d'equilibrio.
- (2.4) Discuterne la stabilità.
- (2.5) Dimostrare che la traiettoria con dati iniziali $(\bar{x}, \bar{y}) = (\pi/2, 1/3)$ è periodica.

ESERCIZIO 3. Dato un sistema di riferimento $\kappa = Oxyz$ (sistema assoluto), si consideri anche un sistema di riferimento mobile $K = O'\xi\eta\zeta$ (sistema relativo), la cui origine O' si muove nel piano (x,y) lungo la spirale $r(t) = \theta(t) = t$. L'asse ζ di K si mantiene sempre parallello all'asse z di κ , mentre il piano (ξ,η) ruota con velocità angolare costante $\omega = 1$ intorno a O'. I due sistemi κ e K coincidono all'istante iniziale t = 0.

Un punto materiale P di massa m=1 si muove lungo l'asse ξ con legge oraria $\xi(t)=t$.

- (3.1) Scrivere la trasformazione rigida $D: K \to \kappa$ come composizione di una traslazione C con una rotazione B, *i.e.* D = CB, e determinare C e B.
- (3.2) Scrivere la soluzione delle equazioni del moto $\mathbf{q}(\mathbf{t})$ nel sistema assoluto e $\mathbf{Q}(\mathbf{t})$ nel sistema mobile.
- (3.3) Determinare la velocità assoluta \mathbf{v} .
- (3.4) Determinare la velocità relativa \mathbf{v}' .
- (3.5) Determinare la componente traslatoria della velocità di trascinamento v₀.
- (3.6) Determinare la componente rotatoria della velocità di trascinamento $\mathbf{v_T}$.
- (3.7) Determinare la forza di Coriolis che agisce sul punto P.
- (3.8) Determinare la forza centrifuga che agisce sul punto ${\cal P}.$
- (3.9) Determinare l'istante t_0 in cui il punto materiale P attraversa la circonferenza di raggio R = 10 e centro C = (0,0) nel piano (x,y).