Corso di laurea in Matematica

FM1 - Equazioni differenziali e meccanica

SCRITTO (07-01-2003)

ESERCIZIO 1. Si consideri il sistema di equazioni differenziali lineari

$$\dot{x} = Ax, \qquad x \in \mathbb{R}^3, \qquad A = \begin{pmatrix} 1 & 2 & 1 \\ 1 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix},$$

con condizioni iniziali x(0) = (1,0,0). Se ne trovi la soluzione x(t).

ESERCIZIO 2. Dato un sistema di riferimento $\kappa = Oxyz$ (sistema assoluto), si consideri il sistema di riferimento mobile $K = O'\xi\eta\zeta$ (sistema relativo) che ruota in senso antiorario intorno all'asse ζ con velocità angolare costante $\omega = 1$, e tale che l'asse ζ di K si mantiene parallelo all'asse z di κ in ogni istante, mentre l'origine O' di K si muove lungo l'asse x di κ con velocità costante v = 1. All'istante t = 0 i due sistemi di riferimento coincidono.

Un punto materiale P si muove lungo l'asse ξ di K con legge $\xi(t) = a \cos t$, con $a \in \mathbb{R}$.

- (1) Scrivere la trasformazione rigida $D: K \to \kappa$ come composizione di una traslazione C con una rotazione B, i.e. $D = C \circ B$, e determinare $C \in B$.
- (2) Scrivere la soluzione delle equazioni del moto $\mathbf{Q}(t)$ nel sistema di riferimento mobile e $\mathbf{q}(t)$ nel sistema di riferimento assoluto.
- (3) Determinare la velocità assoluta $\mathbf{v}(t)$.
- (4) Determinare la velocità relativa $\mathbf{v}'(t)$.
- (5) Determinare la componente traslatoria della velocità di trascinamento $\mathbf{v}_0(t)$.
- (6) Determinare la componente rotatoria della velocità di trascinamento $\mathbf{v}_T(t)$.
- (7) Determinare la velocità assoluta media \mathbf{v}_m , definita come

$$\mathbf{v}_m \equiv \lim_{T \to \infty} \frac{1}{T} \int_0^T \mathrm{d}t \, \mathbf{v}(t).$$

(8) Determinare (se esiste) la successione $\{t_k\}_{k=1}^{\infty}$ di tempi in cui il punto materiale P attraversa l'asse x.