Capitolo 19. Teoria delle perturbazioni

75. Oscillatore armonico in variabili azione-angolo

p.75.1 **75.1. Introduzione.**

sec.75

75.2

75.3

75.4

p.75.2 75.2. Variabili azione-angolo per l'oscillatore armonico. La hamiltoniana

75.1
$$H(p,q) = \frac{1}{2m} \left(p^2 + m^2 \omega^2 q^2 \right)$$
 (75.1)

diventa (cfr. l'esercizio 1)

$$K(J) = \omega J, \tag{75.2}$$

con la trasformazione canonica

$$q = \sqrt{\frac{2J}{m\omega}}\sin\varphi, \qquad p = \sqrt{2Jm\omega}\cos\varphi.$$
 (75.3)

La funzione generatrice (di seconda specie) è

$$F(q,J) = \int_{q_0}^{q} \sqrt{2m\omega J - m^2 \omega^2 q^2}.$$
 (75.4)

Si noti infatti che, derivando la (75.4) rispetto a J, si trova

$$\varphi = \frac{\partial F}{\partial J} = \int_{x_0}^x \frac{\mathrm{d}x'}{\sqrt{1 - (x')^2}}, \qquad x = q\sqrt{\frac{m\omega}{2J}},$$

e prendendo $x_0 = 0$ (che equivale a fissare l'origine dei tempi) si trova $\varphi = \arcsin x$, in accordo con la (75.3).

75.3. L'oscillatore armonico è un sistema integrabile. Inoltre è un sistema iscocrono: la frequenza ω non dipende dall'azione. Tale condizione prende il nome di condizione di isocronia.

p.75.4 **75.4.**

76. Teoria perturbativa al primo ordine

p.76.1 **76.1. Introduzione.**

sec.76

76.12a

76.2

p.76.2 **76.2.** Teoria perturbativa. Teoria perturbativa al primo ordine. Studiamo sistemi descritti da hamiltoniane della forma

$$H(\varphi, J) = H_0(J) + \varepsilon V(\varphi, J), \tag{76.1}$$

con $H_0(J)$ integrabile. Chiamiamo ε parametro perturbativo.

Nei capitoli precedenti abbiamo sempre richiesto la mimima regolarità possibile, per esempio che la hamiltoniana fosse di classe C^2 . Al contrario in questo e il prossimo capitolo richiederemo che la hamiltoniana sia una funzione analitica dei suoi argomenti. Più precisamente assumiamo che le funzioni H_0 e V in (76.1) siano analitiche nel dominio

$$D(\rho, \xi, J_0) = \left\{ (\varphi, I) \in \mathbb{C}^{2n} : \operatorname{Re} \varphi_i \in \mathbb{T}, \quad |\operatorname{Im} \varphi_i| \le \xi, \quad |J_i - J_{0i}| \le \rho \right\}. \tag{76.2}$$

In particolare, si può espandere $V((\varphi, I)$ in serie di Fourier in φ ,

$$V(\varphi, J) = \sum_{\nu \in \mathbb{Z}^N} e^{i\langle \nu, \varphi \rangle} V_{\nu}(J), \tag{76.3}$$

dove i coefficienti di Fourier $V_{\nu}(J)$ decadono esponenzialemente in ν , i.e. si ha (cfr. l'esercizio 2).

$$|V_{\nu}(J)| \le \Phi e^{-\xi|\nu|}, \qquad \Phi = \max_{(\varphi,J) \in D(\rho,\xi,I_0)} |V(\varphi,J)|.$$
 (76.4)

Come esempio della (76.1) consideriamo, in coordinate cartesiane,

$$H(q,p) = \sum_{k=1}^{N} \frac{1}{2m_k} \left(p_k^2 + m_k^2 \omega_k^2 q_k^2 \right) + \frac{\alpha}{4} \sum_{1 \le k \ne j \le N} (q_k - q_j)^4, \tag{76.5}$$

che diventa della forma (76.1) dopo il riscalamento $(q,p) \to (q',p')$, con $q = \delta q'$ e $p = \delta p'$, definendo $\varepsilon = \delta^2$ e dividendo la hamiltoniana per ε . In particolare si ha

$$H_0(J) = \sum_{k=1}^{N} \omega_k J_k = \langle \omega, J \rangle. \tag{76.6}$$

In termini delle variabili riscalate (q', p') le variabili azione-angolo sono definite come in (75.3). In particolare si ha $q'_k = \sqrt{2J_k/m_k\omega_k} \sin \varphi_k$ e $p'_k = \sqrt{2J_km_k\omega_k} \cos \varphi_k$.

Si vede allora facilmente che la parte integrabile assume la forma (76.6), mentre la perturbazione diventa una funzione sia di φ sia di J (cfr. l'esercizio 3).

p.76.3 **76.3.** Cerchiamo di risolvere l'equazione di Hamilton-Jacobi scrivendo la funzione caratteristica di Hamilton $W(\varphi, J')$ nella forma

$$W(\varphi, J') = \langle \varphi, J' \rangle + \varepsilon W_1(\varphi, J') + O(\varepsilon^2), \tag{76.7}$$

trascurando sistematicamente gli ordini in ε superiore al primo.

Cerchiamo quindi una trasformazione (canonica) di coordinate $(\varphi, J) \to (\varphi', J')$, tale che $H(\varphi, J) = H'(J') + O(\varepsilon^2)$ per un'opportuna funzione H', i.e. tale che il sistema sia integrabile almeno fino al secondo ordine. Si ottiene

$$H_0\left(J'+\varepsilon\frac{\partial W_1}{\partial \varphi}\right)+\varepsilon V(\varphi,J')+O(\varepsilon^2)=H'(J'):=H_0'(J')+\varepsilon H_1'(J)+O(\varepsilon^2), (76.8)$$

che porta a identificare $H'_0(J') = H_0(J')$ e

$$\left\langle \omega(J'), \frac{\partial W_1}{\partial \varphi} \right\rangle + V(\varphi, J') = H_1'(J'),$$
 (76.9)

dove

76.6

76.7

76.8

76.9

$$\omega(J) = \frac{\partial H_0}{\partial J}(J) \tag{76.10}$$

definisce l'applicazione frequenza.

Definiano la media di una funzione $F(\varphi,J')$, periodica nei suoi N argomenti φ , come

$$\langle F \rangle = \langle F(\cdot, J') \rangle = \int_{\mathbb{T}^N} \frac{\mathrm{d}\varphi}{(2\pi)^N} F(\varphi, J'),$$
 (76.11)

e poniamo $\widetilde{F}(\varphi, J') = F(\varphi, J') - \langle F \rangle$.

Quindi al primo ordine la (76.9) diventa

$$H'_1(J') = \langle V \rangle, \qquad \left\langle \omega(J'), \frac{\partial W_1}{\partial \varphi} \right\rangle + \widetilde{V}(\varphi, J') = 0.$$
 (76.12)

La seconda equazione prende il nome di equazione omologica o equazione fondamentale della teoria delle perturbazioni.

p.76.4 **76.4.** Osservazione. Se la (76.12) è soddisfatta allora si ha

$$\begin{cases} \dot{\varphi}' = \omega'(J') + O(\varepsilon^2) = \omega(J) + O(\varepsilon), \\ \dot{J}' = O(\varepsilon^2), \end{cases}$$
 (76.13)

dove $\omega'(J) = (\partial/\partial J)(H_0(J)) + \varepsilon H_1'(J))$. Quindi su tempi $|t| < 1/\varepsilon$ si ha $|J'(t) - J'(0)| < O(\varepsilon)$.

Inoltre si ha $J - J' = O(\varepsilon)$ e quindi $J(t) - J'(t) = O(\varepsilon)$ per ogni t, così che anche

76.10
$$|J(t) - J(0)| \le |J(t) - J'(t)| + |J'(t) - J'(0)| + |J'(0) - J(0)| = O(\varepsilon),$$
 (76.14)

per tempi $|t| < 1/\varepsilon$. Quindi in realtà le variabili d'azione rimangono vicine (ordine ε) non solo fino a tempi ordine 1, ma fino a tempi ordine $1/\varepsilon$.

p.76.5 **76.5.** Per N = 1 si ha

$$W_1(\varphi, J) = -\frac{1}{\omega(J')} \int_0^{\varphi} d\varphi \, \widetilde{V}(\varphi, J), \tag{76.15}$$

dove la costante d'integrazione è stata posta uguale a zero richiedendo (arbitrariamente) che $\langle W_1 \rangle = 0$. Infatti la seconda equazione in (76.12) ha un'unica soluzione a media nulla, come dimostra il seguente risultato.

- p.76.6 **76.6.** TEOREMA. Per N=1 l'equazione omologica in (76.9) ha soluzione $H'_1(J')=\langle V\rangle$ e $W_1(\varphi,J')$ data dalla (76.3). Inoltre tale soluzione è unica se si richiede che $W_1(\cdot,J')$ abbia media nulla.
- p.76.7 **76.7.** Dimostrazione. Si verifica immediatemente che $H'_1(J') = \langle V \rangle$ e $W_1(\varphi, J')$ data dalla (76.3) costituiscono una soluzione. Poiché $\partial W_1/\partial \varphi$ ha media nulla si deve avere necessariamente $H'_1(J') = \langle V \rangle$, quindi la scelta di H'_1 è unica. Supponiamo che esistano due funzioni distinte W_1 e W'_1 soluzioni di

$$\omega(J')\frac{\partial W_1}{\partial \varphi} + \widetilde{V}(\varphi, J') = 0.$$

Allora si deve avere $\partial/\partial\varphi(W_1(\varphi,J')-W_1'(\varphi,J'))=0$, quindi la funzione $W_1(\varphi,J')-W_1'(\varphi,J')$ deve essere costante in φ , i.e. $W_1'(\varphi,J')=W_1(\varphi,J')+c(J')$, per qualche funzione c(J) indipendente da φ . Di conseguenza $\langle W_1'(\cdot,J')\rangle=\langle W_1(\cdot,J')\rangle+c(J')=c(J')$, poiché W_1 ha media nulla. Quindi se si richiede che anche W_1' abbia media nulla, si trova $W_1'(\varphi,J')=W_1(\varphi,J')$.

p.76.8 **76.8.** Osservazione.

p.76.9 **76.9.** Per N>1 si passa allo spazio di Fourier, sviluppando in serie la funzione $V(\varphi,J)$ secondo la (76.3) e cercando una soluzione

$$W_1(\varphi, J') = \sum_{\nu \in \mathbb{Z}^N} e^{i\langle \nu, \varphi \rangle} W_{1,\nu}(J'), \tag{76.16}$$

con $W_{1,0} = \langle W_1 \rangle = 0$. Si trova quindi per ogni $\nu \in \mathbb{Z}^N \setminus \{0\}$

$$W_{1,\nu}(J') = i \frac{V_{\nu}(J')}{\langle \omega(J'), \nu \rangle}, \tag{76.17}$$

purché sia abbia $\langle \omega(J'), \nu \rangle \neq 0$.

Si noti che se $H_0 = \langle \omega, J \rangle$ allora $\omega(J) = \omega$ per ogni J.

- p.76.10 **76.10.** DEFINIZIONE (CONDIZIONE DI NON RISONANZA). Un vettore $\omega \in \mathbb{R}^N$ si dice non risonante se $\langle \omega, \nu \rangle \neq 0$ per ogni $\nu \in \mathbb{Z}^N \setminus \{0\}$, i.e. se le componenti di ω sono razionalmente indipenenti.
- 76.11 **76.11.** La condizione che il vettore $\omega(J')$ sia non risonante è sufficiente perché i coefficienti di Fourier $W_{1,\nu}(J')$ della funzione $W_1(\varphi,J')$ siano ben definiti. Non è però sufficiente perché la funzione $W_1(\varphi,J')$ sia ben definita. Perché questo accada occorre anche che la serie di Fourier sia sommabile. Questo si può ottenere richiedendo una condizione di non risonanza più forte sul vettore $\omega(J')$.

Si definiscono vettori diofantei i vettori che verificano la condizione

76.15
$$|\langle \omega, \nu \rangle| > \frac{\gamma}{|\nu|^{\tau}} \qquad \forall \nu \in \mathbb{Z}^2 \setminus \{0\},$$
 (76.18)

con $\gamma > 0$ e $\tau > 0$. Le costanti γ, τ sono chiamate esponenti diofantei, e la condizione (76.18) è detta condizione diofantea.

Richiediamo che $J \to \omega(J)$ sia un diffeomorfismo. Diremo che una hamiltoniana $H_0(J)$ è non degenere o isocrona se

$$\det\left(\frac{\partial^2 H_0}{\partial J^2}\right) \neq 0. \tag{76.19}$$

In tal caso $\omega(J)$ è invertibile, e quindi definisce un diffeomorfismo. La (76.19) è chiamata condizione di anisocronia o condizione di non degenerazione. Se la (76.19) è soddisfatta si dice che il sistema hamiltoniano con hamiltoniana $H_0(J)$ è anisocrono. Diremo invece che una hamiltoniana $H_0(J)$ è degenere o se il determinante in (76.19) è nullo

Sia \mathcal{A} un insieme aperto in \mathbb{R}^N : poniamo $\Omega = \omega(\mathcal{A})$.

p.76.12 **76.12.**

p.76.13 **76.13.** TEOREMA. Sia Ω un aperto di \mathbb{R}^N . Se $\tau > N-1$ l'insieme

$$\Omega_*(\gamma) = \left\{ \omega \in \Omega : |\langle \omega, \nu \rangle| > \frac{\gamma}{|\nu|^{\tau}} \quad \forall \nu \neq 0 \right\}$$

ha misura di Lebesgue $\operatorname{meas}(\Omega_*(\gamma))$ tale che $\operatorname{meas}(\Omega_*(\gamma)) = \operatorname{meas}(\Omega) - O(\gamma)$.

p.76.14 **76.14.** Dimostrazione Supponiamo per semplicità che Ω sia una sfera di raggio R. Definiamo

$$\overline{\Omega}(\gamma,\nu) = \left\{ \omega \in \Omega : |\langle \omega, \nu \rangle| \le \frac{\gamma}{|\nu|^{\tau}} \right\}.$$

Si ha quindi

$$\Omega_*^c = \bigcup_{\substack{\nu \in \mathbb{Z}^N \\ \nu \neq 0}} \overline{\Omega}(\gamma, n).$$

Per ogni $\nu \in \mathbb{Z}^N \setminus \{0\}$ abbiamo

 $\operatorname{meas}(\overline{\Omega}(\gamma,\nu)) \le CR^{N-1} \sum_{\substack{\nu \in \mathbb{Z}^N \\ \nu \ne 0}} \frac{\gamma}{|\nu|^{\tau+1}} \le CR^{N-1} \gamma \sum_{m=1}^{\infty} \sum_{\substack{\nu \in \mathbb{Z}^N \\ |\nu| = m}} \frac{1}{m^{\tau+1}}, \tag{76.20}$

per un'opportuna costante C. Nel derivare la (76.20) abbiamo tenuto conto che $\langle \omega, \nu \rangle / |\nu|$ è la proiezione del vettore ω lungo la direzione individuata dal vettore ν . Si ha

$$\operatorname{meas}(\overline{\Omega}(\gamma, \nu)) \le C' R^{N-1} \gamma \sum_{m=1}^{\infty} \frac{m^{N-1}}{m^{\tau+1}} \le C' R^{N-1} \gamma \sum_{m=1}^{\infty} \frac{1}{m^{\tau-N+2}},$$

e quindi, se $\tau > N - 1$,

$$\frac{\operatorname{meas}(\overline{\Omega}(\gamma,\nu))}{\operatorname{meas}(\Omega)} \le C'' R^{-1} \gamma,$$

per opportune costanti C' e C''. Da qui segue l'asserto.

- p.76.15 **76.15.** DEFINIZIONE. Data una funzione $V(\varphi, J)$, periodica in φ , consideriamo la sua serie di Fourier (76.3). Diremo che la funzione $V(\varphi, J)$ ha un'espansione di Fourier generica in \mathcal{A} se si ha $V_{\nu}(J') \neq 0 \ \forall \nu \in \mathbb{Z}^N$ e $\forall J' \in \mathcal{A}$.
- p.76.16 **76.16.** Osservazione. La condizione che una funzione periodica abbia un'espansione di Fourier generica è una condizione di genericità (cfr. il paragrafo 30.26).
- p.76.17 **76.17.** TEOREMA (POINCARÉ). Se $V(\varphi, J)$ ha uno sviluppo generico in \mathcal{A} e $H_0(J)$ è non degenere allora non esiste una soluzione $W_1(\varphi, J')$ regolare in $J \in \mathcal{A}$.
- p.76.18 **76.18.** Dimostrazione. La (76.9) può essere soddisfatta sole se $V_{\nu}(J') = 0$ per ogni ν e ogni J' tale che $\langle \omega(J'), \nu \rangle = 0$. Questo non è possibile se $V(\varphi, J)$ ha uno sviluppo generico.
- p.76.19 **76.19.** Osservazione. Il teorema 76.17 è noto come primo teorema di trivialità di Poincaré
- p.76.20 **76.20.** Perché la funzione (76.17) sia ben definita occorre che il vettore $\omega(J')$ soddisfi la condizione diofantea (76.19) per ogni J'. Un caso in cui questo accade è il caso dei sistemi isocroni (i.e. $\omega(J') = \omega$ per ogni J', con ω diofanteo) che sarà discusso più diffusamente nel prossimo paragrafo. Nel caso anisocrono, si può scrivere

$$V(\varphi, J) = V_{\leq N}(\varphi, J) + V_{>N}(\varphi, J),$$

$$V_{\leq N}(\varphi, J) = \sum_{\substack{\nu \in \mathbb{Z}^N \\ |\nu| < N}} e^{i\langle \nu, \varphi \rangle} V_{\nu}(J), \qquad V_{>N}(\varphi, J) = \sum_{\substack{\nu \in \mathbb{Z}^N \\ |\nu| > N}} e^{i\langle \nu, \varphi \rangle} V_{\nu}(J),$$

e scegliere $N=N_0$ tale che si abbia

$$\max_{(\varphi,J)\in D(\rho,\xi,J_0)} |V_{>N}(\varphi,J)| \le C\varepsilon^2, \tag{76.21}$$

per qualche costante C. Questo è possibile purché si scelga $N=N_0(\varepsilon)$, dove

$$N_0(\varepsilon) = \frac{4}{\xi} \log \frac{1}{C_1 \varepsilon},\tag{76.22}$$

dove ξ è la semiampiezza della striscia di analiticità in φ della funzione $V(\varphi, I)$ e C_1 è un'opportuna costante; cfr. l'esercizio 4.

Tenendo conto che se $J'=J+O(\varepsilon)=J(0)+O(\varepsilon)$, con $J(0)=J_0$ tale che $\omega(J_0)$ sia diofanteo, si ha per $|\nu|\leq N_0(\varepsilon)$

$$|\langle \omega(J'), \nu \rangle| \ge |\langle \omega(J(0)), \nu \rangle| - |\langle \omega(J') - \omega(J(0), \nu \rangle| \ge \frac{\gamma}{|\nu|^{\tau}} - |\langle \omega(J') - \omega(J(0), \nu \rangle|,$$

dove

$$|\langle \omega(J') - \omega(J(0), \nu \rangle| \le B |J' - J(0)| |\nu| \le \frac{\gamma}{2|\nu|^{\tau}}, \qquad B = \max \left| \frac{\partial \omega(J)}{\partial J} \right|$$

non appena si abbia

$$|J' - J(0)| \le \frac{\gamma}{2B|N_0(\varepsilon)|^{\tau+1}} \le \frac{\gamma}{2B|\nu|^{\tau+1}}.$$

Questo richiede

$$|J' - J(0)|^{\tau+1} \le \text{const.} \frac{1}{\log 1/\varepsilon},$$

che è sicuramente soddisfatta per ε sufficientemente piccolo.

77. Teoria perturbativa a tutti gli ordini

p.77.1 77.1. Introduzione.

p.77.2 **77.2.** Diremo che

sec.77

77.1
$$F(\varepsilon) = \sum_{n=0}^{\infty} \varepsilon^k F_k, \tag{77.1}$$

è una serie formale se i coefficienti F_k sono ben definiti per ogni $k \geq 0$. Quindi una serie formale si può identificare con la successione dei suoi coefficienti.

Consideriamo un sistema isocrono perturbato: quindi $H_0(J) = \langle \omega, J \rangle$. Cerchiamo una soluzione dell'equazione di Hamilton-Jacobi della forma

77.2
$$W(\varphi, J') = \sum_{k=0}^{n} \varepsilon^k W_k(\varphi, J'), \qquad H'(\varphi', J') = \sum_{k=0}^{n} \varepsilon^k H_k(J') + O(\varepsilon^{n+1}), \tag{77.2}$$

dove $W_0(\varphi, J') = \langle \varphi, J' \rangle$ e $H'_0(J') = H_0(J')$.

A ogni ordine $k \leq n$ si trova

77.3
$$\left\langle \omega, \frac{\partial W_k}{\partial \varphi} \right\rangle + N_k(\varphi, J') = H'_k(J'), \tag{77.3}$$

dove

77.5

77.4
$$N_k(\varphi, J') = \sum_{1 \le |a| \le k-1} \frac{1}{a!} \frac{\partial^{|a|}}{\partial J^a} V(\varphi, J') \sum_{k-1}' \prod_{i=1}^N \prod_{j=1}^{a_i} \frac{\partial W_{k_{ij}}}{\partial \varphi_i} (\varphi, J'), \tag{77.4}$$

e si è posto $a=(a_1,\ldots,a_N), \ |a|=a_1+\ldots+a_N, \ \partial J^a=\partial J_1^{a_1}\ldots\partial J_N^{a_N}$ e $a!=a_1!\ldots a_N!, \ {\rm con}\ a_i\geq 0$ intero per ogni i, e la somma $\sum_{k=1}'$ indica la somma su tutti gli indici $k_{ij}, \ {\rm con}\ i=1,\ldots,N$ e $j=1,\ldots,a_i,$ tali che $k_{11},\ldots,k_{1a_1},\ldots,k_{N1},\ldots,k_{Na_N}\geq 1$ e $k_{11}+\ldots+k_{1a_1}+\ldots+k_{N1}+\ldots+k_{Na_N}=k-1.$

Si noti che a ogni ordine k la funzione N_k dipende dalle funzioni W_1, \ldots, W_{k-1} , quindi è una funzione nota se le $W_{k'}$, k' < k, sono state risolte ai passi precedenti. In altre parole la (77.3) si può risolvere iterativamente, ponendo

$$H'_k(J') = \langle N_k \rangle, \qquad \left\langle \omega, \frac{\partial W_k}{\partial \varphi} \right\rangle + \widetilde{N}_k(\varphi, J') = 0,$$
 (77.5)

dove $\widetilde{N}_k = N_k - \langle N_k \rangle$, per $k = 1, \dots, n$.

Introduciamo i domini

77.6
$$D_k := D(\rho(1 - k\delta), \xi - k\delta, J_0), \tag{77.6}$$

con $D(\rho, \xi, J_0)$ definito in (76.2), e le norme

77.7
$$||f(\varphi,J)||_k = \max_{(\varphi,J)\in D_k} \left(\left| \frac{\partial f}{\partial J} \right| + \frac{1}{\rho(1-k\delta)} \left| \frac{\partial f}{\partial \varphi} \right| \right),$$
 (77.7)

per δ e k tali che $1-k\delta \geq c$ e $\xi-k\delta \geq \xi c$, con c>0: e.g. si può fissare c=1/2. È facile verificare che

77.8
$$\left| \frac{\partial V_{\nu}(J)}{\partial J} \right| \le ||V||_0 e^{-\xi|\nu|}, \qquad |\nu V_{\nu}(J)| \le \rho ||V||_0 e^{-\xi|\nu|}, \tag{77.8}$$

così che

77.8a

77.13

$$|W_{1,\nu}(J')| \le \gamma^{-1}|\nu|^{\tau-1}|\nu V_{\nu}(J')| \le \rho \gamma^{-1}|\nu|^{\tau-1}||V||_0 e^{-\xi|\nu|}, \tag{77.9}$$

e quindi (cfr. l'esercizio 13)

77.9
$$\max_{(\varphi,J)\in D_1} |W_1(\varphi,J)| \le \sum_{\nu\neq 0} \gamma^{-1} |\nu|^{\tau-1} |\nu V_{\nu}(J)| e^{(\xi-\delta)|\nu|}$$
$$\le B_1 \rho \gamma^{-1} ||V||_0 \delta^{-N-\tau+1},$$
(77.10)

per un'opportuna costante B_1 . Allo stesso modo si trova

77.11
$$\max_{(\varphi,J)\in D_1} \left| \frac{\partial W_1(\varphi,J)}{\partial \varphi} \right| \le B_0 \gamma^{-1} \delta^{-N-\tau-1} \max_{(\varphi,J)\in D_0} |N_1(\varphi,J)|, \tag{77.11}$$

con $N_1 = V$, per un'opportuna costante B_0 . Quindi si ha

77.10
$$||W_1||_2 \le B_2 \gamma^{-1} ||V||_0 \delta^{-N-\tau}$$
 (77.12)

per un'opportuna costante B_2 . Si ha infine

77.12
$$\max_{(\varphi,J)\in D_2} \left| \frac{\partial^2 W_1(\varphi,J)}{\partial \varphi \, \partial J} \right| \le B_3 \gamma^{-1} \delta^{-N-\tau-1} \|V\|_0, \tag{77.13}$$

per qualche costante B_3 . Al primo ordine la trasformazione $(\varphi', J') \to (\varphi, J)$ è definita

$$J' = J + \Xi(\varphi, J), \qquad \varphi' = \varphi + \Delta(\varphi, J), \tag{77.14}$$

dove possiamo scrivere

77.14
$$\Xi(\varphi, J) = -\varepsilon \frac{\partial W_1}{\partial \varphi}(\varphi, J'), \qquad \Delta(\varphi, J) = \varepsilon \frac{\partial W_1}{\partial J'}(\varphi, J'). \tag{77.15}$$

Le equazioni (77.15) possono essere risolte tramite il teorema della funzione implicita. Infatti la condizione (77.13) permette di fissare J' in termini di (φ, J) in accordo con (77.14), che definisce la funzione $\Xi(\varphi, J)$, tale che $\|\Xi\|_2 \leq |\varepsilon| B_2 \rho \gamma^{-1} \|V\|_0 \delta^{-N-\tau-1}$ (cfr. l'esercizio 9). Si può allora scrivere $J' = J + \Xi(\varphi, J)$ nella seconda equazione in (77.15) e questo permette di fissare anche φ' in termini di (φ, J) , definendo così la funzione $\Delta(\varphi, J)$, tale che $\|\Delta\|_2 \leq |\varepsilon| B_2 \gamma^{-1} \|V\|_0 \delta^{-N-\tau-1}$.

p.77.3 **77.3.** LEMMA. Siano $\delta > 0$ e $n \in \mathbb{N}$ tali che $(n+1)\delta \leq 1/2$. A ogni ordine $k \leq n$ si trova

77.15
$$\max_{(\varphi,J)\in D_k} \left| \frac{\partial W_k}{\partial \varphi}(\varphi,J) \right| \le AB^k k! \delta^{-\beta k}, \qquad \beta = \tau + N + 1, \tag{77.16}$$

per opportune costanti A e B. Si trova in particolare

77.16
$$A = \frac{\rho \delta}{4}, \qquad B = b_0 2^N \gamma^{-1} ||V||_0, \tag{77.17}$$

dove b_0 è una costante universale.

p.77.4 **77.4.** Dimostrazione. Per k=1, definendo A come in (77.17), la (77.10) implica immediatamente la (77.16) purché $B \geq 4B_2\gamma^{-1}\|V\|_0$. Assumendo le (77.16) per $k' \leq k$, si trova allora per $(\varphi, J') \in D_{k+1}$ (cfr. la (77.4))

$$|N_{k+1}(\varphi, J')| \leq \sum_{1 \leq |a| \leq k} ||V||_0 \frac{1}{(\rho \delta)^{|a|-1}} \sum_{k}' \prod_{i=1}^N A^{a_i} \prod_{j=1}^{a_i} k_{ij}! B^{k_{ij}} \delta^{-\beta k_{ij}}$$

$$\leq ||V||_0 \sum_{p=1}^k \sum_{\substack{a_1, \dots, a_N \geq 0 \\ a_1 + \dots + a_N = p}} \frac{A^p}{(\rho \delta)^{p-1}} B^k \delta^{-\beta k} \sum_{k}' k_{ij}!$$

$$\leq ||V||_0 \rho \delta(k+1)! B^k \delta^{-\beta k} \sum_{p=1}^k \left(\frac{A}{\rho \delta}\right)^p 2^{N+p}$$

$$\leq ||V||_0 \rho \delta(k+1)! B^k 2^N \delta^{-\beta k} \sum_{p=1}^k \left(\frac{2A}{\rho \delta}\right)^p,$$
(77.18)

dove si è usato il fatto che (cfr. l'esercizio 10)

77.18
$$\sum_{k}' k_{ij}! \le k! \le (k+1)!, \tag{77.19}$$

il fatto che (cfr. l'esercizio 11)

77.17

77.19
$$\sum_{\substack{a_1, \dots, a_N \ge 0 \\ a_1 + \dots + a_N = p}} 1 = \sum_{m=1}^{N} \sum_{\substack{a_1, \dots, a_m \ge 1 \\ a_1 + \dots + a_m = p}} 1 = \sum_{m=1}^{N} \binom{N}{m} \binom{p}{m} \le 2^{N+p}, \tag{77.20}$$

e infine il teorema di Cauchy per stimare (cfr. l'esercizio 13)

77.20
$$\frac{1}{a!} \max_{(\varphi,J)\in D_k} \left| \frac{\partial^{|a|}}{\partial J^a} V(\varphi,J) \right| \leq \max_{(\varphi,J)\in D_0} \left| \frac{\partial V}{\partial J} (\varphi,J) \right| \frac{1}{(\rho - \rho(1-\delta))^{|a|-1}}$$

$$\leq \|V\|_0 (\rho\delta)^{-(|a|-1)}. \tag{77.21}$$

Quindi, scegliendo A come in (77.17), si trova

77.21
$$\max_{(\varphi,J)\in D_k} |N_{k+1}(\varphi,J)| \le 4||V||_0(k+1)!B^k 2^N A\delta^{-\beta k}.$$
 (77.22)

D'altra parte, ragionando come per ottenere la (77.11), si trova

77.22
$$\max_{(\varphi,J)\in D_{k+1}} \left| \frac{\partial W_{k+1}(\varphi,J)}{\partial \varphi} \right| \le B_0 \gamma^{-1} \delta^{-N-\tau-1} \max_{(\varphi,J)\in D_k} |N_{k+1}(\varphi,J)|, \tag{77.23}$$

che, combinata con la (77.22), dà

77.23
$$\max_{(\varphi,J)\in D_{k+1}} \left| \frac{\partial W_{k+1}(\varphi,J)}{\partial \varphi} \right| \le A \left(4B_0 \|V\|_0 \gamma^{-1} 2^N \right) B^k \delta^{-\beta(k+1)} (k+1)!. \tag{77.24}$$

Quindi la stima (77.16) segue immediatamente prendendo

7.24
$$B = \max\{4B_0\gamma^{-1}2^N ||V||_0, 4B_2\gamma^{-1} ||V||_0\}. \tag{77.25}.$$

Ovviamente le stime sopra hanno senso fin tanto che, per esempio, $\xi - k\delta \ge \xi/2$ e $\rho(1-k\delta) \ge \rho/2$ per ogni $k \le n+1$.

p.77.5 **TEOREMA**. Consideriamo il sistema descritto dalla hamiltoniana $H(\varphi, J) = \langle \omega, J \rangle + \varepsilon V(\varphi, J)$, con ω che soddisfa la condizione diofantea (76.18). Si ha allora

$$|J(t) - J(0)| \le A\varepsilon^a \qquad \forall |t| < e^{B/\varepsilon^b}$$

per opportune costanti a, b, A, B. Si può scegliere a = 1/2 e $b = 1/2(\tau + N + 3)$.

p.77.6 **77.6.** Dimostrazione. Fissiamo

77.25
$$n = N(\varepsilon), \qquad \delta = \frac{\xi}{2N(\varepsilon)}, \tag{77.26}$$

con $N(\varepsilon)$ da determinare successivamente, e applichiamo il Lemma 77.3.

Dalla (7.22) si ha

$$|\langle N_k \rangle| \le 2^N \delta \rho ||V||_0 k! B^k \delta^{-\beta(k-1)}. \tag{77.27}$$

e quindi (cfr. l'esercizio 14)

77.27
$$H(\varphi', J') = \sum_{k=1}^{N(\varepsilon)} H_k(J') + O(\varepsilon^{N(\varepsilon)} N(\varepsilon)! \delta^{-\beta N(\varepsilon)}), \tag{77.28}$$

così che l'errore è di ordine $(\varepsilon N(\varepsilon)^{\beta+1})^{N(\varepsilon)}$: questo vuol dire che le variabili J' restano costanti (entro $O(\varepsilon)$) fino a un tempo di ordine $1/\varepsilon(\varepsilon N(\varepsilon)^{\beta+1})^{N(\varepsilon)}$, i.e. $J'(t)-J'(0)=O(\varepsilon)$ per $|t|<\varepsilon^{-1}(\varepsilon N(\varepsilon)^{\beta+1})^{-N(\varepsilon)}$. Inoltre si ha

77.28
$$J = J' + \frac{\partial}{\partial \varphi} \left(W_1(\varphi, J') + \ldots + W_{N(\varepsilon)}(\varphi, J') \right), \tag{77.29}$$

quindi (usando che $k! \le k^k \le N(\varepsilon)^k$ per $k \le N(\varepsilon)$; cfr. l'esercizio 15)

$$|J - J'| \le A \sum_{k=1}^{N(\varepsilon)} (B\delta^{-\beta}\varepsilon)^k k!$$

$$\le \frac{\rho\delta}{4} \sum_{k=1}^{N(\varepsilon)} (b_0 2^N \gamma^{-1} ||V||_0 \varepsilon N(\varepsilon)^{\beta+1})^k$$

$$\le \text{const.} \delta \gamma^{-1} \varepsilon N(\varepsilon)^{\beta+1},$$
(77.30)

77.29

77.26

purché si scelga

$$b_0 2^N \gamma^{-1} \|V\|_0 \varepsilon N(\varepsilon)^{\beta+1} \le \frac{1}{2}. \tag{77.31}$$

Si può per esempio fissare $N(\varepsilon)$ tale che

77.31
$$\varepsilon N(\varepsilon)^{\beta+1} = \sqrt{\varepsilon} \implies N(\varepsilon) = \varepsilon^{-1/2(\beta+1)}, \tag{77.32}$$

così che $J-J'=O(\sqrt{\varepsilon}).$ In conclusione si ha $J(t)-J(0)=O(\sqrt{\varepsilon})$ per tempi t tali che

$$|t| \le C_2 \left(\varepsilon N(\varepsilon)^{\beta+1}\right)^{-N(\varepsilon)} = C_2 e^{B\varepsilon^{-1/2(\beta+2)}}.$$
 (77.33)

Da qui segue l'asserto, con a=1/2 e $b=1/2(\beta+2)$, per opportune costanti A e B.

- p.77.7 **77.7.** Osservazione. Il teorema 77.3 costituisce una versione del teorema di Nechorošev nel caso di perturbazioni di sistemi isocroni. Il risultato in realtà vale in casi molto più generali, come vedremo nel prossimo capitolo.
- p.77.8 **77.8.** Osservazione. Nel caso di perturbazioni di oscillatori armonici, la teoria perturbativa si può spingere a ogni ordine, e si può quindi definire, formalmente,

77.33
$$W(\varphi, J') = \sum_{k=0}^{\infty} \varepsilon^k W_k(\varphi, J'), \qquad H'(J') = \sum_{k=0}^{\infty} \varepsilon^k H'_k(J'). \tag{77.34}$$

Le serie (77.34) prendono il nome di serie di Birkhoff.

Quindi le serie di Birkhoff sono ben definite a tutti gli ordini della teoria perturbativa. Tuttavia in generale le serie di Birkhoff divergono (esempio degli esercizi $5 \div 8$).

p.77.9 **77.9.** Consideriamo ora il caso di sistemi anisocroni e richiediamo che la condizione (76.19) sia soddisfatta.

Sotto l'ipotesi che l'equazione omologica ammetta soluzione a ogni ordine, allora si può ancora scrivere l'equazione di Hamilton-Jacobi all'ordine k in forma analoga alla (77.3), con la differenza che ora $\omega(J)$ non è costante, quindi N_k riceve contributi anche dal termine $H_0(J)$ della hamiltoniana. Si ha quindi

$$\left\langle \omega(J'), \frac{\partial W_k}{\partial \varphi} \right\rangle + N_k(\varphi, J') = H'_k(J'),$$
 (77.35)

dove

$$N_{k}(\varphi, J') = \sum_{2 \leq |a| \leq k} \frac{1}{a!} \frac{\partial^{|a|}}{\partial J^{a}} H_{0}(\varphi, J') \sum_{\sum' k_{ij} = k} \prod_{i=1}^{N} \prod_{j=1}^{a_{i}} \frac{\partial W_{k_{ij}}}{\partial \varphi_{i}}(\varphi, J'),$$

$$+ \sum_{1 \leq |a| \leq k-1} \frac{1}{a!} \frac{\partial^{|a|}}{\partial J^{a}} V(\varphi, J') \sum_{\sum' k_{ij} = k-1} \prod_{i=1}^{N} \prod_{j=1}^{a_{i}} \frac{\partial W_{k_{ij}}}{\partial \varphi_{i}}(\varphi, J'),$$

$$(77.36)$$

77.30

77.32

77.35

77.34

con lo stesso significato dei simboli della (77.4). Si noti che anche nei termini della prima riga della (77.36) c'è dipendenza solo da $W_{k'}$ con k' < k a causa del vincolo $|a| \ge 2$.

La principale difficoltà ora è che, come già anticipato al paragrafo 76.20, per risolvere l'equazione omologica si deve controllare $\langle \omega(J'), \nu \rangle$ per $\nu \in \mathbb{Z}^N \neq \{0\}$ e J' in un insieme aperto.

- p.77.10 **77.10.** Il seguente risultato è noto come secondo teorema di trivialità di Poincaré o torema di non esistenza di Poincaré.
- p.77.11 **77.11.** TEOREMA. In generale il sistema dinamico descritto dall'Hamiltoniana (76.1) non ammette altre costanti del moto che dipendano analiticamente da ε oltre l'energia.
- p.77.12 **77.12.** Dimostrazione. Supponiamo che esista una costante del moto $F(\varphi, J, \varepsilon)$ analiticia in ε : quindi $F(\varphi, J, \varepsilon) = F_0(\varphi, J) + \varepsilon F_1(\varphi, J) + \varepsilon^2 F_2(\varphi, J) + \dots$ La condizione $\{F, J\} = 0$ implica, all'ordine zero in ε ,

$$0 = \{F_0, H_0\} = \left\langle \frac{\partial F_0}{\partial \varphi}, \omega(J) \right\rangle,\,$$

quindi $\langle \omega(J), \nu \rangle F_{0,\nu}(J) = 0$ per ogni $\nu \neq 0$. Poiché det $\partial \omega / \partial J \neq 0$ allora $\langle \omega(J), \nu \rangle \neq 0$ su un insieme denso e quindi $F_{0,\nu}(J) = 0$ per ogni $\nu \neq 0$. Ne segue che $F_0(\varphi, J) = F_0(J)$ è indipendente da φ .

Al primo ordine la condizione $\{F, J\} = 0$ dà

$$0 = \left\langle \frac{\partial F_1}{\partial \varphi}, \omega(J) \right\rangle - \left\langle \frac{\partial F_0}{\partial J}, \frac{\partial V}{\partial \varphi} \right\rangle,$$

che, espressa nello spazio di Fourier, diventa

$$0 = \langle \nu, \omega(J) \rangle F_{1,\nu}(J) - \langle \nu, \frac{\partial F_0}{\partial J}(J) \rangle V_{\nu}(J).$$

Quindi sono possibili due casi: $V_{\nu}(J) = \langle \omega(J), \nu \rangle \tilde{V}_{\nu}(J)$ per qualche $\tilde{V}_{\nu}(J)$, che però corrisponde a una condizione non generica, oppure $\langle \omega(J), \nu \rangle = 0$ deve implicare $\langle \nu, \partial F_0(J)/\partial J \rangle = 0$. Di conseguenza i vettori $\omega(J)$ e $\langle \nu, \partial F_0(J)/\partial \rangle$ devono essere paralleli, ovvero

$$\frac{\partial F_0}{\partial J}(J)\rangle = \lambda(J)\,\omega(J),$$

per qualche funzione $\lambda(J)$, così che $\lambda(J)=\Lambda'(H_0(J))$ e $F_0(J)=\Lambda(H_0(J))$ per qualche funzione Λ . Si ottiene allora

$$\langle \omega, \nu \rangle (\lambda(J)V_{\nu}(J) - F_{1,\nu}(J)) = 0,$$

che implica $F_1(\varphi, J) = \lambda(J) V(\varphi, J) + C_1(J)$, per qualche funzione C_1 . Possiamo quindi scrivere

$$\begin{split} F(\varphi,J) &= \Lambda(H_0(J)) + \varepsilon \Lambda'(H_0(J)) \, \varepsilon \, V(\varphi,J) + \varepsilon \, C_1 + O(\varepsilon^2) \\ &= \Lambda(H_0(J) + \varepsilon \, V(\varphi,J)) + \varepsilon \, C_1 + O(\varepsilon^2) = \Lambda(H(\varphi,J)) + \varepsilon \, C_1 + O(\varepsilon^2) \\ &= \Lambda(H(\varphi,J)) + \varepsilon \, \left[F_0'(\varphi,J) + \varepsilon F_1'(\varphi,J) + O(\varepsilon^2) \right], \end{split}$$

dove $F' = F'_0 + \varepsilon F'_1 + \ldots$ è una costante del moto. Ripetendo l'argomento si trova $F'(\varphi,J) = \Lambda_1(H(\varphi,J)) + \varepsilon F''(\varphi,J)$, dove F'' è ancora una costante del moto. Iterando si ottiene $F(\varphi,J) = \Lambda(H(\varphi,J)) + \varepsilon \Lambda_1(H(\varphi,J)) + \varepsilon^2 \Lambda_2(H(\varphi,J)) + \ldots$, e quindi, per analiticità, $F(\varphi,J) = \Lambda_{\varepsilon}(\varphi,J)$ per un'opportuna funzione Λ_{ε} .

p.77.13 **77.13.** Solo recentemente la convergenza delle serie perturbative è stata dimostrata (sotto le assunzioni di non degenerazione e di anisocronia), anche se la teoria perturbativa è stata a lungo utilizzata in astronomia (trovando un buon accordo con i dati sperimentali). Le serie perturbative prendono il nome di serie di Lindstedt.

Un metodo alternativo per studiare la convergenza delle serie perturbative è quello introdotto nei paragrafi precendenti, che, quindi, consiste nel definire la trasformazione canonica che porta in variabili in cui la hamiltoniana dipenda solo dalla variabili d'azione come composizione di infinite trasformazioni canoniche. Questo porta al teorema KAM. Grosso modo tale teorema afferma che, sotto le ipotesi fatte su $H_0(J)$, esiste $\varepsilon_0>0$ tale che per ogni $|\varepsilon|<\varepsilon_0$ la maggior parte dei tori invarianti sopravvive.

Un enunciato formale è il seguente (il teorema sarà dimostrato e discusso nel prossimo capitolo).

p.77.14 **77.14.** TEOREMA Si consideri il sistema descritto dalla hamiltoniana (76.1), con H_0 e V funzioni analitiche in un dominio

77.36
$$D(\xi, \rho, J_0) = \{ (\varphi, J) \in \mathbb{C}^{2N} : |J_k - J_{0,k}| \le \rho, \operatorname{Re}(\varphi_k) \in \mathbb{T}, |\operatorname{Im}(\varphi_k)| \le \xi \}, (77.37) \}$$

e si assuma che

77.38

77.37
$$|\langle \omega(J_0), \nu \rangle| \ge \frac{\gamma}{|\nu|^{\tau}} \quad \forall \nu \in \mathbb{Z}^N \setminus \{0\}, \qquad \sup_{D(\xi, \rho, J_0)} \left| \left(\frac{\partial^2 H_0}{\partial^2 J} \right)^{-1} \right| \le \eta,$$
 (77.38)

per opportune costanti positive γ, τ, η . Allora esiste $\varepsilon_0 > 0$ tale che per $|\varepsilon| < \varepsilon_0$ esistono due funzioni α e β , analitiche in \mathbb{T}^N e a valori in \mathbb{R}^N e \mathbb{T}^N , rispettivamente, tali che il toro

$$J = \alpha(\psi), \qquad \varphi = \psi + \beta(\psi), \qquad \psi \in \mathbb{T}^N,$$
 (77.39)

descritto per $\psi \to \psi + t\omega(J_0)$, è invariante per il sistema.

p.77.15 **77.15.** Osservazione. Inoltre i tori sono analitici in ε . Ovviamente questo implica la convergenza delle serie perturbative per i tori. Altrettanto ovviamente, la serie

perturbativa per la funzione generatrice non converge, perché altrimenti questo implicherebbe l'integrabilità del sistema perturbato.

p.77.16 **77.16.** Osservazione. Si può inoltre dimostrare che i tori invarianti che sopravvivono alla perturbazione riempiono una parte dello spazio delle fasi che ha misura relativa grande, i.e. che tende a 1 quando ε tende a 0. Per questo i sistemi che si ottengono perturbando sistemi integrabili si dicono sistemi quasi-integrabili.

78. Un esempio semplice di teoria perturbativa

p.78.1 **78.1. Introduzione.** Consideriamo per N=1 il sistema descritto dalla hamiltoniana

$$H(q,p) = \frac{1}{2m} \left(p^2 + m^2 \omega^2 q^2 \right) + \frac{1}{4} \varepsilon k q^4, \tag{78.1}$$

dove k > 0 ed ε è il parametro perturbativo.

Con la trasformazione (75.3) la hamiltoniana diventa

78.2
$$H(\varphi, J) = \omega J + \varepsilon \alpha J^2 \sin^4 \varphi, \qquad \alpha = \frac{k}{m^2 \omega^2}. \tag{78.2}$$

Si ha quindi, al primo ordine,

sec.78

78.1

78.3

78.4

78.5

78.6

$$H_1'(J) = \alpha J^2 \left\langle \sin^4 \varphi \right\rangle = \frac{3}{8} \alpha J^2, \tag{78.3}$$

dove si è usato che (cfr. l'esercizio 16)

$$\langle \sin^4 \varphi \rangle = \int_0^{2\pi} d\varphi \sin^4 \varphi = \frac{3}{8}.$$
 (78.4)

Inoltre (cfr. l'esercizio 16)

$$W_1(\varphi, J') = -\frac{1}{\omega} \int_0^{\varphi} d\psi \alpha (J')^2 \left(\sin^4 \psi - \left\langle \sin^4 \psi \right\rangle \right)$$
$$= \frac{\alpha (J')^2}{\omega} \left(\frac{3}{8} \sin \varphi \cos \varphi + \frac{1}{4} \sin^3 \varphi \cos \varphi \right).$$
(78.5)

In termini delle nuove variabili le equazioni di Hamilton sono

$$\dot{\varphi}' = \frac{\partial H'(J')}{\partial J'} + O(\varepsilon^2), \qquad \dot{J}' = -O(\varepsilon^2), \tag{78.6}$$

con $H'(J') = H_0(J') + \varepsilon H_1'(J') + O(\varepsilon^2)$, che dànno

78.7
$$\varphi'(t) = \varphi'(0) + (\omega + \varepsilon \omega_1(J'(0))) t + O(\varepsilon^2), \qquad J'(t) = J'(0) + O(\varepsilon^2),$$
 (78.7)

dove

$$\omega_1(J') = \frac{\partial H_1'}{\partial J}(J') = \frac{3}{4}\alpha J'. \tag{78.8}$$

Dobbiamo esprimere $(\varphi'(0), J'(0))$ in termini di $(\varphi(0), J(0))$ e, infine, $(\varphi(t), J(t))$ in termini di $(\varphi'(t), J'(t))$.

Dobbiamo quindi calcolare la trasformazione canonica che ha $W(\varphi, J') = \varphi J' + \varepsilon W_1(\varphi, J')$ come funzione generatrice (di seconda spacie).

Si ha, per definizione,

78.9
$$J = J' + \varepsilon \frac{\partial W_1}{\partial \varphi}, \qquad \varphi' = \varphi + \varepsilon \frac{\partial W_1}{\partial J'}, \tag{78.9}$$

da cui si ricava

$$J = J' + \varepsilon \frac{\alpha}{\omega} (J')^2 \left(\frac{3}{8} \cos^2 \varphi - \frac{3}{8} \sin^2 \varphi + \frac{3}{4} \sin^2 \varphi \cos^2 \varphi - \frac{1}{4} \sin^4 \varphi \right) + O(\varepsilon^2),$$

$$78.10 \qquad \varphi' = \varphi + 2\varepsilon \frac{\alpha}{\omega} J' \left(\frac{3}{8} \sin \varphi \cos \varphi + \frac{1}{4} \sin^3 \varphi \cos \varphi \right) + O(\varepsilon^2), \tag{78.10}$$

da cui ricaviamo immediatamente la trasformazione di coordinate

$$J' = J - \varepsilon \frac{\alpha}{\omega} J^2 \left(\frac{3}{8} \cos^2 \varphi - \frac{3}{8} \sin^2 \varphi + \frac{3}{4} \sin^2 \varphi \cos^2 \varphi - \frac{1}{4} \sin^4 \varphi \right) + O(\varepsilon^2),$$

$$78.11 \qquad \varphi' = \varphi + 2\varepsilon \frac{\alpha}{\omega} J \left(\frac{3}{8} \sin \varphi \cos \varphi + \frac{1}{4} \sin^3 \varphi \cos \varphi \right) + O(\varepsilon^2), \tag{78.11}$$

e la sua inversa

$$J = J' + \varepsilon \frac{\alpha}{\omega} (J')^2 \left(\frac{3}{8} \cos^2 \varphi - \frac{3}{8} \sin^2 \varphi + \frac{3}{4} \sin^2 \varphi \cos^2 \varphi - \frac{1}{4} \sin^4 \varphi \right) + O(\varepsilon^2),$$

$$78.12 \qquad \varphi = \varphi' - 2\varepsilon \frac{\alpha}{\omega} J' \left(\frac{3}{8} \sin \varphi' \cos \varphi' + \frac{1}{4} \sin^3 \varphi' \cos \varphi' \right) + O(\varepsilon^2), \tag{78.12}$$

dove, al solito, i termini di ordine superiore al primo sono trascurati.

p.78.2 **78.2.** Inoltre si tenga conto che, scrivendo in (78.12) $\varphi = \varphi' + \varepsilon \varphi_1 + O(\varepsilon^2)$ e $J = J' + \varepsilon J_1 + O(\varepsilon^2)$ e ponendo $\omega_1 = \omega_1(J'(0))$, si ha

$$\sin \varphi = \sin(\varphi'(0) + \omega t + \varepsilon \omega_1 t + \varepsilon \varphi_1)$$

$$= \sin(\varphi'(0) + \omega t) \cos(\varepsilon \omega_1 t + \varepsilon \varphi_1) + \cos(\varphi'(0) + \omega t) \sin(\varepsilon \omega_1 t + \varepsilon \varphi_1) + O(\varepsilon^2)$$

$$= \sin(\varphi'(0) + \omega t) + \varepsilon (\omega_1 t + \varphi_1) \cos(\varphi'(0) + \omega t) + O(\varepsilon^2), \tag{78.13}$$

dove (cfr. la (78.11))

78.13

78.14
$$\varphi'(0) = \varphi(0) + 2\varepsilon \frac{\alpha}{\omega} J(0) \left(\frac{3}{8} \sin \varphi(0) \cos \varphi(0) + \frac{1}{4} \sin^3 \varphi(0) \cos \varphi(0) \right) + O(\varepsilon^2).$$
 (78.14)

78.8

e, allo stesso modo,

78.15

$$\sqrt{J} = \sqrt{J' + \varepsilon J_1 + O(\varepsilon^2)} = \sqrt{J'(0) + \varepsilon J_1 + O(\varepsilon^2)}$$

$$= \sqrt{J'(0)} \left(1 + \varepsilon \frac{J_1}{J'(0)} \right) + O(\varepsilon^2), \tag{78.15}$$

dove (cfr. di nuovo la (78.11))

78.16

$$J'(0) = J(0) - \varepsilon \frac{\alpha}{\omega} J^2(0) \left(\frac{3}{8} \cos^2 \varphi(0) - \frac{3}{8} \sin^2 \varphi(0) + \frac{3}{4} \sin^2 \varphi(0) \cos^2 \varphi(0) - \frac{1}{4} \sin^4 \varphi(0) \right) + O(\varepsilon^2).$$
(78.16)

p.78.3 **78.3.** Alla fine, utilizzando le (78.7), (78.11) e (78.12), ed esprimendo (q, p) in funzione di (φ, J) attraverso la (78.3), troviamo (q(t), p(t)).

p.78.4 **78.4.**

Nota bibliografica

Esercizi

Esercizio 1. Dimostrare che in variabili azione-angolo la hamiltoniana dell'oscillatore armonico ha la forma (75.2). [Suggerimento. Si tenga conto dell'esercizio 16 del Capitolo 18 e si verifichi che $a_1 = \sqrt{m/k}$, con $k = m\omega^2$.]

Esercizio 2. Dimostrare la stima (76.3).

Esercizio 3. Scrivere la perturbazione nella hamiltoniana (76.5) in variabili azione-angolo.

Esercizio 4. Dimostrare la stima (76.21) se si sceglie $N=N_0(\varepsilon)$ in accordo con la (76.22).

Esercizio 5. Si consideri la hamiltoniana

$$H(\varphi, J) = J_1 + \alpha J_2 + \varepsilon \left(J_2 + F(\varphi_1, \varphi_2) \right),$$

dove $(1,\alpha)\in\mathbb{R}^2$ è un vettore diofante
o e

$$F(\varphi_1, \varphi_2) = \sum_{\nu \in \mathbb{Z}^2} e^{i\langle \nu, \varphi \rangle} F_{\nu}$$

è analitica. Calcolare esplicitamente la serie di Birkhoff. [Suggerimento. Si trova $H_1'(J')=J_2'$ e $H_k'(J')=0$ per $k\geq 2$, mentre

$$W_k(\varphi, J') = -\sum_{\nu \neq 0} e^{i\langle \nu, \varphi \rangle} \frac{F_{\nu}}{i\langle \omega, \nu \rangle} \left(-\frac{\nu_2}{\langle \omega, \nu \rangle} \right)^{k-1}$$

per $k \geq 1$.]

Esercizio 6. Si dimostri che i coefficienti di ordine k della serie di Birkhoff dell'esercizio 5 si stimano proporzionalmente a $k!^{\tau+1}$. [Suggerimento. Si trova che $|W_{k,\nu}(J')|$ si stima proporzionalmente a $|\nu|^{\tau+(k-1)(\tau+1)}$ e si usa che $(k(\tau+1))! \leq C^k k!^{\tau+1}$ per un'opportuna costante C.]

Esercizio 7. Dimostrare che i moti del sistema descritto dalla hamiltoniana $H(\varphi, J)$ dell'esercizio 5 divergono linearmente nel tempo e dedurne che le serie di Birhkoff divergono. [Suggerimento. Integrare esplicitamente le equazioni di Hamilton.]

Esercizio 8. Si consideri la hamiltoniana dell'esercizio 5. Dimostrare che la soluzione formale dell'equazione di Hamilton-Jacobi è data da

$$H'(J') = J'_1 + \alpha J'_2 + \varepsilon J'_2 + \varepsilon F_0,$$

$$W(\varphi, J') = \varphi_1 J'_1 + \varphi_2 J'_2 + i\varepsilon \sum_{\substack{\nu \in \mathbb{Z}^2 \\ \nu \neq 0}} e^{i\langle \nu, \varphi \rangle} \frac{F_{\nu}}{\nu_1 + \nu_2(\alpha + \varepsilon)}.$$

Dedurne che le serie di Birkhoff divergono.

Esercizio 9. Dimostrare che la condizione (77.13) permette di risolvere le (77.15) con il teorema della funzione implicita. [Suggerimento. Definendo $G(J,J,\varphi)=J'-J+\varepsilon(\partial W_1/\partial\varphi)(\varphi,J')$, si considera l'equazione $G(J,J',\varphi)=0$. Si ha allora $\partial G/\partial J'=1+\varepsilon(\partial^2 W_1/\partial\varphi\partial J)$ e quindi $|\det(\partial G/\partial J')|\geq 1/2$ purché $\varepsilon B_3\gamma^{-1}\|V\|_0\delta^{-n-\tau-1}<1/2$.]

Esercizio 10. Dimostrare la (77.19). [Suggerimento. Si dimostra per induzione che $k_1! \dots k_s! \le (k - (s - 1))!$ se $k = k_1 + \dots + k_s$ e $k_1, \dots, k_s \ge 1$. Per s = 1 la stima è banale, per s > 1 si ha

$$k_1! \dots k_s! \le k_1! \dots k_{s-1}! k_s! \le (\tilde{k} - (s-2))! k_s! \le (\tilde{k} + k_s - (s-2) - 1)!$$

dove $\tilde{k} = k_1 + \ldots + k_{s-1} = k - k_s$. La somma su $k_1! \ldots k_s!$ con i vincoli sopra si può quindi stimare con il numero di modi di scegliere s-1 numeri tra k per il massimo di $k_1! \ldots k_s!$, quindi

$$\sum_{\substack{k_1, \dots, k_s \ge 1 \\ k_1 + \dots + k_s = k}} k_1! \dots k_s! \le \binom{k}{s-1} (k - (s-1))! \le k!$$

Esercizio 11. Dimostrare la (77.20). [Suggerimento. Poiché $a_1,\ldots,a_N\geq 0$ e $a_1+\ldots+a_N=p$, esiste m tale che $1\leq m\leq N,$ $a_{i_1},\ldots,a_{i_m}\geq 1,$ $a_{i_1}+\ldots+a_{i_M}=p$, mentre i restanti a_i sono nulli. La somma su a_{i_1},\ldots,a_{i_m} che verificano tali condizioni si può stimare con la somma dei possibili modi di fissare m punti tra p dati. Infine si può stimare

$$\binom{p}{m} \le 2^p, \qquad \sum_{m=1}^N \binom{N}{m} = 2^N,$$

e questo completa la dimostrazione.]

Esercizio 12. Si ricordi il teorema di Cauchy: data una funzione f(z), analitica in un aperto $D \subset \mathbb{C}^2$ e continua sulla frontiera ∂D , si ha

$$\frac{1}{n!} \frac{\partial^n f}{\partial z}(z) = \frac{1}{2\pi i} \oint_{\partial D} \frac{f(\zeta)}{(\zeta - z)^{n+1}} d\zeta,$$

dove l'integrale è esteso alla curva $\partial D.$ Dedurne che, se $D'\subset D$ e $z\in D',$ si ha

$$\frac{1}{n!} \left| \frac{\partial^n f}{\partial z}(z) \right| \le \frac{M}{\delta^n},$$

dove M è il massimo del modulo di f(z) in D e δ è la distanza tra D' e ∂D .

Esercizio 13. Si utilizzi il teorema di Cauchy per dimostrare le (77.10) e (77.19).

Esercizio 14. Dimostrare la (77.28).

Esercizio 15. Dimostrare che $k! \leq k^k$ per ogni $k \in \mathbb{N}$. [Suggerimento. Si usi la formula di Stirling o, più semplicemente, si noti che $k! = 1 \cdot 2 \cdot 3 \dots k \leq k \cdot k \cdot k \dots k = k^k$.]

Esercizio 16. Dimostrare le (78.4) e (78.5). [Soluzione. Si ha

$$\int d\varphi \, \sin^4\varphi = \int d\varphi \, \sin^2\varphi \, \left(1 - \cos^2\varphi\right) = \int d\varphi \, \sin^2\varphi - \frac{1}{3} \sin^3\varphi \cos\varphi - \frac{1}{3} \int d\varphi \sin^4\varphi,$$

e quindi

$$\int d\varphi \, \sin^4\varphi = \frac{3}{4} \left(\frac{\varphi - \sin\varphi \cos\varphi}{2} - \frac{1}{3} \sin^3\varphi \cos\varphi \right).$$

In particolare si ha $\langle \sin^4 \varphi \rangle = 3/8.]$

Capitolo 20. Teorema KAM

sec.79		79. Aaa
p.79.1	79.1. Introduzione.	
p.79.2	79.2.	
p.79.3	79.3.	
p.79.4	79.4.	
p.79.5	79.5.	
p.79.6	79.6.	
sec.80		80. Bbb
p.80.1	80.1. Introduzione.	
p.80.1 $p.80.2$		
•	80.2.	
p.80.2	80.2.	
p.80.2 p.80.3	80.2. 80.3. TEOREMA.	
p.80.2 p.80.3 p.80.4	80.2.80.3. TEOREMA.80.4. Dimostrazione.	
p.80.2 p.80.3 p.80.4 p.80.5 p.80.6	80.2.80.3. TEOREMA.80.4. Dimostrazione.80.5.	
p.80.2 p.80.3 p.80.4 p.80.5 p.80.6	80.2.80.3. TEOREMA.80.4. Dimostrazione.80.5.80.6. Osservazione.	

p.80.9 **80.9.**

p.80.10 **80.10.**

sec.81 **81.** Ccc

p.81.1 81.1. Introduzione.

p.81.2 **81.2.**

p.81.3 **81.3.** TEOREMA.

p.81.4 **81.4.** Dimostrazione.

p.81.5 **81.5.**

p.81.6 **81.6.** Osservazione.

sec.82 **82.** Ddd

p.82.1 82.1. Introduzione.

p.82.2 **82.2.**

p.82.3 **82.3.** TEOREMA.

p.82.4 **82.4.** Dimostrazione.

p.82.5 **82.5.**

p.82.6 **82.6.** Osservazione.

Nota bibliografica

Esercizi

248 CAPITOLO 20. TEOREMA KAM

- Esercizio 1.
- Esercizio 2.
- Esercizio 3.
- Esercizio 4.
- Esercizio 5.
- Esercizio 6.
- Esercizio 7.
- Esercizio 8.

Bibliografia ragionata

- I testi di riferimento di base, che si sono tenuti principalmente presenti nel testo, sono i seguenti:
- [1] G. Dell'Antonio: Elementi di Meccanica, Liguori, Napoli, 1996. [Dell'Antonio].
- [2] V.I. Arnol'd: Metodi Matematici della Meccanica Classica, Editori Riuniti, Roma, 1979. [Arnol'd2].
- [3] A. Fasano, S. Marmi: *Meccanica Analitica*, Boringhieri, Torino, 1994. [Fasano-Marmi].
- Per alcuni argomenti specifici si sono tenuti presenti anche:
- [4] M. W. Hirsch, S. Smale: Differential Equations, Dynamical Systems, and Linear Algebra, Academic Press, New York, 1974. [Hirsch-Smale].
- [5] G. Gallavotti: Meccanica Elementare, Boringhieri, Torino, 1980. [Gallavotti].
- [6] L.D. Landau, E.M. Lifshitz: *Meccanica*, Editori Riuniti, Roma, 1976. [Landau-Lifshitz].
- [7] T. Levi-Civita, U. Amaldi: Lezioni di Meccanica Elementare, Zanichelli, Bologna, 1947. [Levi-Civita-Amaldi].
- [8] H. Goldstein: Classical Mechanics, Addison-Wesley, Reading, 1980. [Goldstein].
- [9] V.I. Arnol'd: Équations Différentielles Ordinaires, MIR, Mosca, 1974. [Arnol'd1].
- [10] L. Benfatto, R. Raimondi, E. Scoppola: *Meccanica Analitica*, Dispense del Corso di Meccanica Analitica e Statistica, diponibili in rete.
- [11] A. Berretti: Varietà simplettiche, Dispense del Corso di Meccanica Razionale, disponibili in rete.
- [12] G. Benettin, F. Fassò: Il teorema di Liouville-Arnold, Dispense del Corso di

Meccanica Razionale, disponibili in rete.

- Per richiami di Analisi, di Geometria e di Algebra si può consultare qualsiasi testo sull'argomento. Noi, a titolo puramente indicativo, abbiamo fatto riferimento a:
- [13] E. Giusti: Analisi Matematica 1, Boringhieri, Torino, 1985. [Giusti1].
- [14] E. Giusti: Analisi Matematica 2, Boringhieri, Torino, 1983. [Giusti2].
- [15] S. Lang: Algebra Lineare, Boringhieri, Torino, 1970. [Lang].
- [16] A.G. Kuroš: Corso di Algebra Superiore, Editori Riuniti, Roma, 1977. [Kuroš].
- [17] E. Martinelli: Il metodo delle coordinate, Veschi, Roma, 1984. [Martinelli].
- [18] B.A. Dubrovin, A.T. Fomenko, S.P. Novikov: Modern geometry Methods and applications. Part III. Introduction to homology theory, Graduate Texts in Mathematics, 124, Springer-Verlag, New York, 1990. [Dubrovin-Fomenko-Novikov]

Questo è tutto.

Indice analitico

254 INDICE ANALITICO

Indice dei	nomi	Poisson	163, 166
A Arnol'd	26, 201, 205, 245	R Rayleigh Routh	121 44, 129, 151
B Birkhoff	238, 245	S Stokes	169, 172
C Cartan Cauchy Courant	172, 174 6, 243 121		
D D'Alembert Dirichlet	14 101	Indice delle materie	
E Eulero	4	a angoli di Eulero anisocronia	127 231
F Fisher Frobenius	121 87	applicazione frequenza asse della trottola atlante azione	229 127 10 152, 183
G Gallavotti Gauss Green	26 168 168	b battimenti	112
H Hamilton J	6, 145, 154, 191, 192	c campi vettoriali commutanti campo vettoriale a divergenza null campo vettoriale hamiltoniano	85 a 146 146
Jacobi K	84, 191	carta cella cella elementare	10 206 206
Kolmogorov Kronecker	245 103	cicloide cicloide accorciata cicloide allungata cilindro	132, 141 132, 141 132, 141 205
L Lagrange Legendre Lie Lindstedt Liouville	4, 127 143 84, 175 239, 245 147, 201, 205	circuitazione cofibrato tangente commutatore di campi vettoriali condizione di Lie condizione di isocronia	168 144 85 175 245
M Mathieu Maxwell Moser	37 149 245	condizione di non degenerazione condizione di non risonanza condizione diofantea coordinate canoniche coordinate generalizzate	231, 245 231 231, 245 145 13
N Nechorošev Newton	238, 245	coordinate lagrangiane costante del moto curva integrale	13 164 169
Noether P Poincaré Poinsot	80, 93 148, 171, 172, 174, 232, 239, 245 138	d deformazione degenerazione derivata esterna derivazione associata a un campo v	1 231 170, 171 vettoriale 77

BIBLIOGRAFIA RAGIONATA 255

	1
descrizione secondo Poinsot 138 determinante di una matrice simplettica 161	
diagonalizzazione di una coppia di forme qua-	h
dratiche 103	hamiltoniana degenere 231
differenziale a tempo bloccato 174	hamiltoniana isocrona 231
direzione di rotore 170	hamiltoniana non degenere 231 hamiltoniana 144
divergenza delle serie di Birkhoff 238	namintomana 144
divergenza 168, 169	i
	identità 181
e energia potenziale centrifuga 69	identità di Jacobi 84, 164
energia potenziale efficace della trottola 129	insieme dei periodi 207
equazione caratteristica 106	insieme regolare 168
equazione di Hamilton-Jacobi 191	integrabilità 224 integrale completo 192
equazione di Mathieu 37	integrale completo 192 integrale di una forma differenziale 157
equazione differenziale alle derivate parziali 191	integrale generale 192
equazione fondamentale della teoria delle per-	integrale primo 164
turbazioni 229	invariante integrale di Poincaré-Cartan 174
equazione omologica 229	invariante integrale relativo di Poincaré-Cartan
equazioni canoniche 146	174
equazioni di Eulero-Lagrange 4 equazioni di Hamilton 145, 153	invarianza della lagrangiana 80
equazioni di Hamilton 145, 153 espansione di Fourier generica 232	involuzione 144, 164 isocronia 227
esperimento di Maxwell 149	isocronia 227
esponenti diofantei 231	
•	lagrangiana 1
f	lagrangiana invariante 80
fibrato tangente 10	lagrangiana ridotta 45
forma differenziale 157, 160, 171	lagrangiana vincolata 13
forma differenziale chiusa 157, 171	lemma di Poincaré 171 lemma di Stokes 169, 172
forma differenziale di Poincaré-Cartan 172, 177	lemma di Stokes
forma differenziale esatta 157, 171 forma differenziale non singolare 172	103, 172
forma esterna 170	m
forma quadratica definita positiva 101	matrice antisimmetrica 169, 185
forma simplettica 183	matrice antisimmetrica non singolare 170
formula di Stokes 169	matrice cinetica 22
forza centrale 46	matrice dei periodi 208
forza vincolare 21	matrice jacobiana 160 matrice simmetrica 103
frequenza caratteristica 105	matrice similetrica 158
frequenza di un moto multiperiodico 202	matrice simplettica standard 145
frequenza normale 105 frequenza principale 105	metodo di Routh 43, 129, 151
frequenza principale 105 frequenza propria 102, 105	modello di vincolo approssimato 21
funzionale d'azione 2, 152	modo normale 105
funzione caratteristica di Hamilton 193	momento associato a un campo vettoriale 78
funzione generatrice 178	momento coniugato 79, 145
funzione generatrice di prima specie 179	momento conservato 78 moto merostatico 132
funzione generatrice di seconda specie 180	moto multiperiodico 202
funzione principale di Hamilton 192	moto quasiperiodico 202
g genericità 232	n 105
gruppi di simmetrie a più parametri 83	normale 167 normale esterna 168
gruppo a un parametro di diffeomorfismi 75	normale esterna 168 nutazione 132
gruppo a un parametro di trasformazioni 75	102
gruppo di simmetrie 80	o

256 INDICE ANALITICO

•11	100 00	200	1	105
oscillatore armonico	199, 227,		sistema unidimensioanle	195
oscillazione propria		105	sollevamento di un campo vettoriale	91
			sollevamento di una trasformazione	
p	101	220	nate	77
parametro perturbativo	181,	228	spazio affine	35
parentesi di Poisson	_	163	spazio delle deformazioni	1, 152
parentesi di Poisson fondamental	i	166	spazio delle fasi	144
pendoli accoppiati		110	spazio delle fasi esteso	169
pendolo doppio		36	spazio delle traiettorie	1, 152
pendolo sferico	,	135	spazio duale	157
piccole oscillazioni	,	105	stabilità	41
piccole oscillazioni per sistemi vii	ncolati	117	superficie regolare	201
precessione		133	superficie trasversa	208
precessione regolare		132		
primo principio variazionale di H		6	t	222 245
primo teorema di trivialità di Poi	incaré	232	teorema KAM	239, 245
principio del minimax		119	teorema del ritorno di Poincaré	148
principio di d'Alembert		14	teorema del rotore	167
principio di minima azione		7	teorema della divergenza	167, 168
problema con condizioni al conto		6	teorema della scatola di flusso	91, 194
problema dei due corpi	46, 223,		teorema di Arnol'd-Gallavotti	26
problema di Cauchy		6	teorema di Arnol'd-Liouville	201, 205
procedimento di prima specie		178	teorema di Birkhoff	245
procedimento di quarta specie		180	teorema di Cauchy	243
procedimento di seconda specie		179	teorema di Frobenius	87
procedimento di terza specie		180	teorema di Gauss-Green	168
prodotto di Lie	84,	164	teorema di Kolmogorov	245
prodotto esterno		171	teorema di Liouville	147
punto d'equilibrio stabile		41	teorema di Nechorošev	238, 245
			teorema di Noether	80, 93
r		4-0	teorema di Poincaré	232
rango di una matrice		170	teorema di Poisson	166
rigidità		117	teorema di Rayleigh-Courant-Fisher	121
rotazione propria		133	teorema di Routh	44, 151
rotore		168	teorema di Stokes	169, 172
			teorema di non esistenza di Poincaré	239
S			teoremi di trivialità di Poincaré	232, 239
secondo principio variazionale di			teoria delle perturbazioni	228
secondo teorema di trivialità di F	oincaré	239	teoria perturbativa a tutti gli ordini	233
separabilità		198	teoria perturbativa al primo ordine	228
separazione di variabili		198	teoria perturbativa	228
serie di Birkhoff		238	toro invariante	239, 245
serie di Lindstedt		239	toro non risonante	245
serie formale		233	toro unidimensionale	201
serie perturbativa		238	trasformata di Legendre	143
simmetria		80	trasformazione canonica	159
sistema aniscocrono		231	trasformazione che conserva il volume	
sistema di coordinate bene adatt	ato	23	trasformazione che conserva la strutt	
sistema di coordinate ortogonale		23	nica delle equazioni	159
sistema hamiltoniano	100	146	trasformazione di coordinate	159
sistema integrabile	192,	227	trasformazione involutiva	144
sistema isocrono		227	trasformazione simplettica	159
sistema lagrangiano		12	trocoide	140
sistema linearizzato		102	trottola	127
sistema meccanico conservativo		40	trottola addormentata	137
sistema perturbato		181	trottola di Lagrange	127
sistema quasi-integrabile	105 100	240	trottola lanciata velocentemente	140
sistema separabile	195, 198,	202	trottola pesante	127

BIBLIOGRAFIA RAGIONATA 257

trottola simmetrica trottola veloce tubo di rotore	127 137 169, 172
v	
variabile ciclica	44
variabili azione-angolo	201
varietà	10
varietà differenziale con bordo	172
varietà differenziale	10
varietà regolare	10
vertice della trottola	132
vettore diofanteo	231
vettore non risonante	231
vincolo approssimato	21
vincolo approssimato perfetto	24
vincolo reale	21