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Abstract

A rigorous analysis is presented in order to show that, in presence of friction, the upward

equilibrium position of the vertically driven pendulum, with a small non-vanishing damping

term, becomes asymptotically stable when the period of the forcing is below an appropriate

threshold value. As a byproduct we obtain an analytic expression of the solution for initial data

close enough to the equilibrium position.
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1 Introduction

Consider a pendulum of mass m and length ℓ, constrained to move on a vertical plane under the
influence of gravity of intensity g and in presence of friction, with the point of support P subjected
to a vertical cosinusoidal oscillation of frequency ω and amplitude b, i.e. yP = b cosωt: the equation
of motion for the system (see for instance Landau & Lifschitz 1976) is given by

θ̈ + sin θ

(

g

ℓ
− bω2

ℓ
cosωt

)

+ γθ̇ = 0, (1.1)

where θ ∈ R/2πZ is the angle that the pendulum forms with the downward oriented vertical, γ is
the dissipation (or friction) coefficient and the dots denote differentiation with respect to t.

It is well known (dating back to Stephenson 1908) that the equilibrium state (θ, θ̇) = (π, 0)
can be made stable if the frequency and the amplitude of the oscillation are suitably chosen: if b
is small (with respect to ℓ), then ω has to be large enough, say larger than a threshold value ω0.
The existing proofs of stability in literature are in absense of friction (γ = 0 in (1.1)) either for
the linearized system, which reduces to Mathieu’s equation, or based on the averaging (or effective
potential) method; one can see Phelps & Hunter 1965 for the former, and Kapitsa 1951 for the latter
(for a review on the averaging method see Arnol’d et al. 1988, Ch. 3).

We refer to Blackburn et al. 1992 for a critical description of the two methods, in particular to
understand why they are not completely adequate to solve the problem.

Here we confine ourselves to stress that the averaging method is not rigorous (and even incorrecty
in some cases). In fact one introduces an approximation by discarding some terms from the Hamil-
tonian describing ths system and there is no control on the relevance of the discarded terms. When
studying the stability of the inverted state of the pendulum, one obtains for ω0 an approximated
value which is in very good agreement with experimental obervations: the problem is that there is no
way to conclude theoretically (i.e. without relying a posteriori on the experiments) to what extent
the result is reliable, and how relevant can be the error caused by the approximation involved by
the method. Even more, when applied to the study of the noninverted state, the averaging method
would predict stability for all values of the parameters, in sharp contrast with the fact that such a
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state can be indeed destabilized for some values of the parameters: so for such values the averaging
method gives the wrong result.

On the other hand the results found by using the theory of Mathieu’s equation apply only to the
linearized system, and they cannot be extended immediately to the full nonlinear system (it is well
known that linear stability in general gives no information about the stability of the full system).

As a matter of fact, from a rigorous point of view the stability of the upward equilibrium state
is far from being obvious: in absense of friction (γ = 0 in (1.1)) the proof requires KAM theory
arguments (see for instance Bartuccelli et al. 2000b).

In presence of friction the equilibrium state (θ, θ̇) = (π, 0) is asymptotically stable for the lin-
earized system (for suitable values of the parameters, see below), so that it is expected to remain
asymptotically stable when also the nonlinear terms are taken into account. In the present note we
give an analytical proof of such a property, by using a technique which has been introduced recently
in Classical Mechanics by Eliasson (1988), then developed in various subsequent papers and applied
successfully in order to solve several KAM-type problems (for a review we refer to Gentile 1999).
Note however, that, with respect to such problems, in our case the analysis is much easier, as there
are no small divisors.

Besides stability (which likely would follows - at least for qualitative purposes - from the study
of the linearized damped system), our proof gives also an analytical perturbative expression for the
solution. More precisely we find that the the solution of the full system is sort of conjugated to
the solution of the linear system, in the following sense: by writing (as it is possible, see below) the
solution θ0(t) of the linearized system as

θ0(t) = e−λtP (νt), ν = (µ0, 2), µ ∈ (0, 1), (1.2)

with P a 2π-periodic function in its arguments, then the solution θ(t) of the full system can be
written as

θ(t) = Θ(e−λt, νt), (1.3)

with Θ a function analytic in its arguments and 2π-periodic in ψ ≡ νt = (µ0t, 2t). The function Θ
can be constructed to all perturbative orders and then shown to be convergent (for initial data close
enough to the upward equilibrium state), so that analyticity follows.

Of course the results we find are not so surprising: physically they are exactly the ones expected
to hold. Note however that, while on one hand there is a large number of numerical results on the
vertically driven pendulum (for a review we refer to Bartuccelli et al. 2000a and to the references
quoted therein), on the other hand the analytical results existing on the subject are very few at the
moment; in particular the two methods mentioned above, even if they are interesting and often very
useful for practical purposes, give only a partial theoretical understanding of the problem, and they
are not completely satisfactory from a rigourous point of view, as we noted above.

Moreover we think that our method is interesting by itself: to determine the motion by looking
for a solution of some prefixed form is very natural from a physical point of view, and allows to
obtain good analytical bounds. The estimates of the basin of attraction can appear to be very
poor with respect to those one could obtain numerically, but they turn out to be very appealing if
compared with the results provided by the other two analytical methods, with which is not possible
to obtain any estimates on the basins of attraction of the equilibrium points.

2 An analytical proof of asymptotic stability

With respect to Bartuccelli et al. 2000a, we slightly change the notations, in order to make more
terse the comparison with the existing mathematical literature on the subject, especially with Arscott
1964 and Blanch 1965.

If we are interested in the stability of the position θ = π (upside-down pendulum), define ξ = π+θ,
so that (1.1) becomes

ξ̈ + sin ξ

(

−g
ℓ

+
bω2

ℓ
cosωt

)

+ γ ξ̇ = 0. (2.1)
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Define ωt = 2τ and x(τ) = ξ(t); then (2.1) writes

ẍ+ sinx (a+ 2q cos 2τ) + 2λẋ = 0, a = − 4g

ℓω2
, q =

2b

ℓ
, λ =

γ

ω
, (2.2)

(with ẋ = dx/dτ and ẍ = d2x/dτ2), which can be rewritten as

ẍ+ f(τ)x+ 2λẋ = [x− sinx] f(τ), f(τ) = a+ 2q cos 2τ. (2.3)

Set
x(τ) = δe−λτy(τ) : (2.4)

then, by writing (2.3) with sinx expressed as Taylor series of x and dividing it by δ e−λτ , we obtain

ÿ + f0(τ) y = f(τ)

∞
∑

m=1

(−1)m+1

(2m+ 1)!
e−2mλτεmy2m+1, ε = δ2, (2.5)

where
f0(τ) = f(τ) − λ2 = a0 + 2q cos 2τ , a0 = a− λ2 . (2.6)

In the linear case (ε = 0) the substitution (2.4) is the standard procedure to show that the solutions
of Mathieu’s equation with damping are conjugated to the solutions of Mathieu’s equation; see
Jordan & Smith 1977.

For ε = 0, (2.5) becomes (the standard form of) Mathieu’s equation,

ÿ + f0(τ) y = 0 , f0(τ) = a0 + 2q cos 2τ ; (2.7)

we refer to Jordan & Smith 1977, Ch. 8, for an introductory review and to Arscott 1964 for a more
detailed exposition of the subject.

Note that in (2.6) one has a0 < 0 (see (2.2) and (2.6)). Let a0(q), b1(q) be the curves of the
first characteristic values of Mathieu’s equation (see Arscott 1964, Ch. III); for a0, q such that
a0(q) < a0 < min{b1(q), 0} the solution of 2.7 is stable, (see Arscott 1964, Ch. VI). More precisely
there exist two independent (Floquet) solutions

u1(τ) = eiµ0τp0(τ) , u2(τ) = e−iµ0τ p̄0(τ) , (2.8)

where 0 < µ0 < 1 (see Arscott 1964 and Blanch 1965), and p0(τ) is an analytic function of period
π ,

p0(τ) =
∑

ν∈Z

e2iντp0ν , p0(0) = 1 , p0(−τ) = p̄0(τ) ; (2.9)

here and henceforth, given z ∈ C, z̄ denotes the complex conjugate of z. Both µ0 and p0(τ) depend
on a0 and q. Note that

|p0ν | ≤ P e−κ|ν|, P = max
τ∈[0,π]

|p0(τ)| , (2.10)

for some κ ∈ R+.
One can construct two real independent solutions as

w1(τ) =
1

2

[

eiµ0τp0(τ) + e−iµ0τ p̄0(τ)
]

, w2(τ) =
1

2ic

[

eiµ0τp0(τ) − e−iµ0τ p̄0(τ)
]

, (2.11)

where c ∈ R is such that ẇ2(0) = 1. Note that w1 is even and w2 is odd.
The solution y(0)(τ) of (2.7) with initial data (y(0)(0), ẏ(0)(0)) = (A,B) ∈ R

2 can be written as

y(0)(τ) = w1(τ)A+ w2(τ)B, A2 +B2 = 1, (2.12)

hence it is in general quasi-periodic (periodic if µ0 is rational), with rotation vector ω0 = (µ0, 2).
The normalization condition in (2.12) is imposed just for convenience; see (2.16) below.

In terms of the Floquet solutions, (2.12) becomes

y(0)(τ) = u1(τ)C + u2(τ)D = eiµ0τp0(τ)C + e−iµ0τ p̄0(τ)D, (2.13)
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where

C =
A− iB/c

2
, D = C̄ =

A+ iB/c

2
. (2.14)

Expressed in the variable x, the solution y(0) becomes

x(0)(τ) ≡ δe−λτy(0)(τ) = δ
[

eiµ0τ−λτp0(τ)C + e−iµ0τ−λτ p̄0(τ)D
]

, (2.15)

so that one sees that its limit for τ → ∞ tends to 0: if one neglects the nonlinear terms in (2.3) the
origin is asymptotically stable. Note that, in terms of the variable x, the initial condition in (2.12)
gives

x(0)2(0) + ẋ(0)2(0) = δ2, (2.16)

so that δ measures the distance of the initial datum from the equilibrium point (0, 0).
The solution x(0) given by (2.15) can be written as

x(0)(τ) =
∑

ν∈Z2

eiω0·ντ−λτx(0)
ν , (2.17)

where ω0 = (µ0, 2), ν = (ν1, ν2), with ν1 = ±1 and x
(0)
(1,ν2) = x̄

(0)
−(1,ν2) = δp0ν2

C; here and henceforth

the · denotes the inner product in Z2, so that ω0 · ν = µ0ν1 + 2ν2. Hence x(0)(τ) depends on τ only
through e±iµ0τ , e±i2τ and e−λτ . The first two factors give an oscillatory behaviour, while the third
one is responsible for the decay towards the origin.

If ε 6= 0 we look for solutions analytic on ε for ε small enough, whose dependence on τ is still
through the factors e±iµ0τ , e±i2τ and e−λτ . This means that we look for solutions of the form

y(τ) ≡ y(τ ; ε) =

∞
∑

n=1

εny(n)(τ) =

∞
∑

n=1

εn
∑

ν∈Z
2

∞
∑

k=0

eiω0·ντ−kλτy
(n)
ν,k . (2.18)

We shall show that, fixed an arbitrary direction (A,B), with A2 + B2 = 1, in the plane (y, ẏ),
the solution y(τ) of (2.5), with initial condition (y(0), ẏ(0)) = (y(0)(0), ẏ(0)(0)) = (A,B), remains
bounded around the equilibrium point (0, 0), provided ε is small enough. Note that the component
k = 0 already appears when n = 0, i.e. for y(0)(τ): anyway the presence of oscillating (or even
constants, that is with k = 0 and ν = 0) terms is not a problem because the solution x(τ) of
the equation (2.3) is related to y(τ) through the change of variable (2.4), and θ(t) is such that
x(ωt/2) = π + θ(t).

Then (x(0), ẋ(0)) = (δA, δB) is the initial datum for the equation (2.3), hence (θ(0), θ̇(0)) =
(π + δA, δB) is the initial datum for the equation (1.1). By the above discussion we have that
any initial datum close enough to the equilibrium point (π, 0) generates a solution of (1.1) which
is exponentially asymptotic to (π, 0) with decay rate λ: this implies the asymptotic stability of the
position (θ, θ̇) = (π, 0) for the upside-down pendulum.

More formally the result can be stated as follows.

Theorem. Given the equation (1.1), assume that (for fixed g and ℓ) the parameters ω and b are
such that

a0(2b/ℓ) < − 4g

ℓω2
− λ2 < min{b1(2b/ℓ), 0} , (2.19)

where q → a0(q) and q → b1(q) are the curves of the first characteristic values of Mathieu’s equation.
Then the series (2.18) is absolutely convergent for ε small enough. This means that there exists
δ0 > 0 such that the equilibrium position (θ, θ̇) = (π, 0) is the ω-limit set of any initial datum
(θ(0), θ̇(0)) satisfying [θ(0) − π]2 + θ̇2(0) < δ20 , and the time decay of the solution towards (π, 0) is
exponential with rate λ; in particular the ball of center (π, 0) and radius δ0 is contained inside the
basin of attraction of (π, 0). One has δ0 = O(

√
λ).

The proof of the above Theorem is carried out in Sect. 3. The condition (2.19) could be easily
relaxed into a weaker one. In fact (2.18) requires the solution y(0) to be quasi-periodic: in terms of
the parameters ω, b this means that they lay inside the lowest stability region, so that µ0 is real (see
Arscott 1964). Anyway the solution x(0) has a damping factor e−λτ (see (2.15)), so that µ0 could be
allowed to have also an imaginary part (smaller than λ). As we are not looking for optimal bounds,
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we have neglected such a feature in stating the Theorem; however recall that the damping term
destabilizes the motion of the inverted pendulum with respect to the undamped case (see Leiber &
Risken 1988).

Using that a0(q) ≈ −q2/2 for q small enough (see Arscott 1964), for λ = 0 the condition (2.19),
if b/ℓ ≤ 0.450 so that min{b1(2b/ℓ), 0} = 0, reads as 2gℓ < b2ω2, which is the condition found by the
averaging method (see Percival & Richard, Ch. 9, §9.5; compare also Acheson 1993, formula (2.1),
for a single pendulum).

3 Proof of the Theorem

We look for solutions of the form

y(τ) ≡ y(τ ; ε) =
∞
∑

n=1

εny(n)(τ). (3.1)

Inserting (3.1) into (2.5), we obtain, by equating the terms of the same order in ε,

ÿ(0) + f0(τ) y
(0) = 0 ,

ÿ(1) + f0(τ) y
(1) =

1

3!
e−2λτf(τ)y(0)3 , (3.2)

ÿ(2) + f0(τ) y
(2) =

1

2
e−2λτf(τ) y(0)2y(1) − 1

5!
e−4λτf(τ) y(0)5 ,

and so on; in general, to order n, one has

ÿ(n) + f0(τ) y
(n) = F (n)(τ), (3.3)

where

F (n)(τ) = f(τ)

n
∑

m=1

(−1)m+1

(2m+ 1)!
e−2mλτ

2m+1
∑

m′=0

(

2m+ 1
m′

)

y(0)2m+1−m′

(τ) (3.4)

∑

n1≥1,...,n
m′≥1

n1+...+n
m′=n−m

m′

∏

j=1

y(nj)(τ).

The term corresponding to m′ = 1 yields m = n and it has to be interpreted as

f(τ)
(−1)n+1

(2n+ 1)!
e−2nλτy(0)2n+1(τ); (3.5)

note that for n = 1 it is the only present (see (3.2).
Then the equations (3.3) can be iteratively integrated as

(

y(n)(τ)
ẏ(n)(τ)

)

= W (τ)

[(

y(n)(0)
ẏ(n)(0)

)

+

∫ τ

0

dτ ′W−1(τ ′)

(

0
F (n)(τ ′)

)]

, (3.6)

where

W (τ) =

(

w1(τ) w2(τ)
ẇ1(τ) ẇ2(τ)

)

(3.7)

is the Wronskian matrix of the linear system (2.7), so that W (0) = id and detW (τ) = 1.
Introduce the space M of functions h : R → C, which admit a formal expansion of the form

h(τ) =
∑

ν∈Z2

∞
∑

k=0

eiν·ω0τe−kλτhν,k (3.8)
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and define
M0 = {h ∈ M : h0,0 = 0}. (3.9)

Note that
∫ τ

0

dτ ′
[

eiω0·ντ ′−kλτ ′
]

=
eiω0·ντ−kλτ − 1

iω0 · ν − kλ
(3.10)

for all (ν, k) ∈ Z2 × N.
Given a function h ∈ M0 denote by I(h) the primitive of h in M0: then, by (3.10), one can see

that

I
[

eiω0·ντ ′−kλτ ′
]

=
eiω0·ντ−kλτ

iω0 · ν − kλ
, (3.11)

as h ∈ M0 requires hν,k to have (ν, k) 6= (0, 0). The space M admits a natural decomposition into

M =
⊕

ν∈Q

∞
⊕

k=1

Mν,k, Q = {ν ∈ Z
2 : ν ∼ ν′ if ω0 · ν = ω0 · ν′}, (3.12)

and Mν,k is the space of functions of the form h(τ) = a eiω0·ν
′τe−kλτ , with a ∈ C and for all ν′ in the

same equivalence class of ν. Note that Q = Z2 if the components of ω0 are rationally independent.
By construction I : Mν,k → Mν,k.

Define the function w12 as

w12(τ, τ
′) = [w2(τ)w1(τ

′) − w1(τ)w2(τ
′)] =

1

2ic
[u1(τ)u2(τ

′) − u2(τ)u1(τ
′)] . (3.13)

One can write explicitly (3.6) as

(

y(n)(τ)
ẏ(n)(τ)

)

=

(

w1y
(n)(0) + w2ẏ

(n)(0)
ẇ1y

(n)(0) + ẇ2ẏ
(n)(0)

)

(3.14)

+

∫ τ

0

dτ ′
(

[w2(τ)w1(τ
′) − w1(τ)w2(τ

′)]F (n)(τ ′)
[ẇ2(τ)w1(τ

′) − ẇ1(τ)w2(τ
′)]F (n)(τ ′)

)

.

Choose (for simplicity) initial data such that (y(n)(0), ẏ(n)(0)) = (0, 0): this means that the initial
datum remains (y(0; ε), ẏ(0; ε)) = (y(0)(0), ẏ(0)(0)) = (A,B) for all ε for which the solution y(τ ; ε)
is defined.

Then (3.14) gives for the first component

y(n)(τ) =

∫ τ

0

dτ ′ w12(τ, τ
′)F (n)(τ ′) == I

(

w12F
(n)

)

(τ) − I
(

w12F
(n)

)

(0). (3.15)

In particular one has

y(1)(τ) =
∑

σ=0,1

I
(

1

3!
w12(τ, τ

′)e−2λτ ′

f(τ ′)y(0)3(τ ′)

)

(στ), (3.16)

for the first order term; see (3.2).
By expressing y(n) as in (3.15) and developing F (n) as in (3.4), one obtains an (integral) expression

of y(n) in terms of functions y(n′), with n′ < n. One can iterate the procedure until only terms y(1)

given by (3.16) appear. In such a way one is naturally led to represent y(n) in terms of tree graphs
(or simply trees). We refer to Harary & Palmer 1973 for an introduction to the theory of graphs;
our construction follows very closely Gallavotti 1994.

A tree θ is a partially ordered set of points and lines connecting the points. The partial ordering
is from right to left and it will be denoted by �. The leftmost point r is called the root of the tree,
while all the other points are called nodes and are denoted by labels v; by the definition of the order
relation one has r ≻ v for all vertices v. The lines are denoted by ℓ; they are all oriented towards
the root. If a line ℓ connects a node v2 to a node v1 ≻ v2, we shall write ℓ = ℓv2

and v′2 = v1: we say
that the line enters v1 and exits v2, and that v1 is the node immediately following v2. The line ℓ0
entering the root is called the root line: if we denote by v0 the last node of the tree, then ℓ0 = ℓv0

.
The first nodes of a tree, i.e. the nodes which do not follow any other nodes, are called the endpoints
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θ =
r v0 v1

v2

v3

v4

v5

v6

v7

v8

v9

v10

v11

v12

v13

v14

v15

v16

v17

Figure 1: A tree θ with 18 nodes and 8 endpoints.

of the tree. An example of tree is given in Figure 1. We shall call V (θ) the set of nodes in θ and
Λ(θ) the set of lines in θ: by construction |V (θ)| = |Λ(θ)|.

Given a tree θ and a node v ∈ V (θ), the set of nodes w � v and of lines connecting them is still
a tree graph: we call it a subtree of θ. Its root is the node v′ of θ, and its root line is the line ℓv, so
that we can denote the subtree by θv, by explicitly assigning its last node (so uniquely identifying
the root), and say that θv enters v′. By construction θ = θv0

.
If we write y(0) as in (2.12) we can expand in (3.4)

y(0)2m+1−m′

(τ) =
2m+1−m′

∑

m1=1

(

2m+ 1 −m′

m1

)

(w1(τ)A)m1 (w2(τ)B)2m+1−m′−m1 . (3.17)

To each node we associate the labels mv, mv1, mv2 and mv3, which are positive integers satisfying
the constraint that

mv1 +mv2 +mv3 = 2mv + 1. (3.18)

The label mv is called the order label, while mv3 is the branching label: the latter denotes the
number of lines entering the node v; for instance in Figure 1 one has mv13 = 3, mv23 = 2, mv33 = 1,
mv43 = 2, mv53 = 0 and so on.

We define the order n of a tree as
n =

∑

v∈V (θ)

mv. (3.19)

To each node v we associate also a time variable τv, a function

Av(τv) ≡ 1

mv1!mv2!mv3!
(−1)mv+1e−2mvλτv (w1(τv)A)mv1 (w2(τv)B)mv2 , (3.20)

a function w12(τv′ , τv), and a label σv ∈ {0, 1}. To the root r we associate a time variable τr ≡ t.
Note that one can associate the functions w1(τv′) and w2(τv′) in w12(τv′ , τv) to the node v′:

in such a way to each node v we can associate a label δv ∈ {1, 2} and a label ρv ∈ {1, 2}, with
ρv + δv = 3, and write

w12(τ
′
v, τv) =

∑

δv+ρv=3

(−1)δv+1wρv
(τv′)wδv

(τv). (3.21)

Therefore we can associate to each node v ∈ V (θ) a node function

Bv(τv) = (−1)δv+1 wδv
(τv)Av(τv)

∏

w : w′=v

wρw
(τv) (3.22)

and to the root a root function

Br(t) =

{

w1(t) if δv0
= 2 ,

w2(t) if δv0
= 1 .

(3.23)
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θ =
r v0 v1

v2

v3

v4

v5

v6

v7

v8

v9
v14v16

v17

Figure 2: A reduced tree θ̄ with 9 free nodes and 4 leaves. It has been obtained by the tree represented
in Figure 1, by encircling inside bubbles all nodes vi with σvi

= 0, then deleting all the bubbles
except the outer ones, hence representing the subtrees enclosed by the remaining bubbles as white
balls. There are 6 endpoints, two of which (v5 and v17) are free nodes. One has by construction
σv0

= 1, σv1
= 1, σv2

= 1, σv3
= 1, σv4

= 1, σv5
= 1, σv7

= 1, σv16
= 1 and σv17

= 1, while σv6
= 0,

σv8
= 0, σv9

= 0 and σv14
= 0.

Finally to each node v we associate a value Val(θv), which is iteratively defined as follows. For
v ≺ v0 one sets

Val(θv) = I (Bv) (τv′) − I (Bv) (0) =
∑

σv=0,1

I (Bv) (σvτv′), (3.24)

if v is an endpoint, and

Val(θv) = I (BvVal(θ1) . . .Val(θmv3
)) (τv′) − I (BvVal(θ1) . . .Val(θmv3

)) (0)

=
∑

σv=0,1

I (BvVal(θ1) . . .Val(θmv3
)) (σvτv′), (3.25)

if v is not an endpoint, while for v = v0 one sets

Val(θ) =
∑

σv0
=0,1

Br(t)I
(

Bv0
Val(θ1) . . .Val(θmv03

)
)

(σv0
t). (3.26)

Each time σv = 0 for some v ∈ V (θ) the subtree θv contributes a constant factor (i.e. independent
of time) to the value of the tree θ: in general we have a product of several factorizing terms. This
can be better understood graphically in terms of leaves (as done in Gentile 1995, with respect to
which, however, we proceed in a slightly different way). Given a tree θ, let us define the reduced
tree θ̄ in the following way. For each node v ≺ v0 with σv = 0 let us draw a bubble encircling the
node together with the entire subtree θv, and let us delete all the so obtained bubbles, but the outer
ones (i.e. the “maximal bubbles”); each remaining bubble encloses a subtree with last node v and
σv label fixed to be zero, and it becomes an endpoint v which can be graphically represented as a
white ball attached to the node v′ through a line ℓv; see Figure 2. We call leaf such an endpoint.

We call free nodes the reduced tree nodes different from the leaves; the leaves will be considered a
particular type of endpoints, but they will be distinguished from the free nodes. We define the reduced
order of a reduced tree as the sum n0 of the labels mv associated to its free nodes; by construction
n0 ≤ n (the equality holding only if there are no leaves). We can associate to a reduced tree θ̄ a
value Val(θ̄), where, corresponding to each free node v, there is a factor Bv and, corresponding to
each leaf v, there is factor Lv, which will be called the value of the leaf: a leaf v contributes to Val(θ)
only through a factor wρv

(τv′) (which is taken into account in the node function Bv′ , see (3.22)).
Each leaf value Lv can be expressed as a tree value Val(θv), provided that one sets σv = 0. The

tree value Val(θ) will be simply the product of the value of the reduced tree Val(θ̄) times the values
of its leaves: each leaf value Lv in turn is given by the product of the value of a reduced tree θ̄v times
the product of the values of its leaves, and so on. Then in the following we can confine ourselves to

8



consider the case in which σv = 1 for all v ∈ V (θ), provided the nodes can be allowed to represent
also leaves w contributing the functions wσw

(τv) to the value of the (reduced) tree.
If we recall the expression (3.22) for the node functions Bv, we immediately see that each node

function can be decomposed into

Bv(τv) = e−2mvλτ
∑

ν∈Z
2

eiν·ω0τvBvν , (3.27)

with

Bvν = e2mvλτ

[

(−1)δv+1wδv
Av

∏

w : w′=v

wrw

]

νv

, (3.28)

where the exponential e2mvλτ simply deletes the corresponding e−2mvλτ arising from Av (see (3.19)).
Then νv = (νv1, νv2) ∈ Z2 is called the mode label associated to the node v and represents the

Fourier label of the function in (3.22).
For the root we set

Brνr
=

{

w1νr
if δv0

= 2 ,
w2νr

if δv0
= 1 ,

(3.29)

and call νr ∈ Z
2 the mode label of the root.

Define the momentum flowing through a line ℓv and the decay label, respectively, as

νℓv
=

∑

w�v

νv, kℓv
=

∑

w�v

2mv. (3.30)

In this way we have that the operator I corresponding to a node v acts as I applied to the
exponential exp[iω0 · νℓv

τv − kℓv
λτv], i.e. as in (3.10), with ν ≡ νℓv

and k = kℓv
. Therefore we can

represent the value of the tree not by associating to the nodes the I operators, but using the Fourier
expansion (3.27) for the node functions and associating to the any line ℓ exiting from a free node a
propagator

gℓ ≡
1

(iω0 · νℓ − kℓλ)
, (3.31)

while we simply set gℓ = 1 if ℓ exits from a leaf.
Finally we shall define the node factor and the root factor, respectively, as

{

Fv = Bvνv
, if v is a free node ,

Fv = 1, if v is a leaf ,
Fr = Brνr

. (3.32)

By writing y(n)(τ) as in (2.18), then we can write, by also redefining the value of the tree with
respect to the previous definition,

y
(n)
ν,k =

∑

θ∈T n
ν,k

Val(θ), Val(θ) = Fr





∏

v∈V (θ)

Fv









∏

ℓ∈Λ(θ)

gℓ



 , (3.33)

if T n
ν,k is the set of all trees of order n such that

νr + νℓv0
= ν, kℓv0

= k, (3.34)

if νℓv0
is the momentum flowing through the root line, νr is the mode label of the root and kℓv0

is
the decay label associated to the root line. Note that k = n0 ≤ n.

Now it is easy to show that for all trees θ ∈ T n
ν,k, one has

∑

{νv}v∈θ

∣

∣

∣

∣

∣

∣

Fr

∏

v∈V (θ)

Fv

∣

∣

∣

∣

∣

∣

≤ B1C
n
1 e

−k′|ν|, (3.35)

for some constants k′ ∈ (0, κ) and B1, C1 positive, while the number of trees in T n
ν,k with fixed mode

labels is bounded by Ck
2 for some constant C2; the summability on {νv} in (3.35) can be performed
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(neglecting the constraint that a momentum ν − νr has to flow through the root line) by using the
property (2.10), in a standard way; see for instance Gentile & Mastropietro 1996.

Moreover one has

|gℓ| ≤
1

λ
, (3.36)

as kℓ ≥ 2 (see (3.30)): in particular no condition has to be imposed on the rotation vector ω0. In
terms of the parameters ω, b, we require only that they lay inside the lowest stability region.

By collecting together all the bounds found above, we have that
∣

∣

∣
y(n)

∣

∣

∣
≤ B0C

n
1 C

n
2 λ

−n, (3.37)

for some constant B0 so that the series (3.1) defining y(τ ; ε) converges for |ε| < ε0 = O(λ).
The discussion in this section leads to the following result stating the asymptotic stability of

the position (y, ẏ) = (0, 0). Given the equation (2.5), assume that the parameters ω and b are such
that (2.19) is satisfied; then there exists ε0 > 0 such that the equilibrium position (y, ẏ) = (0, 0)
is the ω-limit set of any initial datum (y(0), ẏ(0)) satisfying y2(0) + ẏ2(0) < ε20. In particular the
ball of center (0, 0) and radius ε0 is contained inside the basin of attraction of (0, 0). One has
ε0 = O(λ). By the discussion in Sect. 2 this implies the last assertion of the Theorem (recall also
that δ =

√
ε, for ε ∈ R+). Finally, the convergence of the series (2.18) and the definition of the

change of variables (2.4) imply that the solutions θ(t), with initial conditions inside the basin of
attraction of (θ, θ̇) = (π, 0) converge to such point exponentially, at a rate which, in terms of (2.2)
reads as λ.

4 Comments and conclusions

The analytical result stated by the Theorem can also be numerically checked. To accomplish this,
we have used a Mathematica program which numerically integrates the equation of motion (2.1). As
we expect, due to dissipation, the angle the pendulum makes with the upward vertical terminates
at (ξ, ξ̇) = (0, 0), which is the inverted fixed point. The analysis performed in the previous section
shows that there exists a quasi-periodic function P0(t) such that

ξ(t) − e−λtP0(t) = O(e−2λt), ξ(t) = π + θ(t), (4.1)

so that the function eλtξ(t) is quasi-periodic up to corrections O(e−λt). Therefore the corrections
terms tend to disappear after a relatively short time, and a bounded quasi-periodic function is left
after some transient: this is illustrated in Figure 3, for values of the parameters a = 0.40, q = 1.09
and λ = 0.08, and for initial conditions (ξ(0), ξ̇(0)) = (0.04, 0).

The same result was obtained with a C program; moreover the Fourier analysis (see Figure 4) of
the function P0(νt) shows a power spectrum with two basic frequencies ν = (µ0, 2), with µ0 = 0.4765,
according to (1.3).

Also the numerical computation of the largest Lyapunov exponent for the downward state (with
the same C program used in Bartuccelli et al. 2000a), at the fixed values of the parameters, gives
the value λ, in excellent agreement with the results found analytically.

In our analytical estimates no optimality has been looked for. Note that our bounds work for
any kind of perturbation with respect to the linear case, (we simply show in Sect. 3 that the
nonlinear terms do not worsen the conditions of stability holding in the linear case), so they do not
distinguish between an interaction cos θ (as the vertically driven pendulum yields) and, for instance,
an interaction cosh θ: of course in the first case a larger basin of attraction is expected. Note also
that we explicitly use the parity of the perturbation in order to obtain an expansion in powers of
ε = δ2 (see Sect. 3): however this is not at all an essential feature, and the analysis can be easily
adapted to any kind of analytic perturbation (simply expanding directly in powers of δ). It would
be interesting to try to take advantage of the exact form of the interaction in order to improve the
bounds: as a matter of fact the nonlinear terms could even improve such conditions, and this is
what likely happens physically. For the reason explained above the bounds of the stability regions
(in phase space) are far worse than the experimentally observable ones (see Acheson & Mullin 1993).
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Figure 3: Time history of eλtξ(t), where ξ(t) = π + θ(t) and θ(t) is the angle the pendulum makes
with the downward vertical and λ is given by (2.2). With reference to equation (2.2) one has
a = 0.40, q = 1.09 and λ = 0.08; the initial conditions are (ξ(0), ξ̇(0) = (0.04, 0).
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Figure 4: Power spectrum of the function eλtξ(t). There are (decreasing) peaks at frequencies 0.4765,
1.5235, 2.4765, 3.5235 (not detectable in the Figure, but deducible from the numerical data), . . .,
which reveal the existence of two basic frequencies ν = (0.4765, 2), according to (1.3).
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The bound on the diameter of the basin of attraction given by the Theorem is not uniform in λ
(it shrinks to zero for λ → 0). On the other hand, in absence of friction, the equilibrium position
(π, 0) is expected to be stable for ω large enough,

Within the linear approximation, in absense of friction, a bound of the stability region in the
plane (a, q) is given in Acheson 1993. If one wants to take into account also the nonlinear terms,
one can use KAM type arguments to prove rigorously the stability for the undamped pendulum; see
Bartuccelli et al. 2000b.

In absence of friction and within the linear approximation, Acheson (1993) studies also the
dynamics of several pendula hanging down, one from another: he finds conditions on the proper
frequencies of the system under which the configuration with all the pendula turned upside-down
becomes stable. Note however that his results do not carry over to the full nonlinear system, because
no stability is in general expected in the case of more than one pendulum. Indeed in such a case
the existence of KAM tori (which could be easily proved also in such a case) is no more sufficient
to prevent the so-called Arnol’d diffusion: in particular the action variables can drift far away from
the initial values (see Arnol’d et al. 1988, Ch. 5, §3.4). However one could prove stability on long
times (of Nekhoroshev type), for instance by following the methods in Guzzo et al. 1998.

On the other hand the friction should have a stabilizing effect as in the case of a single pendulum.
In the linear approximation the configuration with all the pendula inverted, which is stable in absence
of friction (as shown in Acheson 1993), should become asympotically stable, hence attracting, in
presence of friction, and the asymptotic stability should persist in the nonlinear regime (as it is
shown in the present paper for the case of a single pendulum). This is in agreement with the
experimental results by Acheson & Mullin (1993), for the double and triple pendula, for which
the inverted configurations are found to be stable when the pivot is subjected to a rapid vertical
oscillation: in fact the pendula tend to wobble towards the upward vertical.

Note that in presence of friction, even for a single pendulum, also attracting periodic orbits can
arise in numerical simulations, so that, for initial data not too close to the equilibrium positions,
other asympotics could be found.

Acknowledgements

We thank G. Gallavotti for useful discussions. We are also indebted to F. Bonetto for providing
us with his numerical C programs for computing orbits and power spectra of the solutions of the
equations of motion.

References

D. J. Acheson, A pendulum theorem, Proc. R. Soc. Lond. A 443 (1993), 239–245.
D. J. Acheson & T. Mullin, Upside-down pendulums, Nature 366 (1993), 215–216.
V. I. Arnol’d, V. V. Kozlov & A. I. Neishtadt, Dynamical Systems III. Mathematical aspects
of classical and celestial mechanics, Springer, Berlin, 1988.
F. M. Arscott, Periodic differential equations, Pergamon Press, Oxford, 1964.
M. V. Bartuccelli, G. Gentile & K. V. Georgiou, On the dynamics of a vertically driven
damped planar pendulum, Preprint (2000a).
M. V. Bartuccelli, G. Gentile & K. V. Georgiou, KAM theorem and stability of the upside-
down pendulum, Preprint (2000b).
J. A. Blackburn, H. J. T. Smith & N. Grønbech-Jensen, Stability and Hopf bifurcations in
an inverted pendulum, Amer. J. Phys. 60 (1992), 903–908.
G. Blanch, Mathieu functions, in M. Abromowitz & I. A. Stegun, Handbook of mathematical
functions, Dover, New York, 1965.
L. H. Eliasson, Absolutely convergent series expansions for quasi-periodic motions, University of
Stockholm preprint (1988), and math. Phys. Electron. J. 2, No. 4 (1996).

12



G. Gallavotti, Twist KAM tori, quasi flat homoclinic intersections, and other cancellations in
the perturbation series of certain completely integrable hamiltonian systems. A review, Rev. Math.
Phys. 6 (1994), 343–411.
G. Gentile, Whiskered tori with prefixed frequencies and Lyapunov spectrum, Dynam. Stability of
Systems 10 (1995), 269–308.
G. Gentile, Diagrammatic techniques in perturbation theory, and applications, Proceedings of the
Workshop on “Symmetry and Perturbation Theory”, Rome (1998), World Scientific, Singapore,
1999.
G. Gentile & V. Mastropietro, Methods for the analysis of the Lindstedt series for KAM tori
and renormalizability in classical mechanics. A review with some applications, Rev. Math. Phys. 8

(1996), 393–444.
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