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E-mail: gentile@mat.uniroma3.it

Abstract

In this paper we investigate bifurcation phenomena, such as those of the periodic
solutions, for the “unperturbed” nonlinear system G(ẋ)ẍ + βx = 0, with G(ẋ) =
(α + ẋ2)/(1 + ẋ2) and α > 1, β > 0, when we add the two competing terms
−f(t) + γẋ, with f(t) a time-periodic analytic “forcing” function and γ > 0 the
dissipative parameter. The resulting differential equation G(ẋ)ẍ+βx+γẋ−f(t) = 0
describes approximately an electronic system known as the saturating inductor
circuit. For any periodic orbit of the unperturbed system we provide conditions
which give rise to the appearance of subharmonic solutions. Furthermore we show
that other bifurcation phenomena arise, as there is a periodic solution with the
same period as the forcing function f(t) which branches off the origin when the
perturbation is switched on. We also show that such a solution, which encircles the
origin, attracts the entire phase space when the dissipative parameter becomes large
enough. We then compute numerically the basins of attraction of the attractive
periodic solutions by choosing specific examples of the forcing function f(t), which
are dictated by experience. We provide evidence showing that all the dynamics of
the saturating inductor circuit is organised by the persistent subharmonic solutions
and by the periodic solution around the origin.

1 Introduction

One of the most important second-order linear systems in practical applications is the
non-autonomous simple harmonic oscillator, which is described by

Lẍ + Rẋ + x/C = f(t), (1.1)

with L, R and C constants. This is the standard linear, second-order, constant coef-
ficient ODE with nonzero right hand side. In an electronics context, the well-known
inductor-resistor-capacitor circuit is described by exactly this differential equation, pro-
vided that the inductor (L), resistor (R) and capacitor (C) are all independent of x,
which in this case would be the charge on the capacitor. In many cases, this is an
excellent approximation. However, a non-linear capacitor can easily be implemented
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in practice, for instance, by using a semi-conductor diode, and the resulting nonlinear
differential equation has been studied in detail in the case where x does not change
sign in [5], [3]. Another practical but rather less studied nonlinear version of equa-
tion (1.1) is one in which R and C are constant but L is a function of ẋ. Model L(ẋ)
functions are of course based on practical experience. Practical inductors consist of
a length of wire wound around a core of magnetisable material, real materials being
capable of saturation (so that L is a function of ẋ, as will become clear) and possibly
also displaying hysteresis (so that L is a function of ẋ and ẍ). Hence, the behaviour of
real inductors can depart from the ideal, constant L. A simple and not very realistic
model of saturation was studied in [9], where an even, piecewise constant L(ẋ) = L0

if |ẋ| < X, L = L1 otherwise, with L0 > L1, was used. In a bid for a more faithful
model of real inductors, a comparison between experiment and simulation was reported
in [10], where both saturation and hysteresis effects were considered. The resulting sys-
tem was described by a third order nonautonomous nonlinear ODE, which was solved
numerically and compared with experiment.

In this paper, we study a model which lies between the two extremes described
above: an inductor whose core saturates, this time smoothly, but which does not display
hysteresis.

The rest of the paper is organised as follows. In Section 2, under appropriate
assumptions and approximations, we derive and rescale the equation that we study.
Such an equation appears as a perturbation of an integrable equation, whose main
properties will be reviewed in Section 3. We then study the periodic solutions of the
full unperturbed equation. First, in Section 4 we investigate the persistence of periodic
solutions of the unperturbed system which are “in resonance” with the forcing term
(the so-called subharmonic solutions). Then in Section 5 we show that the system is
characterised by the presence of another periodic solution, which has the same period
as the forcing and encircles the origin. More precisely it branches off the origin in
the sense that it reduces to the origin when the forcing is removed. Therefore such
a solution is different in a profound way from the subharmonic solutions, because it
arises by bifurcation from the stable equilibrium point and not from the unperturbed
periodic solutions. The periodic solution encircling the origin has a non-empty basin of
attraction which becomes the entire phase space when the dissipative parameter is large
enough; this will be proved in Section 6. In principle there could be other solutions
relevant for the dynamics. However there is strong numerical evidence that the full
dynamics is organised by the periodic solutions that we have studied analytically. In
fact, the numerical simulations performed in Section 7 suggest that the union of the
basins of attraction of those periodic solutions fills the entire phase space; cf. [6, 1] for
similar situations. Finally, in Section 8 we draw some conclusions, and discuss some
open problems and possible lines of future research.

2 The saturating inductor circuit ODE

The circuit under consideration is shown in figure 1 and we now derive the ODE
that describes it, briefly explaining the assumptions that we make. Details of the
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Figure 1: (a) The saturating inductor circuit driven by a voltage source g(ωt) is described
by the ODE discussed in this paper. In this diagram, the dependent variable, the capacitor
charge, is q(t); the current, i(t) = q̇(t); C (capacitance) and R (resistance) are constants and
L = L(q̇) = L(i) is the nonlinear inductance. The voltages across the inductor, resistor and
capacitor are vL, vR and vC respectively. (b) The core of the saturating inductor, with cross-
sectional area A and mean diameter D.

electromagnetism and circuit theory required can be found in [20]. Kirchhoff’s voltage
law states that the sum of the voltages across the components must equal the applied
voltage at all times, and so g(ωt) = vL + vR + vC . The definition of capacitance states
that vC = q(t)/C, where q(t) is the capacitor charge; also by definition, the current
i(t) = q̇(t); and Ohm’s law allows us to write vR = i(t)R. Faraday’s law of induction
states that vL = dφ/dt where φ is the magnetic flux, to be defined. To proceed further,
we need to make assumptions about the geometry of the inductor core. In order that
it will display saturation at relatively low currents, we assume that it is toroidal in
shape, with cross sectional area A and mean diameter D, and that the inductor itself
consists of n turns of wire around this core. The magnetic flux density is defined by
B = µ0(H + M), where µ0 = 4π × 10−7 is the permeability of free space, H is the
applied magnetic field and M is the magnetisation. In fact, the quantities B, H and M
are all vectors, but under the assumption that they are all parallel to each other and
normal to the cross-section of the core, we shall see that we need only consider their
magnitudes. The magnetic flux is then defined by

φ = n

∫∫

BdA = nµ0

∫∫

(H + M)dA = nµ0A(H + M).
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Now, Ampère’s circuital law relates H to i by H = ni/πD, and so

dφ

dt
=

di

dt

dφ

di
= q̈

dφ

di
=

µ0n
2A

πD
q̈

(

1 +
dM

dH

)

. (2.1)

We now need a model for M(H). In the absence of hysteresis, and with weak coupling
between the magnetic domains, M(H) is usually described by the Langevin function

M(H) = Ms [coth(H/a) − a/H] , where lim
H→0

M(H) = 0,

and where Ms > 0 and a > 0 are constants which depend on the core material. Now,

dM

dH
=

Ms

a

[

1 − coth2

(

H

a

)

+
a2

H2

]

≡ U

(

H

a

)

,

where

lim
H→0

dM

dH
=

Ms

3a
, lim

H→±∞

dM

dH
= 0.

Using this in equation (2.1), and Kirchhoff’s voltage law, allows us to write the differ-
ential equation that describes the circuit as

µ0n
2A

πD

[

1 + U

(

nq̇

πDa

)]

d2q

dt2
+ R

dq

dt
+

q

C
= g(ωt) (2.2)

and all the coefficients are well-defined even when q̇ = 0. We now rescale time by
replacing ωt with t, and q by defining ωnq(t) = πDaλx(t), with λ a constant to be
defined, giving

ẍ [1 + U(λẋ)] + γẋ + βx = f(t), (2.3)

where

γ =
πDR

µ0n2ωA
, β =

πD

µ0n2ω2AC
, f(t) =

g(t)

µ0nωλaA
. (2.4)

Finally, we can usefully approximate the function U with an expression that is
qualitatively similar but easier to handle analytically. From the foregoing, we have, for
all λ, that limy→±∞ 1 + U(λy) = 1 and limy→0 1 + U(λy) = 1 + Ms/(3a) ≡ α > 1. The
simplest rational approximation to 1 + U(λy) which has the same limits (independent
of λ) is L(y) = (α + y2)/(1 + y2). Since we are free to choose λ, we find the value
λ = λ0 that minimises

I(α, λ) =

∫ ∞

0

[

1 + 3(α − 1)
(

1 − coth2(λy) + 1/(λy)2
)

− α + y2

1 + y2

]2

dy

= (α − 1)2
∫ ∞

0

[

3
(

1 − coth2(λy) + 1/(λy)2
)

− 1

1 + y2

]2

dy.

Numerical computation gives the value λ0 ≈ 1.99932.

Hence we set λ = λ0 and using the resulting approximation for the function U , the
differential equation in its final form is

ẋ = y,
α + y2

1 + y2
ẏ = f(t) − γy − βx. (2.5)
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In the rest of the paper we shall be interested in investigating how the dynamics
of the “unperturbed” system ẋ = y, (α + y2)/(1 + y2)ẏ = −βx will be influenced by
the addition of the two competing terms f(t) − γy under the assumption that they
represent a “small” perturbation. We shall be able also to investigate cases far from
the perturbation regime, at least when the dissipative parameter is large enough with
respect to the forcing term.

3 The unperturbed system

Consider the ordinary differential equation (we set γ = εC for notational convenience)

ẋ = y, ẏ = −g(y)x +
ε

β

(

g(y)(f(t) − Cy)
)

, (3.1)

where g(y) = β(1 + y2)/(α + y2), with α > 1, f(t) = f(t + 2π) is a analytic periodic
function of time, and ε (small), C are two real parameters. Without loss we can redefine
our ε so as to absorb the positive constant β. For ε = 0 our system is integrable by
quadratures; in fact it has an integral of motion, which we identify with its energy,
given by

E(x, y) =
1

β

(

y2

2
+

α − 1

2
log(1 + y2)

)

+
x2

2
. (3.2)

Note that the above system is a particular case of the following class of systems
possessing an integral of motion: ẋ = y, ẏ = −g(y)F (x), the associated integral being
given by

∫

y

g(y)
dy +

∫

F (x) dx.

The following result is proved in Appendix A.

Lemma 1 Consider the system (3.1) with ε = 0. Its phase space is filled with periodic
orbits around the origin; the period T0 of these orbits is strictly decreasing as a function
of the energy (3.2), and satisfies the inequalities 2π/

√
β < T0 < 2π

√

α/β.

For ε = 0 the system (3.1), in the limits of small and large energy, becomes “essen-
tially” the harmonic oscillator with frequencies ω =

√

β/α and ω =
√

β respectively.
We observe that for any fixed value of the energy we have formally an infinite number
of unperturbed periodic solutions parametrized by a phase shift t0. This phase shift
is irrelevant in the autonomous case (ε = 0), but becomes very important when we
add the time dependent perturbation (ε 6= 0), because in the extended phase space
(x, y, t) each “initial” phase will give rise to a different orbit. Therefore the unper-
turbed solution to be continued for ε 6= 0 can be written in terms of the initial phase,
in the form x0(t) = X0(t − t0), where X0(t) is an unperturbed solution with the phase
appropriately fixed (for instance with Ẋ0(0) = 0) in order to impose some constraints
on the perturbed system (see below). For practical purposes it will be more convenient
to change the origin of time, by writing the unperturbed solution as x0(t) = X0(t) and
the periodic forcing function in the form f(t + t0).
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Lemma 2 Consider the system (3.1) with ε = 0. The energy function (3.2) satisfies
the identities E(±x,±y) = E(x, y). The solutions x0(t) can be chosen to be even in t,
and satisfy x0(t) = −x0(t − T0/2), if T0 is the corresponding period. Furthermore they
possess only odd components in their Fourier series expansion.

Proof. The equation (3.2) shows that the energy function is even in both variables (x, y),
namely E(±x,±y) = E(x, y). Therefore the solutions (x0(t), y0(t)) have reflectional
symmetry with respect to both axes (x, y). Hence giving initial conditions on the x-
axis one obtains solutions x0(t) which are even in time (similarly if one chooses initial
conditions on the y-axis then the solutions are odd in time). Using this property it
follows that any solution of period T0 can be chosen to be even in time, and moreover
it must have the property x0(t) = −x0(t − T0/2).

To show the validity of the part concerning the Fourier spectrum, consider the
Fourier series of x0(t), namely

x0(t) =
∑

ν∈Z

x0νeiνωt, (3.3)

where ω = 2π/T0. The Fourier coefficients can be written as

T0 x0ν =

∫ T0

0
dt e−iνωtx0(t) =

∫ T0/2

0
dt e−iνωtx0(t) −

∫ T0

T0/2
dt e−iνωtx0

(

t − T0

2

)

=

∫ T0/2

0
dt e−iνωtx0(t) − e−iνωT0/2

∫ T0/2

0
dt′ e−iνωt′x0(t

′)

= (1 − e−iνπ)

∫ T0/2

0
dt e−iνωtx0(t).

Therefore if ν is an even number (including zero) x0,ν = 0, while if ν is an odd number
x0,ν 6= 0.

We now investigate the dynamics of the system when ε 6= 0 (and small). In par-
ticular we are interested in studying which periodic orbits of the unperturbed system
persist under the combined effect of the periodic perturbation f(t+ t0) = f(t+ t0 +2π)
and the dissipative term Cẋ; cf. [1, 8, 16, 17, 21, 14] for related results. Notice that in
order to have a periodic solution with period commensurate with 2π we must impose
a so-called resonance condition given by ω = 2π/T0 = p/q. If ω satisfies the above
condition then the perturbed periodic solution will have the period T = pT0, during
which the periodic forcing function f(t + t0) has “rotated” q times. Notice that the
phase t0 ∈ [0, 2πq/p). It is more convenient to consider the system

ẋ = y, ẏ = −g(y)x +
ε

β

(

g(y)(f(t) − Cẋ)
)

, ṫ = 1, (3.4)

defined in the extended phase space (x, y, t). Then for ε = 0 the motion of the variables
(x, y, t) is in general quasi-periodic, and reduces to a periodic motion whenever T0

becomes commensurate with 2π. Thus in the extended phase space (x, y, t) the solution
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runs on an invariant torus which is uniquely determined by the energy E; if ω = p/q
we say that the torus is resonant. In general the non-resonant tori disappear under the
effect of the perturbation, unless the system belongs to the class which can be analyzed
by using the KAM theory. Also the resonant tori disappear, but some remnants are
left: indeed usually a finite number of periodic orbits, called subharmonic solutions,
lying on the unperturbed torus, can survive under the effect of the perturbation. If
ω = p/q we shall call q/p the order of the corresponding subharmonic solutions. The
subharmonic solutions will be studied in Section 4.

Besides the subharmonic solutions, there are other periodic solutions which are
relevant for the dynamics: indeed there is a periodic solution branching off the origin.
This is a feature characteristic of forced systems in the presence of damping [2, 3, 12].
Existence and properties of such a solution will be studied in Sections 5 and 6. In
particular we shall show that this periodic solution becomes a global attractor if the
dissipative parameter is large enough.

4 Subharmonic solutions

We consider the system (3.1) with ε 6= 0 and small, and we look for subharmonic
solutions which are analytic in ε. First, we formally define power series in ε of the form

x(t) =

∞
∑

k=0

εkx(k)(t), y(t) =

∞
∑

k=0

εky(k)(t), C =

∞
∑

k=0

εkCk, (4.1)

where, for all k ∈ N, the functions x(k)(t) and y(k)(t) are periodic with period T =
pT0 = 2πq, with

√

β/α < p/q <
√

β. We shall see that the functions x(k)(t) and y(k)(t)
can be determined provided the parameters Ck are chosen to be appropriate functions
of the initial phase t0.

If we introduce the decompositions (4.1) into (3.1) and we denote with W (t) the
Wronskian matrix for the unperturbed linearised system, we obtain

(

x(k)(t)

y(k)(t)

)

= W (t)

(

x̃(k)

ỹ(k)

)

+ W (t)

∫ t

0
dτ W−1(τ)

(

0

F (k−1)(τ)

)

, (4.2)

where (x̃(k), ỹ(k)) are corrections to the initial conditions, and

F (k)(t) =

∞
∑

m=0

∑

r1,r2∈Z+

r1+r2=m

1

r1!r2!

∂r1

∂yr1

∂r2

∂Cr1
F (y0, C0, t + t0) ×

×
∑

k1+...+km=k

y(k1)(t) . . . y(kr1
)(t)Ckr1+1

. . . Ckm
. (4.3)

where F (y,C, t+t0) = g(y) (f(t + t0) − Cy). Note that by construction F (k)(t) depends
only on the coefficients y(k′)(t) and C(k′) with k′ ≤ k.
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We shall denote by (x0, y0) the solution of the unperturbed system ẋ0 = y0, ẏ0 =
−g(y0)x0, with x0 even (hence y0 odd): this is possible by Lemma 1. The Wronskian
matrix appearing in (4.2) is a solution of the unperturbed linear system

Ẇ (t) = M(t)W, M(t) =

(

0 1
−g(y0) −(∂g(y0)/∂y)x0

)

(4.4)

so that the matrix W (t) can be written as

W (t) =

(

c1∂x0/∂E c2ẋ0

c1∂y0/∂E c2ẏ0

)

, (4.5)

where c1 and c2 are suitable constant such that W (0) = 1 (one easily check that
c1c2 = −α).

By making explicit the dependence on E of the unperturbed periodic solutions, we
can write

x0(t) = x0(ω(E)t, E) =
∑

ν

xν(E) eiνω(E)t, (4.6)

so that we can write

∂x0

∂E
=

∂ω(E)

∂E
t h(t) + b(t), ẋ0(t) = ω(E)h(t),

where

h(t) =
∑

ν

iν xν(E) eiνω(E)t, b(t) =
∑

ν

∂xν(E)

∂E
eiνω(E)t.

Note in particular that h(t) and b(t) are, respectively, odd and even in t, so that ∂x0/∂E
is even in time. Hence we have

∂x0

∂E
= µtẋ0 + b(t), µ =

1

ω(E)

∂ω(E)

∂E
,

where µ 6= 0 because the system is anysochronous and the derivative of the period
dT0(E)/dE < 0 as shown in Lemma 1; also the functions h(t), b(t), ẋ0(t) are periodic
with period T0. Notice that the lower two components of the Wronskian are the time
derivatives of the upper two. Hence we can express the Wronskian as follows:

W (t) =

(

c1 (µtẋ0(t) + b(t)) c2ẋ0(t)

c1

(

µẋ0(t) + µtẍ0(t) + ḃ(t)
)

c2ẍ0(t)

)

. (4.7)

By introducing (4.7) in (4.2) and using that

detW (t) = c1c2

(

ẏ0
∂x0

∂E
− ẋ0

∂y0

∂E

)

= − c1c2

G(y0)

(

x0
∂x0

∂E
+ y0G(y0)

∂y0

∂E

)

= − c1c2

G(y0)
,

we obtain for all k ≥ 1

x(k)(t) = c1(µẋ0(t)t + b(t))x̃(k) + c2ẋ0(t)ỹ
(k) + (µẋ0(t)t + b(t)) ×

×
∫ t

0
dτ G(y0(τ))ẋ0(τ)F (k−1)(τ) − ẋ0(t)

∫ t

0
dτ G(y0(τ))(µẋ0(τ)τ + b(τ))F (k−1)(τ),

8



where G(y) = (α+y2)/(β(1+y2)); a similar expression can be written for the component
y(k)(t) = ẋ(k)(t). After some manipulation we obtain

x(k)(t) = c1

(

µtẋ0(t)x̃
(k) + b(t)x̃(k)

)

+ c2ẋ0(t)ỹ
(k) + b(t)

∫ t

0
dτ G(y0(τ))ẋ0(τ)F (k−1)(τ)

−ẋ0(t)

∫ t

0
dτ G(y0(τ))b(τ)F (k−1)(τ) + µẋ0(t)

∫ t

0
dτ

∫ τ

0
dτ ′G(y0(τ

′))ẋ0(τ
′)F (k−1)(τ ′).

For notational convenience let us put Φ(k−1)(t) = G(y0(t))ẋ0(t)F
(k−1)(t), F (k−1)(t) =

∫ t
0 dτ Φ(k−1)(τ) and Ψ(k−1)(t) = G(y0(t))b(t)F

(k−1)(t). Then we obtain a periodic so-
lution of period T = pT0 = 2πq if, to any order k ∈ N, one has

〈Φ(k−1)〉 :=
1

T

∫ T

0
dτ Φ(k−1)(τ) = 0, c1x̃

(k) =
〈Ψ(k−1)〉

µ
− 〈F (k−1)〉, (4.8)

where, given any T -periodic function H we denote its mean by 〈H〉. Also recall that
µ 6= 0 and c1 6= 0.

The parameters ỹ(k) are left undetermined, and we can fix them arbitrarily, as the
initial phase t0 is still a free parameter. For instance we can set ỹ(k) = 0 for all k ∈ N

or else we can define ỹ(k) = ỹ(k)(t0) for k ∈ N, with the values ỹ(k)(t0) to be fixed in
the way which turns out to be most convenient [14].

Thus, under the restrictions (4.8) we have that for all k ≥ 1

x(k)(t) = c1b(t)x̃
(k) + c2ẋ0(t)ỹ

(k) + b(t)

∫ t

0
dτ Φ(k−1)(τ) (4.9)

+

∫ t

0
dτ
(

Ψ(k−1)(τ) − 〈Ψ(k−1)〉
)

+ µẋ0(t)

∫ t

0
dτ
(

F (k−1)(τ) − 〈F (k−1)〉
)

is a periodic function of time. Hence we must prove that the first condition in (4.8)
can be fulfilled at all orders k ≥ 1; the second condition just gives a prescription how
to fix the parameters x̃(k).

For k = 1 the condition on the zero average, in terms of the Melnikov integral
(notice that G(y0(τ))g(y0(τ)) = 1)

M(t0, C0) :=

∫ T

0
dτ G(y0(τ))ẋ0(τ)F (0)(τ)=

∫ T

0
dτ ẋ0(τ)

[

− C0ẋ0(τ) + f(τ + t0)
]

gives M(t0, C0) = 0, and we can choose C0 = C0(t0) so that this holds because

∂M(t0, C0(t0))

∂C0
= −

∫ T

0
dτ [ẋ0(τ)]2 := −D 6= 0

for all t0 ∈ [0, 2πq/p).

For k = 2 the condition reads (recall that ẋ0 = y0)

C1 =
1

D
Γ(1)(C0, x0, x

(1), y0, y
(1), t0) =

1

D

∫ T

0
dτ G(y0(τ))ẋ0(τ) ×

×
[

− C0y
(1)(τ)ẋ0(τ)g′(y0(τ))x(1)(τ)ẋ0(τ)y(1)(τ)

−g′′(y0(τ))

2
x0(τ)ẋ0(τ)(y(1))2(τ) + g′(y0(τ))ẋ0(τ)y(1)(τ)f(τ + t0)

]

,
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where the primes denote differentiation with respect to y. For higher values of k, in
order to satisfy the first condition in (4.8) we must choose

Ck =
1

D
Γ(k)(C0, . . . , Ck−1, x0, . . . , x

(k), y0, . . . , y
(k), t0), (4.10)

where Γ(k) can be proved, by induction, to be a well-defined periodic function depending
on the coefficients C0, . . . , Ck−1, x0, . . . , x

(k), y0, . . . , y
(k). Therefore we conclude that if

we set C0 = C0(t0) and, for all k ≥ 1, we choose ỹ(k) = y(k)(t0), x̃(k) according to
the second condition in (4.8) and Ck = Ck(t0) according to (4.10), we obtain that in
the series expansions (4.1) the coefficients x(k)(t) and y(k)(t) are well-defined periodic
functions of period T . All of this of course makes sense if the series expansions (4.1)
converge; this can be seen by showing that the coefficients admit bounds of the form
|x(k)(t)| < δk for some positive constant δ; hence by taking ε small enough and C =
C(ε, t0) as a function of t0 according to (4.10) it follows that the series converges to a
periodic function with period T = T0p, analytic in t and ε. The strategy for showing
the convergence of the series is essentially the same as that explained in [11, 14], and
all the details can be found in these references. So the formal power series converges
for |ε| < ε0 = δ−1. For fixed ε ∈ (−ε0, ε0) we shall find the range allowed for C
by computing the supremum and the infimum, for t0 ∈ [0, 2π), of the function t0 →
C(ε, t0). The bifurcation curves will be defined in terms of the function C(ε, t0) as

γ1(ε) = ε sup
t0∈[0,2π)

C(ε, t0), γ2(ε) = ε inf
t0∈[0,2π)

C(ε, t0). (4.11)

These bifurcation curves divide the parameter plane (ε, γ) into two disjoint sets such
that only inside the region delimited by the bifurcation curves are there subharmonic
solutions; the region of existence contain the real ε−axis. For more details on this point
see [14].

We are now in a position to summarise the above discussion by stating the following
theorem which is an adaptation of Theorem 5 of [14].

Theorem 1 Consider the system (3.1). For all p, q relatively prime positive integers
such that

√

β/α < p/q <
√

β, there exist ε0 > 0 and two continuous functions γ1(ε)
and γ2(ε), with γ1(0) = γ2(0), γ1(ε) > 0 > γ2(ε) for ε > 0 and γ1(ε) < 0 < γ2(ε)
for ε < 0, such that (3.1) has at least one subharmonic solution of order q/p for
γ2(ε) ≤ εC ≤ γ1(ε) when ε ∈ (0, ε0) and for γ1(ε) ≤ εC ≤ γ2(ε) when ε ∈ (−ε0, 0).

The above theorem applies for any analytic 2π-periodic forcing function of time; so,
provided the integers p, q are relatively prime, it follows that generically any resonant
torus of the system (3.1) possesses subharmonic solutions of order q/p. Naturally if
we choose a particular forcing function with special properties, then in turn this will
influence the set of possible subharmonic solutions. For example if we take the function
f(t) = sin t then for dissipation large enough — that is for γ = O(ε) — the only existing
subharmonic solutions are those with frequency ω = 1/(2k + 1) with k any positive
integer. This can be seen as follows. The solutions of the unperturbed system have
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odd components only in their Fourier representation; moreover we know that to first
order the Melnikov condition M(t0, C0) = 0 must be satisfied. Hence we can choose

C0(t0) =

∫ T
0 dτ ẋ0(τ)f(τ + t0)
∫ T
0 dτ [ẋ0(τ)]2

, (4.12)

which is well defined because the denominator is non zero; hence by computing the
integral in the numerator of (4.12) by using the Fourier representations of ẋ0 and
f(t) = sin t and by taking the zero Fourier component of their product one can see that
the only possible frequencies are of the type ω = 1/(2k + 1); see [1] for details. We

are implicitly assuming that the integral
∫ T
0 dτ ẋ0(τ)f(τ + t0) is non-zero; this must be

checked (either analytically or numerically), because if it happens to be zero then we
have to go to higher orders until we find a k > 1 such that

Ck =
1

∫ T
0 dτ [ẋ0(τ)]2

Γ(k)(C0, . . . , Ck−1, x0, . . . , x
(k), y0, . . . , y

(k), t0) 6= 0. (4.13)

Other subharmonic solutions appear only for much smaller values of the dissipative
parameter, that is for γ = O(εp), with p > 1. Again we refer to [1, 14] for further
details.

The subharmonic solutions turn out to be attractive. The numerical simulations
performed in Section 7 give evidence that, at least for small values of the perturbation
parameter ε, all trajectories in phase space are eventually attracted either to some
subharmonic solution or to the periodic solution which will be investigated in Section 5.
Notice that this situation is different from the kind of problem studied in [22]: first of
all our unperturbed system is strongly nonlinear; moreover, the limit cycles described
by the attractive periodic solutions are generated by the perturbation itself, so that the
problem does not consist in studying the persistence of the self-sustained limit cycle.

5 Periodic solution branching off the origin

In this section we wish to investigate the periodic solution which originates from the
zero solution in the presence of the periodic forcing function f(t) = f(t + 2π). For this
it is more convenient to write our system as follows:

ẋ = y, ẏ = −g(y)x − γg(y)ẋ + εg(y)f(t), (5.1)

where g(y) = β(1 + y2)/(α + y2), and again the constant β has been absorbed into the
constants ε and γ.

The following result will be proved.

Theorem 2 Consider the system (5.1), and assume that Q0 = minn∈N |n2−α/β| 6= 0.
There exists ε0 ∝ max{γ,Q0} such that for |ε| < ε0 the system (5.1) admits a periodic
solution x0(t) with the same period as the forcing, which describes a closed curve C of
diameter O(ε/ε0) around the origin. Moreover for any value of ε there exists γ0 > 0
such that for γ > γ0 the periodic solution x0(t) describes a global attractor.
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The idea is to expand the periodic solution around the origin and then to use a
similar strategy to the one of the previous section. Thus we have

x(t) =
∞
∑

k=1

εkx(k)(t), y(t) =
∞
∑

k=1

εky(k)(t), g(y) =
∞
∑

k=0

1

k!

dkg

dyk
(0) yk; (5.2)

notice that the dissipative parameter γ is now included in the “unperturbed” system and
therefore it is (in general) not necessarily small. We now introduce the decompositions
(5.2) into (5.1) and we perform a similar analysis to that of Section 5. To first order in
ε we obtain (remember that the zero order solution is the origin)

ẍ(1) + g(0)
(

x(1) + γẋ(1)
)

− g(0)f(t) = 0, (5.3)

where g(0) = β/α. This equation is linear non-homogeneous and its time-asymptotic
solution (obtained by setting to zero the transient non-periodic part which decays
exponentially in time) has Fourier coefficients

x(1)
ν =

g(0)fν

g(0)(1 + iγν) − ν2
. (5.4)

In particular it has the same period as f . Notice that the first order solution x(1)(t)
has the same average as the forcing function f(t) (as it should). It is now instructive
to compute the second order in ε and then the k-th order, because at second order one
can already see the general properties of the structure of the solution at any order. By
equating powers of ε2 we obtain

ẍ(2) + g(0)
(

x(2) + γẋ(2)
)

− g′(0)
(

ẋ(1)f(t) − x(1)ẋ(1) − γ(ẋ(1))2
)

= 0, (5.5)

which can be easily solved in Fourier space.

By inspecting the structure of equation (5.1) one can see that at any order k the
linearised part is the same – compare for instance (5.3) with (5.5), – and the pertur-
bation is formed of terms which are periodic functions having the same period as the
forcing term f(t); hence the structure of the equation at order k has the form

ẍ(k) + g(0)
(

x(k) + γẋ(k)
)

= P (k)(x(1), . . . , x(k−1), y(1), . . . , y(k−1), γ), (5.6)

where the function P (k) is a periodic function having the same period as the forcing
term f(t); hence, by writing

x(k)(t) =
∑

ν∈Z

x(k)
ν eiνt,

P (k)(x(1)(t), . . . , x(k−1)(t), y(1)(t), . . . , y(k−1)(t), γ),=
∑

ν∈Z

P (k)
ν eiνt, (5.7)

we find that the Fourier coefficients x
(k)
ν are given by

x(k)
ν =

g(0)P
(k)
ν

g(0)(1 + iγν) − ν2
, (5.8)
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according to (5.6). Notice that P
(k)
ν depends on the coefficients x

(k′)
ν′ , with k′ < k and

ν ′ ∈ Z, so that it is a well-defined periodic function (as can be checked by induction).

The explicit expression for P
(k)
ν can be found in Appendix B.

The convergence of the perturbation series (5.2) can be discussed as in the refer-
ences [11, 14] quoted in the previous sections. The presence of the factor γ appearing
in the denominator of (5.8) implies that the corresponding radius of convergence in ε
grows linearly in γ. More precisely, by iterating (5.8) for every k down to k = 1, one
finds that, uniformly in t, |x(k)(t)| ≤ A(B/Q(γ))k−1, where A and B are constant which
depends upon the functions g(y) and f(t), but not on γ, and Q(γ) = max{g(0)γ,Q0},
with Q0 = minn∈N |g(0)−n2|; cf. Appendix B. Therefore by looking at the power series
expansion (5.2) one sees that by choosing ε judiciously the series converges. The radius
of convergence becomes smaller with decreasing γ up to a threshold value proportional
to 1/Q0 = 1/minn∈N |n2 − β/α|, below which it remains constant. For γ = 0 we can
choose Q0/B as the radius of convergence of the power series, provided n2 − β/α 6= 0
(absence of resonances). Moreover, under this hypothesis, for any fixed ε — not nec-
essarily small — we have that for γ large enough, say for γ > γ0, there is a periodic
solution x0(t) encircling the origin with the same period as the forcing. We shall see
in the next section that there exists γ1 ≥ γ0 such that for γ > γ1 the solution x0(t)
describes a global attractor.

6 Global attraction to the periodic solution encircling the

origin

In this section we wish to prove that if the dissipative parameter γ > 0 is large enough
then every initial condition will evolve so as to tend asymptotically to the periodic
solution encircling the origin, whose existence was proved in the previous section. We
start with the perturbed equation in the form

G(ẋ) ẍ + x + γẋ − f(t) = 0, (6.1)

where G(y) = (α+y2)/(β(1+y2)), and the parameter ε (arbitrary: cf. the comments at
the end of the previous section) has been absorbed into the forcing function f(t). The
strategy we follow is to split the solution x(t) = x0(t)+ ξ(t), where x0(t) satisfies (6.1).
Thus we must prove that ξ(t) → 0 as time goes to infinity. By introducing x(t) =
x0(t) + ξ(t) into (6.1) and simplifying the terms satisfied by the periodic solution, we
obtain the equation

G(ẋ0 + ξ̇)(ẍ0 + ξ̈) − G(ẋ0)ẍ0 + γξ̇ + ξ = 0. (6.2)

We write it as

ξ̇ = y, ẏ = −g(ẋ0 + ξ̇)
[

−ξ − γξ̇ −
(

G(ẋ0 + ξ̇) − G(ẋ0)
)

ẍ0

]

, (6.3)

where as usual g(ẋ0 + ξ̇) = 1/G(ẋ0 + ξ̇)). So we have to prove the following result.
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Lemma 3 Consider the equation (6.3) with x0(t) the periodic solution encircling the
origin. Then if the dissipative parameter γ > 0 is large enough all trajectories in phase
space converge toward the origin asymptotically in time.

Proof. By using the Liouville-like transformation [4]

τ =

∫ t

0
dt

√

g(ẋ0 + ξ̇)

we first remove the time-dependence from the coefficient of ξ. We obtain: ξ̇ =
√

gξ′ and

ξ̈ = gξ′′ + ξ′g′/2, where the prime denotes the derivative with respect to the variable
τ . Substituting and simplifying we get

ξ′ = y, y′ = −ξ −
(

γ
√

g +
g′

2g

)

ξ′ −
(

G(ẋ0 + ξ̇) − G(ẋ0)
)

ẍ0. (6.4)

By defining the Hamiltonian for the harmonic oscillator by H = (ξ2 +y2)/2 one can see
that H ′ = −Γy2 −Fy, where Γ = γ

√
g + g′/(2g) and F = (G(ẋ0 + ξ̇)−G(ẋ0))ẍ0. Now

one can see that we can estimate |G(ẋ0 + ξ̇)−G(ẋ0)| ≤ L|y| with L a positive constant
of order 1/γ. The last property follows, when explicitly estimating L, from the fact
that x0, ẋ0, ẍ0 are of order 1/γ (see (5.4)). Then one finds H ′ ≤ −y2(Γ − L/Γ) ≤ 0 for
every (ξ, y). Moreover H ′ = 0 only on the y-axis provided that γ is large enough. So
we are in the hypotheses of the theorem of Barbashin-Krasovsky [19] and therefore we
can conclude that if γ is large enough so as to have γ

√
g + g′/2g > 0 and Γ − L/Γ > 0

it follows that the origin is asymptotically stable and it attracts all the solutions for
every initial condition in phase space. This completes the proof of the lemma.

7 Numerical simulations

We now report on some numerical computations which illustrate Theorems 1 and 2 by
considering a special case of equation (2.5) with f(t) = A sin t, and choosing A = 1.2,
α = 40, β = 1 and γ = 0.003. Note that (2.5) corresponds to (3.1) with ε = 1.
Technically Theorems 1 and 2, for fixed γ, have been proved for values of ε relatively
small so as to be sure of the convergence of the power series that arise. However it
is very time consuming to obtain basin of attraction pictures for small values of the
dissipative parameter γ = εC. Hence, we have compromised by verifying, within the
limitations of finite precision and time numerical computations, that only attracting
periodic solutions having periods 2πn for n = 1, 3 and 5 exist, for (3.1) with ε = 1,
ε = 0.1 and ε = 0.01. Only in the case ε = 1 have we computed the actual basins of
attraction of each of these solutions — see figure 2. The figure shows solutions with
periods 2πn for n = 1 (left), n = 3 (middle) and n = 5 (right). Below these are the
corresponding basins of attraction. These were computed in the obvious way — by
numerically integrating the differential equation starting from a set of initial conditions
on a 200× 200 grid, and in each case, after allowing the transient to decay sufficiently,
deciding which solution has been reached. Of the 40000 pixels in the figure, 17335

14



-0.04 -0.02 0 0.02 0.04
x

-0.04

-0.02

0

0.02

0.04

y

-0.04 -0.02 0 0.02 0.04

-0.04

-0.02

0

0.02

0.04

-20 -10 0 10 20
-20

-10

0

10

20

-20 -10 0 10 20
-20

-10

0

10

20

-5 0 5
-3

-2

-1

0

1

2

3

-30 0 30
x

-15

0

15

y

n = 1 n = 3 n = 5

-30 0 30
-15

0

15

-30 0 30
-15

0

15

Figure 2: Numerical confirmation of Theorems 1 and 2 for f(t) = A sin t, α = 40, β = 1,
A = 1.2, γ = 0.003 and ε = 1. The top row shows periodic solutions with periods 2πn, with
n = 1 (left), n = 3 (middle) and n = 5 (right). Note that only the solutions corresponding to
n = 3, 5 are subharmonic solutions; note also the different scales. The filled circles show the
Poincaré section where f(t) = 0, ḟ > 0. The bottom row shows the basins of attraction of each
of the periodic solutions.

correspond to the n = 1 solution, 18718 to n = 3 and 3947 to n = 5. Hence, all 40000
initial conditions considered lead to one of only these three solutions.

This is in accordance with the analytical results of the previous sections. Lemma 1
implies that subharmonic solutions are possible only corresponding to orders q/p with
q/p ∈ (1,

√
α) = (1,

√
40). Furthermore, in the light of the discussion after Theorem 1,

one has p = 1, and q is an odd integer because of Lemma 2, so for these parameters, q
can only be 3 or 5. We also need to check that γ is below the maximum of C0(t0) as
defined in equation (4.12). For f(t) = A sin t one finds C0(t0) = R(q) cos t0, with R(q)
a constant depending on q. Carrying out the implied integrations numerically, we find
that R(3) ≈ −0.02113 and R(5) ≈ 0.05174, while (for ε = 1) one has C = γ = 0.003.
A similar scenario has been checked to arise for γ = 0.015 (and the same values of the
other parameters).

Besides these subharmonic solutions, there is also the periodic solution branching
off the origin. Note that in the case investigated one has Q0 = minn∈N |n2 − β/α| =
39/40 6= 0, so that we are far from resonances, and Theorem 2 applies.
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The numerical results show that these three periodic solutions attract almost all
trajectories (at least for initial data not too far from the origin).

8 Discussion and Conclusion

In this paper we have discussed various properties of the solutions of a nonlinear ODE
with periodic forcing, in which the nonlinearity consists, in a mechanical analogy, of
a velocity-dependent mass, the restoring force and dissipation being linear. The ODE
arises as a model of an electronic circuit containing an inductor whose core saturates.
The importance of this circuit is that it is very simple, consisting of only three elec-
tronic components, and yet for certain values of the parameters can display chaotic
behaviour. Previous studies made use of various simplified models of the saturating
inductor: for instance, by using a piecewise constant approximation to the function
g(y) and neglecting hysteresis effects [9]; or by using a more realistic model including
hysteresis effects (so that g depends on y and ẏ) [10]. The latter results in a third-order
nonautonomous ODE [10]. The ODE studied in this paper is in between these two
models, as it still neglects hysteresis but uses a smooth — more realistic – function for
the magnetisation.

In our analysis, we considered first the unperturbed version of the system in which
dissipation and forcing were absent, and showed that here, only periodic solutions are
displayed and their period is a monotonically decreasing function of the energy. When
the perturbation is present, we have proved the existence of subharmonic solutions
— that is solutions whose periods are rational multiples of the period of the forcing
— and additionally, of a periodic solution with the same period as the forcing, the
latter becoming a global attractor in the presence of sufficient dissipation. Numerical
computations have been carried out to illustrate this behaviour and show the relevance
of these solutions for the dynamics.

The main limitation in our model is the fact that we neglect hysteresis. On the other
hand, as mentioned above, taking it into account leads to a much more complicated
system, and application of the analysis techniques used here, at best, would require
nontrivial generalisation. It would be interesting to investigate in a real circuit whether
hysteresis can be really neglected for certain inductor core materials. In general the
results presented in [10] show that hysteresis produces a distortion of the periodic
solutions studied in this paper. Moreover for larger values of the perturbation parameter
new bifurcation phenomena appear (such as period doublings), and also chaos.

An analytical description of this behaviour would be highly desirable, but would
require dealing with a non-perturbative regime: the mathematics becomes much more
involved and new ideas are necessary. Note that our system, in the absence of prtur-
bation (ε = 0), does not possess homoclinic or heteroclinic orbits: indeed, all the un-
perturbed solutions are periodic. This situation is different from that of pendulum-like
systems, where Smale horseshoes transient chaos can manifest itself through homoclinic
tangles [16, 18, 15].
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A Proof of Lemma 1

In this appendix we prove Lemma 1, namely that the periodic orbits of the system
G(ẋ) ẍ + x = 0 have decreasing period T0 = T0(E) as a function of the energy E and
2π/

√
β ≤ T0(E) ≤ 2π

√

α/β, for α > 1. In fact let

V (y) =
1

β

(

y2

2
+

α − 1

2
log(1 + y2)

)

,

so that we can set E = x2/2 + V (y). Then by using the symmetry in x and y of our
system, we obtain that the period as a function of the energy is given by

√
2T0(E)

4
= T (E) =

∫ yE

0

V ′(y)dy

y
√

E − V (y)
,

where of course we must have E = V (yE). We wish to show that the derivative
dT (E)/dE < 0 for all E > 0. We have

dT (E)

dE
= lim

ε→0



−1

2

∫ yE

0

V ′(y)

y
(E − V (y) + iε)−

3
2 dy +

V ′(y)y′E
y
√

E − V (y) + iε

∣

∣

∣

∣

∣

y=yE





= lim
ε→0

(

− 1

2E

∫ yE

0

V ′(y)dy

y
√

E − V (y) + iε
− 1

2E

∫ yE

0

V ′(y)V (y)

y(E − V (y) + iε)3/2
dy

+
V ′(y)y′E

y
√

E − V (y) + iε

∣

∣

∣

∣

∣

y=yE

)

= − T

2E
+

1

2E

∫ yE

0

(

2V (y)

y

)′ dy
√

E − V (y)

+ lim
ε→0



− 1

2E

2V (y)

y
√

E − V (y) + iε

∣

∣

∣

∣

∣

y=yE

0

+
V ′(y)y′E

y
√

E − V (y) + iε

∣

∣

∣

∣

∣

y=yE



 ,

where the prime denotes derivative with respect to y (except for y′E = dyE/dE), and
we have used that V ′(yE) y′E = 1 and

V ′(y)V (y)

y
(E − V (y))−3/2 =

2V (y)

y

[

(E − V (y))−1/2
]′

.

By computing the integrated terms and simplifying we finally obtain

dT (E)

dE
= − 1

2E

∫ yE

0

dy
√

E − V (y)

(

2V (y) − yV ′(y)

y2

)

.

Hence if we show that the function

f(y) = 2V (y) − yV ′(y) =
(α − 1)

β

(

log(1 + y2) − y2

1 + y2

)

is positive for positive y, then it follows that dT (E)/dE < 0. But this can be seen by
computing its derivative

f ′(y) =
(α − 1)

β

2y3

(1 + y2)2
> 0
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for every y > 0. Also f(0) = 0 and therefore dT (E)/dE < 0. What remains to show is
that the period goes to the two limits 2π

√

α/β and 2π/
√

β as the energy goes to zero
and infinity respectively. Let us start by showing that the period T0(E) → 2π

√

α/β as
the energy E → 0. We know that

T0(E) =
4√
2

∫ yE

0

α + y2

β(1 + y2)

dy
√

E − V (y)
.

By putting z = y

√

α

2βE
we obtain

lim
E→0

T0(E) = lim
E→0

4√
2

∫ yE

0

α + y2

β(1 + y2)

dy
√

E − V (y)

= lim
E→0

4√
αβ

∫ 1+O(E)

0

dz
√

1 − z2 + O(Ez4)

(

α2 + 2Eβz2

α + 2Eβz2

)

.

Because the integrands are summable functions, by using Lebesgue’s dominated con-
vergence theorem [7] we can take the limit inside the integral; the result then follows
by first taking the limit and then computing the integral.

We now show that T0(E) → 2π/
√

β as the energy tends to infinity. By putting
y = z

√
2βE we obtain

lim
E→∞

T0(E) = lim
E→∞

4√
β

∫ 1+O( log E

E
)

0

(

α + 2βEz2

1 + 2βEz2

)

dz√
1 − z2 − Γ

=
4√
β

lim
E→∞

∫ 1

0

dz√
1 − z2 − Γ

+
4√
β

lim
E→∞

∫ 1+O( log E

E
)

1

dz

i
√

z2 − Γ − 1
,

where βEΓ = (α − 1) log(1 + 2βEz2). Again, as above, we use Lebesgue’s dominated
convergence theorem in order to take the limit inside the integrals; we then make the
computations and the result follows.

B Estimates for large dissipation

In this appendix we wish to show by induction that for large γ the coefficients (5.8)
satisfy the asymptotics

x(k)
ν ∝ (1/γ)k , ν 6= 0, x

(k)
0 ∝ (1/γ)k−1.

By using (5.4) we first observe that for k = 1 we obtain x
(1)
ν ∝ 1/γ for ν 6= 0 and

x
(1)
0 ∝ 1. Hence y

(1)
ν ∝ 1/γ for ν 6= 0 and y

(1)
0 = 0. Let us define the quantity

Sν = 1 + iγν − ν2; for large γ, Sν can be bounded from below ∝ γ for any ν 6= 0, while

S0 = 1. Assume now that, for any k′ < k, x
(k′)
ν ∝ (1/γ)k

′

if ν 6= 0 and x
(k′)
0 ∝ (1/γ)k

′−1.
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Then

x(k)
ν =

1

Sν

k
∑

p=0

{

−
∑

k1+...+kp+k0=k
ν1+...+νp+ν0=ν

(g(p)(0)

p!
y(k1)

ν1
. . . y

(kp)
νp x(k0)

ν0

+ γ
g(p)(0)

p!
y(k1)

ν1
. . . y

(kp)
νp y(k0)

ν0

)

+
∑

k1+...+kp+1=k−1
ν1+...+νp+ν0=ν

g(p)(0)

p!
y(k1)

ν1
. . . y

(kp)
νp fν0

}

.

By the inductive hypothesis each y
(ki)
νi

is proportional to (1/γ)ki , while, in general,

x
(k0)
ν0 ∝ (1/γ)k0−1, because one can have ν0 = 0. Since Sν ∝ γ for ν 6= 0, then for

ν 6= 0 — aside from some constants involving the coefficients g(p)(0)/p! and fν0
— we

have x
(k)
ν ∝ (1/γ)k. For ν = 0 the only difference is that S0 = 1 while the remaining

estimates are the same and therefore we obtain x
(k)
0 ∝ (1/γ)k−1.
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