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Abstract

We consider a class of differential equations, ẍ + γẋ + x2p = f(ωt), with p ∈ N and ω ∈ R
d,

describing one-dimensional dissipative systems subject to a periodic forcing. For p = 1 the equation
describes a resistor-inductor-varactor circuit, hence the name ‘varactor equation’. We concentrate
on the limit cycle described by the trajectory with the same period as the forcing; numerically, for
γ large enough, it appears to attract all trajectories which remain bounded in phase space. We find
estimates for the basin of attraction of this limit cycle, which are good for large values of γ. Also, we
show that the results extend to the case of quasi-periodic forcing, provided the frequency vector ω
satisfies a Diophantine condition — for instance, the Bryuno or the standard Diophantine condition.

1 Introduction

We consider here the ordinary differential equation

ẍ+ γẋ+ g(x) = f(ωt), g(x) = x2p, (1.1)

where p ∈ N, ω ∈ R
d is the frequency vector, f(ψ) is an analytic quasi-periodic function,

f(ψ) =
∑

ν∈Zd

eiν·ψfν , (1.2)

with mean 〈f〉 ≡ f0 > 0, and where γ > 0 is a real parameter which sets the level of dissipation. This
equation with p = 1 and d = 1 arises as a description of the behaviour of a simple nonlinear electronic
circuit, the resistor-inductor-varactor circuit; travelling wave solutions of the Korteweg-de Vries equation;
and the dynamics of ships in beam seas. In the following, for simplicity, we shall refer to (1.1) with p = 1
as the varactor equation.

For d > 1 we shall assume a Diophantine condition on ω like the standard condition

|ω · ν| ≥ C0|ν|τ ∀ν ∈ Z
d \ {0}, (1.3)

where |ν| = |ν1| + . . .+ |νd|, or the weaker Bryuno condition [5]

∞
∑

n=0

1

2n
log

1

αn(ω)
<∞, αn(ω) = inf

|ν|≤2n

|ω · ν|. (1.4)

Under this condition on ω it can be proved that equation (1.1) admits a quasi-periodic attractor char-
acterised by the same frequency vector as the forcing term [4, 1]. Note that the condition f0 > 0 is
necessary for a quasi-periodic solution with frequency vector ω to occur: indeed this can happen only if
the zeroth-order Fourier component of g(x), which is strictly positive, equals f0.
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Some results concerning equation (1.1) were published in [3]. Here, we extend the analysis in [3], also
using the techniques outlined in [1], to prove results in the case of large dissipation (γ ≫ 0).

As the case of periodic forcing is of more evident practical application, we shall concentrate mainly
on that, but the results described below apply to any quasi-periodic forcing, provided that a condition
like (1.3) or (1.4) is satisfied by the frequency vector.

The application of the techniques in [1] to equation (1.1) is now less straightforward because solutions
can blow up (in finite time, as we will show) and the basin of attraction of periodic solutions (or quasi-
periodic solutions, when d > 1) is therefore not the whole of the phase plane — even for large γ. In the
specific case of equation (1.1), we can give a good description of the basin of attraction of the periodic
solution by a careful refinement of the construction envisaged in [1]; see section 3. This provides a
complementary result to the analysis performed in [3], where the set of initial data generating solutions
that blow up was extensively studied. In the case in which the function f is of definite sign (hence
positive, as 〈f〉 > 0), we also construct a positively invariant set containing the attracting periodic orbit
which allows us, together with the results of section 3, to obtain a larger set estimating the basin of
attraction (with area growing linearly in γ); cf. Theorem 1 in section 4.

Finally we show that there are unbounded solutions which blow up in finite time, and we discuss the
implications for the varactor equation in [3]; cf. Theorem 2 in section 5. In particular, this allows us to
settle a problem left open in [3], about the blow-up time of the unbounded solutions.

The rest of the paper is organised as follows. In section 2 we briefly review the results on equation (1.1)
in [1, 5, 3], which will be used in what follows. In section 3 we give the construction for g(x) = x2p, with
particular emphasis on p = 1, and we look for an estimate of the basin of attraction of the (quasi-)periodic
solution. This construction improves that given in [3] for general nonlinearities. Then, in section 4, we
use the techniques of [3] and [1] to improve further the estimate of the basin of attraction. In section 5
we show that in the case g(x) = x2p, there are unbounded solutions which blow up in finite time. Finally
in section 6 we mention some open problems.

2 Existence of quasi-periodic attractors

In this section we review the results found in [1, 5, 3]. We start with a result on the existence of
quasi-periodic attractors, proved — for more general nonlinearities g(x) — in [1], section 5, in the
case of Diophantine frequency vectors, that is frequency vectors satisfying the standard Diophantine
condition (1.3), and in [5], section 4, in the case of Bryuno frequency vectors, that is frequency vectors
satisfying the Bryuno condition (1.4). As the second condition implies the first one, we state the result
directly for Bryuno frequency vectors.

Theorem 1 Consider equation (1.1), with f analytic given by (1.2), and with ω satisfying the Bryuno
condition (1.4). Assume that f0 is strictly positive. Then there exists γ0 such that for γ > γ0 there is a
unique quasi-periodic solution x0(t) which has the same frequency vector as f and reduces to c0 = (f0)1/2p

in the limit γ → ∞. Furthermore, there exists γ1 ≥ γ0 such that for γ > γ1 there is a neighbourhood I
of the point (c0, 0) with the property that all trajectories starting in I are attracted to the orbit described
by x0(t) in the plane.

It should be noted that the estimates provided in [1] hold for very general g(x), and so they turn out
to be very poor if applied naively to specific cases — for instance, the varactor equation.

The second result that we need is Theorem 2.15 of [3], section 2, for the varactor equation. Define
the set B and B7 as in the statements of Theorem 2.4 and, respectively, of Lemma 2.5 of [3] — cf. figure
2 in [3]. Then the following result holds.

Theorem 2 All solutions initially in B remain in B, eventually entering B7, where they remain and
grow without limit.
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The above result allows us to confine ourselves to a substantially limited region of phase plane, Bc,
the complement of B, in seeking attractors and to describe their basins of attraction. For γ large enough
the existence of a quasi-periodic attractor is assured by Theorem 1. In agreement with Theorem 2, its
projection onto the (x, ẋ) plane is located inside the set Bc. As pointed out, the estimates provided in [1]
work in general, but, exactly because of this fact, are not optimal, and turn out to be very deceptive if
applied to concrete examples. In next section, we shall see how to obtain better estimates in the specific
case of the equation under study.

3 Application to the varactor equation, and generalisations

The construction of the neighbourhood I of Theorem 1 can be improved in concrete examples. Here
we consider explicitly the case of even monomials g(x) = x2p, with particular emphasis on p = 1 (the
varactor equation). Hence we discuss explicitly the case p = 1, but the discussion can easily be extended
to all p ≥ 1.

Let us fix p = 1, and write x(t) = x0(t) + ξ(t), where x0(t) is the quasi-periodic solution which has
the same frequency vector ω as the forcing.

We define the functions F (ξ, x) and R(ξ, t) as in [1], section 3, so that

ξ F (ξ, x) = ξ2 + 2xξ, R(ξ, t) =
ξ + 2x0(t)

ξ + 2c0
= 1 + 2

x0(t) − c0
ξ + 2c0

, (3.1)

where c0 =
√
f0, with f0 > 0. For γ large enough, that is for ε = 1/γ small enough, one has

|x0(t) − c0| < C1ε, (3.2)

for a suitable constant C1. This follows from the analysis performed in [4, 1]; see in particular the first
lines of the proof of Theorem 4 in [1].

It is easy to see that one has limξ→0R(ξ, t) = 1 + O(ε), so that for ε small enough one has R1 <
R(ξ, t) < R2, for two suitable positive constants R1 and R2.

Then we can rescale time and the dependent variables by setting

τ =

∫ t

0

dt
√

R(ξ(t′), t′), ξ(t) = v(τ(t)), y(t) =
√

R(ξ(t), t)w(τ(t)). (3.3)

This transforms the system (1.1) into







v′ = w,

w′ = − w√
R

(

γ +
R′

2
√
R

)

− v F (v, c0)),
(3.4)

with the primes denoting differentiation with respect to τ , and

v F (v, c0) = v2 + 2c0v. (3.5)

Hence, if we set γ = (γ+R′/2
√
R)/

√
R, we can interpret the system (3.4) as a Hamiltonian system with

hamiltonian

H(v, w) =
1

2
w2 + U(v), U(v) =

1

3
v3 + c0v

2, (3.6)

in the presence of a friction term with non-constant dissipation coefficient γ. If we neglect the friction
term, that is if we put γ = 0, then the system becomes the Hamiltonian system

{

v′ = w,

w′ = −v2 − 2c0v,
(3.7)
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which admits a stable equilibrium point P1 = (0, 0), an unstable equilibrium point P2 = (−2c0, 0) and
the separatrix Γ with equation

w = ±
√

2(H(−2c0, 0) − U(v)), H(−2c0, 0) =
4c30
3
, (3.8)

which contains a homiclinic orbit to the right of P2. Consider the open set S1 containing the point P1

and with boundary given by (the closure of) the homoclinic orbit in Γ. Any level curve with energy
V (0) < E < V (−2c0) contains a bounded connected component, internal to S1, which is a closed
orbit CE for the system (3.7). Denote by C the closed curve CE which intersects the negative v-axis at
v = −2c0 + C2ε

β, for suitable constants C2 and β to be fixed, and S the open set containing P1 with
boundary C.

From (3.1), one has

|R(ξ, t) − 1| < C1

C2
ε1−β , (3.9)

so that R(ξ, t) → 1 as ε → 0, provided β < 1; for instance one can take β = 1/2. Then, if γ is large
enough, for any point (v, w) ∈ S one has

|R′(ξ, t)| ≤
∣

∣

∣

∣

2ξ′(c0 − x0)

(ξ + 2c0)2

∣

∣

∣

∣

+

∣

∣

∣

∣

2x′0
ξ + 2c0

∣

∣

∣

∣

≤ C3ε
1−2β + C4ε

1−β , (3.10)

for suitable constants C3 and C4, so that, by also using that ξ = v and

|ξ + 2c0| ≥ C2ε
β (3.11)

for all (v, w) ∈ S, one obtains

|γ − γ′| ≤
∣

∣

∣

∣

R′

2R

∣

∣

∣

∣

≤ C5ε
1−2β ≤ C5ε

2(1−β)γ < γ (3.12)

for a suitable constant C5, hence γ′ > 0 for γ large enough. Therefore we can conclude that S is positively
invariant, and we can apply Barbashin-Krasovsky’s theorem [6] to conclude that the equilibrium point
P1 is asymptotically stable and the set S is contained inside its basin of attraction.

x

y

−c0 2c0

Γ0

Figure 1: Estimate of the basin of attraction (grey set D) of the quasi-periodic attractor for large γ. The small
closed curve inside the grey set represents the attractor in the case of periodic forcing (d = 1), when the attractor
is a limit cycle. The curve Γ0 is the separatrix of the system described by the differential equation ẍ + x2 = c2

0.
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If we go back to the original coordinates, we see that, for γ large enough, there is a quasi-periodic
solution x0(t) which moves very close to the point (c0, 0) (within a distance of order ε = 1/γ); see
figure 1. Its basin of attraction contains a large set D whose boundary is at a distance of order εβ

from the separatrix Γ0 of the system described by the equation ẍ + x2 = c20, that is from the curve
y = ±

√

2(2c30 − x3 + 3c20x)/3.

4 Improved estimates for the basins of attraction

We start by constructing an invariant set A, valid for all p ∈ N, which has the property that its area is
O(γ). We need the additional assumption that f(ωt) > 0 for all t. The construction is surely not optimal
but is included because the set A is, amongst several sets constructed, one which grows with γ in the
vertical direction. Constructing invariant sets containing the attracting orbit for γ large is not difficult,
but it was less obvious how to find one that grows with γ. The construction follows very closely the ideas
exploited in [3].

Rewrite (1.1), with g(x) = x2p, as

{

ẋ = y,

ẏ = f(ωt) − γy − x2p,
(4.1)

so that the vector field generated by the differential equation is defined by φ(t) = (y, f(ωt) − γy − x2p).
Let f2p ≤ f(ωt) ≤ F 2p. Note that in this and the following section, f is just a constant and not the
function t → f(ωt). We adopt this notation here to conform to that used in the analysis in [3]. For the
same reason we denote in boldface vectors in R

2, so that a · b denotes the scalar product in R
2.

The two vector fields, φF = (y, F 2p − γy − x2p) and φf = (y, f2p − γy − x2p), have no explicit
time-dependence and also have the property that for all t, φ(t) = µφF + (1 − µ)φf where µ ∈ [0, 1] is a
(time-dependent) scalar.

Following [3], we let the boundary of invariant set A be a hexagon GHIJKL whose edges are straight
lines, except for HI and KL. GH and JK are horizontal and LG and IJ are vertical — see figure 2. The
co-ordinates of points H and K are (0, yH) and (0, yK) respectively. The dotted curves in figure 2 are
PF : y = (F 2p − x2p)/γ (upper) and Pf : y = (f2p − x2p)/γ (lower). As shown in [3], only in the region
between these curves is the sign of ẏ ambiguous; above PF , ẏ < 0 and below Pf , ẏ > 0. Provided that
yH ≥ F 2p/γ, which will turn out to be automatically satisfied, φ(t) will be into A along GH, and point J
being below Pf guarantees that φ(t) will always be into KJ, both results holding for all t. Furthermore,
the sign of ẋ = y guarantees that φ(t) will be into LG and IJ, again for all t. It therefore remains to
define the sides HI and KL in such a way that it is possible to prove that φ(t) is into them for all t.

Let us define HI by y = λ1

(

F 2p − x2p
)

with λ1 ∈ R positive; then the normal pointing into A,
n1 = (−2pλ1x

2p−1,−1). In order to prove that φ(t) is into HI for all time, we need only to show
that n1 · φF ≥ 0 for x ∈ [0, F ]. We have n1 · φF =

[

F 2p − x2p
] [

λ1(γ − 2pλ1x
2p−1) − 1

]

and, since
F 2p − x2p ≥ 0, and the second bracket in the scalar product reaches its minimum value over [0, F ] at
x = F , we require

2pF 2p−1λ2
1 − γλ1 + 1 ≤ 0, (4.2)

in order for the scalar product to be non-negative. Solving this quadratic in λ1 and choosing the larger
solution gives

λ1 =
γ

4pF 2p−1

[

1 +

√

1 − 8pF 2p−1

γ2

]

(4.3)

provided that λ1 ∈ R. This is true for γ2 ≥ 8pF 2p−1. We now show that this condition on γ also
forces yH = λ1F

2p ≥ F 2p/γ, or γλ1 ≥ 1, to be satisfied. Letting q = 4pF 2p−1, the condition for

λ1 to be real is γ2/q ≥ 2; using this in the definition of λ1 gives γλ1 = (γ2/q)
(

1 +
√

1 − 2q/γ2
)

≥

5



G H

I

JK

L

-f F

P
F

P
f

Figure 2: The invariant set A, whose vertices are G, H, I, J, K and L. Also shown as dotted lines are the curves
PF : y = (F 2p − x2p)/γ and Pf : y = (f2p − x2p)/γ.

2
(

1 +
√

1 − 2q/γ2
)

≥ 1, which is clearly true. Hence, boundary HI has been constructed in such a way

that φ(t) is into it for all time. Note that λ1 ∼ γ/(2pF 2p−1) as γ → ∞, and so yH = λ1F
2p = O(γ).

We now define KL by y = λ2

(

f2p − (x+ 2f)2p
)

where λ2 ∈ R > 0. This has inward normal

n2 =
(

2pλ2(x+ 2f)2p−1, 1
)

and the inequality we need to consider now is

φf · n2 = λ2

[

(x+ 2f)2p − f2p
] [

γ − 2pλ2(x + 2f)2p−1
]

+ f2p − x2p ≥ 0 (4.4)

for x ∈ [−f, xK ] where xK , satisfying F ≥ xK > −f , is to be defined. The first term consists of a product
of two terms, the first of which is positive for x ∈ (−f,∞) and the second of which is a monotonically
decreasing function of x for x ∈ R \ {−2f}; it is zero at x = x0 = (γ/2pλ2)

1/(2p−1) − 2f . Choosing
xK = x0 = 0 ensures that the product term in (4.4) is non-negative and gives

λ2 =
γ

2p(2f)2p−1
. (4.5)

The last term in inequality (4.4) is non-negative for x ∈ [−f, f ] and so the entire scalar product is non-
negative for λ2 as given above, provided that xK = 0. We also require point J to be below pf . The
y-co-ordinate of J = yK = λ2

(

f2p − (2f)2p
)

and so this condition becomes

γ2 ≥ p
(

F 2p − f2p
)

f (1 − 4−p)
. (4.6)

We can now state the following result.

Theorem 3 Define A as the hexagonal set whose vertices are G, H, I, J, K and L, where

G = (−f, λ1F
2p), H = (0, λ1F

2p), I = (F, 0),

J = (F,−λ2f
2p(4p − 1)), K = (0,−λ2f

2p(4p − 1)), L = (−f, 0), (4.7)

and where λ1 and λ2 are given by equations (4.3) and (4.4), respectively. Let the edges LG, GH, IJ and
JK of A be straight lines and let HI be given by y = λ1

(

F 2p − x2p
)

and KL, by y = λ2

(

f2p − (x + 2f)2p
)

.
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Then, provided that

γ2 ≥ max

(

8pF 2p−1,
p
(

F 2p − f2p
)

f (1 − 4−p)

)

, (4.8)

set A is an invariant set containing the limit cycle described by the solution x0(t) in the plane.

Figure 3 compares the set GHIJKL with Bc for p = 1, 2 and 3.
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Figure 3: The set A compared to the set Bc (cf. [3]) with 1 ≤ f(t) = (5 + 3 sin t)/2 ≤ 4, γ = 9 and p = 1 (left),
p = 2 (middle) and p = 3 (right). The set B is defined such that all trajectories starting in B remain there, hence
Bc provides an estimate for the basin of attraction of the periodic solution, x0(t).

The existence of the set A having the properties stated in Theorem 3 allows us to improve the estimate
D of the basin of attraction found in section 3 for the varactor equation studied in [3], that is for the
system (1.1), where p = 1 and f(ωt) = α + β sin t, with α > 0 and |β| < α. Define D0 = D ∪ A. First
note that both D and A are proper subsets of D0, as follows easily from the remark that D0 is inside
the separatrix Γ0 (cf. the end of section 3), and at a distance O(1/

√
γ) from it. The inclusion D ( D0

is obvious as A grows as γ in the vertical direction. The inclusion A ( D0 follows from the fact that the
separatrix intersects the x-axis in x = −c0 and x = 2c0, with c0 =

√
α; hence xL = −

√
α− β > −c0 and

xI =
√
α+ β ≤

√
2α < 2c0. Then the set D1 := A \ (A ∩ D) is non-empty — see figure 4. Furthermore

a trajectory starting in D1 can leave D1 only by entering D0 (by the invariance of A). This means that
all trajectories starting in D0 are attracted by the limit cycle described by x0(t).

We emphasise, both here and in [3], the fact that d = 1 (so that f(ωt) is a periodic function) plays
no role. Indeed quasi-periodic forcing could be considered as well, and the same results would apply.

5 Blow up in finite time

We prove finite-time blow up for the system (1.1) by first finding an invariant set J (Lemma 1) and then
constructing an invariant subset, S(−X0), of J , the latter construction being carried out in Lemma 2.
Within S(−X0), a differential inequality must hold and we show in Theorem 4 that all solutions of this
differential inequality must blow up in finite time.

Lemma 1 Define h(x) = 2px2p−1
(

F 2p − x2p
)

− γ2
(

F 2p − f2p
)

and the set

J = {(x, y)|x ≤ −ξ, (F 2p − x2p)/γ ≤ y ≤ 0}, (5.1)

where −ξ is the root of h(x) with −ξ < −F . Then ξ as defined exists uniquely and J is an invariant set.
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x

y

−c0 2c0

Figure 4: Comparison between the set D (shaded grey) constructed in section 3 and the set A defined in
Theorem 3. For f(ωt) = α + β sin t one has c0 =

√
α, f =

√
α − β and F =

√
α + β. The boundary of D

intersects the the x-axis at x = x1 = −c0 + r1 and x = x2 = 2c0 − r2, where both r1 and r2 are positive and of
order O(1/γ). Hence for γ large enough one has x1 < f and x2 > F .

Proof. The set J is clearly absorbing along its horizontal, y = 0, x ≤ −ξ, and vertical, x = −ξ,
(F 2p − ξ2p)/γ ≤ y ≤ 0 boundaries. We therefore only need to prove that it is also absorbing along the
curved boundary, y = (F 2p −x2p)/γ for x ≤ −ξ. The appropriate normal here is n =

(

2px2p−1/γ, 1
)

and
so we require n · φf ≥ 0, which is equivalent to proving that h(x) ≥ 0, for x ≤ −ξ.

To this end, first note some elementary properties of h(x): (i) h(−F ) = −γ2
(

F 2p − f2p
)

< 0; (ii) h(x)

has exactly three stationary points for x ∈ R: h′(x) = 0 for x = 0 and x = x± = ±F [(2p−1)/(4p−1)]1/2p;
(iii) h′′(x−) > 0; and (iv) h(x) → ∞ as x → −∞. From these, it becomes clear that −F < x− < 0 and
h(x−) is a minimum; and, in the light of (i) and (iv), h(x) has exactly one real root, −ξ,∈ (−∞,−F ).
Hence, h(x) ≥ 0 for x ≤ −ξ and the invariance of set J is proved.

We now define, for x ≤ −X0, a curve G(x, y) : y = −b (−X0 − x)
ρ

with −X0 ≤ −ξ < 0, and ρ and
b > 0 to be specified. In order that S(−X0) ⊂ J , −X0 ≤ −ξ and b > 0. In the proof of Theorem 4
below, it will be required that S(−X0) has infinite area for all p ∈ N, and hence ρ < 2 — otherwise, the
curves (F 2p − ξ2p)/γ and G could intersect at some finite x < −ξ when p = 1. In order that solutions
blow up in finite time, ρ > 1 will also be required: hence, we choose ρ = 3/2.

The proof of the invariance of S now follows.

Lemma 2 The set
S(−X0) = {(x, y)|x ≤ −ξ, U ≥ y ≥ (F 2p − x2p)/γ}, (5.2)

where

U =

{

−b (−X0 − x)3/2 x ≤ −X0

0 otherwise
(5.3)

with −X0 ≤ −ξ and b sufficiently small, is an invariant subset of J , and contains points (x, y) with
y → −∞.

Proof. The fact that the vector field is into all the boundaries of S except y = −b (−X0 − x)
3/2

has

been proved in Lemma 1; therefore, we only need to consider the boundary y = −b (−X0 − x)
3/2

. The
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appropriate normal is that which points into S, this being n = (3b/2)
√
−X0 − x,−1). The correct choice

for the vector field here is φF = (y, F 2p − γy − x2p), so that

n · φF = −b(−X0 − x)3/2
[

(3b/2)
√

−X0 − x+ γ
]

+ x2p − F 2p ≥ 0, x ≤ −X0. (5.4)

Since −X0 − x ≥ 0, we can substitute v2 = −X0 − x, giving

L(v) = (X0 + v2)2p − F 2p − bv3(3bv/2 + γ) ≥ 0, v ≥ 0. (5.5)

Let l(x) = xp; then the mean value theorem states that, for b > a, l(b) − l(a) = (b − a)pcp−1, where
c ∈ (a, b). Applying this to the first two terms in equation (5.5), we have

L(v) ≥
[

(X0 + v2)2 − F 2
]

pF 2p−2 − bv3(3bv/2 + γ)

= v4(pF 2p−2 − 3b2/2) − γbv3 + 2X0pF
2p−2v2 + (X2

0 − F 2)pF 2p−2

≥ v2
[

v2(pF 2p−2 − 3b2/2) − γbv + 2X0pF
2p−2

]

= v2M(v), (5.6)

where we have used X0 > F to obtain the last inequality. Hence, we need to show that for b > 0
sufficiently small, M(v) ≥ 0 for v ≥ 0. First, write M(v) = a2v

2 − a1bv + a0, a1, a0 > 0, and let b
be sufficiently small that a2 > 0. Let M̃(v) = M(v)/a2 = v2 − 2c1bv + c0, with c1, c0 > 0. Then
M̃(v) = (v − bc1)

2 + c0 − b2c21, and it is plain that b can be chosen to be small enough that M̃(v), and
so L(v), are non-negative for v ≥ 0.

We will also require S(−X0) to extend to infinite negative y values; it has this property provided that

the curves y = −b (−X0 − x)3/2 and y = (F 2p − x2p)/γ nowhere intersect for y ≤ 0. This, too, is clearly
true if b is small enough.

It is possible that some of the conditions applied in the above proof could be relaxed, but a ‘better’
invariant set S is not required in the proof of the following theorem.

Theorem 4 For all x0 = (x0, y0) ∈ J , ∃ − X0 ≤ −ξ which is such that x0 ∈ S(−X0). All solutions
starting from such an x0 blow up in finite time.

Proof. Let x0 = (x(0), y(0)) = (x0, y0) ∈ J . Then there always exists an −X0 ≤ −ξ such that x0 is in a
subset S(−X0) of J : choose any −X0 > x0. Also, since ẋ ≤ 0 in J , x ≤ x0 and so −X0−x ≥ −X0−x0 >
0. Additionally, since x0 ∈ S(−X0), the differential inequality −b(−X0 − x)3/2 ≥ y = ẋ ≥ (F 2p − x2p)/γ
applies for all time t ≥ 0, by the invariance of S(−X0).

In fact, only the upper bound is important here, and with the substitution u = −X0 − x > 0 and
u0 = −X0 − x0 > 0, this becomes u̇ ≥ bu3/2. Integrating gives

∫ u

u0

dψ ψ−3/2 ≥ b

∫ t

0

ds, (5.7)

giving u
−1/2
0 − u−1/2 ≥ bt/2, which, after re-arranging, gives

u ≥
[

u
−1/2
0 − bt/2

]−2

for t ∈ [0, t∞), (5.8)

where bt∞ = 2u
−1/2
0 . The above inequality shows that x(t) tends to −∞ within a finite time t ≤ t∞. By

the invariance of S(−X0), x(t) cannot tend to −∞ without also y(t) → −∞, and so finite time blow up
is proven.

Note that for p = 1 there is a set B (cf. figure 3) such that all solutions starting from B enter J in
a finite time: this was proved in [3]. Therefore for p = 1 Theorem 4 shows that all trajectories starting
from B blow up in finite time.
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6 Open problems

The construction of the basin of attraction of the quasi-periodic attractor given in sections 3 and 4 is
far better than that of [1]. Still, in principle it is not optimal, and one could ask whether appreciable
improvements could be obtained.

Also, for dissipation large enough, numerically all solutions which do dot blow up are found to be
attracted by the quasi-periodic solution which has the same frequency vector as the forcing. Hence the
orbit of such a solution seems to be the only attractor for γ large enough. However, an analytical proof
of this result is lacking.

Note that, in any case, one cannot expect that the set Bc and the basin of attraction of the quasi-
periodic attractor are complementary to each other. In fact, the latter depends on the initial phase,
whereas the former describes the set of initial data in the phase plane (x, ẋ) which blow up independently
of their initial phase. Hence the phase plane, as well as the two sets Bc and the basin of attraction,
contains a further set of initial data, whose behaviour is determined by the initial phase: according to
what that is, the corresponding trajectories can either collapse onto the quasi-periodic attractor or diverge
(in finite time, by Theorem 4). Whether these are the two only possibilities is still an open problem: at
the moment, we can only say that the numerics strongly suggest that this is the case.
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