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Abstract. For the standard map the homotopically non-trivial invariant cur-

ves of rotation number ω satisfying the Bryuno condition are shown to be

analytic in the perturbative parameter ε, provided |ε| is small enough. The

radius of convergence ρ(ω) of the Lindstedt series – sometimes called critical

function of the standard map – is studied and the relation with the Bryuno

function B(ω) is derived: the quantity | log ρ(ω) + 2B(ω)| is proved to be

bounded uniformily in ω.

1. Introduction

We continue the study, started in [1], of the radius of convergence of the Lindstedt

series for the standard map, for rotation numbers close to rational values. We

consider real rotation numbers ω satisfying the Bryuno condition (see below), and

study how the corresponding radius of convergence depends on the Bryuno function

B(ω), introduced by Yoccoz in [2].

The standard map is a discrete time, one-dimensional dynamical system gener-

ated by the iteration of the area-preserving – symplectic – map of the cylinder into

itself Tε : T × R 7→ T × R, given by:

Tε :











x′ = x + y + ε sinx,

y′ = y + ε sin x.
(1.1)

Given a real rotation number ω ∈ [0, 1), we can look for (homotopically non-trivial)

invariant curves described parametrically by:










x = α + u(α, ε; ω),

y = 2πω + u(α, ε; ω) − u(α − 2πω, ε; ω),
(1.2)

such that the dynamics induced in the variable α is given by rotations by ω:

α′ = α + 2πω. (1.3)

For irrational rotation numbers ω, by imposing that the average of u over α is 0, the

(formal) conjugating function u is unique and odd in α, and has a formal expansion

– known as Lindstedt series – of the form:

u(α, ε) =
∑

ν∈Z

uν(ε)eiνα =
∑

k≥1

u(k)(α)εk =
∑

k≥1

∑

ν∈Z

u(k)
ν eiναεk; (1.4)

1
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the coefficients u
(k)
ν can be expressed graphically in terms of sums over trees as

explained shortly (see also [1] and references quoted therein). The radius of con-

vergence of the series (1.4), called sometimes the critical function of the standard

map, is defined as:

ρ(ω) = inf
α∈T

(

lim sup
k→∞

∣

∣u(k)(α)
∣

∣

1/k
)−1

. (1.5)

Given ω, let {pn/qn} be the sequence of convergents defined by the standard con-

tinued fraction expansion of ω, and let:

B1(ω) =

∞
∑

n=0

log qn+1

qn
. (1.6)

The irrational number ω ∈ [0, 1) satisfies the Bryuno condition if B1(ω) < ∞; we

also say that in this case ω is a Bryuno number. After Yoccoz [2], we define on the

irrational numbers the Bryuno function B(ω) by the functional equation:










B(ω) = − log ω + ωB(ω−1) for ω ∈ (0, 1
2 ) and irrational,

B(ω + 1) = B(−ω) = B(ω).
(1.7)

It can be proved that such functional equation has a unique solution in Lp, p ≥ 1;

moreover B(ω) is related to the series B1(ω) by the inequality:

∣

∣B(ω) − B1(ω)
∣

∣ < C1, (1.8)

for some constant C1. See [2] and [3] for the proofs of these statements.

We prove the following theorem.

Theorem. Consider the standard map (1.1) and let ω be an irrational number,

ω ∈ [0, 1), satisfying the Bryuno condition. Then the radius of convergence (1.5)

satisfies the bound:

| log ρ(ω) + 2B(ω)| ≤ C0, (1.9)

where C0 is a constant independend of ω.

An analogous result was proved by Davie [4] for the semistandard map (where

the nonlinear term sinx in (1.1) is replaced by eix); in the same paper it was also

shown that the upper bound in (1.9) holds:

log ρ(ω) + 2B(ω) < C2, (1.10)

for some constant C2. In ref. [5] it was proved, by “phase space renormalization”

arguments, that ∀η > 0 ∃C3, depending on η, such that:

log ρ(ω) + (2 + η)B(ω) > C3. (1.11)
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So our theorem improves the result of [5] (using also a different, direct technique,

taken from [6] – and inspired to the works [7] and [8] –, in some sense more elemen-

tary than the one of [5]) and proves the conjecture (“Bryuno’s interpolation”) first

stated for the standard map in [9]; see also [10] and references quoted therein.

Our theorem can be related to the result and the methods of [1]. There we proved

that, for ω ∈ C, if ω tends to a rational number p/q through a path in the complex

plane non-tangential to the real axis, then the radius of convergence satisfies:
∣

∣

∣

∣

∣

log ρ(ω) +
2

q
log

∣

∣

∣

∣

ω − p

q

∣

∣

∣

∣

∣

∣

∣

∣

∣

< C4 (1.12)

for some constant C4.

If instead we consider a sequence of real, irrational numbers tending to a rational

value p/q, the situation is quite more complex. In fact, the limit and its very

existence may depend on the arithmetic properties of the numbers of the sequence

we consider, and on their uniformity in k; namely:

(1) The sequence {ωk} can tend to p/q but, though all the ωk are irrational,

some of them are not Bryuno numbers so that for those B(ωk) = +∞ and

ρ(ωk) = 0.

(2) The sequence {ωk} can tend to p/q through Bryuno numbers, or even Dio-

phantine numbers, but they are not uniformly such in k so that B(ωk)

diverges faster than log
(

|ωk − p/q|1/q
)

(and so ρ(ωk) tends to zero faster

than |ωk − p/q|2/q). An example can be the sequence of Diophantine (ac-

tually even “noble”) numbers:

ωk =
1

k +
1

2k2 + γ

, (1.13)

where γ denotes the “golden mean”:

γ =
1

1 +
1

1 + · · ·

=

√
5 − 1

2
; (1.14)

a simple calculation using the recursion relation (1.7) shows that indeed

B(ωk) = O(k) while ωk = O(1/k), so that, by taking into account also

logarithmic corrections in B(ωk), ρ(ωk) = O(ω2
ke−2/ωk), that is much faster

than ω2
k.

(3) Finally, the sequence {ωk} can tend to p/q through a sequence of Bryuno

numbers satisfying uniform estimates in k, so that an estimate like (1.12)

holds (note that decays slower than |ωk − p/q|2/q are not possible); an
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example can be given by the sequence:

ωk =
1

k + γ
, (1.15)

where again γ is the golden mean (1.14).

Notice that in the numerical calculations of [11] only real sequences of type 3 were

considered, and that sequences of type 2 are practically inaccessible from the nu-

merical point of view.

One might also ask whether the same interpolation property holds for the analytic

critical threshold εc(ω), defined as the supremum of the set:

Eω = {ε > 0 | ∀ε̃ ∈ [0, ε) ∃ an analytic invariant curve with rotation number ω};
(1.16)

of course ρ(ω) ≤ εc(ω).

The interpolation properties of εc(ω) should be different, as, according to Davie

[5], their orders of magnitude asymptotically differ as ω → 0. This, in turn, adds

interest to the study of the interpolation properties for the radius of convergence

ρ(ω), as a standard against which to check εc(ω), besides the obvious interest in an

important analyticity property of the function u.

Note that this is a much harder problem, especially considering that it is not at

all clear what is the right question to ask. For example, for generic standard-like

maps, the analytic critical threshold is different for positive or negative values of

ε, as numerical experiments suggest (see e.g. [12]), and of course there is nothing

special to positive values of ε from the physical point of view. Moreover, always for

generic maps one can have the phenomenon of erratic invariant curves, that is for

a given ω the invariant curve can break down at a certain value of ε, to reappear

and disappear again as ε grows: again, this has been shown only numerically (see

[13]) and it is unlikely the case of the standard map, but such a possiblity makes

the simple definition (1.16) questionable from the physical point of view.

Finally, one may ask how much these results can be extended to more compli-

cated, and realistic, symplectic maps and continuous time Hamiltonian systems. We

believe that while some additional complications may arise, the really hard problem

(i.e. how to handle resonances) is already present in the standard map and it was

solved by carefully using the trees formalism and the multiscale decomposition of

the propagators. More general maps and Hamiltonian systems, though, as already

pointed out in [1], [14], have different, more complicated interpolation properties for

the radius of convergence of their Lindstedt series: the challenge here seems to be

to find the right interpolation formula, which the work of [14] shows it is different

from Bryuno’s interpolation; this is an area where still much work has to be done.
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The paper is organized as follows. In sect. 2 we introduce the formalism and give

the scheme of the proof of the theorem, elucidating the major difficulties, due to the

accumulation of small divisors in the Lindstedt series, and showing that, in absence

of such a phenomenon, the proof could be carried out by a detailed analysis of the

single terms of the series. In sect. 3 and 4, we shall see how to handle the small

divisors problem, by showing that there are cancellation mechanisms, operating to

all perturbative orders between different terms of the Lindstedt series, which assure

its convergence. Finally sect. 5 and 6 deal with the proof of the main technical

lemmata used in the proof of the theorem.

2. Formalism: trees, clusters and resonances

As in [1], we can express graphically the coefficients u
(k)
ν in (1.4) in terms of trees. We

shall only recall the definitions used in this paper and set up the notations, leaving

the full details of the tree expansion for our problem to [1] and the references quoted

therein.

A tree ϑ consists of a family of lines arranged to connect a partially ordered set

of points – nodes –, with the lower nodes to the right. All the lines have two nodes

at their extremes, except the highest which has only one node, the last node u0 of

the tree; the other extreme r will be called the root of the tree and it will not be

regarded as a node.

We denote by 4 the partial ordering relation between nodes defined as follows:

given two nodes u, v, we say that v 4 u if u is along the path of lines connecting

v to the root r of the tree – they could coincide: we say that v ≺ u if they do not.

So our trees are “rooted trees”, following the terminology of [15].

We assign to each line ℓ joining two nodes u and u′ an “arrow” pointing from the

higher to the lower node according to the order relation just defined; if u ≺ u′, we

say that the line ℓ exists from u and enters u′, and that u′ is the node immediately

following u. We write u′
0 = r even if, strictly speaking, r is not considered a node.

For each node u there is a unique exiting line, and mu ≥ 0 entering lines; as there

is a one-to-one correspondence between lines and nodes, we can associate to each

node u the line ℓu exiting from it. The line ℓu0
exiting the last node u0 will be

called the root line. Note that each line ℓu can be considered the root line of the

subtree consisting of the nodes v satisfying v 4 u, and u′ will be the root of such

tree. The order k of the tree is defined as the number of its nodes.
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To each node u ∈ ϑ we associate a mode label νu = ±1, and define the momentum

flowing through the line ℓu as:

νℓu
=
∑

w4u

νw, νw = ±1; (2.1)

note that no line can have zero momentum, as u
(k)
0 = 0 in (1.4).

While in [1] we could get along considering only two “scales”, we need a full

multiscale decomposition of the momenta associated to each line.

Given a rotation number ω ∈ [0, 1)\Q, let {pn/qn} be the sequence of convergents

coming from the standard continued fraction expansion of ω. For x ∈ R, let:

||x|| = inf
ν∈Z

|x − ν| (2.2)

be the distance of x from the nearest integer. Let now:

γ(ν) = 2(cos 2πων − 1); (2.3)

then we have the estimate:

|γ(ν)| = 2| cos 2πων − 1| ≥ Γ||ων||2, (2.4)

for some constant Γ.

We introduce a C∞ partition of unity in the following way. Let χ(x) a C∞,

non-increasing, compact-support function defined on R+, such that:

χ(x) =











1 for x ≤ 1,

0 for x ≥ 2,
(2.5)

and define for each n ∈ N:










χ0(x) = 1 − χ(96q1x),

χn(x) = χ(96qnx) − χ(96qn+1x), for n ≥ 1.
(2.6)

Then for each line ℓ set:

g(νℓ) ≡
1

γ(νℓ)
=

∞
∑

n=0

χn(||ωνℓ||)
γ(νℓ)

≡
∞
∑

n=0

gn(νℓ), (2.7)

and call gn(νℓ) the propagator on scale n.

Given a tree ϑ, we can associate to each line ℓ of ϑ a scale label nℓ, using the

multiscale decomposition (2.7) and singling out the summands with n = nℓ. We

shall call nℓ the scale label of the line ℓ, and we shall say also that the line ℓ is on

scale nℓ.

Remark 1. Given a value νℓ there can be at most two possible – consecutive – values

of n such that the corresponding χn(||ωνℓ||) are not vanishing. This means that

at most only two summands of the infinite series (2.7) really appear; nevertheless
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keeping all terms is more convenient, in order to have a label to characterize the

“size” of the “propagators” g(νℓ).

Remark 2. Note that if a line ℓ has momentum νℓ and scale nℓ, then:

1

96qnℓ+1
≤ ||ωνℓ|| ≤

1

48qnℓ

, (2.8)

provided that one has χnℓ
(||ωνℓ||) 6= 0.

A group G of tranformations acts on the trees, generated by the permutations

of all the subtrees emerging from each node with at least one entering line: G is

therefore a cartesian product of copies of the symmetric groups of various orders.

Two trees that can be transformed into each other by the action of the group G are

considered identical.

Denote by Tν,k the set of trees, with nonvanishing value, of order k and total

momentum νℓu0
= ν, if u0 is the last node of the tree. The number of elements in

Tν,k is bounded by 2k · 2k · 22k = 24k: the number of semitopological trees (see [1])

of order k is bounded by 22k,1 and there are two possible values for the mode label

of each node and two possible values for the scale label of each line.

Then, as in [1] – to which we refer for more details and figures – one finds:

u(k)
ν =

1

2k

∑

ϑ∈Tν,k

Val(ϑ), Val(ϑ) = −i

[

∏

u∈ϑ

νmu+1
u

mu!

][

∏

ℓ∈ϑ

gnℓ
(νℓ)

]

; (2.9)

the factors gnℓ
(νℓ) above are called propagators of small divisors on scale nℓ, and

the quantity Val(ϑ) will be called the value of the tree ϑ.

We define now the main combinatorial tools.

Definition (Cluster). Given a tree ϑ, a cluster T of ϑ on scale n is a maximal

connected set of lines of lines on scale ≤ n with at least one line on scale n. We

shall say that such lines are internal to T , and write ℓ ∈ T for an internal line T . A

node u is called internal to T , and we write u ∈ T , if at least one of its entering lines

or exiting line is in T . Each cluster has an arbitrary number mT ≥ 0 of entering

lines but only one or zero exiting line; we shall call external to T the lines entering

or exiting T (which are all on scale > n). We shall denote with nT the scale of the

cluster T , with ni
T the minimum of the scales of the lines entering T , with no

T the

scale of the line exiting T and with kT the number of nodes in T .

Note that, despite the name, not all lines outside T are “external” to it: only

those lines outside T which enter or exit T are external to it. On the contrary a line

inside T is said to be “internal” to it. The use of such a terminology is inherited

from Quantum Field Theory.

1The number of semitopological trees can be bounded by the number of one-dimensional ran-

dom walks with 2k − 1 steps.
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Definition (Resonance). Given a tree ϑ, a cluster V of ϑ will be called a resonance

with resonance-scale n = nR
V ≡ min{ni

V , no
V }, if:

(1) the sum of the mode labels of its nodes is 0:

νV ≡
∑

u∈V

νu = 0; (2.10)

(2) all the lines entering V are on the same scale except at most one, which can

be on a higher scale;

(3) ni
V ≤ no

V if mV ≥ 2, and |ni
V − no

V | ≤ 1 for mV = 1;

(4) kV < qn;

(5) mV = 1 if qn+1 ≤ 4qn;

(6) if qn+1 > 4qn and mV ≥ 2, denoting by k0 the sum of the orders of the

subtrees of order < qn+1/4 entering V , either

(a) there is only one subtree of order k1 ≥ qn+1/4 entering V and k0 <

qn+1/8, or

(b) there is no such subtree and k0 + k0 < qn+1/4.

Remark 3. Note that for any resonance V one has nR
V ≥ nV + 1, if nV is the scale

of the resonance V as a cluster. As in [16] we use the notation with a hyphen for

the resonance-scale to avoid confusion between nR
V and nV .

Remark 4. One would be tempted to give a simpler definition of resonance (for

instance, by imposing only condition 1 to the cluster V ). This temptation should

be resisted, as it would make impossible to exploit the cancellations leading to the

improvement of the bound discussed at the end of this section (in fact, no relation

would continue to subsist between momenta and scale labels and factorials would

arise from counting the summands generated by the renormalization procedure de-

scribed in sect. 4). On the other hand we shall see in sect. 5 that no problems

should arise if no resonances – exactly as they defined above – could appear.

In the following we shall need to introduce trees in which it can happen that a

line ℓ is on a scale nℓ and yet its momentum does not satisfy (2.8). The value of any

such tree ϑ is vanishing as χnℓ
(||ωνℓ||) = 0; nevertheless it will be useful to write

Val(ϑ) as sum of two (possibly) nonvanishing terms: one of them will be used to

cancel terms arising from other tree values, so it will disappear, while the other one

is left and has to be bounded. This means that we shall have to deal with trees in

which there are lines ℓ with momentum νℓ and scale nℓ which do not satisfy (2.8).

What will be shown to hold is that for such lines a bound similar to (2.8), though

weaker, still holds; more precisely, a line ℓ with momentum νℓ will have only scales

nℓ such that:
1

768qnℓ+1
≤ ||ωνℓ|| ≤

1

8qnℓ

, (2.11)



BRYUNO FUNCTION AND THE STANDARD MAP 9

and, for fixed νℓ, the number of possible scales to associate to ℓ is bounded by an

absolute constant.

As (2.11) is implied by (2.8), even for trees with nonvanishing value we shall use

that if a line is on scale nℓ then (2.11) holds.

Then, if Nn(ϑ), n ∈ N, denotes the number of lines on scale n in ϑ, we have

trivially for a given tree ϑ the bound:

|Val(ϑ)| ≤ Dk
1

∞
∏

n=0

(

768qn+1

)2Nn(ϑ)
, (2.12)

for some constant D1 (actually D1 = 1/Γ; see (2.4), (2.9) and (2.11)).

Given a tree ϑ, let us denote with NR
n (ϑ) the number of resonances with reson-

ance-scale n and by Pn(ϑ) the number of resonances on scale n. Of course NR
0 = 0.

Remark 5. Note that the number NR
n (ϑ) of resonances with resonance-scale n can be

counted by counting the number of lines exiting resonances with resonance-scale n;

analogously Pn(ϑ) can be counted by counting the number of lines exiting resonances

on scale n. Such counts will be performed in sect. 5.

The following simple lemmata contain all the arithmetic we shall need, and are

basically adapted from [4].

Lemma 1 (Davie’s lemma). Given ν ∈ Z such that ||ων|| ≤ 1/4qn, then

(1) either ν = 0 or |ν| ≥ qn,

(2) either |ν| ≥ qn+1/4 or ν = sqn for some integer s.

Lemma 2. If a tree ϑ has k < qn nodes, then Nn(ϑ) = 0 and Pn−1(ϑ) = 0.

Lemma 3. For any irrational number ω ∈ [0, 1):

∞
∑

n=0

log qn

qn
≤ D2, (2.13)

for a constant D2; here qn are the denominators of the convergents of ω.

Lemma 4. Given a momentum ν such that

1

768qn+1
≤ ||ων|| ≤ 1

8qn
, (2.14)

then one can have χn′(||ων||) 6= 0 only for n′ such that n − 8 ≤ n′ ≤ n + 8.

Proof of lemma 1. If {qn} are the denominators of the convergents of ω, then (see

e.g. [17], Ch. 1, §3):
1

2qn+1
< ||ωqn|| <

1

qn+1
, (2.15)

and:

∀|ν| < qn+1, |ν| 6= qn : ||ων|| > ||ωqn||. (2.16)
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To prove 1 note that if ν = 0 nothing has to be proved: so we assume ν 6= 0. If

|ν| < qn, by (2.16) and (2.15), ||ων|| ≥ ||ωqn−1|| > 1/2qn, so that ||ων|| < 1/4qn

implies |ν| ≥ qn, proving the first assertion of lemma 1.

To prove 2, again if ν = 0 nothing has to be proved (and s = 0): so we assume

ν 6= 0, and proceed by reductio ad absurdum. If 0 < ν < qn+1/4 and there does not

exist any s ∈ Z such that ν = sqn, then one has ν = mqn + r, with 0 < r < qn and

m < qn+1/4qn; then, by (2.15), ||ωmqn|| ≤ m||ωqn|| < m/qn+1 < 1/4qn, and, by

(2.16), ||ωr|| ≥ ||ωqn−1|| > 1/2qn, as r 6= 0; so ||ων|| ≥ ||ωr|| − ||ωmqn|| > 1/4qn.

The case 0 > ν > −qn+1/4 is identical as || · || is even. �

Proof of lemma 2. If k < qn, then for any ℓ ∈ ϑ one has |νℓ| ≤ k < qn, so that,

by (2.15) and (2.16), ||ωνℓ|| ≥ ||ωqn−1|| > 1/2qn, hence nℓ < n and so Nn′(ϑ) = 0

∀n′ ≥ n. If there are no lines on scale ≥ n, it is impossible to form a cluster on

scale n − 1 – which is different from the whole tree –, a fortiori a resonance. �

Proof of lemma 3. The denominators of the convergents {qn} of ω satisfy q0 = 1,

q1 ≥ 1 and qn ≥ 2qn−2 for any n ≥ 2. So we can write:

∞
∑

n=0

log qn

qn
=

∞
∑

n=0

log q2n

q2n
+

∞
∑

n=0

log q2n+1

q2n+1
; (2.17)

using the fact that, for x ≥ e, x−1 log x is decreasing, we obtain easily:

∞
∑

n=0

log qn

qn
≤ 3 max

x≥1

{

log x

x

}

+ 2 log 2

∞
∑

k=2

k

2k
= 3(e−1 + log 2) ≡ D2, (2.18)

which also gives an explicit value for the constant D2. �

Proof of lemma 4. Simply use that qn+1 ≥ qn and qn+2 ≥ 2qn for all n ≥ 0, to

deduce that 1/48qn+9 < 1/768qn+1 and 1/96qn−8 > 1/8qn. �

The following “counting” lemma is the main result stated in this section, and it

can be considered an adaption and extension of lemma 2.3 in [4]. We postpone its

proof to sect. 5.

Lemma 5. Given a tree ϑ, let Mn(ϑ) = Nn(ϑ) + Pn(ϑ). Then:

Mn(ϑ) ≤ k

qn
+

8k

qn+1
+ NR

n (ϑ), (2.19)

where k is the order of ϑ.

Therefore we can rewrite the bound (2.12) on the tree value as:

|Val(ϑ)| ≤ Dk
1

∞
∏

n=0

(

768qn+1

)2(Mn(ϑ)−Pn(ϑ))

≤ Dk
1

∞
∏

n=0

(

768qn+1

)2(k/qn+8k/qn+1+NR
n (ϑ)−Pn(ϑ))

.

(2.20)
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Note that at this point it would be very easy to prove the lower bound in (1.9)

for the semistandard map and, by simple modifications of the same scheme, for

Siegel problem, since in these cases no resonances appear. On the contrary, in the

more difficult case of the standard map we lack, for the moment, a control on the

number NR
n (ϑ) of resonances in ϑ with resonance-scale n.

In sect. 3 and 4 we shall see how to improve the bound on the sum over the

trees of fixed order and total momentum, in order to prove the theorem stated in

sect. 1. We postpone to forthcoming sections the proofs, limiting ourselves here to

a heuristic discussion in order to give an idea of the structure of the proof.

We perform a suitable resummation – described in sect. 3 and 4 – whose con-

sequence is that, for each resonance V , it is as if one of the external lines on scale

nR
V contributed

(

768qnV +1

)2
instead of

(

768qnR
V

+1

)2
. To obtain such a result, we

shall perform on trees transformations which will lead to the introduction of new

trees: so we extend Tν,k to a larger set T ∗
ν,k. However we shall prove that the value

of each single tree in T ∗
ν,k still admits the bound (2.20) – even if, unlike the values

of the trees in Tν,k, it fails to satisfy the same bound with 768 replaced with 96 –

and the number of elements in T ∗
ν,k is bounded by a constant to the power k (i.e. no

bad counting factors, like factorials, appear). Then we obtain, for the sum of the

resummed trees, a bound of the form (2.20) with:

∞
∏

n=0

(

768qn+1

)2NR
n (ϑ)

replaced with:

Dk
3

∞
∏

n=0

(

768qn+1

)2Pn(ϑ)
,

for some constant D3. By using that the number of trees in T ∗
ν,k will be shown to

be bounded by a constant to the power k, we obtain, for some constants D4, D5:

|u(k)(α)| ≤
∣

∣

∣

∣

∑

|ν|≤k

∑

ϑ∈Tν,k

Val(ϑ)

∣

∣

∣

∣

≤
∣

∣

∣

∣

∑

|ν|≤k

∑

ϑ∈T ∗

ν,k

Val(ϑ)

∣

∣

∣

∣

≤ Dk
4

∞
∏

n=0

(

768qn+1

)2k/qn+16k/qn+1

≤ Dk
5 exp

[

2k

∞
∑

n=0

(

log qn+1

qn
+

8 log qn+1

qn+1

)]

,

(2.21)

which, by making use of lemma 3, gives:

log ρ(ω) + 2B1(ω) ≥ −16D2 − log D5. (2.22)

By making rigorous the above discussion in sect. 3 and 4, we shall complete the

proof of the theorem, since the bound from above was already proved in [4].
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3. Renormalization of resonances: set-up and the first step

Given a tree ϑ, let us consider maximal resonances, i.e. resonances not contained

in any larger resonance; let us call them first generation resonances. Inside the

first generation resonances let us consider the “next maximal” resonances, i.e. the

resonances not contained in any larger resonance except first generation resonances,

and let us call them second generation resonances. We can define in this way j-th

generation resonances, for j ≥ 2, as resonances which are maximal within (j−1)-th

generation resonances.

Let V be the set of all resonances of a tree ϑ, and Vj the set of all resonances

of j-th generation, with j = 1, . . . , G, for some integer G, depending on ϑ.

Given a tree ϑ and a resonance V ∈ Vj with mV entering lines, define V0 as the

set of nodes and lines internal to V and outside any resonances contained in V . Let

LV = {ℓ1, . . . , ℓmV
} be the set of entering lines of V ; we define LR

V as the subset of

the lines in LV which enter some resonances of higher generation contained inside

V and L0
V = LV \ LR

V as the subset of lines in LV which enter nodes in V0.

For any line ℓm ∈ LR
V , let V (ℓm) be the minimal resonance containing the node

which the line ℓm enters (i.e. the highest generation resonance containing such a

node) and V0(ℓm) the set of nodes and lines internal to V (ℓm) and outside resonances

contained in V (ℓm). Define:

Ṽ(V ) = {Ṽ ⊂ V : Ṽ = V (ℓm) for some ℓm ∈ LR
V }. (3.1)

Call mV0
the number of lines in L0

V . The number of lines in LR
V entering the

same resonance Ṽ ∈ Ṽ(V ) is not arbitrary: it is always 1, as it is shown by the

following lemma.

Lemma 6. For j ≥ 1, given a resonance W ∈ Vj+1 contained inside a resonance

V ∈ Vj , only one among the entering lines W can also enter V .

Proof. The case mW = 1 is obvious, so we assume mW ≥ 2. One has nR
W ≤ nV ,

otherwise V would be a cluster on scale < nR
W , so that all the lines external to W

would be also external to V and V = W , while we assumed that V ⊂ W . Then if

a line ℓ enter both V and W , one must have nℓ > nR
W . But, by items 2 and 3 in

the definition of resonance, all lines entering to W have the same scale nR
W except

at most one. �

We define the resonance family FV (ϑ) of V ∈ V in ϑ as the set of trees obtained

from ϑ by the action of a group of transformations PV on ϑ, generated by the

following operations:

(1) Detach the line ℓ1, then if ℓ1 ∈ LR
V reattach it to all nodes internal to V0(ℓ1),

while if ℓ1 ∈ L0
V reattach it to all nodes in V0; for each tree so obtained, do
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the same operations with the line ℓ2 and so forth for each line entering the

resonance.

(2) In a given tree, each node u ∈ V will have mu entering lines, of which su

are inside V and ru = mu − su are outside V (i.e. are entering lines of V );

then we can apply to the set of lines entering u a transformation in the

group obtained as the quotient of the group of permutations of the mu lines

entering u by the groups of permutations of the su internal entering lines

and of permutations of the ru entering lines outside V ; in this way for each

node u ∈ V a number of trees equal to:
(

mu

su

)

=
mu!

su!ru!

is obtained.

(3) Change sign simultaneously to all the mode labels of the nodes internal to

V .

We shall call renormalization transformations (of type 1, 2, 3) the operations

described above.

Remark 6. Note that in all such transformations the scales are not changed (by

definition) and the set of resonance V remains the same (by construction). On the

contrary the momenta flowing through the lines can change (because of the shift

of the lines entering resonances) and in particular one can have for some lines ℓ,

χnℓ
(||ωνℓ||) = 0, if νℓ is the modified momentum flowing through ℓ.

Remark 7. The definition of resonance families is aimed at grouping together the

trees between which one will look for compensations, but in doing so one has to

avoid overcountings. In fact, to each tree ϑ we associate a value Val(ϑ) according

to (2.9); when applying the transformations of the group PV on the tree ϑ, the

same tree ϑ′ can be obtained, in general, in several ways; however, it has to be

counted once. This means that PV , as a group, defines an equivalence class, and

only inequivalent elements obtained through the transformations defining PV have

to be retained.

Let us call FV1
(ϑ) the family obtained by the composition of all transformations

defining the resonance families FV1
(ϑ), V1 ∈ V1.

For any tree ϑ1 ∈ FV1
(ϑ), let V2 be a resonance in V2 and let us define the

resonance family FV2
(ϑ1) of V2 in ϑ1 as the set of trees obtained from ϑ1 by the

action of the group of transformations PV2
. The composition of all transformations

defining the resonance families FV2
(ϑ1), for all ϑ1 ∈ FV1

(ϑ) and all V2 ∈ V2, gives

a family that we shall denote by FV2
(ϑ).

We continue by considering resonances of 3-rd generation, and so on until the

G-th generation resonances are reached. At the end we shall have a family F(ϑ) of
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trees obtained by the composition of all transformations of the groups PV , V ∈ V,

defined recursively through the application of the renormalization transformations

corresponding to resonances V ∈ Vj to all trees ϑ′ belonging to the family FVj−1
(ϑ).

Remark 8. Given a tree ϑ ∈ Tν,k and a family F(ϑ), when considering another

tree ϑ′ ∈ F(ϑ) with nonvanishing value Val(ϑ′), the same family F(ϑ′) = F(ϑ) is

obtained (by construction). Note however that F(ϑ) can contain also trees with

vanishing values, as they can have lines ℓ such that χnℓ
(||ωνℓ||) = 0 (see remark 6).

Define also NF(ϑ) the number of trees in F(ϑ) whose value is not vanishing; of

course NF(ϑ) ≤ |F(ϑ)|, if |F(ϑ)| is the number of elements in F(ϑ).

Write:

∑

ϑ∈Tν,k

Val(ϑ) =
∑

ϑ∈Tν,k

1

NF(ϑ)

∑

ϑ′∈F(ϑ)

Val(ϑ′) =
∑

ϑ∈T ∗

ν,k

1

|F(ϑ)|
∑

ϑ′∈F(ϑ)

Val(ϑ′), (3.2)

where the factors NF(ϑ) and |F(ϑ)| have been intoduced in order to avoid over-

countings (see remark 8) and the last sum implicitly defines the set T ∗
ν,k: so T ∗

ν,k is

the set of inequivalent trees in ∪ϑ∈Tν,k
F(ϑ).

If a tree ϑ ∈ T ∗
ν,k, then ϑ ∈ F(ϑ0) for some tree ϑ0 ∈ Tν,k; however one has to

bear in mind that ϑ, unlike ϑ0, could vanish.

Given a tree ϑ ∈ T ∗
ν,k, if V is a first generation resonance, we define its resonance

factor VV (ϑ) as its contribution to the value of the tree ϑ, namely:

VV (ϑ) =

[

∏

u∈V

νmu+1
u

mu!

][

∏

ℓ∈V

gnℓ
(νℓ)

]

, (3.3)

which of course depends on the subset of ϑ outside the resonance V only through

the momenta of the entering lines of V . Given a node u ∈ V , let us denote with Eu

the set of lines entering V such that they end into nodes preceding u.

For future notational convenience, we rewrite (3.3) as:

VV (ϑ) = UV (ϑ)LV (ϑ), UV (ϑ) =
∏

u∈V

νmu+1
u

mu!
, LV (ϑ) =

∏

ℓ∈V

gnℓ
(νℓ). (3.4)

In the following, we shall consider the quantities ων, ν ∈ Z, modulo 1, and shall

continue to use the symbol ων to denote the representative of the equivalence class

within the interval (−1/2, 1/2].

For any node u contained in a resonance V , we shall write:

νℓu
= ν0

ℓu
+
∑

ℓ′∈Eu

νℓ′ , ν0
ℓu

=
∑

w∈V
w4u

νw, (3.5)

where the set Eu was defined after (3.3).
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We shall consider the resonance factor (3.3) as a function of the quantities µ1 =

ωνℓ1 , . . . , µmV
= ωνℓmV

, where νℓ1 , . . . , νℓmV
are the momenta flowing through

the lines ℓ1, . . . , ℓmV
entering V . More precisely, we let:

V(ϑ) ≡ VV (ϑ; ωνℓ1 , . . . , ωνℓmV
), (3.6)

and we write:

VV (ϑ; ωνℓ1 , . . . , ωνℓmV
) =

= LVV (ϑ; ωνℓ1 , . . . , ωνmV
) + RVV (ϑ; ωνℓ1 , . . . , ωνmV

),
(3.7)

where:

LVV (ϑ; ωνℓ1 , . . . , ωνℓmV
) =

= VV (ϑ; 0, . . . , 0) +

mV
∑

m=1

ωνℓm

∂

∂µm
VV (ϑ; 0, . . . , 0)

(3.8)

is the localized part of the resonance factor, or localized resonance factor, while:

RVV (ϑ; ωνℓ1 , . . . , ωνℓmV
) =

mV
∑

m,m′=1

ωνℓm
ωνℓm′

·

·
∫ 1

0

dt (1 − t)
∂2

∂µm∂µm′

VV (ϑ; tωνℓ1 , . . . , tωνℓmV
) (3.9)

is the renormalized part of the resonance factor, or renormalized resonance factor. In

(3.7) L is called the localization operator and R = 1−L is called the renormalization

operator. Using the notations (3.4), we can write:

LVV (ϑ) = UV (ϑ)LLV (ϑ), RVV (ϑ) = UV (ϑ)RLV (ϑ), (3.10)

as only the factors in LV (ϑ) depend on the momenta flowing through the lines

entering the resonance V .

Remark 9. Note that in the localized part (3.8) the momentum νℓ flowing through

any line ℓ internal to V is changed into ν0
ℓ (see (3.5)).

Then we perform the renormalization transformations in PV described above.

By remark 9, for all trees obtained by applying the group PV the contribution to

the localized resonance factor arising from the LV (ϑ) term in (3.4) is the same, i.e. :

LLV (ϑ) = LLV (ϑ′), ∀ϑ′ ∈ FV (ϑ), (3.11)

so that we can consider:
∑

ϑ′∈FV (ϑ)

LVV (ϑ′). (3.12)

The sum over all the trees in the resonance family FV (ϑ) of the localized resonance

factors produces zero, so that only the renormalized part has to be taken into ac-

count. The proof of this assertion is similar to the proof of the analogous statement
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in [1], and it is given in sect. 6 as a particular case of the proof of the more general

statement in lemma 8 below.

Then only the second order terms have to be taken into account in (3.7). This

leads to the following expression for the renormalized resonance factor:

RVV (ϑ) = UV (ϑ)

mV
∑

m,m′=1

ωνℓm
ωνℓm′

·

·
[

∑

ℓ1V ,ℓ2V ∈V

ℓ1V 6=ℓ2V

(

∂

∂µm
gn

ℓ1
V

(νℓ1
V
)

)(

∂

∂µm′

gn
ℓ2
V

(νℓ2
V
)

)(

∏

ℓ∈V
ℓ 6=ℓ1V ,ℓ2V

gnℓ
(νℓ)

)

+

+
∑

ℓV ∈V

(

∂

∂µm

∂

∂µm′

gnℓV
(νℓV

)

)(

∏

ℓ∈V
ℓ 6=ℓV

gnℓ
(νℓ)

)

]

, (3.13)

from the very definition of the renormalized resonance factor (3.9), by noting that

the two derivatives in (3.9) act either on two distinct propagators (the sum with

ℓ1
V 6= ℓ2

V in (3.13)) or on the same propagator (the sum with only one line ℓV in

(3.13)).

Note that it can happen that ϑ ∈ FV (ϑ0), for some tree ϑ0 ∈ Tν,k, i.e. for some

tree ϑ0 with nonvanishing value, while VV (ϑ) = 0 (correspondingly there does not

exist any tree in Tν,k of that shape associated with the given choice of mode and

scale labels). The tree ϑ is obtained from ϑ0 through a transformation of PV , so

that there is a correspondence between the lines of ϑ0 and the lines of ϑ: we shall

say that the lines are conjugate. The tree ϑ inherits the scale labels of the tree ϑ0,

i.e the lines in ϑ have the same scales of the conjugate lines of ϑ0. So it can happen

that in ϑ0 some line internal to V has a scale nℓ and a momentum ν̃ℓ such that

χnℓ
(||ων̃ℓ||) 6= 0, while the momentum νℓ of the line ℓ seen as a line of ϑ (i.e. of the

line of ϑ conjugate to the line ℓ of ϑ0) is such that χnℓ
(||ωνℓ||) = 0 (see remark 8).

This means that for such a line (2.8) does not hold. Nevertheless, as anticipated in

remark 6, one finds that the momentum νℓ can not change “too much” with respect

to ν̃ℓ; more precisely:
1

768qnℓ+1
≤ ||ωνℓ|| ≤

1

24qnℓ

, (3.14)

as we shall prove, using the following result.

Lemma 7. Given a tree ϑ0 ∈ Tν,k and a resonance V , let ϑ ∈ T ∗
ν,k be a tree

obtained by the action of the group PV , i.e. ϑ ∈ FV (ϑ0). If ||ωνℓm
|| ≤ 1/8qnR

V
for

any entering line ℓm of V , m = 1, . . . , mV , then, for any line ℓ ∈ V , one has

∣

∣||ωνℓ|| − ||ων̃ℓ||
∣

∣ ≤ 1

4qnR
V

, ||ωνℓ|| ≥
1

4qnR
V

, ||ων̃ℓ|| ≥
1

4qnR
V

, (3.15)

if νℓ and ν̃ℓ are the momenta flowing through ℓ in ϑ and ϑ0, respectively.
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Proof. As V is a resonance, then for each line ℓ ∈ V one has |ν0
ℓ | ≤ kV < qnR

V
(see

item 4 in the definition of resonance), so that:

||ων0
ℓ || ≥ ||ωqnR

V
−1|| >

1

2qnR
V

, (3.16)

by (2.15) and (2.16). On the other hand:

||ωνℓ − ων0
ℓ || ≤

mV
∑

m=1

||ωνℓm
||, (3.17)

if ν1, . . . , νmV
are the momenta flowing through the lines ℓ1, . . . , ℓmV

entering V .

By hypothesis:

||ωνℓm
|| ≤ 1

8qnR
V

, ∀m = 1, . . . , mV . (3.18)

If mV ≥ 2 then one must have qnR
V

+1 > 4qnR
V

(see item 5 in the definition of

resonance). In such a case if there is an entering line (say ℓ1) which is the root

line of a tree of order ≥ qnR
V

+1/4, then all the other lines are the root lines of

subtrees of orders k2, . . . , kmV
such that k0 ≡ k2 + . . . + kmV

< qnR
V

+1/8 (see item

6a in the definition of resonance). Moreover, for each m = 2, . . . , mV , km ≥ qnR
V
,

otherwise the line ℓm would not be on scale ≥ nR
V . By lemma 1, νℓm

= smqnR
V

for

all m = 2, . . . , mV , with sm ∈ Z, and:

|s2| + . . . + |smV
| ≤ k0

qnR
V

≤
qnR

V
+1

8qnR
V

, (3.19)

so that:
mV
∑

m=1

||ωνℓm
|| ≤ 1

8qnR
V

+

mV
∑

m=2

|sm| ||ωqnR
V
|| ≤ 1

8qnR
V

+
1

8qnR
V

=
1

4qnR
V

, (3.20)

where use was made of (2.15). Therefore, when replacing ϑ0 with ϑ, (3.15) follows.

If there is no entering line of V which is the root line of a tree of order ≥ qnR
V

+1/4

and the tree having as root line the exiting line of V is of order k < qnR
V

+1/4 (see

item 6b in the definition of resonance), then:

mV
∑

m=1

|sm|qnR
V
≤ k1 + . . . + kmV

≡ k − kV < k ≤
qnR

V
+1

4
, (3.21)

so that:
mV
∑

m=1

||ωνℓm
|| ≤

mV
∑

m=1

|sm| ||ωqnR
V
|| ≤

qnR
V

+1

4qnR
V

1

qnR
V

+1

=
1

4qnR
V

. (3.22)

which implies again (3.15). If mV = 1, then (3.15) follows immediately from (3.17)

and (3.18). �

We come back to the proof of (3.14). As the entering lines of V satisfy (2.8),

hence (2.11), lemma 7 applies. Note that inside V in ϑ0 (hence also in ϑ, see

remark 6) only lines on scale nℓ such that 1/48qnℓ
> 1/4qnR

V
are possible, by the
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second inequality in (3.15) and the definition of scale (see (2.8)).Then, given a line

ℓ internal to V on scale nℓ, one has:

||ωνℓ|| ≤
1

48qnℓ

+
1

4qnR
V

≤ 1

48qnℓ

+
1

48qnℓ

=
1

24qnℓ

. (3.23)

Likewise, if 1/96qnℓ+1 > 2/qnR
V
, one has:

||ωνℓ|| ≥
1

96qnℓ+1
− 1

4qnR
V

≥ 1

96qnℓ+1
− 1

768qnℓ+1
=

1

96qnℓ+1

(

1 − 1

8

)

, (3.24)

while, if 1/96qnℓ+1 < 2/qnR
V
, one has:

||ωνℓ|| ≥
1

4qnR
V

≥ 1

768qnℓ+1
. (3.25)

by the third inequality in (3.15). Then (3.14) follows: so in particular the momen-

tum νℓ of the line ℓ ∈ ϑ still fulfills (2.11).

Note that (3.13) and (2.11) imply the following bound for the renormalized res-

onance factor of a first generation resonance:

|RVV (ϑ)| ≤ D6D
kV

7

mV
∑

m,m′=1

||ωνℓm
|| ||ωνℓm′

||·

·
(

768qnV +1

)2
(

∏

ℓ∈V

(

768qnℓ+1

)2
)

,

(3.26)

(for some constants D6 and D7), where the last product (times Γ−k) represents a

bound on the resonance factor (3.3). The proof of such an assertion again is as in

[1] (see the proof of the Corollary in [1], §3), and follows immediately by noting

that for any line ℓ ∈ V one has nℓ ≥ nV . The only difference with respect to [1] is

that now the derivatives can act also on the compact support functions: they were

just missing in [1]; it is nevertheless straightforward to see that:
∣

∣

∣

∣

∣

∂p

∂pµ
χn(||ωνℓ||)

∣

∣

∣

∣

∣

≤ D8

(

768qn+1

)p
, (3.27)

with p = 1, 2, for some constant D8, so that:
∣

∣

∣

∣

∣

∂p

∂pµ
gn(νℓ)

∣

∣

∣

∣

∣

≤ D9

(

768qn+1

)p+2
, (3.28)

with p = 0, 1, 2, for some constant D9.

For any tree in FV (ϑ) the bound (2.11) holds, so that lemma 5 applies (see

remark 15 in sect. 5).

Note that the two factors ||ωνℓm
||, ||ωνℓm′

|| in (3.26) allow us to neglect the

propagator corresponding to a line entering a resonance with resonance-scale nR
V ,

provided such a propagator is replaced by a factor (768qnV +1)
2, where nV is the

scale of the resonance as a cluster. Such a mechanism corresponds to the discussion

leading to (2.21), as far as only the first generation resonances are considered.
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In general a tree will contain more resonances, and the resonances can be con-

tained into each other. Then the above discussion has to be extended to cover the

more general case: which will be done in the next section.

4. Renormalization of resonances: the general step

We proceed following strictly the techniques of [6] and [18].

Consider a tree ϑ ∈ T ∗
ν,k in (3.2). For each resonance V of any generation, let us

define a pair of derived lines ℓ1
V , ℓ2

V internal to V – possibly coinciding – with the

following “compatibility” condition: if V is inside some other resonance W , the set

{ℓ1
V , ℓ2

V } must contain those lines of {ℓ1
W , ℓ2

W } which are inside V . Clearly there

can be 0, 1 or 2 such lines, and correspondingly we shall say that the resonance V

is of type 2 if none of its derived lines is a derived line for one of the resonances

containing it, of type 1 if just one of its two derived lines is a derived line for one

of the resonances containing it, and of type 0 if both derived lines are derived lines

for some resonances W , W ′ – possibly coinciding – containing V ; we shall use a

label zV = 0, 1, 2 to take note of the type of the resonance V . One associates also

to each resonance V a pair of entering lines ℓV
m, ℓV

m′ if zV = 2 and a single line ℓV
m if

zV = 1, with m, m′ = 1, . . . , mV . Moreover for each resonance we shall introduce

an interpolation parameter tV and a measure πzV
(tV ) dtV such that:

πz(t) =























(1 − t), z = 2

1, z = 1

δ(t − 1), z = 0;

(4.1)

we shall denote with t = {tV }V ∈V the set of all interpolation parameters.

The momentum flowing through a line ℓu internal to any resonance V will be

defined recursively as:

νℓu
(t) = ν0

ℓu
+ tV

∑

ℓ∈Eu

νℓ(t), ν0
ℓu

=
∑

w∈V
w4u

νw; (4.2)

of course νℓu
(t) will depend only on the interpolation parameters corresponding to

the resonances containing the line ℓu (by construction).

For any resonance V the resonance factor is defined as:

VV (ϑ) = UV (ϑ)

[

∏

ℓ∈V

gnℓ
(νℓ(t))

]

, (4.3)
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when zV = 2, as:

VV (ϑ) = UV (ϑ)

[

( ∂

∂µ
gn

ℓ1
V

(νℓ1
V
(t))

)

(

∏

ℓ∈V,
ℓ 6=ℓ1V

gnℓ
(νℓ(t))

)

]

, (4.4)

when zV = 1 (and we have called ℓ1
V the line in {ℓ1

V , ℓ2
V } which belongs to the set

{ℓ1
W , ℓ2

W } for some resonance W containing V ), as:

VV (ϑ) = UV (ϑ)

[

( ∂2

∂µ∂µ′
gn

ℓ1
V

(νℓ1
V
(t))

)

(

∏

ℓ∈V,
ℓ 6=ℓ1V

gnℓ
(νℓ(t))

)

]

, (4.5)

when zV = 0 and ℓ1
V = ℓ2

V , and as:

VV (ϑ) = UV (ϑ)

[

( ∂

∂µ
gn

ℓ1
V

(νℓ1
V
(t))

)( ∂

∂µ′
gn

ℓ2
V

(νℓ2
V
(t))

)

·

·
(

∏

ℓ∈V,
ℓ 6=ℓ1V ,ℓ2V

gnℓ
(νℓ(t))

)

]

, (4.6)

when zV = 0 and ℓ1
V 6= ℓ2

V .

In (4.4)÷(4.6) one has µ = ωνℓW
m

and µ′ = ωνℓW ′

m′

, for some lines ℓW
m and ℓW ′

m′

(possibly coinciding) entering, respectively, some resonances W and W ′ (possibly

coinciding) containing V .

We define the renormalization operator according to the type of the resonance;

namely, if zV = 2, then:

RVV (ϑ; ωνℓ1(t), . . . , ωνℓmV
(t)) =

mV
∑

m,m′=1

ωνℓm
(t)ωνℓm′

(t)·

·
∫ 1

0

dtV (1 − tV )
∂2

∂µm∂µm′

VV (ϑ, tV ωνℓ1(t), . . . , tV ωνℓmV
(t)); (4.7)

if zV = 1, then:

RVV (ϑ; ωνℓ1(t), . . . , ωνℓmV
(t)) =

mV
∑

m=1

ωνℓm
(t)·

·
∫ 1

0

dtV
∂

∂µm
VV (ϑ, tV ωνℓ1(t), . . . , tV ωνℓmV

(t)); (4.8)

finally if zV = 0, then:

RVV (ϑ)(ϑ; ωνℓ1(t), . . . , ωνℓmV
(t)) = VV (ϑ)(ϑ; ωνℓ1(t), . . . , ωνℓmV

(t)). (4.9)

In all cases set L = 1 −R.

Remark 10. Note that zV equals the order of the renormalization performed on the

resonance V .
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Remark 11. If a resonance V has a resonance-scale nR
V , then there is a line ℓ0

V on

scale nR
V entering V such that ||ωνℓ|| ≤ ||ωνℓ0

V
|| for each ℓ entering V . If there

is ambiguity, ℓ0
V can be chosen arbitrarily. For any resonance V one has a factor

bounded by ||ωνℓ0
V
||zV , from (4.7), (4.8) and (4.9) and by the definition of ℓ0

V .

To each line ℓ derived once one can associate the line ℓm(ℓ) corresponding to the

quantity µm = ωνℓm(ℓ) with respect to which the propagator gnℓ
(νℓ(t)) is derived.

If the line ℓ is derived twice one associates to it the two lines ℓm(ℓ) and ℓm′(ℓ) such

that µm = ωνℓm(ℓ) and µm′ = ωνℓm′(ℓ) are the quantities with respect to which the

propagator gnℓ
(νℓ(t)) is derived.

Given a derived line ℓ, let V be the minimal resonance containing it. If the line

ℓ is derived once, then let W be the resonance for which ℓm(ℓ) is an entering line;

if instead ℓ is derived twice, let W, W ′ ⊆ W be the resonances for which the lines

ℓm(ℓ), ℓm′(ℓ) respectively are entering lines.

In the first case, let Wi, i = 0, . . . , p the resonances contained by W and

containing V , ordered naturally by inclusion:

V = W0 ⊂ W1 ⊂ · · · ⊂ Wp = W. (4.10)

We shall call the set W(ℓ) = {W0, . . . , Wp} the simple cloud of ℓ.

In the second case, let Wi, i = 0, . . . , p, the resonances contained by W and

containing V , ordered naturally by inclusion:

V = W0 ⊂ W1 ⊂ · · · ⊂ Wp′ = W ′ ⊂ · · · ⊂ Wp = W, (4.11)

with p′ ≤ p. We shall say that W−(ℓ) = {W0, . . . , Wp′} is the minor cloud of ℓ

while W+(ℓ) = {W0, . . . , Wp} is the major cloud of V .

When the renormalization of a resonance V ∈ Vj+1 is performed, a tree ϑV
0 ∈

FV ′(ϑ), with V ′ ∈ Vj , ϑ ∈ Tν,k, is replaced by the action of the group PV with a

new tree ϑV . As this replacement is performed iteratively, one has the constraint

that if V1 and V2 are two resonance such that V1 is the minimal resonance containing

V2, then ϑV1 = ϑV2

0 . At the end, the original tree ϑ0 ∈ Tν,k is replaced with a tree

ϑ ∈ T ∗
ν,k. On each resonance V ∈ V of ϑ the renormalization operator R acts: a tree

whose resonance factors have been all renormalized will be called a renormalized

(or resummed) tree.

As the replacement corresponding to each resonance settles a conjugation be-

tween lines of ϑV
0 and those of ϑV , in the end for each line of ϑ there will be a

conjugate line of ϑ0.

Note that, as the transformations of the groups PV , V ∈ V, do not modify the

scales of ϑ0 (see remark 6), the scales of the lines of ϑ are the same as those of the

conjugate lines of the tree ϑ0, so that, in order to apply lemma 5, we have only to
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verify that (2.11) is verified for the lines in ϑ: this will be done below (after remark

12).

Now, we shall show that:

• the localized resonance factors can be neglected (in a sense that will appear

clear shortly, see lemma 8 below),

• for any (renormalized) resonance we obtain a factor:

(

768qnV +1

)2||ωνℓ0
V
||2, (4.12)

and

• the number of terms generated by the renormalization procedure is bounded

by a costant to the power k,

so that the bound (2.20) can be replaced by a bound which leads to (2.21), as

anticipated in sect. 2.

Note firstly that the localized part of the resonance factors can be dealt with as

in sect. 3, when only first generation resonances were considered. More formally,

we have the following result, which is proved in sect. 6.

Lemma 8. Given a tree ϑ and a resonance V ∈ ϑ, the localized resonance factor

LVV (ϑ) gives zero when the values of the trees belonging to the same resonance

family FV (ϑ) are summed together.

Define the map Λ:

Λ: V 7→ ΛV =
{

zV , ℓ1
V , ℓ2

V , {ℓV
m, ℓV

m′}∗
}

V ∈V
, (4.13)

which associates to each resonance V ∈ V the derived lines ℓ1
V , ℓ2

V and the lines in

the set {ℓV
m, ℓV

m′}∗ defined as:

{ℓV
m, ℓV

m′}∗ =























{ℓV
m, ℓV

m′}, if zV = 2,

ℓV
m, if zV = 1,

∅, if zV = 0,

(4.14)

where m, m′ = 1, . . . , mV and ℓV
1 , . . . , ℓV

mV
are the lines entering V .

Note that that the map Λ gives a natural decomposition of the set L of all lines

of ϑ into L = L0 ∪ L1 ∪ L2, where Lj is the set of lines derived j times.
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Then, by using lemma 8, one has:

Val(ϑ) =
∑

ΛV

(

∏

V ∈V

∫ 1

0

πzV
(tV ) dtV

)[

∏

u∈ϑ

νmu+1
u

mu!

]

·

·
(

∏

ℓ∈L0

gnℓ
(νℓ(t))

)(

∏

ℓ∈L1

ωνℓm(ℓ)
∂

∂µm
gnℓ

(νℓ(t))

)

·

·
(

∏

ℓ∈L2

ωνℓm(ℓ)ωνℓm′(ℓ)
∂2

∂µm∂µm′

gnℓ
(νℓ(t))

)

.

(4.15)

Remark 12. Note that no propagator is derived more than twice: this fact is essential

for our proof since we have no control on the growth rate of the derivatives of the

compact support functions (2.6).

After the renormalization procedure has been applied for all resonances, one

checks that the momenta of the lines in ϑ have changed, with respect to the original

tree ϑ0 with nonvanishing value, in such a way that the bound (2.11) still hold.

Lemma 9. Consider a renormalized tree ϑ ∈ T ∗
ν,k, obtained from ϑ ∈ Tν,k by

the iterative replacements, described above, that take place each time a resonance

appears. Then the lines of ϑ inherit the scales of the conjugate lines of ϑ0 and

lemma 5 applies to ϑ.

Proof. The first assertion follows by construction. The second one can be seen by

induction on the generation of the resonances, by taking into account that for the

first generation resonances the result has been already proved in sect. 3. So let us

suppose that (2.14) holds for resonances of any generation j′, with j′ < j. Consider

a line ℓ contained inside a resonance V ∈ Vj and outside all resonances in Vj+1

contained inside V : then there will be j resonances V ≡ W1 ⊂ . . . ⊂ Wj containing

ℓ. Each renormalization produces a change on the momentum flowing through the

line ℓ, such that, if ν̃ℓ is the momentum flowing through the line ℓ in ϑ0 and νℓ is

the momentum flowing through the conjugate line ℓ in ϑ, then:

1

96qnℓ+1
−

j
∑

i=1

1

4qnR
Wi

≤ ||ων̃ℓ|| ≤
1

48qnℓ

+

j
∑

i=1

1

4qnR
Wi

. (4.16)

Call ϑV
0 ∈ FVj

(ϑ0) the tree containing V (which is not, in general, the originary

tree ϑ0) and ϑV the tree in FV (ϑV
0 ) obtained by the action of the group PV . As

(2.11) is supposed to hold before renormalizing V , for all lines ℓm, m = 1, . . . , mV ,

entering V one has ||ωνℓm
|| < 1/8qnℓm

, so that, by reasoning as in sect. 3 to prove

lemma 7, we can conclude that:

∣

∣||ωνℓ|| − ||ων̃ℓ||
∣

∣ ≤ 1

4qnR
V

, ||ωνℓ|| ≥
1

4qnR
V

, ||ων̃ℓ|| ≥
1

4qnR
V

, (4.17)

where νℓ is the momentum flowing through the line ℓ in ϑV .
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In order that ℓ be contained inside V = W1, one must have 1/48qnℓ
≥ 1/4qnR

V
;

moreover if j1 = ⌊(j − 1)/2⌋ and j2 = ⌊j/2⌋ (here ⌊·⌋ denotes the integer part), one

has:

qnR
W1

≤
qnR

W3

2
≤ . . . ≤

qnR
Wj1

2j1
, qnR

W2

≤
qR
nW4

2
≤ . . . ≤

qR
nWj2

2j2
, (4.18)

(simply use that qn+1 ≥ qn and qn+2 ≥ 2qn for any n ≥ 0). Then one can write:

||ωνℓ|| ≤
1

48qnℓ

+
1

4qnR
V

(

j1
∑

i=0

1

2i
+

j2
∑

i=0

1

2i

)

≤ 1

48qnℓ

+
1

qnR
V

; (4.19)

this is bounded from above by 5/48qnℓ
. Likewise one finds:

||ωνℓ|| ≥
1

96qnℓ+1
− 1

4qnR
V

(

j1
∑

i=0

1

2i
+

j2
∑

i=0

1

2i

)

≥ 1

96qnℓ+1
− 1

qnR
V

; (4.20)

this is bounded from below by 1/192qnℓ+1 if 1/96qnℓ+1 > 2/qnR
V

and by 1/768qnℓ+1

if 1/96qnℓ+1 ≤ 2/qnR
V
.

Then (2.14) holds also for any line ℓ contained inside V0, if V is a resonance in

Vj . As any next renormalization is on resonances V ∈ Vj′ , with j′ > j, so that it

does not shift the line ℓ, the momentum νℓ changes no more, so that the inductive

proof is complete. �

Then in (4.15) we can bound, for ℓ ∈ L1:
∣

∣

∣

∣

ωνℓm(ℓ)
∂

∂µm
gnℓ

(νℓ(t))

∣

∣

∣

∣

≤

≤ D9||ωνℓm(ℓ)||
(

768qnℓ+1

)3

≤ D9||ωνℓm(ℓ)||
(

768qnℓ+1

)3
p−1
∏

i=0

||ωνℓ0
Wi

||
||ωνℓ0

Wi

||

≤ D9

(

768qnℓ+1

)2

[

p
∏

i=0

||ωνℓ0
Wi

||
][

p
∏

i=0

(

768qnWi
+1

)

]

,

(4.21)

where W(ℓ) = {W0, . . . , Wp} is the simple cloud of ℓ, and, for ℓ ∈ L2:
∣

∣

∣

∣

ωνℓm(ℓ)ωνℓm′(ℓ)
∂2

∂µm∂µm′

gnℓ
(νℓ(t))

∣

∣

∣

∣

≤

≤ D9||ωνℓm(ℓ)|| ||ωνℓm′(ℓ)||
(

768qnℓ+1

)4

≤ D9||ωνℓm(ℓ)|| ||ωνℓm′(ℓ)||
(

768qnℓ+1

)4
p−1
∏

i=0

||ωνℓ0
Wi

||
||ωνℓ0

Wi

||

p′−1
∏

i′=0

||ωνℓ0
W

i′
||

||ωνℓ0
W

i′
||

≤ D9

(

768qnℓ+1

)2

[

p
∏

i=0

||ωνℓ0
Wi

||
][

p
∏

i=0

(

768qnWi
+1

)

]

[

p′

∏

i′=0

||ωνℓ0
W

i′
||
][

p′

∏

i′=0

(

768qnW
i′

+1

)

]

,

(4.22)
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where W−(ℓ) = {W0, . . . , Wp′} is the minor cloud and W+(ℓ) = {W0, . . . , Wp} is

the major cloud of ℓ.

Note that (4.21) and (4.22) give a factor:

||ωνℓ0
Wi

||
(

768qnWi
+1

)

(4.23)

for each resonance Wi belonging to the (simple or minor or major) cloud of ℓ. As

each resonance belongs to the cloud of some line internal to it and each resonance

contains two derived lines or one line derived twice (by definition of the renormal-

ization procedure), then one concludes that a factor equal to the square of (4.23) is

obtained for each resonance.

If we note that each underived propagator can be bounded again using (3.28)

with p = 0, then we can summarize the bounds (4.21) ÷ (4.22) stating that, for

each resummed tree ϑ, we have:

• for each resonance V , a factor ||ωνℓ0
V
||2 times a factor (768qnV +1)

2;

• for each line ℓ, a factor D9(768qnℓ+1)
2 (as the factors (768qnℓ+1)

p, p = 1, 2,

appearing when the corresponding propagator is derived, are taken into

account by the factors associated to the resonances, see the item above);

Then the statement concerning (4.12) is proved.

Once the single summand in (4.15) has been bounded, one is left with the problem

of bounding the number of terms on which the sum is performed.

For each first generation resonance V at most m2
V times k2

V summands are gener-

ated by the renormalization procedure (see (3.13)). In general, for each (renormal-

ized) resonance, we have to sum over the entering lines {ℓV
m, ℓV

m′}∗ (corresponding

to the quantities µm, m = 1, . . . , mV , in terms of which the renormalized resonance

factor is considered a function) and over the internal lines {ℓ1
V , ℓ2

V } (corresponding

to the factors on which the derivatives act). An estimates on the number of sum-

mands generated by the renormalization procedure can be obtained by using the

counting lemma 6.

If V ∈ Vj , j ≥ 1, let NV be the number of (j + 1)-th generation resonances

contained inside V . Recall that V0 is the set of lines internal to V which are outside

any resonance contained in V , and denote by kV0
the number of elements in V0.

The renormalization procedure, for each renormalized resonance, generates a

single or double sum over the entering lines whose momenta appear in the quantities

ωνℓ1(t), . . . , ωνℓmV
(t), in terms of which the resonance factor is expanded: the sum

is single if the localization is to first order and double if the localization is to second

order (see (4.7) and (4.8)).

Then we find, using lemma 6, that in the renormalization procedure each sum

over the entering lines of a first generation resonance V is on mV terms, each sum
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over the entering lines of all second generation resonances V ′ ⊂ V is on kV0
+ NV

terms, each sum over the entering lines of all third generation resonances V ′′ ⊂
V ′ ⊂ V is on kV ′

0
+ NV ′ , and so on; in general, each sum over the entering lines of

all the resonances V ′ ∈ Vj+1 contained inside a resonance V ∈ Vj is bounded by

kV0
+ NV .

Once all generations of resonances have been considered, the overall number of

summands generated by the renormalization procedure – by taking also into account

the sum over the derived lines and using remark 12 – is bounded by:
[

∏

V ∈V1

k2
V

][

(

∏

V ∈V1

m2
V

)(

∏

V ∈V

(kV0
+ NV )2

)

]

≤ e6k, (4.24)

where k is the order of the tree ϑ. In fact, just use x ≤ ex and the obvious

inequalities:
∑

V ∈V1

kV ≤ k,

∑

V ∈V1

mV +
∑

V ∈V

kV0
≤ k,

∑

V ∈V

NV ≤ k.

(4.25)

Then the statement after (4.12) is proved and the constant D3 is e6.

Finally one has to count the number of trees. The bound given in sect. 2 is no

more valid, as a line ℓ ∈ ϑ can have more than two scale labels. However lemma

4 proves that to each line at most D10 = 17 scale labels can be associated, so that

the number of trees in T ∗
ν,k is bounded by 23kDk

10. Then the bound (2.21) follows,

with D4 = 23D3D9D10: this concludes the proof of the theorem.

5. Proof of lemma 5

We shall prove inductively on the order k the following bounds:

Mn(ϑ) = 0, if k < qn, (5.1a)

Mn(ϑ) ≤ 2k

qn
− 1 + NR

n (ϑ), if k ≥ qn, (5.1b)

for any n ≥ 0, and:

Mn(ϑ) = 0, if k < qn, (5.2a)

Mn(ϑ) ≤ k

qn
+ NR

n (ϑ), if qn ≤ k <
qn+1

4
, (5.2b)

Mn(ϑ) ≤ k

qn
+

8k

qn+1
− 1 + NR

n (ϑ), if k ≥ qn+1

4
, (5.2c)

for qn+1 > 4qn, where k is the order of the tree ϑ.
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Note that (5.1a) and (5.2a) are simply a consequence of lemma 2 of sect. 2, so

we have to prove only (5.1b), (5.2b) and (5.2c).

Remark 13. If we were only interested in proving the analyticity of the invariant

curves for rotation numbers satisfying the Bryuno condition, then equations (5.1)

would be sufficient – as it would be easy to check by proceeding along the lines

of sect. 3 and 4. However, in order to find the optimal dependence of the radius

of convergence ρ(ω) on ω, which is the main focus of this paper, the more refined

bounds (5.2) are necessary.

Remark 14. The proof of (5.1) is easier, as it is obvious since it is a weaker result.

After dealing with (5.2), the proof of (5.1) could be left as an exercise: we shall

prove it explicitely for completeness, and as it could be read as an introduction to

the more involved proof of (5.2).

We shall prove first (5.2) (case qn+1 > 4qn) in cases [1] ÷ [3] below, then (5.1)

in items [4] ÷ [6] below. We proceed by induction, and assuming that (5.1), (5.2)

hold for any k′ < k we shall show that they hold for k also; their validity for k = 1

being trivial, lemma 5 is proved. Recall also remark 5 in sect. 2 about the way of

counting the resonances on scale n and the resonances with resonance-scale n.

• So consider first qn+1 > 4qn.

[1] If the root line ℓ of ϑ has scale 6= n and it is not the exiting line of a resonance

on scale n, let us denote with ℓ1, . . . , ℓm the lines entering the last node u0 of ϑ

and ϑ1, . . . , ϑm the subtrees of ϑ whose root lines are those lines. By construction

Mn(ϑ) = Mn(ϑ1)+· · ·+Mn(ϑm) and NR
n (ϑ) = NR

n (ϑ1)+· · ·+NR
n (ϑm): the bounds

(5.2) follow inductively by noting that for k ≥ qn+1/4 one has 8k/qn+1 − 1 ≥ 1.

[2] If the root line ℓ of ϑ has scale n, then we can reason as follows. Let us denote

with ℓ1, . . . , ℓm the lines on scale ≥ n which are the nearest to the root line of ϑ,2

and let ϑ1, . . . , ϑm be the subtrees with root lines ℓ1, . . . , ℓm. If m = 0 then (5.2)

follow immediately from lemma 2 of sect. 2; so let us suppose that m ≥ 1. Then

the lines ℓ1, . . . , ℓm are the entering lines of a cluster T (which can degenerate to a

single point) having the root line of ϑ as the exiting line. As ℓ cannot be the exiting

line of a resonance on scale n, one has:

Mn(ϑ) = 1 + Mn(ϑ1) + · · · + Mn(ϑm). (5.3)

In general m̃ subtrees among the m considered have orders ≥ qn+1/4, with 0 ≤
m̃ ≤ m, while the remaining m0 = m − m̃ have orders < qn+1/4. Let us numerate

the subtrees so that the first m̃ have orders ≥ qn+1/4.

2That is, such that no other line along the paths connecting the lines ℓ1, . . . , ℓm to the root

line is on scale ≥ n.
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Let us distinguish the cases k < qn+1/4 and k ≥ qn+1/4.

[2.1] If k < qn+1/4, then m̃ = 0 and each line entering T , by lemma 1 of sect. 2,

has a momentum which is a multiple of qn and, by lemma 2, has a scale label n.

Therefore the momentum flowing through the root line is ν = νT + s0qn, for some

s0 ∈ Z, with:

νT ≡
∑

u∈T

νu. (5.4)

Moreover also the root line of ϑ has scale n, by assumption, and momentum ν = sqn

for some s ∈ Z, by lemma 1, so that νT = (s − s0)qn = s′qn, for some integer s′.

[2.1.1] If s′ 6= 0, then kT ≥ |νT | ≥ qn, giving:

Mn(ϑ) ≤ 1 +
k1 + · · · + km

qn
+ NR

n (ϑ1) + · · · + NR
n (ϑm) ≤

1 +
k − kT

qn
+ NR

n (ϑ) ≤ k

qn
+ NR

n (ϑ), (5.5)

as NR
n (ϑ) = NR

n (ϑ1) + · · · + NR
n (ϑm), and (5.2b) follows.

[2.1.2] If s′ = 0 and kT ≥ qn, one can reason as in case [2.1.1].

[2.1.3] If s′ = 0 and kT < qn, then T is a resonance with resonance-scale n, and:

Mn(ϑ) ≤ 1 +
k1 + · · · + km

qn
+ NR

n (ϑ1) + · · · + NR
n (ϑm) ≤

≤ 1 +
k

qn
+ NR

n (ϑ1) + · · · + NR
n (ϑm) ≤ k

qn
+ NR

n (ϑ), (5.6)

as NR
n (ϑ) = 1 + NR

n (ϑ1) + · · · + NR
n (ϑm), and again (5.2b) follows.

[2.2] If k ≥ qn+1/4, assume again inductively the bounds (5.2). From (5.3) we

have:

Mn(ϑ) ≤ 1 +

m̃
∑

j=1

(kj

qn
+

8kj

qn+1
− 1
)

+

m
∑

j=m̃+1

kj

qn
+

m
∑

j=1

NR
n (ϑj), (5.7)

where kj is the order of the subtree ϑj , j = 1, . . . , m.

[2.2.1] If m̃ ≥ 2, then (5.2c) follows immediately.

[2.2.2] If m̃ = 0, then (5.7) gives:

Mn(ϑ) ≤ 1 +
k1 + · · · + km

qn
+

m
∑

j=1

NR
n (ϑj) ≤ 1 +

k

qn
+

m
∑

j=1

NR
n (ϑj) ≤

≤ 8k

qn+1
− 1 +

k

qn
+ NR

n (ϑ), (5.8)

as we are considering k such that 1 ≤ 8k/qn+1 − 1 and NR
n (ϑ1) + · · · + NR

n (ϑm) =

NR
n (ϑ).
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[2.2.3] If m̃ = 1, then (5.7) gives:

Mn(ϑ) ≤ 1 +
(k1

qn
+

8k1

qn+1
− 1
)

+

m
∑

j=2

kj

qn
+

m
∑

j=1

NR
n (ϑj) =

=
k1

qn
+

8k1

qn+1
+

k0

qn
+

m
∑

j=1

NR
n (ϑj), (5.9)

where k0 = k2 + · · · + km.

[2.2.3.1] If in such case k0 ≥ qn+1/8, then we can bound in (5.9):

k1

qn
+

8k1

qn+1
+

k0

qn
≤ k1 + k0

qn
+

8(k1 + k0)

qn+1
− 8k0

qn+1
≤ k

qn
+

8k

qn+1
− 1, (5.10)

and NR
n (ϑ1 + · · · + NR

n (ϑm) = NR
n (ϑ), so that (5.2c) follows.

[2.2.3.2] If k0 < qn+1/8, then, denoting with ν and ν1 the momenta flowing

through the root line ℓ of ϑ and the root line ℓ1 of ϑ1 respectively, one has:

||ω(ν − ν1)|| ≤ ||ων|| + ||ων1|| ≤
1

4qn
, (5.11)

as both ℓ and ℓ1 are on scale ≥ n (see remark 2 in sect. 2 and use (2.14)). Then

either |ν − ν1| ≥ qn+1/4 or ν − ν1 = s̃qn, s̃ ∈ Z, by lemma 1 of sect. 2.

[2.2.3.2.1] If |ν − ν1| ≥ qn+1/4, noting that ν = ν1 + νT + ν0, where ν0 = s0qn

(with s0 ∈ Z and |ν0| ≤ k0 < qn+1/8) is the sum of the momenta flowing through

the root lines of the m0 subtrees entering T with orders < qn+1/4 and νT is defined

by (5.4), one has:

kT ≥ |νT | ≥ |ν − ν1| − |ν0| ≥
qn+1

8
, (5.12)

so that in (5.9) one can bound:

k1

qn
+

8k1

qn+1
+

k0

qn
≤ k − kT

qn
+

8(k − k0 − kT )

qn+1
≤ k

qn
+

8(k − kT )

qn+1
≤

≤ k

qn
+

8k

qn+1
− 1, (5.13)

and NR
n (ϑ1) + · · · + NR

n (ϑm) = NR
n (ϑ), so that (5.2c) follows again.

[2.2.3.2.2] If ν − ν1 = s̃qn, s̃ ∈ Z, then:

νT = ν − ν1 − ν0 = (s̃ − s0) ≡ sqn, (5.14)

where s ∈ Z.

[2.2.3.2.2.1] If s 6= 0, then kT ≥ qn, so that in (5.3) one has:

k1

qn
+

8k1

qn+1
+

k0

qn
≤ k − kT

qn
− 8k

qn+1
≤ k

qn
− 1 +

8k

qn+1
, (5.15)

and NR
n (ϑ1) + · · · + NR

n (ϑm) = NR
n (ϑ), so implying (5.2c).

[2.2.3.2.2.2] If s = 0 (i.e. νT = 0) and kT ≥ qn, one can proceed as in case

[2.2.3.2.2.1].
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[2.2.3.2.2.3] If s = 0 and kT < qn, then T is a resonance with resonance-scale n,3

so that NR
n (ϑ) = 1 + NR

n (ϑ1) + · · · + NR
n (ϑm), hence (5.9) gives:

Mn(ϑ) ≤ k

qn
+

8k

qn+1
− 1 + 1 +

m
∑

j=1

NR
n (ϑj) ≤

k

qn
+

8k

qn+1
− 1 + NR

n (ϑ), (5.16)

and (5.2c) follows.

[3] If the root line ℓ of ϑ is on scale > n and it is the exiting line of a resonance

Vn on scale n, let us denote with ℓ1, . . . , ℓm the lines on scale ≥ n which are the

nearest to the root line of ϑ, and let ϑ1, . . . , ϑm be the subtrees with root lines ℓ1,

. . . , ℓm; some of these lines – at least one – are lines on scale n inside Vn.4 Let T be

the cluster which the lines ℓ1, . . . , ℓm enter; of course T ⊂ Vn and T can degenerate

into a single point. As in case [2], let m̃ be the number of subtrees among the m

considered which have orders ≥ qn+1/4, and again let us numerate the subtrees in

such a way that the ones with orders ≥ qn+1/4 are the first m̃.

Note that k ≥ qn+1 (otherwise ℓ could not be on scale > n) and:

Mn(ϑ) = 1 + Mn(ϑ1) + · · · + Mn(ϑm), (5.17)

as the root line ℓ contributes one unit to Pn(ϑ) and does not contribute to Nn(ϑ).

Note also that if T is a resonance then its resonance-scale is n.

[3.1] If T is not a resonance, then:

NR
n (ϑ) = NR

n (ϑ1) + · · · + NR
n (ϑm). (5.18)

By induction (5.2) and (5.17) imply:

Mn(ϑ) ≤ 1 +

m̃
∑

j=1

(

kj

qn
+

8kj

qn+1
− 1

)

+

m
∑

j=1

kj

qn
+

m
∑

j=1

NR
n (ϑj), (5.19)

where kj are the orders of the subtrees ϑj , j = 1, . . . , m.

[3.1.1] If m̃ = 2, then (5.2c) follows immediately.

[3.1.2] The case m̃ = 0 is impossible because T is contained inside a resonance Vn

on scale n, so that at least one of the subtrees entering T must have order ≥ qn+1/4

– otherwise no line on scale > n could enter Vn, see lemma 2.

[3.1.3] If m̃ = 1 let k0 = k2 + · · · + km; then the case k0 ≥ qn+1/8 can be dealt

with as in case [2.2.3.1]; if k0 < qn+1/8, we deduce from lemma 1 that either

|ν − ν1| ≥ qn+1/4 or ν − ν1 = s̃qn, using the same notations of case [2.2.3.2].

3If m0 = 0, then ν ≡ νℓ = νℓ1
so that nℓ ≤ nℓ1

≤ nℓ + 1, by construction and by item 3 in the

definition of resonance.
4Otherwise Vn would not contain any line on scale n, so that it would not be a resonance on

scale n as we are supposing.
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The first case can be discussed as in case [2.2.3.2.1], while in the second case we

find, as in case [2.2.3.2.2], that νT = ν − ν1 − ν0 = sqn, with either s 6= 0 or s = 0

and kT ≥ qn (otherwise T would be a resonance), so that the conclusions in cases

[2.2.3.2.2.1] and [2.2.3.2.2.2] can be inherited in the present case and (5.2c) follows

again.

[3.2] If T is a resonance, then its resonance-scale is n, so that:

NR
n (ϑ) = 1 + NR

n (ϑ1) + · · · + NR
n (ϑm). (5.20)

The discussion goes on as in case [3.1] above, with the only difference that now,

when m̃ = 1 (and kT < qn, k0 < qn+1/8), the case νT = 0 (i.e. νT = sqn, with

s = 0) is the only possible since T is a resonance. In such a case:

Mn(ϑ) ≤ 1 +
k1

qn
+

8k1

qn+1
− 1 +

k0

qn
+

m
∑

j=1

NR
n (ϑj) ≤

k

qn
+

8k

qn+1
− 1 + NR

n (ϑ), (5.21)

and (5.2c) follows once more.

• Now we prove (5.1).

[4] If the root line ℓ of ϑ as scale 6= n and it is not the entering line of a resonance

on scale n, let us denote with ℓ1, . . . , ℓm the lines entering the last node u0 of ϑ. By

construction Mn(ϑ) = Mn(ϑ1)+· · ·+Mn(ϑm) and NR
n (ϑ) = NR

n (ϑ1)+· · ·+NR
n (ϑm)

so that the bound (5.1) follows immediately by induction.

[5] If the root line ℓ of ϑ has scale n, using the same notations as in case [2], denote

with ℓ1, . . . , ℓm the lines on scale ≥ n which are nearest to the root line of ϑ, and

let ϑ1, . . . , ϑm be the subtrees with these lines as root lines. Then such lines are

the entering lines of a cluster T (which can degenerate into a single point) having

the root line of ϑ as the exiting line. We have:

Mn(ϑ) = 1 + Mn(ϑ1) + · · · + Mn(ϑm). (5.22)

Assuming again inductively the bounds (5.1), from (5.22) we have:

Mn(ϑ) ≤ 1 +

m
∑

j=1

(

2kj

qn
− 1

)

+

m
∑

j=1

NR
n (ϑj), (5.23)

where kj is the order of the subtree ϑj , j = 1, . . . , m.

[5.1] If m ≥ 2, then (5.1b) follows immediately.

[5.2] If m = 0, then Mn(ϑ) = 1. As ℓ is on scale n, the order k of ϑ has to be

k ≥ qn, so that:

Mn(ϑ) = 1 ≤ 2k

qn
− 1, NR

n (ϑ) = 0, (5.24)

and (5.1b) follows again.
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[5.3] If m = 1, then (5.23) gives:

Mn(ϑ) ≤ 1 +

(

2k1

qn
− 1

)

+ NR
n (ϑ1) =

2k1

qn
+ NR

n (ϑ1). (5.25)

Denoting with ν and ν1 the momenta flowing, respectively, through the root line ℓ

of ϑ and through the root line ℓ1 of ϑ1, we have:

||ω(ν − ν1)|| ≤ ||ων|| + ||ων1|| ≤
1

4qn
, (5.26)

as both ℓ and ℓ1 are on scale ≥ n (see remark 2 in page 7 and use (2.14)). Then,

as νT = ν − ν1, either |νT | ≥ qn or νT = 0.

[5.3.1] If |νT | ≥ qn, then kT ≥ |νT | ≥ qn and NR
n (ϑ1) = NR

n (ϑ) (since T is not a

resonance), so that (5.25) gives:

Mn(ϑ) ≤ 2k

qn
− 2kT

qn
+ NR

n (ϑ1) ≤
2k

qn
− 1 + NR

n (ϑ1) =
2k

qn
− 1 + NR

n (ϑ), (5.27)

and (5.1b) follows.

[5.3.2] If νT = 0 and kT ≥ qn, one can reason as in case [5.3.1].

[5.3.3] If νT = 0 and kT < qn, then ν1 = ν and either nℓ1 = n or nℓ1 = n + 1 (see

item 3 in the definition of resonance): then T is a resonance with resonance-scale

n, so that 1 + NR
n (ϑ1) = NR

n (ϑ), hence (5.25) gives:

Mn(ϑ) ≤
(

2k

qn
− 1

)

+ 1 + NR
n (ϑ1) ≤

2k

qn
− 1 + NR

n (ϑ), (5.28)

and (5.1) follows again.

[6] If the root line ℓ of ϑ is on scale > n and it is the exiting line of a resonance Vn,

as in case [3] above, denote with ℓ1, . . . , ℓm the lines on scale ≥ n wich are nearest

to the root line of ϑ, and let ϑ1, . . . , ϑm be the subtree of ϑ of which these lines

are root lines. Some of these lines – at least one – are lines on scale n inside Vn.

Let T be the cluster which the lines ℓ1, . . . , ℓm enter; of course T ⊂ Vn, and T can

degenerate into a single point.

Note that as in case [3]:

Mn(ϑ) = 1 + Mn(ϑ1) + · · · + Mn(ϑm), (5.29)

as the root line ℓ contributes one unit to Pn(ϑ) and does not contribute to Nn(ϑ),

and that if T is a resonance then its resonance-scale is n.

[6.1] If T is not a resonance, then:

NR
n (ϑ) = NR

n (ϑ1) + · · · + NR
n (ϑm). (5.30)

By induction, (5.1) and (5.29) imply:

Mn(ϑ) ≤ 1 +

m
∑

j=1

(

2kj

qn
− 1

)

+

m
∑

j=1

NR
n (ϑj), (5.31)
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where kj are the orders of the subtrees ϑj , j = 1, . . . , m.

[6.1.1] If m = 2, then (5.1b) follows immediately.

[6.1.2] The case m = 0 is impossible (see case [3.1.2]).

[6.1.3] If m = 1 in (5.31), we have νT = ν − ν1, so that |νT | ≥ qn (as νT 6= 0,

otherwise T would be a resonance). Then we can go on along the lines of case [5.3.1]

in order to obtain (5.1b).

[6.2] If T is a resonance, then its resonance-scale is n, so that:

NR
n (ϑ) = 1 + NR

n (ϑ1), (5.32)

and the discussion goes on as in case [6.1], with the only difference that now, for

m = 1, the case νT = 0 is the only possible as T is supposed to be a resonance. In

such a case:

Mn(ϑ) ≤ 1 +

(

2k

qn
− 1

)

+ NR
n (ϑ1) ≤

2k

qn
− 1 + NR

n (ϑ), (5.33)

implying again (5.1b).

• Finally, to deduce (2.19) from (5.1) and (5.2), simply note that, for qn+1 ≤ 4qn,

we have 2k/qn ≤ 8k/qn+1; them lemma 5 follows.

Remark 15. Note that the correspondence between momenta and scale labels has

been used only through the inequality (2.11). As we have seen in sect. 4 the

renormalization procedure can shift the “original” momenta flowing through the

lines of a bounded quantity which does not alter such an inequality. This allow us

to apply lemma 4 also to the renormalized trees, as it was repeatedly claimed in

the previous sections.

6. Proof of lemma 8

As far as only the localized resonance factor is involved, the momenta flowing

through the lines entering any resonance are set to zero, so that it does not matter

if such momenta are interpolated or not (i.e. if they are of the form ν or ν(t)). In

particular, the case of first generation resonances (discussed in sect. 3) is included

in lemma 8.

A basic property of the trees belonging to the resonance family FV (ϑ) is that

the difference between their values is only in the resonance factor: for any tree

ϑ′ ∈ FV (ϑ), we can write:

Val(ϑ′) = A(ϑ)VV (ϑ′), (6.1)
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for some factor A(ϑ) which is the same for all ϑ′ ∈ FV (ϑ). This simply follows from

the fact that the transformations in PV do not touch the part of the tree ϑ which

is outside the resonance V . Therefore a cancellation between localized resonance

factors yields a cancellation between tree values (in which the resonance factor has

been localized of course).

By item 1 in the definition of resonance and by definition of V0, one has:

∑

u∈V0

νu = 0; (6.2)

moreover, given an entering line ℓm of V , if ℓm ∈ LR
V and Ṽ0 = V0(ℓm), then:

∑

u∈Ṽ0

νu ≡
∑

u∈V0(ℓm)

νu = 0. (6.3)

In general we can write, for any tree ϑ′ ∈ FV (ϑ),

LVV (ϑ′) = B(ϑ′)LVV0
(ϑ′)

∏

ℓ∈LR
V

LVV (ℓ)(ϑ
′), (6.4)

where VV0
(ϑ′) and VV (ℓ)(ϑ

′) are defined as the resonance factor VV (ϑ′), but with

the product ranging only over nodes and lines internal to V0 and V (ℓ), respectively,

while LVV0
(ϑ′) and LVV (ℓ)(ϑ

′) are obtained from VV0
(ϑ′) and VV (ℓ)(ϑ

′), respectively,

by replacing νℓ with ν0
ℓ in V , for all lines ℓ ∈ V . In (6.4) B(ϑ′) takes into account all

other factors (if there are any), alwyas evaluated with νℓ replaced with ν0
ℓ , ℓ ∈ V .

Note that, as A(ϑ) in (6.1), also B(ϑ′) is the same for all ϑ′ ∈ FV (ϑ), so that one

can set B(ϑ′) = B(ϑ) and write:

Val(ϑ′) = A(ϑ)VV (ϑ′), LVV (ϑ′) = B(ϑ)LVV0
(ϑ′)

∏

ℓ∈LR
V

LVV (ℓ)(ϑ
′). (6.5)

[1] If zV = 1 the localized resonance factor is given by the resonance factor com-

puted for µ1 = · · · = µm = 0.

Summing the localized resonance factors corresponding to the trees belonging to

FV (ϑ), we can group them into subfamilies of inequivalent trees whose contributions

are different as for each node u ∈ V there is a factor;

1

mu!

(

mu

su

)

=
1

su!

1

ru!
, (6.6)

as all terms which are obtained by permutations are summed together (this gives

the binomial coefficient in the left hand side of the above equation), times a factor:

νmu+1
u = ν(su+1)+ru

u , (6.7)

times a propagator gnℓu
(ν0

ℓu
) (the last factor is missing if corresponding to the line

exiting V ; see definitions (4.3)÷(4.6)).
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Then for µ1 = · · · = µm = 0 we can write:

∑

ϑ′∈FV (ϑ)

LVV (ϑ′) =
∑

ϑ′∈FV (ϑ)

[

∏

u∈V

νsu+1
u

su!

][

∏

ℓ∈V

gnℓ
(ν0

ℓ )

]

·

·
(

∏

u∈V0

νru
u

ru!

)(

∏

ℓ∈LR
V

∏

u∈V0(ℓ)

νru
u

ru!

)

=

=

[

∏

u∈V

νsu+1
u

su!

][

∏

ℓ∈V

gnℓ
(ν0

ℓ )

]

·

·
∑

ϑ′∈FV (ϑ)

(

∏

u∈V0

νru
u

ru!

)(

∏

ℓ∈LR
V

∏

u∈V0(ℓ)

νru
u

ru!

)

,

(6.8)

where we have used the fact that for µ1 = · · · = µm = 0 the factors in square

brackets have the same value for all ϑ′ ∈ FV (ϑ) (see (3.11) and take into account

what observed at the beginning of this section). The last sum in (6.8) can be

rewritten as:

∑

ϑ′∈FV (ϑ)

(

∏

u∈V0

νru
u

ru!

)(

∏

ℓ∈LR
V

∏

u∈V0(ℓ)

νru
u

ru!

)

=

=

(

∑

{ru≥0}
P

u∈V0
ru=mV0

∏

u∈V

νru
u

ru!

)(

∏

Ṽ ∈Ṽ(V )

∑

{ru≥0}
P

u∈Ṽ0
ru=1

∏

u∈Ṽ0

νru
u

ru!

)

=

=
1

mV0
!

(

∑

u∈V0

νu

)mV0
∏

Ṽ ∈Ṽ(V )

(

∑

u∈Ṽ0

νu

)

,

(6.9)

which is zero by definition of resonance (see (6.2) and (6.3) above).

[2] If zV = 2 the localized resonance factor, with respect to the previous case,

contains also the first order terms (again computed in µ1 = · · · = µm = 0).

The zero-th order contribution can be discussed as for the case zV = 1, and the

same result holds. Also the second order contribution vanishes, after summing over

the trees ϑ′ ∈ FV (ϑ). To prove this we shall consider separately the cases mV = 2

and mV = 1.

In the first case, when the derivative (∂/∂µm)VV (ϑ; 0, . . . , 0) is considered, let

us compare all the trees ϑ′ in the subfamily of FV (ϑ) in which the line ℓm is kept

fixed (call ū the node which such a line enters), while all other lines are shifted

(i.e. detached and reattached to all nodes inside the resonance). The difference

with respect to the previous case, discussed above, is that the line with momentum

νℓm
can be choosen in rū ways among the rū lines entering the node ū ∈ V and

outside V . This means that we can write:

νmu+1
u

mu!

(

mu

su

)

=
ν

(su+1)+ru
u

su!ru!
(6.10)
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for all nodes u 6= ū, and:

νmū
ū

mū!

(

mu

su

)

rū =
ν

(sū+1)+(rū−1)
ū

sū!(rū − 1)!
(6.11)

for ū. Then we have an expression analogous to (6.8), with the only difference that

the labels {ru} have to be replaced with labels {r′u}, defined as:

r′u = ru − δuū, ∀u either in V0 or in
⋃

Ṽ ∈Ṽ(V )

Ṽ0, (6.12)

such that:
∑

u∈V0

r′u +
∑

Ṽ ∈Ṽ(V )

∑

u∈Ṽ0

r′u = mV − 1; (6.13)

so the last sum in the second line of (6.8) has to be replaced by:

∑

ϑ′∈FV (ϑ)

(

∏

u∈V0

νru
u

ru!

)(

∏

ℓ∈LR
V

∏

u∈V0(ℓ)

νru
u

ru!

)

νū =

=

(

∑

{ru≥0}
P

u∈V0
ru=m∗

V0

∏

u∈V

νru
u

ru!

)(

∏

Ṽ ∈Ṽ(V )

∑

{ru≥0}
P

u∈Ṽ0
ru=ζ∗(ℓ)

∏

u∈Ṽ0

νru
u

ru!

)

=

=
1

m∗
V0

!

(

∑

u∈V0

νu

)m∗

V0
∏

Ṽ ∈Ṽ(V )

(

∑

u∈Ṽ

νu

)ζ∗(Ṽ )

,

(6.14)

where:

m∗
V0

=











mV0
, if ū /∈ V0,

mV0
− 1, if ū ∈ V0,

ζ∗(Ṽ ) =











1, if ū /∈ Ṽ0,

0, if ū ∈ Ṽ0,
(6.15)

so that we have again vanishing contributions (as mV ≥ 2).

On the contrary, if mV = 1, the above reasoning does not apply, as there is only

one entering line. Anyway the function (∂/∂µ1)VV (ϑ; 0) is an odd function, as all

the propagators are even in their arguments, so that the derived one5 becomes odd,

and the numerator contains an even number of νu’s. Then by reversing the signs of

the labels νu, u ∈ V , the numerator will not change, while the overall sign of the

denominator will change, so that the sum over the first order contributions of the

localized resonance factors of the two tree values being considered vanishes.6

[3] Finally if zV = 0 the localization operator L gives zero when acting on the

resonance factors, so that nothing has to be proved.

5If zV = 2, then there is only one derived propagator, arising from the renormalization of the

resonance V itself.
6Note that the renormalization transformations of type 3 are explicitly used in order to imple-

ment the cancellation mechanism only in the case of a resonance V with zV = 2 and mV = 1.

In general not all the transformations are used for all resonances: in particular, when zV = 0,

we consider separately all terms generated by the action of the group PV , as there is no need of

additional renormalizations.
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