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Abstract. The Lindstedt series were introduced in the XIXth century in Astronomy to study

perturbatively quasi-periodic motions in Celestial Mechanics. In Mathematical Physics, after

getting the attention of Poincaré, who studied them widely by pursuing to all orders the analysis

of Lindstedt and Newcomb, their use was somehow superseded by other methods usually referred

to as KAM theory. Only recently, after Eliasson’s work, they have been reconsidered as a tool

to prove KAM-type results, in a spirit close to that of the Renormalization Group in quantum

field theory. Following this new approach we discuss here the use of the Lindstedt series in

the context of some model problems, like the standard map and natural generalizations, with

particular attention to the properties of analyticity in the perturbative parameter.

1. Introduction

Many planetary motions are approximately periodic. Outstanding examples are given by the

spin-orbit resonances between the revolution and the rotation satellite periods (see [43]) and by

Lagrange’s equilateral solutions for the three body problem, as in the case of Sun, Jupiter and the

Trojan group (see [56]). From a mathematical point of view the existence of periodic solutions

in Celestial Mechanics problems was proved rather soon; we can refer to the classical works by

Poincaré [53] and Birkhoff [16].

Renewed interest arose about quasi-periodic motions since the originary formulation of the KAM

theorem; see for instance [51] for a review. The perturbative series of the quasi-periodic solutions

were well known in Astronomy: they were introduced and studied to first orders, independently,

by Lindstedt [47] and Newcomb [52], and have become known as Lindstedt series. Then Poincaré

showed that the series were well defined to all orders (see for instance [53]), but only with the

work of Kolmogorov [44] the existence of quasi-periodic motions, hence the convergence of the

series, was proved. Soon afterwards new proofs of Kolmogorov’s theorem were given by Arnol’d

[1] and by Moser [50], who treated the nonanalytic case. Successively a lot of works were devoted

to such a field, and gave rise to what has since then referred to as KAM theory: all such works

obtained the convergence of the Lindstedt series not by directly analyzing the series itself, but as

a byproduct of the proof of existence of quasi-periodic solutions.

Recently1 a new proof of Kolmogorov’s theorem has been given by Eliasson by studying directly

the perturbative series, hence without using the iterative rapidly convergent procedure typical of

the standard versions of KAM techniques. Note that the approach followed Eliasson is quite

natural, mostly from a physical point of view (and in fact it was the first to be introduced): if

looking for quasi-periodic solutions the first attempt one can think about is to write formally the

solution as a quasi-periodic function, with coefficients to be determined, and insert it into the

equations of motion, to check if there is some choice of the coefficients for which the equations of

motions are satisfied.

1 Eliasson’s results were announced in 1986 [26], and presented to full extent in 1988 in a Report of the

Mathematics Department of the University of Stockholm; the latter was published only in 1996 [27].
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Here we follow Eliasson’s approach in the Renormalization Group interpretation given by [29]

and developed in a series of subsequent papers; see [38, 39] and the review [40]. We do not insist on

the wide field of applicability of the method, by referring to the literature for a detailed description

of all the results that we shall not even mention in this paper (see [32, 30, 36, 33, 34, 35, 17, 18, 19,

3]; a review can be found in [37]). Rather we prefer to discuss some special dynamical systems, the

standard map and other related models, which capture most of the general interesting features,

and to describe in some details a series of original results which we have recently obtained with

such techniques (see [7, 8, 9, 10, 11]).

The standard map is given by

Tε :

{

x′ = x + y + ε sinx,

y′ = y + ε sin x.

and was introduced by Greene [41] and Chirikov [24] as a paradigmatical example of dynamical

system: it is simple enough to keep separate the non-trivial dynamical features from the technical

intricacies of other models of higher dimension.

The standard map has also more direct reasons to be interesting. In fact, it can be generated

formally by the hamiltonian

H =
1

2
y2 + ε cosx

∑

k∈Z

e2πikt,

which is of course very singular, since the sum on the right gives a sum of δ functions at integer

values of t (hence the name of “kicked rotator” which is given sometimes to the model). By

truncating the sum (that is, by keeping only the terms with a slowly varying angular variable x),

we obtain hamiltonians of the forced pendulum type, which are remarkably similar to those used as

simplified models of the spin-orbit interaction in Celestial Mechanics . See [46] for the derivation of

the hamiltonian H and [43] for the spin-orbit interaction (see also [21] for the so-called spin-orbit

model).

The paper is organized as follows. In Section 2 we shall define the standard map and natural

extensions of it, which we shall call generalized standard maps. We shall introduce also some

simplified models, the semistandard map and, in the same spirit, the generalized semistandard

maps. In Section 3 we shall state our main mathematical results about the analyticity properties

of both periodic and quasi-periodic solutions. In particular we shall see that it is possible to write

the solutions as functions of suitable variables in terms of which the dynamics is a trivial rotation;

we shall call conjugating functions the functions which carry out such a task. Next, in Section 4 we

shall develop the mathematical tools which shall be used in order to obtain the results described in

the previous section. The method we shall describe uses techniques typical of quantum field theory

(as first noted in [28] and [31]; see also [33]) and it is based on a diagrammatic representation of the

Lindstedt series in terms of tree graphs (or trees tout court in the following). In Section 5 we shall

give some hints about the proofs of the results discussed in Section 3, by referring to the original

papers for more details, while in Section 6 we shall discuss explicitly the case of the semistandard

map with the aim of giving some ideas of the methods in a particularly simple example. In Section

7 we shall brifely review some numerical results about the analyticity domains of the conjugating

functions. Finally in Section 8 we shall describe some open problems, and we shall make some

conclusive remarks.
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2. The models

The standard map (SM) is a discrete one-dimensional dynamical system generated by the iteration

of the symplectic map of the cylinder to itself, Tε : T × R 7→ T × R, given by

Tε :

{

x′ = x + y + ε sin x,

y′ = y + ε sinx.
(2.1)

We can look for solutions of the form
{

x = α + u(α, ε, ω),

y = 2πω + v(α, ε, ω),
(2.2)

such that the dynamics in the α variable is a trivial rotation

α′ = α + 2πω, (2.3)

where ω ∈ [0, 1] is called the rotation number.

One immediately checks that the function v(α, ε, ω) is related to the function u(α, ε, ω) by

v(α, ε, ω) = u(α, ε, ω) − u(α − 2πω, ε, ω), (2.4)

while u(α, ε, ω) is a solution of the functional equation

(Dωu) (α, ε, ω) =

u(α + 2πω, ε, ω) + u(α − 2πω, ε, ω)− 2u(α, ε, ω) = ε sin (α + u(α, ε, ω)) , (2.5)

which is usually referred to as the homological equation (for the standard map).

We shall call u = u(α, ε, ω) the conjugating function: it admits a formal expansion – the

Lindstedt series – of the form

u(α, ε, ω) =
∑

ν∈Z

uν(ε, ω) eiνα =
∑

k≥1

u(k)(α, ω) εk =
∑

k≥1

∑

ν∈Z

u(k)
ν (ω) eiνα εk. (2.6)

For the standard map, it is easy to check that at order k in ε, the Fourier expansion in α contains

only frequencies in the range |ν| ≤ k.

The radius of convergence of the Lindstedt series is defined as

ρ(ω) = inf
α∈T

(

lim sup
k→∞

∣

∣

∣
u(k)(α, ω)

∣

∣

∣

1/k
)−1

. (2.7)

For any ω ∈ [0, 1] let us write ω = [0, a1, a2, a3, . . .], where {an} are the partial quotients of ω

and call {ωn} = {pn/qn} the sequence of convergents of ω [54].

If ω ∈ Q ∩ [0, 1], i.e. ω = p/q, with p ≤ q and gcd(p, q) = 1, then there exists N = N(ω)

such that ω = [0, a1, a2, a3, . . . , aN ], i.e. such that aN+1 = ∞: 2 in such a case the sequence of

convergents is finite and the last one is given by pN/qN = p/q. For such ω define

B1(ω) =

N−1
∑

n=0

log qn+1

qn
. (2.8)

For any ω ∈ [0, 1] ∩ R \ Q define

B1(ω) =

∞
∑

n=0

log qn+1

qn
, (2.9)

and define ω a Bryuno number if B1(ω) < ∞. With a slight abuse of notation we shall call

B1(ω) the Bryuno function; by analogy we shall define (2.8) the truncated Bryuno function of the

2 There is an intrinsic ambiguity for rational numbers as [. . . , aN ] and [. . . , aN − 1, 1] define the same number.

In the following we shall be interested essentially in rotation numbers obtained as truncations of the continued

fraction representation of an irrational one, so that the ambiguity is automatically solved.
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rational number ω. 3 Notice that the Bryuno function is usually defined [60] as a solution of the

functional equation
{

B(ω + 1) = B(ω),

B(ω) = − log ω + ωB(1/ω), if ω ∈ R \ Q.
(2.10)

It is well known that B(ω) differs from B1(ω) by an essentially bounded function. It is also obvious

that if ω is a Bryuno number and {ωN} are the convergents of ω, then

lim
N→∞

B1(ωN ) = B1(ω). (2.11)

By inserting (2.6) into the homological equation (2.5), and equating the Taylor-Fourier coeffi-

cients we obtain the recursion relation for the coefficients of the Lindstedt series

u(k)
ν (ω) = g(ων)

∑

m≥0

1

m!

∑

k1,...,km∈N

k1+...+km=k−1

∑

ν0,ν1,...,νm∈Z

ν0+ν1+...+νm=ν

fν0
(iν0)

m
m
∏

j=1

u(kj)
νj

, (2.12)

with fν0
= −iν0δ|ν0|,1/2 and

g(ων) =
1

γ(ων)
, γ(ων) = 2 [cos(2πων) − 1] . (2.13)

Note how the denominators γ(ων) become arbitrarily small for ω irrational, making their reciprocal

arbitrarily large, while for ω = p/q they are zero if ν is a multiple of q, so that the Lindstedt series

is not well defined. This is a manifestation of the famous small divisors problem.

If ω is a Bryuno number then there exists a solution of the form (2.2), (2.3), with u, v analytic

in α, ε, for ε small enough, and 2π-periodic in α. A more formal statement will be given in Section

3. Letting α vary in [0, 2π], (2.2) describes an invariant curve (KAM curve), which is densely

covered by the quasi-periodic solution; we shall denote with Cε(ω) such a curve.

If ω = p/q is rational then the homological equation (2.5) admits no solution: in fact, the

Lindstedt series becomes undefined because of the exploding small denominators. However we

shall see in Section 3 that if we let α vary only on a discrete set – actually if we suitably choose

α0 and let α ∈ {α0 + 2nπ/q}, n ∈ Z –, then the homological equation obviously “closes”, and

(x0, y0) = (α0 + u(α0, ε, ω), 2πω + v(α0, ε, ω)) becomes the initial datum of a periodic solution

with period 2πp, i.e. such that

u(α0 + 2πp) = u(α0). (2.14)

This means that, after q iterates of the dynamics, the variable α has been shifted by 2πp, so that

the variables (x, y) have came back to their original values (x0, y0), up to a shift by 2πp in the x

direction.

We shall also consider complex rotation numbers of the form

ω =
p

q
+ iη, η → 0, (2.15)

with p, q ∈ Z, gcd(p, q) = 1 and η ∈ R, in the limit η → 0, or, more generally, rotation numbers

tending to p/q along any path in the complex ω-plane non-tangential to the real axis.

Note that if the rotation number is complex then no small denominators appear, and the homo-

logical equation always has an analytic solution for small ε. Adding therefore an imaginary part

to ω has the meaning of “regularizing” the Lindstedt series making quite tamer its singularities.

The existence or not of a KAM invariant curve with given (real) rotation number ω0 can therefore

be thought as the existence (and analyticity) or not of the limit of u as the parameter ω tends

3 For a rational number ω, admitting two equivalent representations [. . . , aN ] and [. . . , aN − 1, 1], the value

of the truncated Bryuno function depends on the particular representation one chooses. However the two values

differ at most by a universal constant C – one can take C = 1 + 2 log 2; so the difference is really irrelevant for our

purposes.
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to ω0. One may therefore ask what happens if ω tends, always from the complex plane, to a

rational value p/q, as in (2.15), i.e. “how” the series diverge. Hence we shall be interested to the

exact (asymptotic) dependence of ρ(ω), in the limit η → 0; we shall also consider the limit of the

conjugating function u when ε is suitably rescaled in such a way to keep the radius of convergence

bounded, so that only the “leading singularities” of u play a role.

We can also consider more general symplectic maps of the form

Tε,f :

{

x′ = x + y + εf(x),

y′ = y + εf(x),
(2.16)

where the perturbation

f(x) =
∑

ν∈Z

eiνxfν (2.17)

is a 2π-periodic function, analytic in a strip D = {| Imx| < ξ}, so that the Fourier coefficients

decay exponentially:

∀ξ′ < ξ, ∃F : |fν | < Fe−ξ|ν|. (2.18)

If Bρ denotes the Banach space Bρ = {g| ‖g‖ρ < ∞}, where

‖g‖ρ =
∑

ν∈Z

|gν | eρ|ν|, (2.19)

then f ∈ Bξ′ ∀ξ′ < ξ.

We assume that f has zero average, i.e. that f0 = 0; we also assume f to be real, so that

f∗
ν = f−ν . If f is a trigonometric polynomial of order N then in (2.17) the sum is over ν such that

|ν| ≤ N .

Denote by S1 the set

S1 = {f ∈ Bξ′ ∀ξ′ < ξ | f0 = 0, f∗
ν = f−ν , ‖f‖0 = 1}. (2.20)

We shall refer to the systems (2.16), (2.17) as generalized standard maps (GSM).

Also for the system (2.16) we can look for solutions of the form (2.2), (2.3): the only difference

is that now the homological equation (2.5) has te be replaced with

(Dωu) (α, ε, ω) = εf (α + u(α, ε, ω)) , (2.21)

with the same meaning for the operator Dω.

We shall consider also maps of the kind (2.16), with (x, y) ∈ C/2πZ×C, and f(x) a 2π-periodic

function of Re x, analytic in D = {Imx > −ξ}, ξ > 0, of the form

f(x) =
∑

ν≥1

eiνx fν , (2.22)

where the coefficients fν still satisfy (2.18).

We can look for solutions of the form
{

x = α + u0(α, ε, ω),

y = 2πω + v0(α, ε, ω),
(2.23)

such that the dynamics in the α variable is again a trivial rotation (2.3).

The function v0(α, ε, ω) is still related to the function u0(α, ε, ω) by

v0(α, ε, ω) = u0(α, ε, ω) − u0(α − 2πω, ε, ω), (2.24)

so that one obtains the only equation

(Dωu0) (α, ε, ω) = εf (α + u0(α, ε, ω)) , (2.25)
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Table 1: The non-linear term for the four models.

Model f(x)

SM sin x

SSM
eix

2

GSM
∑

ν∈Z\{0}

eiνxfν , f∗
ν = f−ν

GSSM
∑

ν≥1

eiνxfν

for the conjugating function u0.

The semistandard map (SSM) is obtained as a particular case of (2.16) by setting

f(x) =
eix

2
; (2.26)

in such a case the parameter ε is not really necessary (as it is well known), but we prefer to

introduce it for purposes of connection with the generalized standard maps. By analogy we shall

call generalized semistandard maps (GSSM) the systems (2.16), (2.22). Note that in the case of

the SSM the conjugating function still admits a formal expansion of the form (2.6), with the extra

constraint ν = k in the last formula (which is evidence of the fact that it depends in fact on the

only variable z = eiαε).

Summarizing we have the four models listed in table 1, all deductible from (2.16) according to

the choice of the non-linear term f(x).

3. Mathematical results

We shall now state our main mathematical results. Theorems 1, 2 and 3 deal with real rotation

numbers: in theorem 1 we find the optimal dependence on the rotation number of the radius of

convergence of the Lindstedt series; in theorem 2 a partial, similar result is obtained for the series

expansion in ε for the periodic orbits; in theorem 3 we show how an invariant curve with given

rotation number ω is approximated – in an analytical sense described below – by the periodic

orbits of (rational) rotation numbers obtained as approximants of ω.

Theorems 4 and 5 deal with the behaviour of the conjugating function u as the rotation number

approaches a rational value p/q from the complex plane. We derive a scaling law for the radius of

convergence, and show that, if the perturbative parameter ε is rescaled in such a way as to keep

the radius of convergence bounded, then the conjugating function u has a limit when the (com-

plex) rotation number tends non-tangentially to p/q, and the limit function satisfies a differential

equation which is explicitly given. In the case of the standard map, such differential equation is

basically the pendulum equation and can be solved exactly in terms of elliptic functions, whose

singularities can be explicitly computed. In the case of generalized standard maps, the solutions

are hyperelliptic functions and the explicit computation of their singularities seems difficult.
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Theorem 1 [9]. Consider the standard map. Let ω ∈ (0, 1) be a Bryuno number. Then there

exists ρ(ω) > 0 such that there exists a solution of the form (2.2), (2.3), with u(α, ε, ω) analytic

in ε for |ε| < ρ(ω). There exists two positive constants C and β such that

|log ρ(ω) + βB1(ω)| < C, (3.1)

uniformly in ω, if B1(ω) is the Bryuno function (2.8). One must choose β = 2.

We actually prove only the lower bound in [9], that is we prove the “existence” part implied

by (3.1). The “non-existence” part – the upper bound on ρ(ω) – is proved by Davie [25], by

comparison with the semistandard map case.

Note in fact that an identical result is known for the semistandard map, and was given by Davie

[25]. In Section 6 we shall give a proof of the lower bound in Theorem 1, with our techniques,

in the case of the semistandard map: as we shall see, some of the hardest difficulties of the proof

in the standard map case are eliminated, while the essence of the Renormalization Group-like

multiscale expansion is retained.

In the case of the GSM analogous lower bounds on the radius of convergence can be obtained,

but with a value of β which in general is certainly not optimal; upper bounds also can be derived

in the case of perturbations which are trigonometric polynomial by comparison with the GSSM

(by an argument by Davie [25]). What is important to stress is that in general is not possible to

have the same β for both the lower and upper bounds.

Theorem 2 [11]. Consider the standard map. Let ω = p/q be a rational number in [0, 1], with

gcd(p, q) = 1. Then there exists ρ(ω) > 0 and two 2πp-periodic solutions which are are analytic

in ε for |ε| < ρ(ω). There exist two positive constants C and β such that

log ρ(ω) + βB1(ω) > −C, (3.2)

uniformly in ω, if B1(ω) is the truncated Bryuno function (2.9). One can choose β = 2.

The two periodic orbits are one stable and one unstable for small ε, as it is straightforward to

check.

By choosing α0 in the set A(ω) given by

A(ω) =

{

πk

q
: k = 0, 1, 2, . . . , 2q − 1

}

, (3.3)

we shall see in Section 4 that the trajectory (2.3) generated from such α0 corresponds to a periodic

solution of the equation of motion of the form (2.2), with initial datum (α0 + u(α0, ε, ω), 2πω +

u(α0, ε, ω) − u(α0 − 2πω, ε, ω)), where

u(α0, ε, ω) = ū(α0, ε, ω) ≡
∑

ν∈Z\qZ

eiνα0uν(ε, ω) (3.4)

can be interpolated by a continuous (analytic) function

u(α, ε, ω) = ū(α, ε, ω) =
∑

ν∈Z\qZ

eiναuν(ε, ω) =

∞
∑

k=1

εk
∑

ν∈Z\qZ

eiναu(k)
ν (ω); (3.5)

for α 6= α0 the function (3.5) does not describe anymore a periodic solution of the equation of

motion: it is simply a 2π-periodic function which is equal to the solution only when α = α0, with

α0 ∈ A(ω).

We can rewrite (3.5) as

u(α, ε, ω) = ū(α, ε, ω) =
∑

ν∈Z

eiναuν(ε, ω) =

∞
∑

k=1

εk
∑

ν∈Z

eiναu(k)
ν (ω), (3.6)
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3.4

3.6

3.8

4.2

4.4

Figure 1: The invariant curve with rotation number γ = [0, 1∞] (golden mean), and

the interpolation curves of the stable periodic orbits corresponding to the convergents

2/3, 3/5, 5/8, 21/34 and 34/55 for ε = 0.5 (one has ρ(γ) ≈ 0.9716): the last two

are apparently overlapping the invariant curve, even if a better resolution shows that

there is a little gap between them (see Figure 2). The interpolation curves can be

easily recognized by the number of points of the corresponding periodic orbits; the

points of the periodic orbit with rotation number 34/55 are not shown.

if we set u
(k)
ν (ω) = 0 for ν such that ν ∈ qZ. We shall call (3.6) the interpolating function (for the

periodic orbit with rotation number ω).

Theorem 3 [11]. Consider the standard map. Let ω be a Bryuno number; if {ωN} are the

convergents of ω, denote by uN = u(α, ε, ωN) the functions interpolating the periodic solutions

with rotation number ωN as given by (3.6), and by u = u(α, ε, ω) the quasi-periodic solution with

rotation number ω. Then there exist two positive constants ρ0 and β, such that the sequence {uN}
converges to the function u, uniformly for |ε| < ρ0e

−βB1(ω). One can choose β = 2.

The situation described by Theorem 3 is exemplified by the Figure 1, where the invariant curve

u correponding to the golden mean ω = γ = (
√

5 − 1)/2 and the curves parameterized by the

functions uN (interpolating curves) corresponding to the (stable) periodic solutions with rotation

numbers given by some of its approximants are shown.

Note that the interpolating curves are more and more close to the invariant curve; for instance

in Figure 1 the interpolating curves of the periodic orbits with rotation numbers 21/34 and 34/55

cannot be distinguished from the invariant curve with ω = γ. Therefore for N large enough one

needs a strong resolution in order to distinguish them from the invariant curve (see Figure 2).

We turn now to considering complex rotation numbers.

Theorem 4 [7]. Consider the standard map. Let ω = p/q + iη, p, q ∈ Z, gcd(p, q) = 1 and η ∈ R.

Then the following results hold.

(1) For fixed η 6= 0 the function u(α, ε, ω) is divisible by ε and jointly analytic in (α, ε) in

the product of a strip around the real axis in the complex α-plane and a neighborhood

|ε| < ρ(ω) of the origin in the complex ε-plane, with ρ(ω) = O(η2/q).

(2) The function u′(α, ε, ω) ≡ u(α, (2πη)2/qε, ω) is well defined for η → 0 and converges to a

function ū = ūp/q(α, ε), divisible by εq and analytic in εq in a neighborhood of the origin,
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4.75 4.8 4.85 4.9

4.095

4.105

4.11

4.115

Figure 2: Enlargement for the invariant curve (middle) with rotation number

γ = [0, 1∞] (golden mean), and the interpolation curves of the periodic orbits corre-

sponding to the convergents 21/34 (below) and 34/55 (above).

which is 2π/q-periodic and solves the differential equation

d2ū

dα2
= Cp/qε

q sin (q(α + ū)) , (3.7)

with boundary conditions ū(0) = ū(2π) = 0, for some nonvanishing explicitly computable

constant Cp/q.

As the differential equation (3.7) has an explicit solution, theorem 4 has some interesting con-

sequences. We start noting that (3.7) has the form

d2x

dt2
= λ sin x, x(0) = 0, x(2π) = 2π, (3.8)

by letting

x(t) = q
(

α + ūp/q(α, ε)
)

, t = qα, λ =
Cp/q

q
εq, (3.9)

in (3.7). Trivial qualitative analysis shows that for all real values of λ, (3.8) has a unique solution

with the given boundary conditions. Its solution can actually be written in terns of Jacobian

elliptic functions as

x(t) = π + 2 am
(K(k)

π
(t − π), k

)

, (3.10)

where

K(k) =

∫ π/2

0

dφ
1

√

1 − k2 sin2 φ
; (3.11)

see [58] for the solution of (3.8), and [59, 23] for the relevant properties and formulae satisfied by

the elliptic functions and integrals we use.

To compute the modulus k in terms of λ, we must solve the equation

kK(k) = π
√

λ, (3.12)

as a simple calculation based on the properties of the elliptic functions could show (see [59]).

The solution (3.10) gives us immediately the singularities of x(t) on the complex t plane, and

therefore of ūp/q(α, ε) on the complex α plane. In fact, am(s, k) has branch points of infinite order

at s = 2nK + (2m + 1)iK ′, with (m, n) ∈ Z2 and K ′ = K(k′), where k′ is the complementary

modulus satisfying k2 +k′2 = 1. Therefore the singularities closest to the real axis are ±iπK ′/K +
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(2n + 1)π. Using the modular variables τ = iK ′/K, q = eiτ , the singularities are at α =

±πτ + (2n + 1)π, or, in the complex plane of the variable z = eiα, at −q and −1/q (note that

Im τ > 0, |q| < 1). Therefore ūp/q(α, ε) has, in the complex α-plane, 2q branch points along the

boundary of the strip of width πτ/q, uniformly spaced.

The analytic structure in ε seems to be harder to derive exactly. The Jacobian amplitude

am(s, k) can be Fourier expanded giving

x(t) = t + 4

∞
∑

n=1

(−1)nqn

n(1 + q2n)
sin nt, (3.13)

in terms of the modular variable q. The series converges in a strip around the real t-axis if |q| < 1,

and depends analytically on q inside the unit circle. As q always lies inside the unit circle, and

all the dependence on λ is through q, the singularities in λ are given by the singularities of q as

a function of λ. To determine them exactly, one should solve exactly (3.12), which seems to be

impossible. It is though possible to write the inverse function λ(q) explicitly; it is in fact given by

λ =
1

4
ϑ4

2(0, q) = 4q

(

∞
∑

n=0

qn2+n

)4

, (3.14)

where the notations of [59] are used for ϑ-functions. Note also that λ, as a function of τ , is a

modular form with respect to the principal congruence subgroup Γ(2) of the modular group.

The singularities of q(λ) are therefore located as critical points of its inverse function (see [13]

for further details and calculations). Numerical calculations in [13] give a critical value of q equal

to about 0.3281 and so a value of λc for the singularity nearest to the origin of abount ±0.8275i.

Note that the position of the singularities in λ does not therefore depend on t (except of course

for the cases α = 0, α = π). For ūp/q(α, ε) this implies 2q singularities along a circle centered at

the origin in the complex ε-plane.

It we assume that, when ω is a Bryuno number very “close” (in a sense to be specified in a

while) to a rational value p/q (i.e. with η = ω−p/q very small), not only the function u(α, ε, ω) is

close to ūp/q(α, (2πη)−2/qε), but also the singularities of the two functions in the complex variable

ε are close, then we can infer the location of the singularities of the first from the location of the

singularities of the second. Note that there is no mathematical argument for such an assumption:

the funtion ū has been obtained by rescaling u when the rational rotation number is approximated

from the complex ω-plane, and, at least in principle, the corrections which disappear when η

is set equal to zero could contribute with other singularities than those of the limit function.

Furthermore it is obvious that the above statement is certainly false if we do not specify better

what we mean by “close”: in fact the limit for ω tending to p/q along a sequence of Bryuno

numbers will depend on the particular sequence we choose, so that, for such an assumption to be

hopefully verified, we have to take the limit superior rather than the limit (contrary to the case

of imaginary η). Indeed the numerical experiments of [13], for complex ω, and of [4], for real ω,

suggest just that the above assumption is correct. Then, by locating the singularities closest to

the origin in the complex ε-plane for the rescaled function and “rescaling back” ε to its value by

multiplying by (2πη)−2/q, we obtain an estimate for the radius of convergence

ρ(ω) ≈
(

(2πη)2qC−1
p/q|λc|

)1/q

, (3.15)

where η = ω−p/q is very small. The agreement with the numerically observed values is remarkable;

see [4].

Let us now consider the case of the generalized standard map. Let ω → p/q, where gcd(p, q) = 1,

in the complex plane. We then consider the q sequences Ĩc(f) = {flq+c}l∈Z+
, c = 1, . . . , q (recall
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that f0 is assumed to vanish). For each sequence Ĩc(f), c = 1, . . . , q, let

Ic(f) = {fν ∈ Ĩc(f)|fν 6= 0} (3.16)

be the set of nonzero values of the sequence Ĩc(f).

We define the following sets of integers:

Ap/q(f) = {c ∈ {1, . . . , q}|Ic(f) 6= ∅}. (3.17)

and

Bc(f) = {l ∈ Z+|flq+c 6= 0}. (3.18)

Of course Ap/q(f) = {c1, . . . , cM}, where 1 ≤ c1 < · · · < cM ≤ q, and M ≤ q. Note that Ap/q(f) is

the set of equivalence classes modulo q of frequencies actually appearing in the Fourier expansion

of the perturbation,

If q /∈ Ap/q(f) and |Ic(f)| = 1 ∀c ∈ Ap/q(f), define

A(f) = {ν ∈ N|fν 6= 0}; (3.19)

then A(f) = {ν1, . . . , νM}, with 1 ≤ M ≤ q − 1 and νi − νj /∈ qZ ∀i 6= j. This can be easily

proved by reasoning as follows. If q /∈ Ap/q(f) then fν = 0 for all ν ∈ qZ, so that Iq(f) = ∅: then

M = |Ap/q(f)| ≤ q − 1. As |Ic(f)| = 1 ∀c ∈ Ap/q(f), for any c ∈ Ap/q(f) there is only one ν ∈ N

of the form ν = c + lq, with l ∈ Z+, such that fν 6= 0. So the number of Fourier labels ν’s for

which fν 6= 0 is given by M ≤ q − 1; of course the bound M ≥ 1 is obvious. Then the assertion

follows.

If q /∈ Ap/q(f) and |Ic(f)| = 1 ∀c ∈ Ap/q(f), we define 2M integers r1, . . . , rM , r′1, . . . , r
′
M , with

ri, r
′
i ≥ 0, and an integer R > 0 as those integers which satisfy the following conditions:

(r1 − r′1) ν1 + · · · + (rM − r′M ) νM = Rq, (3.20a)

r1 + r′1 + · · · + rM + r′M = r0 ≥ 2, (3.20b)

r0 is minimal, (3.20c)

where {ν1, . . . , νM} = A(f).

We can easily prove that the Diophantine problem (3.20) has always a finite, nonzero number

of solutions and r0 ≤ q. Solutions to (1) and (2) exist: one is given for example by R = νi for

some i and ri = q, while rj = 0 ∀j 6= i and r′j = 0 ∀j. Note that in this case (2) yields r0 = q. As

the set of solutions to (1) and (2) is not empty and as each solution has associated a positive value

of r0, there must be at least one such that r0 is minimal. On the other hand, a minimal solution

has r0 ≤ q because of the above observation, so there can be only a finite number of them.

Define r∗(f) = r∗ as

r∗ =















1 if q ∈ Ap/q(f),

2 if q /∈ Ap/q(f)and ∃c̄ ∈ Ap/q(f)such that |Ic̄(f)| ≥ 2,

r0 otherwise

(3.21)

where r0 is defined as in (3.20). Note that 1 ≤ r∗ ≤ q.

Theorem 5 [8, 10]. Consider generalized standard maps. Let f be any function in S1, see (2.20).

Consider the cone Cp/q,β = {z ∈ C : | Im z| > 0, |Re z − p/q| ≤ β| Im z|, β ≥ 0}; let ω ∈ Cp/q,β.

Then the rescaled conjugating function

u′
p/q(α, ε, ω) = u

(

α, ε(ω − p/q)2/r∗(f), ω
)

, (3.22)

extends to a function continuous in ω in the closure of the cone Cp/q,β and analytic in ω in the

interior of Cp/q,β, for any β ≥ 0, analytic in ε for |ε| < a and analytic in α for | Im α| < b, with a
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and b two positive constants. In particular, the following limit exists:

ūp/q(α, ε) = lim
ω→p/q

u′
p/q(α, ε, ω), (3.23)

it is independent from the non-tangential path chosen either in the complex upper half plane Im ω >

0 or in the complex lower half plane Im ω < 0, and it is analytic for |ε| < ρ̄f (p/q), for some

ρ̄f (p/q) > 0. Defining

R(p/q) = inf
f∈S1

ρ̄f (p/q), Rr(p/q) = inf
f∈S1

r∗(f)=r

ρ̄f (p/q), (3.24)

there exist finite strictly positive constants Cr, C0, Dr, D0, depending only on p/q, such that one

has

C0 ≤ R(p/q) ≤ D0, (3.25a)

Cr ≤ Rr(p/q) ≤ Dr, (3.25b)

for all integer r ≤ q. Generically one has r∗(f) = 1.

Unfortunately, the differential equation satisfied by ūp/q(α, ε) in this case (see [8] for details)

does not lend itself to such a refined analysis as in the standard map case. In fact, even if f(x) is

a trigonometric polynomial, the solutions to this differential equation are given by the inversion

of hyperelliptic integrals, and nothing quite as explicit and concrete as in the elliptic case seems

to be known for them, even if lower bounds on the radius of convergence (in the sense of (3.25))

can be obtained by comparison with the generalized semistandard maps case [10].

Results similar to those of theorems 4 and 5 have been obtained for the semistandard map by

[15] and for Siegel’s problem [55] by [60] and by [15]. Note that in the semistandard map case

the limit function is given explicitly in terms of elementary functions (indeed, a logarithm) and

all its singularities are trivially computed. For the semistandard map, in [15] also the first few

corrections beyond the limit ūp/q(α, ε) are computed. We refer to [15] and [60] for further details

on the analogous results for the semistandard map and for Siegel’s problem.

4. Diagrammatic formalism

We can graphically represent (2.12) as in Figure 3. By iterating the graphical construction (which

corresponds, analytically, to apply to each u
(kj)
νj in (2.12) the same decomposition used for u

(k)
ν

itself), we see that at the end the coefficient u
(k)
ν can be written as sums of contributions which

are represented in terms of tree graphs (or simply trees).

A tree ϑ consists of a family of k lines arranged to connect a partially ordered set of points

called nodes, with the lower nodes to the right; see Figure 4.

All the lines have two nodes at their extremes, except the highest which has only one node, the

last node u0 of the tree (which is the leftmost one); the other extreme r will be called the root of

the tree and it will not be regarded as a node.

We denote by � the partial ordering relation between nodes: given two nodes u1 and u2, we

say that u2 � u1 if u1 is along the path of lines connecting u2 to the root r of the tree (they could

coincide: we say that u2 ≺ u1 if they do not).

Each line carries an arrow pointing from the node u to the right to the node u′ to the left

(i.e. directed toward the root): we say that the line exits from u and enters u′, and we write

u′
0 = r even if, strictly speaking, r is not a node. For each node there are only one exiting line

and mu ≥ 0 entering ones; as there is a one-to-one correspondence between nodes and lines, we

can associate to each node u a line ℓu exiting from it. The line ℓ0 = ℓu0
connecting the node u0

to the root r will be called the root line. Note that each line ℓu can be considered the root line of
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r ν

u0
(k) = r ν u0

ν1

ν2

νm

k1

k2

km

ν0

Figure 3: Graphical interpretation of (2.12). The graph element formed by a line

with a label ν and a black circle at its right with a label (k) symbolizes the Taylor-

Fourier coefficient u
(k)
ν , while the node u0 carrying a label ν0 represents the quantity

fν0
(iν0)

m; note that m is uniquely determined by the number of lines emerging from

u0. The sum over the labels (with the constraints as in (2.12)) is not explicitly shown.

root
ℓ0 ν0

ν = νℓ0 u0

u2

νu1

u1

u3

u5

u6

u7

u8

u9

u10

u11

u4

Figure 4: A tree ϑ with 12 nodes; one has mu0
= 2, mu1

= 2, mu2
= 3, mu3

=

2, mu4
= 2, and mu for all the other nodes u. The length of the lines should be the

same but it is drawn of arbitrary size.

the subtree consisting of the nodes satisfying w � u and of the lines connecting them: u′ will be

the root of such subtree, which we denote by ϑu. The order k of the tree is defined as the number

of nodes of the tree.

To each node u ∈ ϑ we associate a mode label νu ∈ Z \ {0} (which is the Fourier label of the

function f(x) in (2.22)), and define the momentum flowing through the line ℓu as

νℓu
=
∑

w�u

νw, νw ∈ Z \ {0}. (4.1)

Let us denote by T 0
ν,k the set of all trees of order k (i.e. with k nodes) and with momentum ν

flowing through the root line, and by V (ϑ) and Λ(ϑ), respectively, the set of nodes and the set of

lines of the tree ϑ.

To each node u ∈ V (ϑ) we associate a node factor

Fv =
1

2

νmu+1
u

mu!
, (4.2)

while to each line ℓ ∈ Λ(ϑ) we associate a propagator

Gℓ = g(ωνℓ), (4.3)
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Table 2: The choice of the mode labels for the four models.

Model νu

SM νu = ±1

SSM νu = 1

GSM νu ∈ Z \ {0}

GSSM νu ∈ N

where g(ων) is defined as in (2.13). Then, by defining the value of a tree ϑ as

Val(ϑ, ω) = −i
(

∏

u∈V (ϑ)

Fv

)(

∏

ℓ∈Λ(ϑ)

Gℓ

)

, (4.4)

we have formally

u(k)
ν (ω) =

∑

ϑ∈T 0
k,ν

Val(ϑ, ω), (4.5)

as it is easy to verify by iterating (2.12) and using the graphical representation of Figure 3 (equiv-

alently the proof can be carried out by induction).

Note that a group G of transformations acts on the trees, generated by the permutations of all

the subtrees emerging from each node with at least one entering line. Two trees which can be

transformed into each other by the action of the group G are called equivalent. The sum in (4.5)

is meant as a sum over all the trees which are not equivalent; that this is the correct way to count

the trees follows from the fact that it keeps trace of the combinatorial factors naturally arising

from the Taylor expansion (2.12) when we iterate the graphical construction represented in Figure

3. The number of elements of T 0
k,ν is bounded by 2k · 22k in the case of the SM and by 22k in the

case of the SSM; note that for the SSM one has Tk,ν = ∅ for ν 6= k.

According to the constraints imposed on the mode labels, one recovers therefore the four models

introduced in table 1, as shown in table 2

Of course the formal solution with coefficients given by (4.5) is plagued by the small divisors

problem (i.e. the presence of small denominators). First of all one has γ(ων) = 0 when ων = 0

mod 2π: for ω = p/q ∈ Q this occurs for all ν which are multiple of q, while for ω ∈ R \ Q this

occurs only for ν = 0. Moreover, in the latter case, the quantity ων can be in general arbitrarily

close to zero, for ν large enough, so that, without imposing some condition on ω, there is no hope

to control the propagators.

So we have two problems: (i) to check that no division by zero occurs, so that the formal series

expansion in ε

u(α, ε, ω) =

∞
∑

k=1

u(k)(α, ω) εk (4.6)

has well defined Taylor coefficients u(k)(α, ω) to all perturbative orders, and, if it is the case, (ii) to

prove that the series (4.6) converges. Here we confine ourselves to the first problem, by deferring

to Section 5 the discussion of the latter.
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The formal solubility of the homological equation can be easily studied by using the graphical

representation (4.5).

For irrational rotation numbers, in the case of the SSM and GSSM, there is nothing really to

prove, as in such a case νℓ ≥ 1, as it follows from (4.1) and table 2, so that the quantity γ(ων) is

always nonvanishing.

For the SM the formal solubility can be easily proved by parity arguments. In fact we can write

the homological equation (2.5) to order k as
(

Dωu(k)
)

(α, ω) = [S(α, ε, ω)](k), S(α, ε, ω) = ε sin (α + u(α, ε, ω)) , (4.7)

where, given any function F (α, ε, ω), we are denoting by [F (α, ε, ω)](k) the coefficient of order k in

its Taylor expansion in ε; note that [S(α, ε, ω)](k) depends only on the coefficients u(k′)(α, ω) with

k′ < k. Then, if we suppose inductively that the functions u(k′)(α, ω) are odd in α for k′ < k, we

obtain that the function [S(α, ε, ω)](k) has zero average, and also u(k)(α, ω) is odd (for k = 1 one

has u(1)(α, ω) = g(ω) sinα).

The same argument extends to any GSM with an odd function f(x) in (2.16). For general zero

average functions f(x), the discussion is a little less trivial but it is well known and dates basically

back to Poincaré [53]; a proof based on the tree expansion can be found in [8] in all details.

In the case of rational numbers ω = p/q, with gcd(p, q) = 1, for the SM one finds that it is

possible to fix α to a value α0 in the set A(ω) in (3.3), such that no line ℓ with momentum νℓ ∈ qZ

appears in Λ(ϑ). The condition α0 ∈ A(ω) follows from the analysis of the trees of order q. By

considering (4.7) one sees that [S(α, ε, ω)](q) contains only terms with Fourier labels |ν| ≤ q, and

the terms with |ν| = q are given by

S(q)
q eiqα + S

(q)
−qe−iqα = 2iS(q) sin qα, (4.8)

where the last equality follows again by parity considerations. As the Fourier components with

ν ∈ qZ in the left hand side of (4.7) are vanishing, the (formal) solubility of (4.7) requires α ∈ A(ω),

so that one has sin qα = 0. Such a condition is sufficient to assure also the formal solubility to

higher perturbative orders (again a parity property): for details we refer to [11].

Of course for SSM and GSSM there is no periodic solution; in fact it is straightforward to realize

that the above cancellation mechanism does not apply, as all Fourier lables are strictly positive

(see table 2).

To control the product of the propagators in (4.4) one needs a multiscale analysis wich can be

pursued as follows. We say that a line ℓ has scale n if

‖ωνℓ‖ = min
p∈Z

|ωνℓ − p| (4.9)

is approximately equal to 1/qn+1. A more formal statement can be obtained by introducing a C∞

partition of unity in the following way. Let χ(x) a C∞ non-increasing compact-support function

defined on R+, such that

χ(x) =

{

1 for x ≤ 1,

0 for x ≥ 2,
(4.10)

and define for each n ∈ N
{

χ0(x) = 1 − χ(96q1x),

χn(x) = χ(96qnx) − χ(96qn+1x), for n ≥ 1;
(4.11)

then for each line ℓ set

Gℓ = g(ωνℓ) =

∞
∑

n=0

gn(ωνℓ) ≡
∞
∑

n=0

G
(n)
ℓ , G

(n)
ℓ =

χn(‖ωνℓ‖)
γ(ωνℓ)

, (4.12)
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and call G
(n)
ℓ = gn(ωνℓ) the propagator on scale n.

Given a tree ϑ, we can associate to each line ℓ of ϑ a scale label nℓ, using the multiscale

decomposition (4.12) and singling out the summands with n = nℓ. We shall call nℓ the scale label

of the line ℓ, and we shall say also that the line ℓ is on scale nℓ.

Note that if a line ℓ has momentum νℓ and scale nℓ, then

1

96qnℓ+1
≤ ‖ωνℓ‖ ≤ 1

48qnℓ

, (4.13)

provided that one has χnℓ
(||ωνℓ||) 6= 0. Note also that given a line ℓ at most only two summands

in (4.12) are really nonvanishing, so that in fact the series (4.12) is a finite sum.

Therefore (4.5) can be rewritten as

u(k)
ν (ω) =

∑

ϑ∈Tk,ν

Val(ϑ, ω),

Val(ϑ, ω) = −i
(

∏

u∈V (ϑ)

Fv

)(

∏

ℓ∈Λ(ϑ)

G
(nℓ)
ℓ

)

,
(4.14)

where Tk,ν is the set of all trees of order k and with νℓ0 = ν carrying also scale labels (in addition

to the node labels); in the case of the SM the number of elements in Tk,ν is bounded by 2k2k22k,

while in the case of the SSM the number of elements in Tk,k is bounded by 2k22k.

Given a tree ϑ, a cluster T of ϑ on scale n is a maximal connected set of lines of lines on scale

≤ n with at least one line on scale n. We shall say that such lines are internal to T , and write

ℓ ∈ Λ(T ). A node u is called internal to T , and we write u ∈ V (T ), if at least one of its entering

lines or exiting line is in T . Each cluster has an arbitrary number mT ≥ 0 of entering lines but

only one or zero exiting line; we shall call external to T the lines entering or exiting T (which are

all on scale > n). We shall denote with nT the scale of the cluster T , and with kT the number of

nodes in T .

Note that there is an inclusion relation between clusters: the innermost ones are those with

highest scale, while the outermost ones are on the lowest scale. The aim of introducing the clusters

is to characterize the lines of the trees on the basis of the sizes of the corresponding propagators:

the lines which are contained inside the outermost clusters correspond to the propagators with

the smallest small divisors, and so on.

If we confine ourselves to the SSM and to GSSM, the notion of cluster is sufficient to prove the

lower bound in (3.1), as we shall see in Sections 5 and 6.

However in the case of the SM – and a fortiori of the GSM – additional problems arise, due to

the fact that for the SM for each node u ∈ V (ϑ) one has νu = ±1, whereas νu = 1 for the SSM

(see Section 5). To single out the cases which can really give problems, we have to introduce the

notion of resonance.

A cluster T will be called a resonance with resonance-scale n if the following three properties

are verified:

(1) mT = 1, (4.15a)

(2)
∑

u∈V (T )

νu = 0, (4.15b)

(3) kT < qn, (4.15c)

where n is minimum between the scales of the external lines of T . The condition (1) means that

T has only one entering line, which, by the condition (2) must have the same momentum of the

exiting one (so that the scales of the two lines can differ at most by one unit). We note also that

the condition (3) could be replaced with that of requiring that there must be a sufficiently large
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u1

u2

u3

u4 u5

u6

u7

T

T ′

T ′′

Figure 5: An example of three clusters symbolically delimited by circles, as visual

aids, inside a tree (whose remaining lines and clusters are not drawn and are indicated

by the bullets). Note that T is a resonance as defined in (4.13) only if νu1
+νu2

+νu3
=

0 and kT = 3 < qn; analogous considerations hold for the other clusters.

difference between the resonant-scale n of T and the scale nT of T as a cluster (for instance one

can impose nT ≥ n + 5 as in [37]): it is easy to realize that the two conditions are related. See

Figure 5 for a graphical visualization of clusters and resonances.

Then, among the new trees which appear in the case of the SM (with respect to those of the

SSM), there are some in which there can be accumulation of small divisors (as it will be discussed

in Section 5), but, when the values of all trees in Tk,ν are summed together, if we group the trees

into suitable classes then some remarkable cancellation mechanisms intervene between them, and

the overall contribution still admits a bound of the same kind of that of the SSM.

With the notion of resonance given above we are able to prove the lower bound in (3.1) with

β = 4 (for an explicit derivation see for instance [37]). In order to obtain β = 2 a more careful

analysis is needed: in particular the cancellation mechanisms have to be extended to a larger class

of trees. We do not enter into the details here, by referring to [9] for a complete discussion, and

we confine to note that a much more involved notion of resonance has to be introduced, where,

among other properties, the condition mT = 1 has to be dropped out (while the conditions (2)

and (3) in (4.15) are retained).

So far we considered a very refined multiscale decomposition. In the case of periodic orbits,

say with rotation number ω = p/q, if we are not looking for optimal bounds, this is not really

necessary.

Given a tree ϑ, we can associate to each line ℓ a scale label nℓ, setting nℓ = 0 if its momentum νℓ

is a multiple of q, and nℓ = 1 otherwise; note that with such a presciption the scale is a label which

is uniquely determined by the momentum, and it has only the function of helping to visualize the

size of the propagator.

Given a tree ϑ, a cluster T of ϑ is a maximal connected set of lines on scale n = 1; we shall say

that such lines are internal to T , and write sometimes ℓ ∈ Λ(T ); a node u is called internal to T ,

and we write u ∈ V (T ), if at least one of its entering or exiting lines belongs to Λ(T ). The lines

outside the clusters are all on scale n = 0, and each cluster has an arbitrary number mT ≥ 0 of

entering lines but only one exiting line.

A cluster T will be called a resonance if

∑

u∈V (T )

νu = 0, (4.16)
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and, in such a case, the exiting line of the cluster T will be called a resonant line.

Note that in such a case no condition is imposed on the number of nodes in V (T ) (this could

be done, but no real difference would follow in the analysis of resonances). On the contrary we

did not impose also the condition mT = 1 as in (4.15), as, if we avoid adding such a constraint

– hence enlarging the classes of clusters which have to considered as resonances – we are able to

deal with both the case of rational rotation numbers and the case of rotation numbers of the form

(2.15)

For ω ∈ Q, if a line is on scale n = 0, then one has γ(ωνℓ) = 0, so that the corresponding

propagator would be formally infinite. On the other hand we have seen that for such ω no line ℓ

with νℓ ∈ qZ (hence on scale 0) appear. Therefore for all trees ϑ ∈ Tk,ν and for all lines ℓ ∈ Λ(T ),

we can bound their propagators by

|g(ωνℓ)| < Cq2, (4.17)

for some constant C, as νℓ /∈ qZ.

For ω = p/q + iη, η ∈ R, one has

|g(ωνℓ)| <

{

C|νη|−2, for ν ∈ qZ \ {0},
Cq2, otherwise,

(4.18)

for some other constant C, so that the lines on scale n = 1 are bounded as in (4.17), while the

lines on scale n = 0 can be present (recall that we are not fixing α), and obviously have divergent

propagators for η → 0.

5. About the proofs

The aim of this Section is to give an idea of the proof of the theorems stated in Section 3, without

giving all the details, for which we refer to the original papers. As we anticipated in the previous

Section, we are left with the problem of proving the convergence of the envisaged perturbative

expansions (Lindstedt series).

First of all note that, if {qn} are the denominators of the convergents of ω, then [54]

1

2qn+1
< ‖ωqn‖ <

1

qn
, (5.1a)

‖ων‖ > ‖ωqn‖ ∀|ν| < qn+1, |ν| 6= qn, (5.1b)

a property which will play a crucial role in the following.

Roughly speaking, in the case of the SSM, the idea behind the proof is the following. Even

if the quantities ‖ωνℓ‖ can become very small for ν large enough, they cannot “accumulate” too

much. In fact once a line ℓ on scale n (i.e. with momentum νℓ such that ‖ωνℓ‖ is of order 1/qn+1)

has been obtained, in order to have again a line ℓ1 on the same scale along the path connecting

ℓ to the root, one needs many nodes between the two lines, 4 as each node contributes a mode

label 1 to the momentum νℓ1 (see (4.1)) and to have ‖ω(νℓ′ − νℓ)‖ ≤ ‖ωνℓ′‖+ ‖ωνℓ‖ = O(1/qn+1)

requires νℓ − νℓ′ to be large enough, as it follows from (5.1). For a formal discussion see Section 6.

The above argument can be easily extended to the GSSM, by using the fact that, if on one hand

the mode labels can assume any value in N, on the other hand each mode label ν is associated

to a Fourier coefficient fν satisfying (2.18). As a consequence there can be also only a few nodes

between the lines ℓ and ℓ1 but we can use the exponential decay of the factors fν associated to

such nodes (as their Fourier labels have to be large if νℓ − νℓ′ is large and the number of the nodes

is small). For further details we refer to [40], where such an idea is developed for continuous time

4 More precisely, if we denote by v and v1 the nodes such that ℓ = ℓv and ℓ1 = ℓv1
, there must be many nodes

preceding v1 but following v.



RENORMALIZATION GROUP FOR LINDSTEDT SERIES 19

ℓ1

u1

u2

ℓ
+

ℓ1

u1

u2

ℓ

Figure 6: The simplest example of cancellation between resonances. The circles

represent resonances, so that νu1
+ νu2

= 0. The parts of the three outside the

resonance are represented as bullets. Each tree represents two contributions: νu1
=

−νu2
= 1 and νu1

= −νu2
= −1.

Hamiltonian systems (the adaptation to the GSSM being trivial), and to [8], where the case of

comlex rotation numbers was considered.

On the contrary in the case of the SM, once a line ℓ on a large scale n has been obtained,

another line ℓ1 on the same scale can be easily obtained once more along the path connectig ℓ to

the root, without going much further along the tree, as the mode labels now can also be negative

(see table 2): for instance it is enough to have two nodes u1 and u2 with νu1
= −νu2

= 1 in order

to have νℓ1 = νℓ + νu1
+ νu2

= νℓ, so that the line ℓ1 has the same scale of the line ℓ.

The key remark is that, when summing the tree values over all possible trees as in (4.14), all

terms containing the same resonance cancel almost exactly: more precisely, for any resonance T ,

the values of the trees containing that resonance cancel to order 2 in ‖ων‖, if ν is the momentum of

the line entering T . The criterion to single out the trees between which the cancellation operates

is the following: given a tree ϑ with a resonance T , consider the class FT (ϑ) of all trees obtained

by detaching the line entering T and reattaching it to all the nodes inside T , and for each of

such trees consider also the tree obtained by reverting the sign of the mode labels of the nodes

contained in T (i.e. by replacing each νu = 1 with νu = −1 and vice versa); see Figure 6 for an

example.

Then it is easy to realize that the sum of all the so obtained trees cancel to zero and first order.

For instance, with reference to Figure 6, by denoting with ϑ1 and ϑ2 the two trees obtained by fixing

the values of νu1
and νu2

, we observe that their values contain a common factor A = A(ϑ1) = A(ϑ2)

(arising from the part of the trees outside the resonance) times
(

1

2

(νu1
)3

2!

)

1

γ(ωνu2
)

(

1

2

νu1

1!

)

(5.2)

for the first one, and times
(

1

2

(νu1
)2

1!

)

1

γ(ωνu2
)

(

1

2

(νu1
)2

1!

)

(5.3)

for the second one. Moreover there are two non-equivalent trees of the form ϑ1 (obtained by the

action of the group G corresponding to the node u1), whereas there is only one of the form ϑ2, so

that, if we sum all the non-equivalent trees, we obtain from ϑ1 and ϑ2 a contribution

A

(

1

2
(νu1

)
2 1

2
νu2

)(

νu1

γ(ωνu2
)

+
νu2

γ(ωνu2
+ ωνℓ)

)

, (5.4)

where the quantity in the last parentheses is vanishing for ωνℓ = 0 (as it follows from the property

(2) in (4.15)); a second order zero is immediately obtained from the parity of the function γ(ων)

(see (2.13)).
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But a second order cancellation produces a factor proportional to ‖ωνℓ‖2 which is exactly of

the same size of the propagator of the line ℓ1 (recall that νℓ1 = νℓ). In other words, given a line

ℓ on a very large scale n, it is possible to create another line ℓ1 with the same scale adding only

a few nodes (for instance 2 in the above example), but in such a way a resonance arises, and the

cancellation mechanism described above produces a gain factor which compensates the propagator

of the newly added line ℓ1: this means that also in such a case there cannot be any accumulation

of small divisors. Again the argument can be extended to the GSM. For more details we refer to

the original papers (see in particular [29, 38, 9, 8]).

The just described cancellation mechanism is enough to prove the convergence of the pertur-

bative series (hence the existence of the corresponding invariant curve), but produces (at most)

a value β = 4 for the lower bound in (3.1); we refer to [37] for a detailed proof. To obtain the

optimal value β = 2 requires an enlargement of the classes of trees whose values have to cancel

each other to second order, as we already observed in Section 4; we refer to [9] for an exaustive

discussion. Note however that an idea why it is necessary to consider as resonances also clusters T

with mT > 1 can given – in a simpler case – by studying the Lindstedt series for complex rotation

numbers (see below).

For the periodic orbits there is no small divisors problem (once one has realized that no division

by zero occurs after fixing suitably the value of α). Therefore the proof of convergence of the

Lindstedt series becomes trivial if one is not interested in obtaining optimal bounds. Nevertheless,

in order to prove, the bound (3.2) some work is needed. In fact to prove the lower bound in (3.2)

with β = 2 has the same difficulty as to obtain the analogous bound in (3.1): in fact the proof is

essentially the same, as noticed in [11].

To prove that the interpolating functions, corresponding to the periodic orbits with rotation

numbers given by the approximants of a Bryuno number ω, converge to the invariant curve Cε,ω,

one has simply to compare the respective Lindstedt series: this is what is done in [11], to which

we refer for details.

Finally we can consider the case of rotation numbers of the form (2.15).5 Let us start again

by the SSM. The expansion (4.5) and bound (4.18) show that the coefficients u
(k)
ν (ω) of the

conjugating function are well defined for η 6= 0. When η → 0 only the propagators Gℓ correponding

to the lines ℓ with momentum νℓ ∈ qZ (i.e. with scale nℓ = 0) can diverge: so we have the problem

of counting how many such propagators can arise in a given tree ϑ.

It is not difficult to realize that the number of lines with scales n = 0 is bounded by ⌊k/q⌋
(i.e. the highest integer smaller than k/q). To create a line ℓ with scale nℓ = 0 one needs at least

q nodes (recall that each node u carries a mode label νu = 1). Moreover once a line ℓ with nℓ = 0

has been obtained, in order to create another line ℓ1 with nℓ1 = 0, one needs at least other q nodes

whose mode labels add with νℓ contributing to νℓ1 . In conclusion, if k the number of nodes in ϑ,

one needs q nodes for each line on scale n = 0, so that the number of lines on scale n = 0 cannot

be greater than ⌊k/q⌋.
In the case of the SM there is the additional problem of the resonances, in the sense of the

definition (4.16): but each time a resonance is formed, the cancellation mechanism described above

(which trivially extends to the case in which there are more entering lines, provided that one shifts

at least two lines; see [8] for details) assures that the newly created line on scale n = 0 contributes

a small denominator which is in fact compensated. This means that once more that, in order to

have a propagator of order O(η−2) which is not compensated, one needs a cluster T of lines on

5 For simplicity we shall not explicitly consider the case of more general complex rotation numbers tending to

a rational value along a curve in the complex plane non-tangential to the real axis, but this could be easily done,

as discussed in [7, 8].
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scale n = 1 such that νT 6= 0 (i.e. a cluster which is not a resonance), so that the above argument

still applies.

By resuming, the value of a tree of order k can be at most of order O(η−2⌊k/q⌋), so that

a rescaling ε → (2πη)2/qε of the perturbative parameter assures that the rescaled function

u′(α, ε, ω) = u(α, (2πη)2/qε, ω) admits a finite limit ū = ūp/q(α, ε) for η → 0. In fact such a limit

is nonvanishing and solves the differential eqaution (3.7) with vanishing boundary conditions: the

latter statement can be proved by showing that the tree expansions of the limit function and of

the formal solution of the differential equation coincide.

When passing to generalized semistandard and standard maps, the situation becomes a little

more involved, as it is no more true that the nodes u ∈ V (ϑ) can contribute only a mode label νu

with |νu| = 1. Then the above argument can be modified as follows. To create a line ℓ with nℓ = 0

one needs at least r nodes u1, . . . , ur with mode labels νu1
, . . . , νur

such that νu1
+ . . . + νur

= q.

Of course the value of r depends on f and q: for fixed q it is a value r = r∗(f) depending on f .

For instance if q = 3 and f(x) = a sinx + b sin 2x, with a, b nonvanishing constants, one has r = 2

and (say) νu1
= 1, νu2

= 2; the case of the SM is easily recoved as one has r = q and νuj
= 1

for all j = 1, . . . , q in such a case. Coming back to the general case, the rescaling implying the

finiteness of the limit function is ε → (2πη)2/r∗(f); to see that in general the limit function has

in fact (i.e. in the sense of the definition (3.24)) a finite radius of convergence one can reason by

comparison with the case of generalized semistandard maps in the spirit of [25]; see [10].

Note that generically an analytic function f(x) has all the harmonics, so that one can choose

r = 1 and (say) νu1
= q: this implies the last statement of Theorem 5 about the genericity of the

value of r∗(f). In general the search of the right value r0 of r leads to the Diophantine problem

(3.20), as one can easily show (again we refer to [8] for details).

6. Lower bound for the semistandard map

In this section we want to prove the bound

log ρ0(ω) + 2B1(ω) > −C, (6.1)

where

ρ0(ω) =

(

lim sup
k→∞

∣

∣

∣
u

(k)
k (ω)

∣

∣

∣

1/k
)−1

. (6.2)

is the radius of convergence of the conjugating function

u0(α, ε, ω) = ũ(eiαε, ω) =

∞
∑

k=1

u
(k)
k (ω)

(

eiαε
)k

(6.3)

for the SSM. This result was proved in [25]: here we give a proof based on the techniques described

in Section 4. Such a proof is very simple, whereas to extend it to the case of the SM in order to

obtain the lower bound in (3.1) requires a deep analysis of the cancellations between resonances,

and it can be found in [9].

Let us denote by Nn(ϑ) the number of lines ℓ ∈ Λ(ϑ) with scale nℓ = n. Note that, given a tree

ϑ of order k < qn, the properties (5.1) imply that one has Nn(ϑ) = 0.

A basic result which will be used in the proof is the following Davie’s lemma (for the proof see

[25] or [9]): given ν ∈ Z such that ‖ων‖ ≤ 1/4qn, then (1) either ν = 0 or |ν| ≥ qn, and (2) either

|ν| ≥ qn+1/4 or ν ∈ qnZ.

Then we want to prove that, in the case of the SSM, one has

Nn(ϑ) ≤ k

qn
+

8k

qn+1
, (6.4)
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which immediately implies the bound (6.1). In fact (6.4), inserted into (4.14), gives

|Val(ϑ)| ≤
(

1

2

)k ∞
∏

n=0

(Cqn+1)
2Nn(ϑ)

≤
(

C

2

)k

exp

[

2k

∞
∑

n=0

(

log qn+1

qn
+

8 log qn+1

qn+1

)

]

,

(6.5)

where, in the first line, 1/2 is a bound on the node factor Fv (see (4.2)), while Cq2
n+1 is a bound

on the propagator of a line on scale n, with C a constant (see (4.3), (2.13) and (4.13)).

Then the bound (6.2) and the (trivial) bound
∞
∑

n=1

log qn

qn
< D (6.6)

holding for any irrational ω with convergents {pn/qn} and for some (universal) constant D, give6

∣

∣

∣
u

(k)
k (ω)

∣

∣

∣
≤

∑

ϑ∈Tk,k

|Val(ϑ)| ≤ 23k

(

Ce16D

2

)k

e2B1(ω), (6.7)

from which the bound (6.1) follows for the radius of convergence.

So it remains to check the bound (6.4). One can prove inductively on the order k the following

bounds:






Nn(ϑ) = 0, if k < qn,

Nn(ϑ) ≤ 2k

qn
− 1, if k ≥ qn,

(6.8)

for any n ≥ 0, and:






















Nn(ϑ) = 0, if k < qn,

Nn(ϑ) ≤ k

qn
, if qn ≤ k <

qn+1

4
,

Nn(ϑ) ≤ k

qn
+

8k

qn+1
− 1, if k ≥ qn+1

4
,

(6.9)

for qn+1 > 4qn, where k is the order of the tree ϑ. Then (6.8) and (6.9) immediately imply (6.4).

We give explicitly the proof of (6.9), as the proof of (6.8) is easier, and we leave to the reader.

[1] If the root line ℓ of ϑ has scale 6= n, let us denote with ℓ1, . . . , ℓm the lines entering the

last node u0 of ϑ and with ϑ1, . . . , ϑm the subtrees of ϑ whose root lines are those lines. By

construction Nn(ϑ) = Nn(ϑ1) + · · · + Nn(ϑm), so that the bounds (6.9) follow inductively by

noting that for k ≥ qn+1/4 one has 8k/qn+1 − 1 ≥ 1.

[2] If the root line ℓ of ϑ has scale n, then we can reason as follows. Let us denote with ℓ1, . . . , ℓm

the lines on scale ≥ n which are the nearest to the root line of ϑ,7 and let ϑ1, . . . , ϑm be the subtrees

with root lines ℓ1, . . . , ℓm. If m = 0 then (6.9) follows immediately; so let us suppose m ≥ 1.

Then the lines ℓ1, . . . , ℓm are the entering lines of a cluster T (which can degenerate to a single

point) having the root line of ϑ as the exiting line. One has Nn(ϑ) = 1 + Nn(ϑ1) + · · ·+ Nn(ϑm).

In general m̃ subtrees among the m considered have orders ≥ qn+1/4, with 0 ≤ m̃ ≤ m, while the

remaining m0 = m − m̃ have orders < qn+1/4. Let us numerate the subtrees so that the first m̃

have orders ≥ qn+1/4.

Let us distinguish the cases k < qn+1/4 and k ≥ qn+1/4.

6 We use that, for any tree ϑ ∈ Tk,ν , each node u ∈ V (ϑ) carries a mode label νu = 1, so that ν = k and

|Tk,k| ≤ 2k22k. If we used a sharp multiscale decomposition, as in [33, 17, 18], we could have bound the number of

elements in Tk,k with 22k .
7 That is, such that no other line along the paths connecting the lines ℓ1, . . . , ℓm to the root line is on scale

≥ n.
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[2.1] If k < qn+1/4, then m̃ = 0 and each line entering T , by Davie’s lemma has a momentum

which is a multiple of qn and has a scale label n. Therefore the momentum flowing through the

root line is ν = νT + s0qn, for some s0 ∈ Z+, with

νT =
∑

u∈V (T )

νu. (6.10)

Moreover also the root line of ϑ has scale n, by assumption, and momentum ν = sqn for some

s ∈ Z+, by Davie’s lemma, so that νT = (s − s0)qn = s′qn, for some positive integer s′. Then

kT ≥ |νT | ≥ qn, giving:

Nn(ϑ) ≤ 1 +
k1 + · · · + km

qn
≤ 1 +

k − kT

qn
≤ k

qn
, (6.11)

and (6.9) follows.

[2.2] If k ≥ qn+1/4, assume again inductively the bounds (6.9), so that

Nn(ϑ) ≤ 1 +

m̃
∑

j=1

(kj

qn
+

8kj

qn+1
− 1
)

+

m
∑

j=m̃+1

kj

qn
, (6.12)

where kj is the order of the subtree ϑj , j = 1, . . . , m.

[2.2.1] If m̃ ≥ 2, then (6.9) follows immediately.

[2.2.2] If m̃ = 0, then (6.12) gives

Nn(ϑ) ≤ 1 +
k1 + · · · + km

qn
≤ 1 +

k

qn
≤ 8k

qn+1
− 1 +

k

qn
, (6.13)

as we are considering k such that 1 ≤ 8k/qn+1 − 1.

[2.2.3] If m̃ = 1, then (6.12) gives

Nn(ϑ) ≤ 1 +
(k1

qn
+

8k1

qn+1
− 1
)

+

m
∑

j=2

kj

qn
=

k1

qn
+

8k1

qn+1
+

k0

qn
, (6.14)

where k0 = k2 + · · · + km.

[2.2.3.1] If in such case k0 ≥ qn+1/8, then we can bound in (6.14)

k1

qn
+

8k1

qn+1
+

k0

qn
≤ k1 + k0

qn
+

8(k1 + k0)

qn+1
− 8k0

qn+1
≤ k

qn
+

8k

qn+1
− 1, (6.15)

so that (6.9) follows.

[2.2.3.2] If k0 < qn+1/8, then, denoting with ν and ν1 the momenta flowing through the root

line ℓ of ϑ and the root line ℓ1 of ϑ1 respectively, one has

‖ω(ν − ν1)‖ ≤ ‖ων‖ + ‖ων1‖ ≤ 1

4qn
, (6.16)

as both ℓ and ℓ1 are on scale ≥ n (use (4.13)). Then either |ν − ν1| ≥ qn+1/4 or ν − ν1 = s̃qn,

with s̃ ∈ Z+, by Davie’s lemma.

[2.2.3.2.1] If |ν− ν1| ≥ qn+1/4, noting that ν = ν1 + νT + ν0, where ν0 = s0qn (with s0 ∈ Z+ and

|ν0| ≤ k0 < qn+1/8) is the sum of the momenta flowing through the root lines of the m0 subtrees

entering T with orders < qn+1/4 and νT is defined by (6.10), one has

kT ≥ |νT | ≥ |ν − ν1| − |ν0| ≥
qn+1

8
, (6.17)
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so that in (6.14) one can bound

k1

qn
+

8k1

qn+1
+

k0

qn
≤ k − kT

qn
+

8(k − k0 − kT )

qn+1

≤ k

qn
+

8(k − kT )

qn+1
≤ k

qn
+

8k

qn+1
− 1,

(6.18)

so that (6.9) follows again.

[2.2.3.2.2] If ν − ν1 = s̃qn, s̃ ∈ Z+, then

νT = ν − ν1 − ν0 = (s̃ − s0) = sqn, (6.19)

where s ∈ Z+. Then kT ≥ qn, so that in (6.14) one has

k1

qn
+

8k1

qn+1
+

k0

qn
≤ k − kT

qn
− 8k

qn+1
≤ k

qn
− 1 +

8k

qn+1
, (6.20)

so implying (6.9).

This completes the proof of (6.9).

7. Analyticity domains and numerical results

A related problem, quite difficult from the mathematical point of view, is the determination of

the shape of the domains of analyticity of the Lindstedt series in the variables α and ε. While

studying the analyticity in α is quite interesting and some numerical results have been obtained by

various authors (see for instance [42] and [48]; see also [5] for a viewpoint similar to the one taken

here), we shall concentrate here on the study of the analiticity domains on the complex ε-plane.

The existence or not of an invariant curve Cε(ω) – and of quasi-periodic solutions running on

it – for the standard map is related to the existence or not of solutions of the form given by

(2.2), (2.3), with irrational ω. Of course the Lindstedt series (2.6) can diverge, even though the

conjugating function u is still analytic in ε, just as the function f(z) = 1/(1 + z2) is real analytic

for all real values of z, even beyond the radius of convergence of its Taylor series, which is 1. So

another quantity must be introduced to characterize the real value of ε at which a given invariant

curve, of given rotation number ω, breaks: this is called the critical function.

For the standard map, simple symmetry considerations show that positive and negative values

of ε give the same critical function (in absolute value). So we define

εc(ω) = sup{ε′ ≥ 0 : ∀ε′′ < ε′ Cε′′(ω) exists and is analytic }. (7.1)

If we were to consider the GSM, then one would have to distinguish the two cases ε > 0 and ε < 0.

Clearly ρ(ω) ≤ εc(ω), and from the physical point of view it is more interesting εc(ω), which

gives the actual threshold at which the quasiperiodic solution of given rotation number ceases to

exist: ρ(ω), in a sense, is an artifact of the Taylor expansion, which is forced to converge in a disk

and therefore its convergence is obstructed by the singularity nearest to the origin, even though

it may be in the complex ε-plane. The discrepancy between the radius of convergence and the

critical function, in other terms, is determined by the shape of the domains of analyticity in the

complex ε-plane.

A detailed study of the analytic properties of the Lindstedt series is clearly beyond the current

state of the art in the field. We can though perform a numerical study of the Lindstedt series,

and try to derive some information on the nature and shape of its domains of analyticity.

Such information can be obtained by computing numerically the coefficients of the Lindstedt

series for selected, non-trivial values of α, by determining its Padé approximants and by finding
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their poles: this is the standard method used to numerically gain some insight on the nature of

the singularities of analytic functions.

Quite briefly, a Padé approximant of order [N/M ] to a function f(z), analytic in a neighborhood

of the origin, is a rational function P (z)/Q(z), where P (z) and Q(z) are polynomials of degree,

respectively, N and M , such that its first N +M +1 Taylor coefficients coincide with those of f(z).

We do not include here a detailed explanation of the numerical methodology we used, directing

the interested reader to the original papers (in particular [6, 5, 12, 13, 14, 4]) and to the vast

amount of literature available on the theory of Padé approximants (see in particular [2]). We just

limit ourselves to say that to obtain a reasonable reliability of the results, very high precision is

needed in the computation of the coefficients of the Lindstedt series, of the Padé approximants

and in the determination of their poles, especially if the order of the Padé approximants is high.

In practice, we used between 32 and 480 digits for Padé approximants of orders ranging from a

few tens up to 240.

Since [6] and [5], it is believed that the Lindstedt series for the quasi-periodic solutions has

a natural boundary of analyticity on the complex ε-plane, or, in other terms, that its domain

of analyticity is bounded by a continuous curve with dense singularities, obstructing analytic

continuation. This natural boundary appears, numerically, to be independent on α (except of

course in the trivial cases α = 0 and α = π, when the Lindstedt series is identically zero). For the

above mentioned symmetry properties, such a curve must be symmetric with respect both to the

real and imaginary ε-axis. The radius of convergence is then given by the distance of the natural

boundary from the origin, while the critical function is given by its intersection with the positive

real ε-axis.

For the standard map, when ω is the golden mean γ = (
√

5−1)/2 it was found in [6] that there

is indeed a natural boundary, and its shape seems to be circular. Qualitatively, this seems to be

the case for the standard map each time that the continued fraction expansion of the rotation

number has small partial quotients (the best case being then just the golden mean). This implies

that at least approximately for such rotation numbers ω the quantities εc(ω) and ρ(ω) are equal.

It is instead quite interesting to prove for εc(ω) a result analogous to (3.1) for the radius of

convergence, possibily with a different value of β. In particular, a value of β = 1 if often quoted

as a conjecture, like in [49] and [20]. The original motivation for (3.1) was the analogy with

Siegel’s problem [55] quoted in Section 3, in which case Yoccoz [60] proved an analogous result

for Siegel’s radius, with β = 1: the value of β was considered to be the order of the recurrence

defining the dynamics. But soon the numerical works of [49] and [13] showed that actually one

had to distinguish between the two thresholds, as they appear to behave differently as ω tends to

a rational value. This justifies the interest in considering the whole of the domain of analyticity

of u in ε when the rotation number is close to rationals. Notice that until recently a lot of

confusion has arisen by confounding the two different thresholds ρ(ω) and εc(ω), especially since

the semistandard map and Siegel’s problem have just one critical threshold. So if the analogy is

the only motivation for a form of Bryuno’s interpolation for the critical function of the standard

map, it is by no means obvious that the analogy must be with both and not just one threshold.

In [4] the poles of Padé approximants of high order (up to [240/240]) were computed using high

precision arithmetics (up to 480 digits), in the complex ε-plane for the conjugating function u,

when the rotation number is close to selected rational numbers: the distribution of poles in the

complex plane should model the shape of the natural boundary of u in ε.

Before explaining the numerical results, we must give at least an intuitive definition of what

means that an irrational number ω is “close” to a rational p/q: in fact, in a simple metric sense, all

irrationals are arbitrarily close to infinitely many rationals. Given an irrational number ω ∈ [0, 1],

let [0, a1, a2, . . .] be its continued fraction expansion; we shall say that ω is “close” to the rational

number [0, a1, . . . , aN ] if aN+1 is “large”; with this notion of being close, the only way for an
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Figure 7: Poles of the Padé approximant [240/240], ω = [0, 2, 2, 12, 1∞], represented

by squares, and of the Padé approximant [240/240], ω = [0, 2, 10, 1∞], represented

by crosses; both at α = 1.0. Note the 10-lobed and 4-lobed shape of the natural

boundaries, as the rotation numbers are close respectively to 2/5 and 1/2.

irrational number to be really close to all its approximants whould be to have a very rapidly

increasing sequence of partial quotients ak, that is basically not to be a Bryuno number.

In particular, we took sequences of rotation numbers of the form

ωj = [0, a1, . . . , aN , j, 1∞],

which for j large are close, in the sense described above, to the rational p/q = [0, a1, . . . , aN ]

and no others. Note that the “tail” [1∞] assures that the sequence is close to p/q in the sense

used in Section 3, i.e. that we are considering the limit superior of rotation numbers tending to

the rational value p/q. In this case, we see that the domain of analyticity is made of 2q lobes,

separated by 2q lines of singularities, arranged at first approximation as the 2q-th roots of −1:

these are what we call dominant singularities. For example, in Figure 7 we see the poles of the

Padé approximants [240/240], at α = 1, for ω = [0, 2, 10, 1∞] and for ω = [0, 2, 2, 12, 1∞], i.e. close

respectively to 1/2 and 2/5. We clearly see respectively 4 and 10 lobes separated by the same

number of lines of singularities.

If we consider together the plots obtained from a given Padé approximant with the same ro-

tation number ω but varying the value of the angle α, we observe that the shape of the domain

of analyticity is basically the same near the lines of the dominant singularities, while some mi-

nor changes appear elsewhere. As the domain should take into account all values of α we can

superimpose all these plots: for instance for ω = [0, 3, 12, 1∞] we obtain Figure 8. We should

also recall that the dependence on α is expected to be irrelevant for the domain of analyticity of

the full conjugating function u(α, ε, ω), so that, by representing the latter as a rational function

(as it is implicit by using Padé approximants), it is reasonable that a slight dependence becomes

observable.
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Figure 8: Poles of the Padé approximant [240/240], ω = [0, 3, 12, 1∞], for several

values of α. The poles corresponding to α = 1.0 are represented by black circles,

while the other six white indicators (square, triangle, cross, plus, circle and rhombus)

represent the poles corresponding to α = 2, 3, 5, 6, 80, 100. Spurious pole/zero pairs

have not been deleted.

By considering different continued fraction expansions it is possible to see the effect of being

close to two different rational numbers. For example, in Figure 9 we see the poles of the Padé

approximants of order [240/240], at α = 1.0, for ω = [0, 12, 1∞] and for ω = [0, 12∞]: while the

first rotation number can be considered close to 0/1, the second is also close to 1/12. We see

that while for the first only the effect of the dominant singularities is apparent (see the two-lobed

shape of the domain), in the case of the second the two lobes themselves are cut by smaller lines

of singularities, corresponding to 1/12: we call these subdominant singularities. Note that only

the subdominant singularities near the real axis are really detectable in this case, since close to

the imaginary axis they are masked by the deep cuts caused by the dominant singularities. To

see further order of singularities would require much higher order in the Padé approximants, far

beyond our availability of computing power.

To further characterize the nature of the boundary is very difficult at this stage. In fact, these

findings could be explained in several different ways. For example, it could be that all rational

approximants contribute singular lines to the shape of the boundary, which therefore has a fractal

structure that the relatively low order of the Padé approximants is not able to detect. Or just the

first few approximants actually contribute, giving a smooth boundary except for a finite number

of cusps. Or the boundary could actually be completely smooth, and the observed singular lines

are just artifact of the Padé approximants method due to the presence of branch points inside the

domain of analyticity. While we tend to unbalance ourselves toward the second hypothesis, none

of the three can be ruled out. To set the question from the numerical point of view would require

moreover far too many computing resources to be feasible.
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Figure 9: On the left, poles of the Padé approximant [240/240], ω = [0, 10, 1∞], and

on the right, Poles of the Padé approximant [240/240], ω = [0, 10∞]; both at α = 1.

Note the presence of the subdominant singularities in the second graph.

A much harder problem, even from the numerical point of view, is to derive as precise results

for the critical function εc(ω) as for the radius of convergence ρ(ω). Currently in fact the only

methods we can use to compute numerically the critical function are the above mentioned Padé

approximant method, the frequency map method, and Greene’s method. All three bear some

difficulty, and moreover they share a common problem, that is the need to use high precision

arithmetic to make the computations when ω is close enough to a rational value.

In particular, one would like to check the conjecture that

|log εc(ω) + βcB1(ω)| ≤ C, (7.2)

for some constant C and some value of βc: the common hypothesis is βc = 1.

The frequency map method, due to Laskar [45], has been used to compute the critical function

for the standard map by Carletti and Laskar [20]. We refer the reader to their article for further

details on the method and the results. We note only a few points. First, the frequency map method

does not give estimates of εc(ω) for given values of ω, but rather gives the “inverse function”: that

is, it estimates those values of ω for which an invariant curve with the given value of ε exists. In this

way, we lose control on the arithmetic properties of the rotation numbers which we are considering,

since they are known only within a numerical error. Secondly, also this method faces a precision

problem: as explained in [20], the closer one gets to a rational number, the larger becomes the

number of digits necessary for the intermediate calculations. In fact, they have reached as close

as 1/4000 from the rational values (according to their tables). Note that the results published by

[20] appear to confirm (7.2) with βc = 1 with a relative error of the order of up to 10%, so it is

necessary to consider more “singular” rotation numbers to get better results.

The above described Padé method permits the computation of the critical function by looking

at the intersection of the natural boundary with the real ε-axis. But a problem arises here too:

in fact, the shape of the natural boundary is very well modeled around the dominant singularities

(that is, the poles of the Padé approximants tend to accumulate near such singularities) and the

closer one gets to the rational value for the rotation number, the stronger such a phenomenon

is; so if one gets really close to p/q, one shall see basically only the contribution of the dominant

singularities, with the rest of the boundary approximated by just a few scattered points, hiding

all structure. To overcome this phenomenon, one should use very high order Padé approximants,

and therefore very high precision in the arithmetic: this implies very long computing times and a

very large memory requirement for the computer. Moreover, to compute the roots of polynomials
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of very high degree, with very large coefficients as it turns out to be the case, is quite a difficult

task from the point of view of the numerical analysis. Practically, all these difficulties make it

unfeasible with current technology to go much beyond Padé approximants of order in the range

of a couple of hundreds, which gives us quite unreliable estimates of the critical function already

for rotation numbers like ω = [0, 50, 1∞].

Apparently the best method so far to compute the critical function for given rotation numbers

is Greene’s method [41], which consists in considering the stable periodic orbits with the rational

approximants pk/qk of ω as rotation numbers, and looking at the values εk at which they lose

stability: according to a conjecture by Greene [41], such values should tend to the critical function

εc(ω) as k tends to infinity. In other words, the breakdown of an invariant curve with given

irrational rotation number comes with the loss of stability of the nearby periodic orbits, whose

period is a (high order) approximant of the rotation number of the curve. We do not enter here

in the details of the practical implementation of the method; we note however that also Greene’s

method needs high precision arithmetic to be of practical value when ω is very close to a rational

number. In fact, the stability or not of a given periodic orbit is decided by looking upon the trace

of the tangent dynamics along the orbit, that is, if (xi, yi), i = 1, . . . , q, is the periodic orbit,

T = tr

q
∏

i=1

[

1 + ε cosxi 1

ε cosxi 1

]

. (7.3)

Now, it turns out that, when the periodic orbit has a rotation number p/q which is a high order

approximant of a rotation number close to a rational p′/q′ (that is, practically, when p/q ≈ p′/q′,

q′ ≪ q), then the diagonal elements of the product matrix are two very large numbers, almost equal

in absolute value and with opposite sign; this numerical instability can be defeated trivially, but

effectively, using enough precision in the calculation of the coefficients of the product matrix. In

this way, using up to a few hundred digits of precision and a few days of computer time on a DEC

Alpha processor, we could compute the critical threshold for rotation numbers up to [0, 50000, 1∞].

The amount of data we have collected so far does not give us yet a clear result on the validity of

(7.2) and in particular of the value of βc, so we refer the reader to a forthcoming paper.

8. Final remarks

As we have now seen, after more than 20 years the standard map (and its generalizations) still

present us with deep and challenging problems. While some of the facts previously only numerically

observed or conjectured have been now proved – for example the scaling of the radius of convergence

or Bryuno’s interpolation for the radius of convergence of the Lindstedt series for the standard

map – most of the other problems must still be considered as open.

Of course, the first problem that comes to mind is the proof of the existence of a natural

boundary of analyticity for the Lindstedt series of the standard map and the generalized standard

map. The fact that generically the shape is quite far from circular just shows that the problem is

quite hard, and no established techniques exist to address it.

The only general rigorous result on the analyticity domain of the Lindstedt series for the SM

concerns the radius of convergence (see theorem 1 in Section 3). In [20], by using also results by

Treshchëv and Zubelevich [57], some rigorous information is provided for the critical function for

rotation numbers close to the fundamental resonance ω = 0. But we lack of a complete description

of the analyticty domain, and for general rotation numbers no result exists about the possibility of

interpolating (or not) the value of the critical function through the Bryuno function (see also the

conjecture discussed in Section 7). Notice that for what matters both the shape of the analyticity
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domains and the interpolation of the critical function in terms of the Bryuno’s function there is a

lack of understanding even at the level of the numerical analysis.

Even for the radius of convergence, rigorous results stop at the SM. We do not know, for ex-

ample, if the radius of convergence has an interpolation formula in the case of the GSM. Actually,

the results stated in theorem 5 suggest that no interpolation formula like (3.1) holds for general

perturbations in (2.16); however one could ask if some other interpolation formula (i.e. in terms

of some other function than the Bryuno function, or anything else) could be possible. Less am-

bitiously one could ask simply if it is possible to obtain an optimal bound representing both an

upper and a lower bound. It could be interesting to investigate such a possibility in concrete

examples (as a trigonometric polynomial with two harmonics).

Finally, we remark that, as noted in Sections 3 and 7 if we take the limit ω → p/q for the rescaled

function ū on the reals along some particular sequence of Bryuno numbers, we find numerically

the same results as considering the limit from the complex ω-plane. It should be interesting to

have a mathematical explaination for such a fact.
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[53] H. Poincaré: Les méthodes nouvelles de la mécanique céleste, Gauthier-Villars, Paris, Vol. I, 1892, Vol. II,

1893, and Vol. III, 1899.

[54] W.M. Schmidt: Diophantine approximation, Lecture Notes in Mathematics 785, Springer, Berlin, 1980.

[55] C.L. Siegel: Iterations of analytic functions, Ann. of Math. 43 (1943), no. 4, 607–612.

[56] C.L. Siegel, J.K. Moser: Lectures on celestial mechanics, Die Grundlehren der mathematischen Wissenschaften

Vol. 187, Springer, New York-Heidelberg, 1971.
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