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∗ Dipartimento di Matematica, Università di Roma “Tor Vergata”, Roma, I-00133, Italy
† Dipartimento di Matematica, Università di Roma Tre, Roma, I-00146, Italy

Abstract. We consider both periodic and quasi-periodic solutions for

the standard map, and we study the corresponding conjugating func-

tions, i.e. the functions conjugating the motions to trivial rotations.

We compare the invariant curves with rotation numbers ω satisfying

the Bryuno condition and the sequences of periodic orbits with rotation

numbers given by their convergents ωN = pN/qN . We prove the follow-

ing results for N → ∞: (1) for rotation numbers ωN we study the radius

of convergence of the conjugating functions and we find lower bounds on

them, which tend to a limit which is a lower bound on the corresponding

quantity for ω; (2) the periodic orbits consist of points which are more

and more close to the invariant curve with rotation number ω; (3) such

orbits lie on analytical curves which tend uniformly to the invariant

curve.

1. Introduction

Recently a new approach to KAM theory has been introduced in [1], based directly on the study

of the perturbative series (Lindstedt series), and without using the standard rapidly convergent

iterative procedure.

Here we follow such an approach (in the Renormalization Group interpretation given by [2] and

developed in a series of subsequent papers; see [3] for a list of references), and unify the analysis

for periodic and quasi-periodic motions of the standard map.

The standard map is a rather special system, introduced in [4] and [5], which shows a non-

trivial dynamical behaviour and is, at the same time, simple enough to avoid any useless technical

intricacies. The method we use should be extended to more general systems: the analysis may

become a little more involved, but we think that no extra conceptual difficulties should arise (see

[6] for a review of these techniques in a more general context). But, for clarity purposes, we prefer

to confine ourselves to a simpler model.

We shall be interested in the relation between the KAM invariant curves (on which the motion

is quasi-periodic) and the periodic orbits corresponding to rotation numbers tending to those of

the invariant curves. When the perturbation is switched on, it is well known that the invariant

curves with rational rotation number disappear, but some trace of them is left: there are curves,

which can be interpreted as remnants (or ‘ghosts’) of the unperturbed invariant curves, on which

the points of the periodic orbits have support: we can still define a conjugating function, i.e. a

function which conjugates the motion to a trivial rotation, with the only difference that now the

initial phase has to be fixed to an appropriate value. Even more we can consider functions which

parametrize the remnants and which reduce to the conjugating functions in correspondence with
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the points of the periodic orbits: we shall refer to them as the interpolating functions. For rotation

numbers ωN tending to the rotation number ω of a surviving invariant curve along the sequence

of best approximants (convergents), the remnants are “analytically close” to the invariant curve

itself. By “analytically close” we mean that the interpolating functions which define such remnants

are analytic and converge uniformly to the (analytic) conjugating function for the corresponding

invariant curve: a trivial application of the Cauchy formulae for the derivatives of analytic functions

shows then that also the derivatives converge uniformly to the derivatives of the conjugating

function of the invariant curve; the convergence therefore happens in quite a strong sense. The

precise statements, with the proper setup of the domains of convergence, will be given later as it

requires to establish first some definitions.

The relation between periodic and quasi-periodic orbits can be studied also through variational

methods, [7]: we think that the interest of our approach relies mostly on the possibility to have

an accurate knowledge of the conjugating functions, in particular of their analyticity properties,

and to obtain estimates which depend optimally on the involved parameters – in our case on the

rotation numbers. We shall be able to provide lower bounds on the radius of convergence of the

conjugating functions (in terms of a “truncated” Bryuno function), which are the analogue of what

we found in [8] for the conjugating function of the quasi-periodic motions.

Of course it is known that, while the invariant curves “break” at a certain critical threshold, pe-

riodic orbits persist for all real values of the perturbative parameter (see [9]). However singularities

arise in the complex plane, and our analysis, together with the numerical results in [10], suggests

that, for rotation numbers tending to a Bryuno number along the sequence of the convergents,

the singularities of the conjugating functions of the corresponding periodic orbits tend to build up

the “natural boundary” (of the analyticity domain) for the conjugating function of the invariant

curve with that Bryuno number. We remark that so far the existence of such a natural boundary

is only a numerical result and no rigorous proof has been given. This connection between analyt-

icity properties of the conjugating functions is a point which – we think – should deserve further

investigation, as it relates to the so-called “Greene’s method” to determine numerically the critical

threshold and it would help to understand the mechanism of the breakup of the invariant curve

itself.

The plan of the paper is as follows. In Section 2 we recall the definition of the standard map and

of the Bryuno function, by introducing a natural extension of the latter to rational numbers. In

Section 3 we discuss the existence and the analyticity of periodic solutions; in particular we provide

lower bounds on the radius of convergence of the conjugating function. In Section 4 we consider a

Bryuno number ω and the sequence of its convergents ωN , we compare the periodic solutions with

rotation numbers ωN with the quasi-periodic solution with rotation number ω, and we state our

main result, so making formally more precise the notion of analytical closeness introduced above.

The proof of the theorems is achieved in the remaining Sections 5, 6 and 7. We assume that the

reader is familiar with the techniques and results of [8], which we rely heavily on.

2. The standard map

2.1. The standard map. The standard map is a discrete one-dimensional dynamical system gene-

rated by the iteration of the symplectic map of the cylinder to itself, Tε : T × R → T × R, given

by

Tε :

{

x′ = x + y + ε sin x,
y′ = y + ε sinx.

(2.1)

We look for a change of variables of the form
{

x = α + u(α, ε, ω),
y = 2πω + v(α, ε, ω),

(2.2)
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such that the dynamics in the α variable is a trivial rotation

α′ = α + 2πω, (2.3)

where ω ∈ [0, 1] is called the rotation number.

One immediately checks that the function v(α, ε, ω) is related to the function u(α, ε, ω) by

v(α, ε, ω) = u(α, ε, ω) − u(α − 2πω, ε, ω), (2.4)

while u(α, ε, ω) is a solution of the functional equation

(Dωu) (α, ε, ω) ≡ u(α + 2πω, ε, ω) + u(α − 2πω, ε, ω) − 2u(α, ε, ω) = ε sin (α + u(α, ε, ω)) . (2.5)

We shall call u = u(α, ε, ω) the conjugating function.

2.2. Continuous fraction expansion. For any ω ∈ [0, 1] let us write ω = [0, a1, a2, a3, . . .], where

{an} are the partial quotients of ω and call {ωn} ≡ {pn/qn} the sequence of convergents of ω, [11].

If ω ∈ Q ∩ [0, 1], i.e. ω = p/q, with p ≤ q and gcd(p, q) = 1, then there exists N = N(ω)

such that ω = [0, a1, a2, a3, . . . , aN ], i.e. such that aN+1 = ∞: in such a case the sequence

of convergents is finite and the last one is given by pN/qN = p/q. We can eliminate a trivial

ambiguity by requesting that aN > 1; in the following, though, we shall be interested essentially

in given sequences of convergents, so that the problem does not arise. For such rational ω define

B1(ω) =

N−1
∑

n=0

log qn+1

qn
. (2.6)

For any ω ∈ [0, 1] ∩ R \ Q define

B1(ω) =
∞
∑

n=0

log qn+1

qn
, (2.7)

and define ω a Bryuno number if it is irrational and B1(ω) < ∞; the latter is called the Bryuno

condition. With a slight abuse of notation we shall call B1(ω) the Bryuno function (see [12]); by

analogy we shall define (2.6) the truncated Bryuno function of the rational number ω.

If ω is a Bryuno number then there exists a solution of the form (2.2), (2.3), with u, v analytic

in α, ε, for ε small enough, and 2π-periodic in α; for the more restrictive Diophantine condition

on ω, this follows from the standard KAM theorem. A more formal statement, which will be used

later on, is the following.

2.3. Theorem. Let ω ∈ (0, 1) be a Bryuno number. Then there exists ρ(ω) > 0 such that there

exists a solution of the form (2.2), (2.3), with u(α, ε, ω) periodic in α ∈ T and analytic in ε for

|ε| < ρ(ω). There exists a positive constant C such that

|log ρ(ω) + 2B1(ω)| < C, (2.8)

uniformly in ω.

2.4. Comments. The proof of the existence of the invariant curve with rotation numbers satisfying

a Diophantine condition is standard, and can be found in any textbook about KAM theory; for

instance see [13]. The proof in the case of Bryuno numbers and the explicit derivation of the bound

(2.8) are given in [14] and [8].
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If ω = p/q is rational then the functional equation (2.5) admits no solution; however we shall see

in Section 3 that it is possible to fix α = α0 in such a way that x0 = α0 + u(α0, ε, ω) is the initial

datum of a periodic solution with period 2πp, i.e. such that

u(α0 + 2πp) = u(α0). (2.9)

This means that, after q iterates of the dynamics, the variable α has been shifted by 2πp, so that

the variables (x, y) have come back to their original values (x0, y0), up to a shift by 2πp in the

x-direction.

2.5. Remark. Note that, if ω is a Bryuno number, and {ωN} are the convergents of ω, then

lim
N→∞

B1(ωN ) = B1(ω). (2.10)

Note also that B1(ω) is still divergent on irrational, non-Bryuno numbers. It would actually be

interesting to study the sequence of periodic orbits corresponding to such numbers, to understand

the mechanism of divergence of Lindstedt series when the Bryuno condition is violated.

3. Periodic solutions for the standard map

3.1. Periodic solutions. When ω is a Bryuno number, it is well known that a quasi-periodic

solution with rotation number ω exists: the orbit is a smooth curve, and the trajectory is dense on

it (see e.g. [15], and [8] for estimates on the radius of convergence which depend optimally on the

rotation number). In the periodic case the trajectory consists in a finite number of points which

can be interpolated through a smooth curve in a rather arbitrary way: we shall look for a precise

interpolating curve and show that, for rotation numbers of the form ωN = pN/qN , where ωN are

the convergents of the Bryuno number ω, the corresponding curves tend to the invariant KAM

curve with rotation number ω.

Fix ω = p/q and, for any 2π-periodic function,

f(α) =
∑

ν∈Z

eiναf̂ν , (3.1)

write
f(α) = f̄(α) + f̃(α),

f̄(α) =
∑

ν∈Z\qZ

eiναf̂ν , f̃(α) =
∑

ν∈qZ

eiναf̂ν . (3.2)

Note that, in Fourier space,

(Dωf) (α) =
∑

ν∈Z

eiναγ(ων) f̂ν, γ(ων) = 2 [cos(2πων) − 1] = 2 [cos(2πpν/q) − 1] , (3.3)

so that (Dω f̃)(α) = 0.

Then we can write

{

u(α, ε, ω) = ū(α, ε, ω) + ũ(α, ε, ω),
ε sin(α + u(α, ε, ω)) ≡ S(α, ε, ω) = S̄(α, ε, ω) + S̃(α, ε, ω),

(3.4)

so that (2.5) becomes

(Dωū) (α, ε, ω) ≡ S̄(α, ε, ω) + S̃(α, ε, ω). (3.5)
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We write also, formally, u, S as power series in ε, so that

u(α, ε, ω) =

∞
∑

k=1

εku(k)(α, ω) =
∑

ν∈Z

eiναûν(ε, ω) =

∞
∑

k=1

εk
∑

ν∈Z

eiναû(k)
ν (ω),

S(α, ε, ω) =
∞
∑

k=1

εkS(k)(α, ω) =
∑

ν∈Z

eiναŜν(ε, ω) =
∞
∑

k=1

εk
∑

ν∈Z

eiναŜ(k)
ν (ω),

(3.6)

so defining the Taylor-Fourier coefficients û
(k)
ν (ω) and Ŝ

(k)
ν (ω).

Then, to all perturbative orders k, (3.5) gives two equations:

(Dωū(k))(α, ω) = S̄(k)(α, ω),

0 = S̃(k)(α, ω).
(3.7)

Note that for k > 1 we can express S(k)(α, ω) in terms of all u(k′)(α, ω) with k′ < k. In fact one

has

S(k)(α, ω) = −
∞
∑

m=1

∑

k1,...,km≥1

k1+...+km=k−1

1

m!

(

∂m+1

∂αm+1
cosα

)

u(k1)(α, ω) . . . u(km)(α, ω). (3.8)

3.2. Lemma. If the functions u, S are formally well defined, they have to be odd in α.

3.3. Proof of the lemma 3.2. First of all note that the operator Dω is even. Then the proof is by

induction on k. For k = 1 one has

S(1)(α, ω) = sinα, u(1)(α, ω) = (D−1
ω S(1))(α, ω), (3.9)

which are obviously odd. If all functions u(k′)(α, ω) are odd for k′ < k then, by (3.8), one has for

k > 1

S(k)(−α, ω) = −
∞
∑

m=1

∑

k1,...,km

1

m!

(

∂m+1

∂βm+1
cosβ

)∣

∣

∣

∣

β=−α

u(k1)(−α, ω) . . . u(km)(−α, ω)

= (−1)m+1+mS(k)(α, ω) = −S(k)(α, ω),

(3.10)

so that S(k)(α, ω) is odd; then also u(k)(α, ω) is odd.

3.4. Corollary. The functions (3.6), if formally existing, can be written as

u(α, ε, ω) =
∑

ν∈N

2iûν(ε, ω) sin να =

∞
∑

k=1

εk
∑

ν∈N

2iû(k)
ν (ω) sin να,

S(α, ε, ω) =
∑

ν∈N

2iŜν(ε, ω) sin να =
∞
∑

k=1

εk
∑

ν∈N

2iŜ(k)
ν (ω) sin να.

(3.11)

3.5. Lemma. In (3.6) one has |ν| ≤ k; in other words one has û
(k)
ν (ω) = 0 for |ν| > k.

3.6. Proof of the lemma 3.5. From (3.9) one obtains ν = ±1 for k = 1. Suppose that for all k′ < k

one has û
(k′)
ν (ω) = 0 when |ν| > k′: then (3.8) gives

Ŝ(k)
ν (ω) = −

∞
∑

m=1

∑

k1,...,km
k1+...+km=k−1

∑

ν0,ν1,...,νm
ν0+ν1+...+νm=ν

[(

(iν0)
m+1

m!2

)

û(k1)
ν1

(ω) . . . û(km)
νm

(ω)

]

, (3.12)
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where ν0 = ±1, so that |ν| ≤ |ν0| + |ν1| + . . . + |νm| ≤ 1 + (k1 + . . . + km) ≤ k.

3.7. Lemma. There exists α0 such that one has formally S̃(α0, ε, ω) = ũ(α0, ε, ω) = 0, while

S̄(α0, ε, ω) and ū(α0, ε, ω) are formally well defined.

3.8. Proof of the lemma 3.7. From (3.6) and (3.11) one has that, if S̃(k)(α0, ω) exists formally,

then

S̃(k)(α0, ω) =
∑

ν∈qN

2iŜ(k)
ν (ω) sin να0 = 0, (3.13)

if we fix α = α0 such that

sin qα0 = 0. (3.14)

Then we can check by induction that the functions u(k)(α, ω) and S(k)(α, ω) are well defined for

α = α0. By the lemma 3.5 one has S̃(k)(α, ω) = ũ(k)(α, ω) = 0 for all α when k < q. Moreover

S̄(k)(α, ω) and ū(k)(α, ω) are well defined for all α when k < q as γ(ων) 6= 0 for |ν| < q; for k = q

one has from (3.12)

Ŝ(q)
ν (ω) = −

∞
∑

m=1

∑

k1,...,km
k1+...+km=q−1

∑

ν0,ν1,...,νm
ν0+ν1+...+νm=ν

[(

(iν0)
m+1

m!2

)

û(k1)
ν1

(ω) . . . û(km)
νm

(ω)

]

, (3.15)

where ν0 = ±1. By (3.15) also S̃(q)(α, ω) is well defined and, by (3.13) and (3.14), one has

S̃(q)(α0, ω) = 0. Therefore (3.7) can be solved for k = q and the coefficients û
(q)
q (ω) are arbitrary,

as (3.3) shows. Moreover by (3.11) and (3.14) one has ũ(q)(α0, ω) = 0.

Then suppose that the coefficients û
(k′)
ν (ω) are well defined for all k′ < k and are arbitrarily

chosen for ν ∈ qZ: then we can show that also the coefficients û
(k)
ν (ω) are formally well defined.

This follows again from (3.12), which shows that Ŝ
(k)
ν (ω) is well defined for all ν. Then if ν /∈ qZ

one has

û(k)
ν (ω) =

1

γ(ων)
Ŝ(k)

ν (ω), (3.16)

by the first equation in (3.7), so that also û
(k)
ν (ω) is well defined for ν /∈ qZ.

Moreover if we sum together all Fourier components with ν ∈ qZ and we use (3.11) and (3.15) we

see that in the second equation of (3.7) one has S̃(k)(α, ω) = 0, so that both equations in (3.7) are

formally soluble and the coefficients û
(k)
ν (ω), with ν ∈ qZ, can be arbitrarily fixed: independently

of their values one has ũ(k)(α0, ω) = 0 by (3.14).

3.9. Remark. The proof of lemma yields, through (3.14), that there are 2q values of α0 in [0, 2π)

such that there exists a formal 2π-periodic solution of (3.5):

α0 ∈ A(ω) ≡

{

πk

q
: k = 0, 1, 2, . . . , 2q − 1

}

. (3.17)

As in the variable α the dynamics is a rotation by 2π/q (see (3.3)), we see that such values of

α0 correspond to two distinct (formal) periodic orbits: one easily checks that, for ε small enough,

such orbits are one linearly stable and one unstable.

3.10. Corollary. In order that the function u(α0, ε, ω) be formally well defined, for all ν ∈ qZ

the coefficients û
(k)
ν (ω) can be chosen as arbitrary constants c

(k)
ν ; in particular they can be chosen

as identically vanishing.

3.11. Remark. At a formal level, by choosing the initial datum α0 in the set A(ω) given by (3.17),

we see that the corresponding trajectory turns out to be a periodic solution of the equation of
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motion, of the form (3.2), with

u(α0, ε, ω) ≡ ū(α0, ε, ω) =
∑

ν∈Z\qZ

eiνα0 ûν(ε, ω) =
∞
∑

k=1

εk
∑

ν∈Z\qZ

eiνα0 û(k)
ν (ω). (3.18)

Of course we are left with the problem of proving the convergence of the series (3.18).

3.12. Theorem. Let ω = p/q be a rational number in [0, 1], with gcd(p, q) = 1. Then there exists

ρ(ω) > 0 such that the 2πp-periodic solutions of the form (3.18) are analytic in ε for |ε| < ρ(ω).

One has

log ρ(ω) + 2B1(ω) > −C, (3.19)

for some universal positive constant C, if B1(ω) is the truncated Bryuno function (3.6).

3.13. About the proof of the theorem 3.12. The actual proof consists in proving that the function

u(α, ε, ω) ≡ ū(α, ε, ω) =
∑

ν∈Z\qZ

eiναûν(ε, ω) =

∞
∑

k=1

εk
∑

ν∈Z\qZ

eiναû(k)
ν (ω), (3.20)

is analytic in (α, ε) ∈ D, where

D =
{

(ε, α) ∈ C
2

: |ε| < ρ , |Im a| < ξ with eξρ < Ce−2B1(ω)
}

, (3.21)

for some universal constant C. For α ∈ A(ω) the function (3.20) interpolates the set of points

(3.18), hence the periodic orbits.

The proof of analyticity of (3.20) in the domain D proceeds exactly as the analogous proof of [8].

Instead of giving the full proof ex novo (which would be essentially a repetition of [8]), we assume

the reader to be familiar with [8] and we confine ourselves to stress the (few) points in which there

is a difference between the case of rational numbers and the case of Bryuno numbers: this will be

done in Section 6.

3.14. Remarks. (1) By taking into account the Corollary 3.10 we can rewrite (3.20) as

u(α, ε, ω) ≡ ū(α, ε, ω) =
∑

ν∈Z

eiναûν(ε, ω) =

∞
∑

k=1

εk
∑

ν∈Z

eiναû(k)
ν (ω), (3.22)

as ûν(ε, ω) = 0 for ν such that ν ∈ qZ. We shall call (3.22) the interpolating function for the

periodic solutions with rotation number ω.

(2) The above result gives a lower bound on the radius of convergence of the function (3.18). It

would be interesting to see if the radius of convergence admits also an upper bound of the same

kind (analogously to what happens in the case of quasi-periodic solutions): the numerical results

of [10] suggest that this is the case. [Note that such an upper bound could be easily obtained for

the interpolating functions (3.22) by reasoning as in [14].]

(3) For α 6= α0 the function (3.20) does not describe anymore a periodic solution of the equation

of motion: it is simply a 2π-periodic analytic function which is equal to the solution only when

α = α0, with α0 satisfying (3.9), i.e. with α0 ∈ A(ω): we call remnant the curve described by such

a function.
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4. Periodic and quasi-periodic solutions

4.1. Tree formalism. We refer to [16] and [8] for the a detailed description about the definition

and properties of trees. Here we confine ourselves to recall the basic notations, in order to have a

self-consistent discussion.

A tree θ consists of a family of k lines arranged to connect a partially ordered set of points called

nodes, with the lower nodes to the right. All the lines have two nodes at their extremes, except

the highest which has only one node, the last node u0 of the tree (which is the leftmost one); the

other extreme r will be called the root of the tree and it will not be regarded as a node.

We denote by � the partial ordering relation between nodes: given two nodes u1 and u2, we say

that u2 � u1 if u1 is along the path of lines connecting u2 to the root r of the tree (they could

coincide: we say that u2 ≺ u1 if they do not).

Each line carries an arrow pointing from the node u to the right to the node u′ to the left (i.e.

directed toward the root): we say that the line exits from u and enters u′, and we write u′
0 = r

even if, strictly speaking, r is not a node. For each node there are only one exiting line and mu ≥ 0

entering ones; as there is a one-to-one correspondence between nodes and lines, we can associate

to each node u a line ℓu exiting from it. The line ℓu0
connecting the node u0 to the root r will be

called the root line. Note that each line ℓu can be considered the root line of the subtree consisting

of the nodes satisfying w � u and of the lines connecting them: u′ will be the root of such subtree.

The order k of the tree is defined as the number of nodes of the tree.

To each node u ∈ θ we associate a mode label νu = ±1, and define the momentum flowing through

the line ℓu as

νℓu
=

∑

w�u

νw, νw = ±1. (4.1)

Let us denote by T 0
ν,k the set of all trees of order k (i.e. with k nodes) and with momentum ν

flowing through the root line (total momentum), and by V (θ) and Λ(θ), respectively, the set of

nodes and the set of lines of the tree θ.

4.2. Lemma. Let ω ∈ [0, 1] and let u(α, ε, ω) be a formal solution of the functional equation (3.5);

for ω ∈ Q one takes α = α0 ∈ A(ω), while for ω a Bryuno number α varies in [0, 2π]. Then one

has

û(k)
ν (ω) =

1

2k

∑

θ∈T 0
ν,k

Val(θ, ω), Val(θ, ω) = −i





∏

u∈V (θ)

νmu+1
u

mu!









∏

ℓ∈Λ(θ)

g(ωνℓ)



 , (4.2)

where

g(ων) =
1

γ(ωνℓ)
, γ(ων) = 2 [cos(2πων) − 1] . (4.3)

is the propagator associated to the line ℓ.

4.3. About the proof of the lemma 4.2. The proof is iterative and it is left as an (easy) exercise to

the reader. [See [16] for details.]

4.4. Lemma. For any tree θ and for any line ℓ ∈ Λ(θ) one has γ(ωνℓ) 6= 0.

4.5. Proof of the lemma 4.4. For ω a Bryuno number the proof reduces to show that νℓ 6= 0, and

it is given in [17], Section 3 (in a more general situation), while for ω a rational number the proof

is a consequence of the discussion in §3. In fact, as noted in §4.1, each line ℓ can be considered

the root line of the subtree θ′ formed by the nodes and lines preceding ℓ. If k′ is the number of

nodes of such a subtree and ν′ is the momentum flowing through the line ℓ, then the value of such
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a subtree contributes to û
(k′)
ν′ (ω): the sum of the values Val(θ′′, ω) of all subtrees θ′′ ∈ T 0

ν′,k′ gives

exactly û
(k′)
ν′ (ω). By the Corollary 3.10, when ω = p/q, no line with ν ∈ qZ can arise, so that,

as γ(ων) = 0 if and only if ν ∈ qZ, the assertion follows. [Note that even if we did not choose

the coefficients û
(k′)
ν′ (ω) as vanishing, they would be simply some constants c

(k)
ν′ not involving any

denominator γ(ων′).]

4.6. Lemma. Let ω ∈ [0, 1] be either a rational number or a Bryuno number. Let û
(k)
ν (ω) be

defined as in (4.2). Then there exists a positive constant D such that one has

∣

∣

∣û(k)
ν (ω)

∣

∣

∣ ≤ Dke2kB1(ω), (4.4)

where B1(ω) is given by (2.7) if ω is a Bryuno number and by (2.6) if ω is rational.

4.7. About the proof of the lemma. The proof of such a result can be obtained by reasoning as in

[8], and it implies the lower bound in (3.19) of the theorem 3.12; see Section 6 below.

4.8. Remark. The result (4.4) is essentially an intermediate step toward the theorem 3.12: we

have stated it explicitly as in that form it will be useful in proving the forthcoming theorem (and

it will be exploited in Section 5).

4.9. Remark. If we take ω = 1/q, with q ∈ N, then (4.4) reduces to |û
(k)
ν (1/q)| ≤ cq2k: such a

(trivial) bound could be obtained without any effort simply by noting that any tree to order k has

k propagators which can be bounded by a constant times q2, so that we obtain for the radius of

convergence the bound ρ(1/q) > cq−2 (for some positive constant c), which is a particular case of

the theorem 3.12.

4.10. Theorem. Let ω be a Bryuno number; if {ωN} are the convergents of ω, denote by

uN ≡ u(α, ε, ωN) the functions interpolating the periodic solutions with rotation number ωN as

given by (3.22), and by u ≡ u(α, ε, ω) the quasi-periodic solution with rotation number ω. Then

there exist two positive constants ρ0 and β, such that the sequence {uN} converges to the function

u, uniformly for |ε| < ρ0e
−βB1(ω); one can choose β = 2.

4.11. Proof of the theorem 4.10. See the next Section 5.

4.12. Conclusions. The theorem 4.10 is our main analytical result. It implies that there is a

neighborhood of the origin (in the complex ε-plane) in which the limit u∞ of the functions uN

exists and coincides with the quasi-periodic solution u. Note that we are heavily using that the

sizes of the domains of analyticity of the interpolating functions for ωN and for the conjugating

function for ω admit the same estimates, as it follows from the discussion in §3.13 and from the

trivial remark 3.4.

For the uniqueness of the analytical continuation, [18], we can deduce that the functions u∞ and

u have the same analyticity domains in ε: in particular this implies that u∞ can be extended to

the overall analyticity domain of the quasi-periodic solution u, and it coincides with u over there.

By trivial complex-variables arguments, the uniform convergence of the sequence of functions

uN to u implies also that all their derivatives converge uniformly (in α and ε): in this sense we

say that the sequence of remnants is “analytical close” to the invariant curve.

Note that the periodic orbits consist of a finite number of points, whose number grows as ωN →
ω. Then the content of the theorem 4.10 is the following: for any fixed N such points can be

interpolated through a smooth curve which tends (in the analytical way explained above) to the

invariant curve corresponding to the quasi-periodic solution with rotation number ω.
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Concerning what happens when ω is a Liouville number not satisfying the Bryuno condition,

there are two issues that could be addressed. First one can ask if there is something analogous to

the remnants seen in the case of rational rotation numbers. Secondly it would be interesting to

understand what happens to the sequence of periodic orbits corresponding to the convergents of

such a Liouville number.

5. Proof of the theorem 4.10

5.1. Scales. As in [8] we can introduce a C∞ partition of unity by defining a set of functions χn(x)

for x ∈ R+ and n ∈ N in the following way.

Let χ(x) be a C∞ non-decreasing compact-support function defined on R+ such that

χ(x) =

{

1, for x ≤ 1 ,
0, for x ≥ 2 ,

(5.1)

and define
{

χ0(x) = 1 − χ(96q1x),
χn(x) = χ(96qnx) − χ(96qn+1x), for n ≥ 1 ;

(5.2)

we shall come back in Section 6 to the meaning of the numerical values of the constants appearing

in (5.1) and (5.2). Then for each line ℓ set

g(ωνℓ) ≡
1

γ(ωνℓ)
=

∞
∑

n=0

χn(‖ωνℓ‖)

γ(ωνℓ)
≡

∞
∑

n=0

g(n)(ωνℓ), ‖x‖ = inf
p∈Z

|x − p|, (5.3)

and call g(n)(ωνℓ) the propagator on scale n.

Given a tree θ, we can associate to each line ℓ ∈ Λ(θ) a scale label nℓ, using the multiscale

decomposition (5.3) and singling out the summands with n = nℓ. We shall call nℓ the scale label

of the line ℓ, and we shall say also that the line ℓ is on scale nℓ.

This leads in a natural way to the definition of clusters, see [8], Section 2, pp. 628-629: given a

tree θ, a cluster T of θ on scale n is a maximal connected set of lines of lines on scale ≤ n with at

least one line on scale n. Let us denote by T (θ) the set of clusters in a tree θ.

For any cluster T ∈ T (θ) set

νT =
∑

u∈V (T )

νu, kT = |V (T )|, (5.4)

where V (T ) is the set of nodes contained in T and, given a set A, we are denoting by |A| the

number of elements of A.

Recall that for ω ∈ Q there is an integer N = N(ω) such that pN/qN = p/q = ω, and for all

ν ∈ Z \ qZ one has ‖ων‖ ≥ 1/qN : therefore for ω ∈ Q there is only a finite number of scales

n = 0, 1, 2, . . . , N − 1.

Given a line ℓ carrying a momentum νℓ, there can be only two (consecutive) scale labels nℓ such

that χnℓ
(ωνℓ) 6= 0: in such a case one has

1

96qnℓ+1
≤ ‖ωνℓ‖ ≤

1

48qnℓ

. (5.5)

Thus we arrive to a slight different definition of tree values, taking into account also the scale

labels, so that (4.2) has to be replaced with

û(k)
ν (ω) =

1

2k

∑

θ∈Tν,k

Val(θ, ω), Val(θ, ω) = −i





∏

u∈V (θ)

νmu+1
u

mu!









∏

ℓ∈Λ(θ)

g(nℓ)(ωνℓ)



 , (5.6)
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where here and henceforth Tν,k denotes the set of trees whose lines carry also a scale label.

5.2. Resonances. We recall briefly the definition of resonance from [8], Section 2, p. 629.

Given a cluster T , let mT be the number of entering lines (so that mT ≥ 0) and let kT be the

number of nodes in T ; we shall denote with nT the scale of the cluster T , with ni
T the minimum

of the scales of the lines entering T , and with no
T the scale of the line exiting T .

Given a tree θ, a cluster V of θ will be called a resonance with resonance-scale n = nR
V ≡

min{ni
V , no

V }, if

(1) the sum of the mode labels of its nodes is 0,

(2) all the lines entering V are on the same scale except at most one, which can be on a higher

scale;

(3) ni
V ≤ no

V if mV ≥ 2, and |ni
V − no

V | ≤ 1 for mV = 1;

(4) kV < qn;

(5) mV = 1 if qn+1 ≤ 4qn;

(6) if qn+1 > 4qn and mV ≥ 2, denoting by k0 the sum of the orders of the subtrees of order

< qn+1/4 entering V , either (a) there is only one subtree of order k1 ≥ qn+1/4 entering V and

k0 < qn+1/8, or (b) there is no such subtree and k0 + k0 < qn+1/4.

We refer to [8] for further details.

Let us denote by Nn(θ) the number of lines ℓ ∈ Λ(θ) on scale n and by Pn(θ) the number of

resonances T ∈ T (θ) on scale n. Set also Mn(θ) = Nn(θ) + Pn(θ). Finally let us denote by NR
n (θ)

the number of resonances T ∈ T (θ) with resonance-scale n.

5.3. Lemma. For any tree θ ∈ Tν,k one has

Mn(θ) ≤
2k

qn
+

8k

qn+1
+ NR

n (θ), (5.7)

and Mn(θ) = 0 if k < qn.

5.4. About the proof of the lemma 5.3. The proof is as in [8], Section 5, for ω an irrational number;

it is not difficult to realize that the same proof works also for ω a rational number (see also the

comments in Section 6 below).

5.5. Tree formalism for the function uN − u. Consider both uN ≡ u(α, ε, ωN) and u ≡ u(α, ε, ω).

We can apply the renormalization scheme as in [8]: everything proceeds in the same way. In

particular the set Tν,k has to be enlarged to a set T ∗
ν,k in which the bound (5.5) can be violated

(see [8] and §6.1 below); nevertheless, for any tree θ ∈ T ∗
ν,k, if a line ℓ carries a momentum νℓ and

a scale nℓ, then
1

768qnℓ+1
≤ ‖ωνℓ‖ ≤

1

8qnℓ

, (5.8)

whenever χnℓ
(ωνℓ) 6= 0. Then the lemmata 5.3 and 4.6 still apply, as their proofs are based on the

bound (5.8); see [8] and Section 6 below for details.

In order to prove the theorem 4.10 we have to consider the function

uN − u ≡ u(α, ε, ωN) − u(α, ε, ω) =

∞
∑

k=1

εk
(

u(k)(α, ωN ) − u(k)(α, ω)
)

=
∞
∑

k=1

εk
∑

ν∈Z

eiνα
(

û(k)
ν (ωN ) − û(k)

ν (ω)
)

,

(5.9)

where both coefficients û
(k)
ν (ωN ) and û

(k)
ν (ω) can be expressed in terms of trees; moreover the

sum over the Fourier labels has to satisfy the constraint |ν| ≤ k (see the lemma 3.5), and one has

û
(k)
ν (ωN ) = 0 for all ν ∈ qZ (see the corollary 3.10).
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We want to prove that it is possible to choose a neighborhood of the origin in the ε-plane – call

it B(0) –, such that for all η > 0 there exists N0 ∈ N such that for all N > N0 and for all ε ∈ B(0)

one has

|u(α, ε, ωN ) − u(α, ε, ω)| < η. (5.10)

We can split the sum over k in (5.9) into two sums, the first one from k = 1 to k = qN/4 and

the second one over k > qN/4, i.e.

u(α, ε, ωN ) − u(α, ε, ω) =





qN /4
∑

k=1

εk
(

u(k)(α, ωN ) − u(k)(α, ω)
)





+





∞
∑

k=(qN /4)+1

εk
(

u(k)(α, ωN ) − u(k)(α, ω)
)



 .

(5.11)

By the lemma 4.6 (and by the lemma 3.5) one has

∣

∣

∣

∣

∣

∣

∞
∑

k=(qN /4)+1

εk
(

u(k)(α, ωN ) − u(k)(α, ω)
)

∣

∣

∣

∣

∣

∣

≤
∞
∑

k=(qN /4)+1

|ε|k
(∣

∣

∣u(k)(α, ωN )
∣

∣

∣ +
∣

∣

∣u(k)(α, ω)
∣

∣

∣

)

≤
∞
∑

k=(qN /4)+1

|ε|k (2k + 1)Dk
(

e2kB1(ω) + e2kB1(ωN )
)

≤

(

1

2

)qN

,

(5.12)

provided that one chooses the radius ρ(B(0)) ≡ ρ0e
−βB1(ω), with β ≥ 2 and ρ0 small enough. Of

course one can suppose that N is so large that

(

1

2

)qN

≤
1

2
η. (5.13)

So we are left with the first sum in (5.11), i.e.

qN /4
∑

k=1

εk
∑

ν∈Z

eiνα
(

û(k)
ν (ωN ) − û(k)

ν (ω)
)

. (5.14)

By taking into account (5.6) we can write

û(k)
ν (ωN ) − û(k)

ν (ω) =
1

2k

∑

θ∈Tν,k

Val(θ, ωN , ω), Val(θ, ωN , ω) = Val(θ, ωN ) − Val(θ, ω), (5.15)

so that

Val(θ, ωN , ω) = −i





∏

u∈V (θ)

νmu+1
u

mu!













∏

ℓ∈Λ(θ)

g(nℓ)(ωNνℓ)



 −





∏

ℓ∈Λ(θ)

g(nℓ)(ωνℓ)







 . (5.16)

Then we can write Val(θ, ωN , ω) as sum of k terms corresponding to trees whose lines have all the

propagators of the form either g(nℓ)(ωNνℓ) or g(nℓ)(ωνℓ), up to one which has a new propagator

given by the difference g(nℓ)(ωNνℓ) − g(nℓ)(ωνℓ); see [19] and [20] for an analogous discussion.

Given a tree θ we can order the lines and construct a set of k subsets Λ1(θ), . . . , Λk(θ) of Λ(θ),

with |Λj(θ)| = j, in the following way. Set Λ1(θ) = ∅, Λ2(θ) = ℓ1, if ℓ1 is the root line of θ and,
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inductively for 2 ≤ j ≤ k, Λj+1(θ) = Λj(θ) ∪ ℓj, where the line ℓj ∈ Λ(θ) \ Λj(θ) is connected to

Λj(θ); of course Λk+1(θ) = Λ(θ). Then

Val(θ, ωN , ω) = −i





∏

u∈V (θ)

νmu+1
u

mu!





k
∑

j=1









∏

ℓ∈Λj(θ)

g(nℓ)(ωNνℓ)





(

g(nℓj
)(ωNνℓj

) − g(nℓj
)(ωνℓj

)
)





∏

ℓ∈Λ(θ)\Λj+1(θ)

g(nℓ)(ωνℓ)







 ,

(5.17)

where, by construction, the sets Λj(θ) are connected (while of course Λ(θ) \Λj+1(θ) in general are

not).

5.6. Lemma. With the notations of the lemma 4.6, there exist two positive constants D0 and D1

such that one has
∣

∣

∣û(k)
ν (ωN ) − û(k)

ν (ω)
∣

∣

∣ ≤
1

qN+1
D0D

kDk
1e2kB1(ω), (5.18)

for any k ≤ qN/4.

5.7. Proof of the lemma 5.6. The proof is given in Section 7.

5.8. Conclusions. By the lemma 5.6 we can bound (5.14) as

qN /4
∑

k=1

εk
∑

ν∈Z

eiνα
(

û(k)
ν (ωN ) − û(k)

ν (ω)
)

≤

qN /4
∑

k=1

εk (2k + 1)
D0

qN+1

(

DD1e
2B1(ω)

)k

≤
2D0

qN+1
, (5.19)

provided that β ≥ 2 and ρ0 is small enough. Then one can suppose N so large that

2D0

qN+1
≤

1

2
η, (5.20)

so that, by collecting together (5.13) and (5.20), we obtain (5.10).

6. Comments about the proof of the theorem 3.12

6.1. Preliminaries. We recall now the main heuristic ideas behind the proof of [8] for the reader

not completely familiar with it. This will also clarify the apparently mysterious choice of the

constants in the definitions of the scales.

If we disregard resonances, the proof of [8] becomes very simple: basically one needs to prove

lemma 5 in [8], p. 631, relatively easy if Pn(θ) = NR
n (θ) = 0 (see the end of §5.2 for notations), as

it happens in the case of the semistandard map (see [21]). In fact we would have

|Val(θ)| ≤ Dk
1

∞
∏

n=0

(D2qn+1)
2Nn(θ)

(because of (5.9), with D2 = 96)

≤ Dk
1

∞
∏

n=0

(D2qn+1)
2k/qn+8k/qn+1 .

(6.1)

Now, as it is trivial to see that
∑∞

n=1(log qn)/qn is convergent, it is easy to prove the claim. We

recall that the main arithmetic tool behind the proof of the lemma 5 in [8] is Davie’s lemma [14],
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which we quote here in a slightly extended version.

Lemma. Let a > 2, b ≥ 2a/(a − 2). Given ν ∈ Z such that ‖ων‖ ≤ 1/aqn, then

1. either ν = 0 or |ν| ≥ qn,

2. either |ν| ≥ qn+1/b or ν = sqn, for some integer s.

For simplicity we choose a = b = 4 as in [14], but other choices would be equally good. The

choice of the constants a and b sets some rather sharp constraints on all other strange-looking

constants, for instance those used in the definition of the scales in §5.1, as we are going to discuss

below.

To deal with resonances we need to exploit cancellations arising when summing over trees of given

order and total momentum. Suitable resummation must be performed, whose effect is that, for

each resonance V , it is as if one of the external lines on scale nR
V contributed (D2qnV +1)

2 instead of

(D2qnR
V

+1)
2. In the course of exhibiting such cancellations, one needs to perform transformations

on trees which extend the set of trees being considered to a larger set T ∗
ν,k (see [8], p. 633).

Now, suppose that the scales had been defined in such a way that for a line ℓ on scale n one

obtains
1

c′qn+1
≤ ‖ωνℓ‖ ≤

1

cqn
, (6.2)

(we had c′ = 96 and c = 48). The effect of the above mentioned transformations is such that, given

a resonance V , one has to consider all the resonances which are obtained by shifting its entering

lines. This implies that for any line ℓ in V the corresponding momentum νℓ can be changed into a

new value ν′
ℓ, as it follows from (4.2); call ν(ℓ) the set of all momenta ν′

ℓ which can be associated to

the line ℓ in this way. As a consequence, for each ν′
ℓ ∈ ν(ℓ), there will be a value n′

ℓ different from

the original scale nℓ such that χn′
ℓ
(‖ων′

ℓ‖) 6= 0. If a line ℓ is contained inside several resonances,

the above argument has to be applied for all such resonances.

Now, in order to exploit the cancellations assuring the convergence of the series (3.21), for each

line ℓ one has to consider together all the scales n′ which are obtained by the above described

procedure (see [8], Section 3). The latter scales are defined by the condition

1

c′qn′+1
≤ ‖ων′

ℓ‖ ≤
1

cqn′

(6.3)

if ν′
ℓ ∈ ν(ℓ). The essential fact is that such scales n′ are not arbitrary, on the contrary they are

are related to the original scale n, as one obtains (see [8], lemma 4 and Sections 3 and 4)

1

d′qn′+1
≤ ‖ωνℓ‖ ≤

1

dqn′

, (6.4)

with d′ > c′ > c > d (and consequently D2 grows to d′ in (6.1)), provided the constants c and c′

in (6.2) are suitably chosen.

More precisely requiring that (6.4) be satisfied imposes two constraints on c and c′: in fact they

must be chosen in such a way that (i) constants d and d′ such that (6.3) holds actually exist, and

(ii) one must have d < 1/2b for Davie’s lemma to be of some use. We found that c = 48 and

c′ = 96 is a choice compatible with those constraints, once one has chosen a = b = 4 in Davie’s

lemma, as follows from the bulk of Sections 3 and 4 of [8]: such a choice, if denoting by nℓ ∈ ν(ℓ)

the scale n′ associated to the line ℓ in (6.4), gives (5.12).

As anticipated in Section §3.13, instead of providing a complete proof of the theorem 3.12, which

would require repeating, essentially word by word, the discussion in [8], we prefer to show the
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points in which the analysis has to be slightly changed, trying to convince the reader why almost

the same proof, up to a very few minor adaptations, in fact still works.

6.2. Technical differences. The first item of Davie’s lemma (see above and [8], p. 630, lemma 1)

has to be replaced with: either ν ∈ qZ or |ν| ≥ qn, as ‖ωnq‖ = 0 for all n ∈ Z.

As remarked in §5.1 for ω = p/q there is a finite number of scales, as n ≤ N − 1, if qN = q: this

follows from the fact that ‖ων‖ ≥ 1/qN for all n ∈ Z \ qZ and the very definition of scale.

As a consequence, in the proof of the lemma 5.3 for rational rotation numbers, one can proceeds

as for the proof of the lemma 5 of [8], and, when discussing the case [2.2.3.2] in [8], Section 5, one can

have either |ν − ν1| ≥ qn+1/4, or ν − ν1 = s̃qn or |ν − ν1| = qN (as the case ν = ν1 can be included

in the previous one when s̃ = 0). But the last case gives |ν − ν1| ≥ q ≥ qN/4 ≥ qn+1/4 which gives

the case [2.2.3.2.1]. These are the only real technical differences in the proof of the lemma: we are

left with the problem of verifying that the proof can then be performed by following the analysis

of [8]. We shall briefly discuss such issues, by using the notations and concepts introduced in [8],

with no further reference to it.

6.3. Bound (5.7). We already noticed that the proof of the lemma 5.3 can be carried out as in

[8]: here we would want to give an intuitive argument to see why it is so. Basically the bound

on the number of lines and resonances on scale n implicit in (5.7), is worked out by finding a

bound which is the worst possible one when all lines which are not on scale n are on a lower scale

(simply go along the proof of lemma 5 of [8] to realize that this is the case). Then even if in the

case of irrational rotation numbers ω there are much more scales than in the case of the rational

rotation numbers ωN (for ω irrational there are infinitely many scales in principle, and they can

be arbitrarily large for arbitrarily large orders), the quantity Mn(θ) assumes its largest possible

value when there are no lines on scale greater than n, so that the bound (5.7), when n < N , holds

simultaneously for the Bryuno number ω and for the rational number ωN .

6.4. Renormalization. Moreover the renormalization procedure can be applied exactly in the same

way, and no further difference arises between the case of rational numbers and the case of Bryuno

numbers. The cancellation between the localized parts of the resonance values is a purely algebraic

property which does not depend on the arithmetics of the rotation number, while the control of

the renormalized parts is based on dimensional arguments which can be repeated unchanged once

the scale labels have been fixed.

6.5. Remark. In [8] in fact the bound |ε| < ρ(ω) < Ce−2B(ω) for real values of α was given, but,

by simply noting that, for |ε| < ρ and |Im α| < ξ, one has

|u(α, ε, ω)| ≤
∞
∑

k=1

∑

|ν|≤k

ρke|ν|ξ
∣

∣

∣û(k)
ν

∣

∣

∣

≤
∞
∑

k=1

(2k + 1)Dke2kB1(ω)ekξρk ≤
∞
∑

k=1

(

C−1e2B1(ω)
)k

(

eξρ
)k

,

(6.5)

the analyticity in the domain (3.21) easily follows.
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7. Proof of the lemma 5.6

7.1. Set-up. We can write (5.17) as

Val(θ, ωN , ω) =

k
∑

j=1

Valj(θ, ωn, ω),

Valj(θ, ωN , ω) = −i





∏

u∈V (θ)

νmu+1
u

mu!













∏

ℓ∈Λj(θ)

g(nℓ)(ωNνℓ)





(

g(nℓj
)(ωNνℓj

) − g(nℓj
)(ωνℓj

)
)





∏

ℓ∈Λ(θ)\Λj+1(θ)

g(nℓ)(ωνℓ)







 ,

(7.1)

and study separately each term Valj(θ, ωN , ω). To any line ℓ we associate a rotation number ωN

if the corresponding propagator is g(nℓ)(ωNνℓ) (i.e. if ℓ ∈ Λj(θ)), and a rotation number ω if the

corresponding propagator is g(nℓ)(ωνℓ) (i.e. if ℓ ∈ Λ(θ) \ Λj+1(θ)).

The difference propagator g(nℓj
)(ωNνℓj

)− g(nℓj
)(ωνℓj

) in (7.1) can be written as follows. Set for

simplicity νℓj
≡ ν and nℓj

= n. Then

g(n)(ωNν) − g(n)(ων) =
1

2

[

χn(ωNν)

(

1

γ(ωNν)
−

1

γ(ων)

)

+ χn(ων)

(

1

γ(ωNν)
−

1

γ(ων)

)

+ (χn(ωNν) − χn(ων))

(

1

γ(ωNν)
+

1

γ(ων)

)]

,

(7.2)

where
1

2
χn(ωNν)

(

1

γ(ωNν)
−

1

γ(ων)

)

= g(n)(ωNν)

(

γ(ων) − γ(ωNν)

γ(ων)

)

≡ g(n)(ωNν)C1(ωNν, ων),

1

2
χn(ων)

(

1

γ(ωNν)
−

1

γ(ων)

)

= g(n)(ων)

(

γ(ων) − γ(ωNν)

γ(ωNν)

)

≡ g(n)(ων)C2(ωNν, ων),

(7.3)

so that, by defining also

C3(ωNν, ων) =
1

2
(χn(ωNν) − χn(ων)) , (7.4)

we see that (7.2) becomes

g(n)(ωNν) − g(n)(ων) = g(n)(ωNν)C1(ωNν, ων) + g(ωNν)C3(ωNν, ων)

+ g(n)(ων)C2(ωNν, ων) + g(ων)C3(ωNν, ων).
(7.5)

In conclusion to the line ℓj there corresponds the sum of the four “propagators” in (7.5): if we

select the first one or the third one we can associate to the line ℓj a rotation number ωN and ω,

respectively. The other two cases can be singled out by assigning a label ∗ to the line ℓj ; note

that in the latter case at least one of the two conditions χn(ωNν) 6= 0 and χn(ων) 6= 0 has to be

satisfied, otherwise the quantity C3(ωNν, ων), hence the corresponding propagator, is vanishing.

7.2. Lemma. There is a constant C0 such that one has

|Ci(ωNν, ων)| ≤
kC0

qN+1
, (7.6)
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for i = 1, 2, 3.

7.3. Proof of the lemma 7.2. Let us denote by C any constant. One has

|ω − ωN | =

∣

∣

∣

∣

ω −
pN

qN

∣

∣

∣

∣

=
1

qN
|ωqN − pN | =

1

qN
‖ωqN‖ <

1

qNqN+1
, (7.7)

so that

|(ωN − ω) ν| ≤
k

qNqN+1
(7.8)

provided that |ν| ≤ k, as it is the case in a tree θ ∈ T ∗
ν,k.

Then

|χn(ωNν) − χn(ων)| ≤ |(ωN − ω) ν|

∫ 1

0

dt

∣

∣

∣

∣

∂χn

∂x
(ων + t(ωN − ω)ν)

∣

∣

∣

∣

≤
k

qNqN+1
Cqn+1 ≤

Ck

qN+1
,

(7.9)

which proves (7.6) for i = 3.

Furthermore
γ(ων) − γ(ωNν)

γ(ωNν)
=

cos 2πων − cos 2πωNν

cos 2πωNν − 1

≤
|2π (ωN − ω) ν|

|cos 2πωNν − 1|

∫ 1

0

dt |sin 2π (ων + t(ωN − ω)ν)|

≤
k

qNqN+1
C‖ωNν‖−2 max{‖ωNν‖, ‖ων‖} ≤

k

qNqN+1
CqN ,

(7.10)

which proves (7.6) for i = 2; the proof for i = 1 is analogous.

7.4. Bounds. We see that each value Valj(θ, ωN , ω) splits into the sum of four contributions

through (7.5). Each contribution not containing C3(ωNν, ων), up to a factor Ci(ωNν, ων), i = 1, 2,

is of the same form as either Val(θ, ωN ) or Val(θ, ω), with the only difference that for a connected

subset Sj(θ) of θ the rotation number is ωN , while for the set θ \ Sj(θ) the rotation number is ω;

with the notations introduced in §5.5 one has either Sj(θ) = Λj(θ) or Sj(θ) = Λj(θ) ∪ ℓj.

For the two contributions containing C3(ωNν, ων), a further difference is that the propagator

corresponding to the line ℓj does not contain neither a factor χnℓj
(ωNνℓj

) nor a factor χnℓj
(ωνℓj

)

(see (3.5)), but this is not important as both functions 1/γ(ωNνℓj
) and 1/γ(ωνℓj

) admit the same

bound in terms of the denominators of the convergents (see below), when the factor C3(ωNν, ων)

is taken into account.

Then we can try to reason as for the proof of the lemma 5.3, i.e. along the lines of [8], Section

5. The only difference is that, when considering a cluster T , now it can happen that a rotation

number ωN is associated to the line exiting from T , while a rotation number ω is associated to the

lines entering T . This does not yield any difference but for the case [2.2.3.2] of [8], Section 5, in

which there is only one line entering T : to deal with such a case we shall use the following result.

7.5. Lemma. Given any tree θ ∈ Tν,k, with k < qN/4, if ωN < ω (respectively ωN > ω), then one

has ‖ωNνℓ‖ < ‖ωνℓ‖ (respectively ‖ωνℓ‖ < ‖ωNνℓ‖) for all ℓ ∈ Λ(θ) with scales nℓ ≥ 1.

7.6. Proof of the lemma 7.5. Suppose that one has 0 < ωN < ω < 1. If a line ℓ is on scale n, by

setting ν = νℓ one has either ‖ωNν‖ ≤ 1/8qn or ‖ων‖ ≤ 1/8qn (see (5.8)), according to which type

of rotation number is associated to ℓ, so that, for k < qN/4, one obtains

max {‖ωNν‖, ‖ων‖} ≤
1

8qn
+

1

4qN+1
, (7.11)
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by (7.8).

We can write ωNν = ‖ωNν‖+ rN and ων = ‖ων‖+ r, for suitable rN , r ∈ Z. Therefore one has

‖ωNν‖ = ωNν − rN = ων + (ωN − ω) ν − rN = ‖ων‖ + (ωN − ω) ν + (r − rN ) , (7.12)

so that, by using (7.8) and (7.11),

|rN − r| = |‖ων‖ − ‖ωNν‖ + (ωN − ω) ν|

≤
1

8qn
+

1

8qn
+

1

4qN+1
+

1

4qN+1
≤

1

8
+

1

8
+

1

4
+

1

4
< 1,

(7.13)

which yields rN = r. Therefore, as we are assuming ωN < ω, one has |ωNν| < |ων| for all

ν ∈ Z \ {0}, so that ‖ωNνℓ‖ < ‖ωνℓ‖ for all for all the above considered lines.

In the same way one proves that, if assuming ωN > ω, then one obtain the inequality ‖ωNνℓ‖ >

‖ωνℓ‖ for all lines ℓ ∈ Λ(θ), θ ∈ Tν,k, on scales nℓ ≥ 1.

7.7. Conclusions. When discussing the case [2.2.3.2] of [8], one can have the line ℓ with associated

a rotation number ωN and the line ℓ1 with associated a rotation number ω, such that

‖ωNν‖ ≤
1

8qn
, ‖ων1‖ ≤

1

8qn
, (7.14)

where ν = νℓ and ν1 = νℓ1 (see [8], p. 648). By the lemma 7.5 one has either ‖ων‖ ≤ ‖ωNν‖ ≤

1/8qn or ‖ωNν1‖ ≤ ‖ων1‖ ≤ 1/8qn, so that equation (7.11) in [8] has to be replaced with

min {‖ω(ν − ν1)‖, ‖ωN(ν − ν1)‖} ≤ min {‖ων‖ + ‖ων1)‖, ‖ωNν‖ + ‖ωNν1)‖} ≤
1

4qn
. (7.15)

If the label ∗ is associated to the line ℓj, by observing that one has either χn(ωNν) 6= 0 or

χn(ων) 6= 0, one can proceed in the same way.

Finally, in order to bound the small divisors, we can use that if a line is on scale n then the

corresponding propagator is bounded by a constant times q2
n+1: this is trivial for all lines except,

if there is any, for the one carrying the label ∗, about which can reason as follows.

Suppose for concreteness that one has ωN < ω (the case ωN > ω can be dealt with in the

same way). It is easy to realize that, besides trivial cases, the only case which really deserves

a careful analysis corresponds to the propagator g(ωNν1)C3(ωNν1, ων1) when χn(ων1) 6= 0 and

χn(ωNν1) = 0 (so that ‖ωNν1‖ < ‖ων1‖ by the lemma 7.5). We can use that for k < qN/4 one

has ‖ων1‖ − ‖ωNν1‖ > 1/4qN+1 by (7.8), ‖ων1‖ > 1/768qn+1 by (5.8), and ‖ωNν1‖ > 1/2qN+1

by [8], (3.15). Then ‖ωNν1‖ > ‖ων1‖ − 1/4qN+1, so that, if 1/4qN+1 < 1/1536qn+1 one has

‖ωNν1‖ > 1/1536qn+1, while if 1/4qN+1 > 1/1536qn+1 one has ‖ωNν1‖ > 1/2qN+1 > 1/768qn+1:

hence in both cases one has ‖ωNν1‖ > 1/1536qn+1.

From here on the discussion proceeds as in [8], with no further difference.

Moreover, by taking into account the sum over j in (7.1) and, for all j, the sum over the four

terms in (7.5), we have an extra factor k5 ≤ e5k.

In conclusion the same bound as (4.4) follows, with the only difference that there is a factor

C0k/qN+1 ≤ C0e
k/qN+1, arising from (7.6). Then (5.18) follows with D0 = 4C0 (where the factor

4 takes into account the fact that for a line carrying a label ∗ one can substitute 7682 with 15362

in bounding the corresponding propagator) and D1 = e6. This completes the proof of the lemma.
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