SCALING OF THE CRITICAL FUNCTION FOR THE STANDARD MAP:
SOME NUMERICAL RESULTS
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AsstracT. The behavior of the critical function for the breakdown bé thomotopically non-trivial
invariant (KAM) curves for the standard map, as the rotatiomber tends to a rational number, is in-
vestigated using a version of Greene’s residue criteritre. résults are compared to the analogous ones
for the radius of convergence of the Lindstedt series, irctvoase rigorous theorems have been proved.
The conjectured interpolation of the critical function @rrns of the Bryuno function is discussed.

1. INTRODUCTION

A long-standing problem in the study of quasi-integrablertifsnian systems is the characteriza-
tion of the threshold for the break-down of KAM invariant fages in terms of the arithmetic proper-
ties of the frequencies vectors. In this context, we comsad@mple, yet paradigmatic, discrete-time
model, the so calledtandard mapintroduced originally in [17, 22]. The standard map is thaam-
ical system defined by the iteration of the map

X = X+Yy+esinX,

Te: (1.1)
Yy =y+esinx.

Here ,y) € T x R; but of course the map, could be lifted to a map

o Em e &)
on the plan&R? given by the same formula as (1.1) with §) replacing &, y). For some background
information, we refer the reader to the enormous literaturé¢he topic, and in particular to [27] for a
review.

Despite its apparent simplicity, there are only a few properof the standard map which can be
considered really well understood to full extent, espécitbm an analytical point of view. For
instance the existence of KAM invariant curves, for valuéshe parametee small enough and
Diophantine rotation numbers, has been proved a long timekad only recently the dependence of
the radius of convergence on the rotation number has beamett[18, 5] as an interpolation formula
in terms of the Bryuno function (see below). Also for the sind of the separatrix splitting, only
recently the original program by Lazutkin [24] has been clatgby achieved in a rigorous way [21].

In particular no rigorous analysis has been implementeddt@cting the critical value efat which
the KAM invariant curve breaks down, and only numerical hlssand heuristic theories exist on that
subject; see [27, 29, 1].
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In (1.1) we can eliminate thgvariable by writing the dynamics “in Lagrangian form” as aed
order recursion:

Xne1 — 2%n + Xn_1 = £SiNXn, 1.2)
forallne Z.

Fore = 0, the circlesy = (const.) are invariant curves on which the dynamics is ghienotation
with angular velocityw = y/2r; we call w the rotation number Without generality loss we can
choosew € (0, 1) as the invariant curves of the standard map are invariaaitrutranslation of 2in
they-direction.

As the perturbation is turned on, we face the classical KAdbprm of determining which invariant
curves survive and up to which size of the perturbative patana. Such invariant curves are given
parametrically by the equation

X=a+ U, & w),
Cew !
y = 21w + UWa, &, w) — UWa — 2nw, &, w),
where in thex variable the dynamics on the cur@g,, is given by rotationsvn.1 = an + 271w (Which
solve (1.2) fore = 0). The functionu(e, €, w) is called theconjugating functioror linearization and
satisfies the functional equation
(Diu) (a, &, w) = U(a + 21w, &, w) — 2U(a, &, w) + U(a — 21w, &, W)

_ (1.3)
= gsin(e + u(a, &, w)),

whose solutions are formally unique if we impose th@t, ¢, w) has zero average in thevariable.
Therefore the study of the invariant curv@s,, and of their smoothness properties may be reduced to
the study of the existence and smoothness of the solutiotie dfinctional equation (1.3).

The solutions of (1.3) can be studied perturbatively by fiynexpandingu(a, &, w) in Taylor
series ine and in Fourier series in; the resulting series is what is traditionally called thedstedt
series - .

Ua,s,w) = > eul¥(a,w) = Z & Z g uf,k)(a)) . (1.4)
k=1 k=1  pl<k
To characterize the breakdown of an invariant cutyg, we introduce theadius of convergencef
the Lindstedt series

-1
p(w) = inf (Iim sup|u®(a, w)|" ") : (1.5)
€T\ koo
thelower (analytic) critical function
ec(w) =supge’ >0: V&' <& Coyy eXists and is analytic (1.6)
and theupper (analytic) critical function
E(w) =inf{e" >0: V" > ¢ Cy,, does not exists as an analytic cupve 1.7)

In general one could define analogous functions for negatiiges ofe; for the standard map they
would be anyhow identical (by symmetry properties).
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Clearlyp(w) < ec(w) (in the early papers on the subject some confusion was oftafe betweep
ande.). Itis insteadbelievedthat,for the standard mape(w) = £:.(w), SO we can speak generically of
onecritical functionec(w) without further qualification. Note that for similar mapghkvmore general
perturbations numerical results [35] suggest that the ttiwal functions may be indeed fiierent.
Note also that one could define breakdown thresholds withatfayticity condition in (1.6), (1.7)
replaced by a weaker one (suchGt8 or CK); again those thresholds could, in principle, bffetent
from the analytical one, though for the standard map litgkevedthat no such dierence exists, so
that the analytic category is the right one to investigatehiteakdown phenomenon.

The radius of convergence of the series (1.4) is zero — andAl Kivariant curve exists — when
w is rational. Whenw satisfies an irrationality condition known as tBeyuno condition(see below),
instead, it can be proved thatw) > 0 — so that analytic invariant curves exist foismall — and
even precise upper and lower bounds on the dependengepdn w can be given, up to a bounded
function of w [18, 5]. More precisely for any rotation numberone can define thBryuno function
B(w), as the solution of the functional equation [36, 31]

B(w) = —logw + wB(w™) for w € (0,1) and irrational

B(w + 1) = B(w) .
By a fixed-point argument it can be proved that a solution t8)(&xists and is unique ibP(T) for
eachp > 1.

We shall callBryuno numbea numbeiw satisfying theBryuno condition Bw) < co. Then for any
Bryuno numbetw one has

(1.8)

logp(w) + 2B(w)| < Co, (1.9)
for a universal constar@, that is for a constant, independent ofv (see [18, 5] for a proof); in
particular this implies that an invariant curve with rotatinumberw exists if and only ifw satisfies
the Bryuno condition. Equation (1.9) and similar formulas geferred to as “Bryuno’s interpolation
formulas”.

The claim is often made that a formula analogous to (1.9)lshmld forec(w): for anyw satisfying
the Bryuno condition one should have

llog ec(w) + BB(w)| < C1. (1.10)

for a universal constar@;, with an exponeng < 2; it is conjectured thgt = 1 (seee.g.[32, 14]).

Equation (1.10) implies a scaling law for the critical functec(w) asw — p/q on suitable se-
quences of Bryuno numbeiis fact, given (1.10), there are sequences of Bryuno (evepHantine)
rotation numbers chosen in such a way that along them theattitinction tends to zerim any arbi-
trarily fast way. For example, we can consider the two sequences of Diopteaf@ven noble) rotation
numbers

1
- oy = —— 1.11
wk Kry W , (1.11)
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wherey = (V5 - 1)/2 = [1*] is the golden mean; then (1.10), with = 1, would imply that
ec(wk) = O(1/K) while ec(@x) = O(e¥/K), that ismuch faster(see [5], p. 625-626). It is therefore
essential to have a good control over the arithmetic prigsedf the rotation numbers one considers
when speaking of scaling properties of the critical functig(w).

The conjecture of Bryuno’s interpolation was actually méalethe critical functione¢(w) more
than 10 years ago in [32] (motivated also by the numericalltesn [30] for related complex area-
preserving maps and in [12] for modular smoothing); in thegtey, Bryuno’s interpolation is stated
formally for the radius of convergence, but the numericiddations, with Greene’s method, compute
the critical function. The main motivation behind [32] wa® tcomparison with the work of Yoccoz
in [36], together with the claims of universality coming rindhe renormalization description of the
critical invariant circle. In [18, 5] (see also [3]) Bryursointerpolation for the radius of convergence
was indeed proved; the mechanism of proof in [5], based onrthkiscale decomposition of the
propagators in the tree expansion, naturally generatestanate ofp(w) in terms of the Bryuno
function for the semi-standard and standard maps. On tlee bdnd, there is no compellirggypriori
heuristic reason for the critical functie(w) for the standard map to satisfy an interpolation formula
in terms of the same arithmetical function as the radius offemencep(w); put it in another way, it
is by no means obvious thdbg p(w) — (2/8) log ¢(w)| should be bounded.

From this point of view, it would be interesting to considengralized standard maps. maps
where the nonlinear term in (1.1) is an arbitrary analyteriqgdic function ofx (see [4, 6]). In these
cases a Bryuno's interpolation formula for the radius ofvesgence of their Lindstedt series is not
known.

The method used in [2] cannot be pushed so far to get reasonabterical data on the critical
function, for some rather obvious reasons; in fact, the ptktlve used there (Padé approximants)
attempts at modeling therhole natural boundary, giving particular weight at those regioi the
boundary where the singularity is “strongest”: that is,loge regions closer to the origin (tfiest
order or dominant singularitiesas defined in [2]), which determingw); so that part of the natural
boundary near the real axis, which determines.(w), is represented, as is closer and closer to
a rational value, as a few scattered points from which naldiinformation can be extracted: this
happens already for rotation numbers as little close toi@ratvalue as, for instance/®0+ y) is to
0, that is still quite far from the rational value. One clgareeds a method in which all the computing
power is dedicated to the calculation of the quantity onatisrested in, that is¢(w).

To this aim, two methods have been used previously in thatitee: Greene’s method (also known
as residue criterion; more about it in the next section)dusd32], and the frequency map analysis
[23], used in [14]. As we also use Greene’s method, we shalippme a more thorough analysis to
the next section, and go on to a discussion of the resultsA¢f [1

In [14] the following functions are defined:

w (&) = inf {a) > ap . Cs.o €Xists and ifl}, (1.12)
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and
Wp/q(e) = sup{w < ap - Cs EXists and iﬁl}. (1.13)

The meaning of those functions is that, for the given values,oho (C!) invariant curves exist
with rotation numbers betweeng/q(e) and a)g/q(s). The frequency map analysis method computes
Apjgle) = wg/q(g) - w,,(€) for selected values af; Ap/q() should tend to O witle and in this way

a lower bound o sh%?;ld be obtained (see below). Note thas fixed, and correspondingly some
rotation numbers areomputed numericallytherefore losing any strict control over their arithmatic
properties.

We remark that the regularity properties of the functim’gtfq(g) are quite hard to understand, and
in particular their relation with the critical function iatff from obvious. In fact, while it is certainly

true that

ec(@) <& V& € (wp4e) wpq(#))s (1.14)
the formulas at p. 2037 and p. 2052 of [14], thatgewé/q(e)) = g, cannot be claimed in full rigor

since an invariant curve with rotation number very closp/fgcan be broken by thefect ofanother
resonancey’/q ~ p/q, but distinct, so that we can at most claim that

ec(wp/q(e)) < e. (1.15)

This implies that the Ia\,}wﬁ/q(s) - p/q ~ &9, numerically determined in [14], provides for the critical
exponent an estimate from below of the actual v@luerhich in principle could be higher (if it does
exist at all). Equality in (1.15) can be safely assumed at foes: such that the corresponding value
wﬁ/q(g) belongs to a special class of rotation numbers tending ¢o(in some sense the “best ones”,
that is the ones whose partial quotients grow as slow aslgelsivhich are indeed the ones considered
in [14] and in the present paper (and which are the only realbessible to a numerical investigation).
Note also that to saturate (1.15) one should assume othbtatjua features (like monotonicity) on
the function&uz/q(s), which are far from being proved. Howeviar the casew — 0 only this is
enough, since estimates in [34] im@yn upper boundn the critical exponent, which closes the gap
(the analytical estimates in [14] are indeed obtained fehsauicase by combining the results of [34]
for the upper bound with those of [21] for the lower bound).

The numerical lower bounds found in [14] fBrare consistent witlg = 1 with errors of orders 4%
for w close to §1, 10% forw close to ¥2, 5% forw close to ¥3, 10% forw close to ¥4, 8% forw
close to ¥5 and 10% fow close to 25.

Establishing a condition like (1.10) is out of reach from thenerical point of view if one wants to
take into accoundrbitrary sequences of Bryuno numbers. In fact for the frequency malysis this
is a limitation intrinsic to the method itself, since it amtatically sort of chooses the best sequence
of Diophantine numbers tending to any given rational val&er any other method, like Greene’s
residue criterion, to investigate Bryuno non-Diophantimenbers would require computer resources
far beyond current availability, while computing the adi function even for Diophantine numbers
with large partial quotients becomes substantially hard. tf& question of establishing a Bryuno
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interpolation formula forsc(w), and obtaining the correct critical exponghif such a formula is
indeed established, is still quite open.

In this paper we use Greene’s method to compute the criticadtion when the distance of the
rotation numbers from the resonances is of order10As the computations close to resonances
become very time-consuming we look at only three resonaf;e$/2 and ¥3). We then use the
conjectured Holder-continuity property of the functimgk.(w) + 8B(w) to derive the corrections to
the asymptotic behavior of lag(w), so improving significantly the agreement of the data wiih t
conjectured value g8 = 1.

Of course the problem is not completely solved, even fromnilmerical point of view, for two
reasons. The first is that we consider only three resonasodbat a more exhaustive investigation
would be needed. The second is the aforementioned veryasphaice of the sequences of rotation
numbers tending to the resonances that we have to use. Netesd we improve the results existing
in literature by one order of magnitude both in the distamoenfthe resonance and in the valugspf
finding further support for the conjectured Bryuno’s intlgtion formula for the critical function.

2. GREENE'S METHOD

The main tool we use to determine numerically the break-dtwesholds for analytic invariant
curves for the standard map is Greene’s method, known alsesmkie criterion We now recall the
main properties of the periodic solutions of the standarg osed to formulate Greene’s method, and
sketch briefly its foundations, referring to the originappa[22] for more details.

We also recall that in [19] and [28] some theorems are prowatigo some way in the direction of
proving the validity of Greene’s method, at least in specades. While a full rigorous justification
of its use has not yet been achieved, Greene’s method isdewadi one of the most accurate way to
compute the critical functiog, for the standard map.

If wis arational number, given as the irreducible fractigng, then Birkhdt theory [10, 11] applies;
its consequences for maps like the standard magre the following. Ife = 0 (unperturbed, linear
case) then there are trivially invariant curves with ragiomtation numbep/q, such that every point
on them is a fixed point of the iterated m&R". As the perturbation is turned on, onlk@ k € N,
points survive as fixed points of theeth iterate of the maf,. These correspond to an even number
(2K) of periodic orbits of period). Such orbits — that we caflerturbative— are the ones which will
be studied within a perturbative framework; a simple pértive calculation (see.g.[7]) shows that
for the standard map the even number of such periodic osbiteleed just 2.

Of course this does not mean that such orbits are the onlggierones for the standard map, but
they are those which are obtained by continuatiorz)iftom unperturbed ones. In other words such a
scenario does not consider the new periodic orbits arisimgrvthe perturbation is switched on. If we
pass to the plan? and consider the m&p;, then the situation can be clarified in the following way.
Whenw is irrational and satisfies the Bryuno condition, then thaiirant curve with rotation number
w of the unperturbed map survives for small values,afhile an invariant curve with rational rotation
numberp/q is suddenly destroyed; instead, only two discrete invasats of pointS(gEf),ngf))} i€z
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¢ =1, 2 survive, such that

0 o A0
€17 ) 2.1)
g =é42omp £=12

By taking the quotient in the first variable by the group ofcdete translations by multiples ofi2we
obviously get two periodic orbits of periagl on which the motion has rotation numhgfg.

In [7] it is also proved that, for small values ef each such periodic orbit lies on an analytic curve
— called aremnantof the rational invariant curve of the unperturbed map —, fandational numbers
which approximate a Bryuno numbersuch remnants approximate the invariant curve with ratatio
numberw.

The basic idea of Greene’s method consists in relating thakbdown of an invariant curve with
the loss of stability of nearby perturbative periodic abiin practice, the hypothesis behind Greene’s
method is that, it < g¢(w), then there is a sequence of stable perturbative periobitsavith rotation
numberspy/dk; ase grows beyond:(w), these periodic orbits lose stability in the lalgimit.

The criterion can be formulated more precisely in the follmywvay. Let{(xi(k),yi(k))}iq:l be a per-
turbative periodic orbit with rotation numbex/qx, approximating the irrational rotation numher
Let 7k(¢) be the trace of the tangent dynamics along the periodid:orbi

1 COSX; 0 1
ﬂ@—uﬂ e l

scosxl(k) 1|
Then the periodic orbit is stable #2 < 7x(¢) < 2, unstable otherwise. For historical reasons, the
criterion is usually formulated in term of thiesidueRk () of the orbit, related to the above trace by
2-Ti(e)
—
Therefore in terms of the residue the orbit is stable & Ry(e) < 1, unstable otherwise. We then
track, for a fixed value of, the residue of those perturbative periodic orbits witlkation humbers
p«/0k Which are stable fog = O; if the residue diverges &s— oo, thene > ec(w), while if the residue
tends to 0 thel < g¢(w).

It is actually conjectured (see [28]) thatdf< &c(w), then the residu®y(e) tends exponentially to
zero ak — oo, with a rate of decay proportional to the width of the analiistrip of the conjugating
function u(a, €, w) on the complexx plane for the values of andw considered. So Greene’s method
can also be used also to provide numerical information omatfadytic properties aofl in «, assuming
this conjecture.

An interesting question is what actually happens to theluesit the critical functionsc(w). It was
originally conjectured that fanoblerotation numbers (that is, rotation numbers which are abthby
applying a modular transformation to the golden mean, siatiedr continued fraction expansion has
a “tail” of 1's) it tends to a limit value, which should be alidL25. We present below some numerical
results which show that generally the situation is more dmage, and that suclimit residueR., (&)
could be not only dterent for diterent classes of rotation numbers, but could also be natesx;
and relate the behavior of the sequence of residRgs) for a fixed value ofs along the sequence

(2.2)

Ri(e) =



8 ALBERTO BERRETTI AND GUIDO GENTILE

of perturbative periodic orbits of rotation numbaig/gx to the arithmetic properties of the rotation
number.

From the practical, computational standpoint, the impletaigon of Greene’s method faces some
challenges if we wish to use it near resonances. The firstis ifhw is near a resonance, then the
Ok become soon quite large, that is we have to find manyg periodic orbits, which takes a lot of
computer time.

The second, hardest, challenge is more subtle. In facthédpens that the rotation number of a
periodic orbit isp/q ~ p’/q’, with g > ¢ (the typical situation arising when approximating irratb
rotation numbers close to small-denominator rationaleh tit appears numerically that the periodic
orbit of rotation numbep/q tends to consist in lotg(is supposed to be large) of points accumulating
near the points making the periodic orbit of rotation numiég’. The consequences for the compu-
tation of the residue are dire, as in this case the matrix .i2) (2as two very large, opposite, nearly
equal in absolute value diagonal elements, so that when atimgpthe trace the real data cancels and
one is left with just the numerical error. Note that using & forecision with Greene’s method so
close to resonances gives essentially noise instead okHidue, so we get no values at all farr
We choose a brute-force solution to this precision problehich consists in increasing the number
of digits in the calculations until some data is left when poitng the trace. Empirically, this could
mean that one has to usandredof digits of precision in computing (2.2) numericaltiterefore also
the periodic orbits must be known with such a precisioonsidering that one easily needs periodic
orbits of period in the range of several tens of thousands -acatigally reach orbits of length of the
order of 150000 —, the calculation of a single valueofan require a great amount of computer time.

3. NUMERICAL RESULTS

3.1. Rotation numberscloseto 0. Consider rotation numbets, = 1/(n+vy) = [n, 1], with n € N:

in table 1 we give the values of the Bryuno function and of thigcal function for rotation numbers

wn,, With {n} a finite increasing sequence. Note that we reach valuesatfantnumber close more

than 2x 107 to the resonance value (0 in this case), which correspongsiies ofn up to 60000.
By fitting y = —log ec(wn,) as a linear function ok = B(wy, ), we obtain

y=ax+b a=09705 b=-19553 (3.1)

As we see the slope is close to (buffeient from) 1: the relative ffierence is about.8%.

One also realizes that the slope of the line increases if wkeakethe rotation numbers,, corre-
sponding to smaller values of this suggests that, if we consider just pairs of successitagion
numbers and evaluate the slope of the line passing throwgh, tthen we obtain an increasing func-
tion. This can be formulated more precisely as follows. ;on € N define
log ec(wn) — l0g ec(wm)

B(wn) — B(wm)

Alwn, wm) = — ) (3.2)
which measures the slopeof the line

—logc(w) = aB(w) + b, (3.3)



SCALING OF THE CRITICAL FUNCTION 9

passing through the pointB(wn), — log ec(wn)) and B(wm), — 109 ec(wm)). We setAy = A(wn,,;> Wn,)-
In table 1 we give also the values of the slopgesas we noted, steadily increases.

The values = 1 is anyhow still far from being reached: at best, just cogisidy the last value ofi,
in table 1 we obtain a value whose relativeglience from 1 is greater than 1%. Moreover, though the
values of the slopes increaseras» ~, the convergence to 1 is very slow. In the next section wd shal
provide a heuristic argument which allows to guess the ctiom to the asymptotic behavior and so
try to extrapolate a better value gfthis applies also to the cases considered in the next sidrzec

In table 2 we give the values of the Bryuno function and of ttitical function for a finite sequence
of rotation numbers, , with wp, = 1/(ng + 1/(20+ 7)) = [Nk, 20, 1]: such numbers tend to O as the
previously considered ones, and share with them, esdgntied same Diophantine properties, as they
have the same “tail” of 1's in their continued fraction expiam, with the only dierence that there
is a partial quotient 20 before such a “tail”. The distancé¢hefrotation numbers considered is up to
2x107*from 0, i.e. an order less than in the previous case: thisegalthe fact the partial quotients
go faster, and it becomes longer for the residue to reachsyragotic value (so that periodic orbits
with larger periods should be considered in order to obtairHe rotation numbers the same distance
from the resonance value).

As one can see, the values of the Bryuno function and of thieadrfunction are comparable with
those listed in table 1: the introduction of a larger partjabtient does not introduce any relevant
change. As a consequence, also the slggeslefined as before with the new definitionof,, are
very similar (as a look at the last column of table 2 immedyatenfirms).

Note however that to compute numerically the critical fumetfor rotation numbers of the form
[Nk, 20, 1] for givenk is much more time consuming, since, in general, to obtaitiabte precision
we are forced to reach periodic orbits with very high peri¢etsy more than a hundred thousand),
which requires a precision of about 600 digits.

3.2. Rotation numberscloseto 1/2. In table 3 we consider a sequence of rotation numbers tending
to 1/2 of the formw, = 1/(2 + 1/(n + v)) = [2,n,1*]. The rotation humbers considered are up to
107° close to the resonance valug2l(which correspond to values ofup to 20000).

The fit fory = —log ec(wn,) as a linear function ok = B(wp,) gives

y=ax+b a=09641  b=-16203 (3.4)

Again we see the slope is not 1, and the relative error is nauta®6%. It is greater than in the
previous case because we stopped to smaller valugsrofact the values of the slopes listed in table
3 show that again the functiofy, defined exactly as before with the new definition for thetrota
numberswy,, is increasing irk. The relative derence from 1 of the last value 8§ is about 17%.

3.3. Rotation numberscloseto 1/3. In table 4 we consider a sequence of rotation numbers tending
to 1/3 of the formwy = 1/(3 + 1/(n + y)) = [3,n,1*]. The rotation numbers considered are up to
5x 107 close to the resonance valugdl(which correspond to values pfup to 20000).
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The fit fory = —log ec(wn,) as a linear function ok = B(wn,) gives
y=ax+b a= 09637 b=-1.6526 (3.5)

while in the last column of table 4 we list the slopis again defined as before with the new definition
for the rotation numbersy, ; the relative diterence of the slope with respect to 1 is more tha¥a
while the relative dierence from 1 of the last value 8§ is about 17%.

3.4. Behavior of thecritical residuesand other rotation numbers. The behavior of the residue for
& exactlyequal to the critical functios¢(w) when the rotation number of the approximating periodic
orbits tends tav has been considered since the very first papers on the suffi@cexample, in [22]
itself). In particular, one considers the sequence of tesi®y(s:(w)) Wwhenk — oo; it appears that
this sequence has a limit only whenis a number of so called “constant typé®. whenw can be
written as b, ..., an,d*]. This limit moreover seems to depend only on the inteyeand not at all
from the “head” of the continued fraction expansi@n,| .., an]. Unfortunately, a sound numerical
evidence can be obtained only for= 1 and for short “heads” in the continued fraction expansion,
otherwise the partial quotients gets soon large and it besattficult to compute the critical residues
with the accuracy required: therefore we state this more sanm@ewhat numerically founded and
reasonable conjecture than else. In table 5 we give somesvafithe critical residue for a few values
of d.

If a rational number is not of constant type, then a limit does seem to be achieved for the
sequence of critical residues. In fact, it seems to happarifthy is a quadratic irrational, so that the
sequence of the partial quotierdg is eventually periodic, the sequence of critical residsesself
eventually periodic with the same period. In tables 6, 7, &amresee the sequence of critical residues
for some quadratic irrationals with short periods (resp2 2nd 3). If the rotation number is not a
quadratic irrational, so the partial quotients are apéridthe sequence of critical residues does not
seem to have any regularity (but see below for a numericatdity).

So far only quadratic irrationad have been considered. This is of course a limitation, dualgnai
to practical reasons; in fact, quadratic irrationals aeedhly irrationals with an eventually periodic
continued fraction expansion, so they are particularlyesiio Greene’s residue criterion for two
reasons: (1) the partial quotierdg are bounded, since they are periodic, so the approximaitk
have denominators which do not grow too much and (2) if théodes reasonably small, one can
tell whether the critical function has been reasonably exiprated by looking at the sequence of
residues over a span of periods and easily see whether itak®s or increases instead of being
periodic. Instead, if the sequence of the partial quotienperiodic (and worst yet, unbounded)
one can never be sure that the critical function has beennebtaince the next periodic orbit to be
considered (corresponding to the next approxinaitk) could come from an abnormally high (or
low) partial quotienta. Note that in [15], where general irrationals are also aeraid in Subsection
3.3, in the numerical calculations of the critical functi@nly the first ten partial quotients of the
rotation numbers are retained, and all the others are sestmdne practically comes back to the case
of noble numbers like ours.
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This raises the question whether tidgebraic(rather than just number-theoretic) properties of the
rotation number have any role in the properties of the cpmeding invariant curve. Lindstedt series
expansion methods for instance do not care about the alggiaperties ofw, as the only relevant
property is whethew is a Bryuno number or not. “Phase space” renormalizatiougmmethods
instead seem to work (or at least they have been applied) iorlye case of quadratic irrational
rotation numbers, so their results could depend on the edgetayer. We expect that the algebraic
properties ofw could show up, maybe, in discussing the smoothness of theahdtoundary in the
complexe plane, but of course this is just a speculation.

4. DiscusSION

Despite intensive numerical calculations, the problemarfficming the conjecture expressed in
(1.10) and estimating the expongntannot be considered completely settled even from the ricaher
point of view. In fact, as we noted earlier, only the threeoresces (1, 1/2 and 13 have been
considered, and only very special sequences of rotatiorbatsrtending to such rational numbers
have been used: considering other sequences of rotatioberamin fact, means using numbers
which have quite soon very large partial quotients, so they tire very bad from the numerical point
of view.

Moreover, a simple linear fit of log.(w) againstB(w), that is a fit which takes into account only
the leading conjectured asymptotic behavior without amyemions, still gives results which are quite
unsatisfying, as the fference between the estimated valug ahd the conjectured valye= 1 is still
of the order of a few percent. What is worst, the “running ek3pA defined in the preceding section
continue to grow monotonically from below, slowly but stégdso that one cannot even conclude
that the conjecture is false or that the valugga$ actually smaller than 1. Clearly corrections must
be taken into account, or otherwise rotation numbers evasecito the resonances (and significantly
such) must be considered, which is numerically unfeasilitle @urrent resources.

Note also the apparently quite singular fact thatd@p) the value 2 of the corresponding critical
exponent seems to be obtained within a few perommnth earlier For instance for the rotation num-
bersw close to ¥2 listed in table 9, by using for the corresponding radii ofwgrgence the values
pp(w) computed by Padé approximants, we obtain for the sléges A'(wn,,,, wn,), With
log p(wn) — log p(wm)

B(wn) -~ Blwm) ~
the values in the last column of table 9. Analogously for thtation numbers close to 13 listed in
table 10, again by using the values(w) computed by Padé approximants for the corresponding radi
of convergence, we obtain the slop&sin the last column of the same table.

In figure 1 we represent the analyticity domains doe= [3, 20, 1*°], [3, 50, 1], [3, 100, 1*] and
[3,200 1] as given by the poles of the Padé approximants [240]. As noted in Section 1 for
w getting closer to 12 the poles tend to accumulate near the strongest singulahnierefore Padé
approximants are not suitable for determining the critfoaktion, but they can be fruitfully used in
order to detect the radius of convergence.

(4.1)

A/(Cl)n, (Um) = -
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Figure 1: Poles of the Padé approximant [2400] forw = [3,n,1*] anda = 1.

The relative errors with respect to 2 for the values corradpg ton = 40, taken from tables 9 and
10, are about 4% and 30%, respectively, therefore they are comparable with therefor the last
entries of the corresponding tables 3 and 4 for the critigatfion for rotation numbenmnuch closer
to the resonance values: in the latter case indeed sucls em@about %. And for larger values of
n the relative errors become much smaller: for instancenferl00 andn = 200, we find from table
10 errors about.0% and (6%, respectively.

Of course it would be also interesting to have the slopesHerrotations numbers appearing in
tables 3 and 4. To obtain the valuesgdfv) numerically can be as hard as to determine the critical
function ec(w). Also using the method of Padé approximants can be dejiecet in order to obtain
reliable results a very high precision could be necessarge uld think of using the complex
extension of Greene’s method envisaged in [20], and theysisalat best, could be as delicate as
in the present paper, where real values: d¢fave been studied. We have also two morf@alilties
with respect to the case ef(w). First one has to guess the direction in the complex planerevh
the singularities of the boundary of the analyticity domaiia the closest to the origin; in this respect
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the results of [2] suggest, as a natural Ansatz, that, fatioot numbers close tp/q, they such
singularities lie along the directions of thetB roots of—1. Next, for fixedw close to a resonance
value, the value gb(w) should be much smaller than the valuesgfw), again as a byproduct of the
numerical analysis of [2] (and also that of [14]), so thatva&ie ofp(w) is expected to be harder to
detect thare;(w), as it should require more precision and hence more congptithe. However we
prefer to avoid any technicalfiiiculties and to circumvent the problem by using the heurfstimula
introduced in [2], say(w) ~ p1(w), with

_ 1/q
pr(w) = 4 (alCpq M) (4.2)

wheren = |w — p/q| if w is close to the resonang®q, Cp/q is the numerical constant introduced in
[3] (one hasCy1 = 1,Cy2 = —1/8 andCy,3 = —1/24), andl, = 472 x 0.827524~ 32.669338.

In [2] we have already seen that there is a good agreementbettiie valugp(w) of the radius
of convergence found by Padé approximants and the val(ie) predicted by the formula (4.2).
Furthermore the formula (4.2) becomes more and more reliabl approaches an rational value.
See for instance tables 9 and 10, which show how tfferénce between the two values(w) and
p1(w) tend to shrink to zero when making the rotation numbecloser to the rational values/2
and 13, respectively. So we can expect that the approximation @leerby evaluating the radius of
convergence(w) with p1(w) is very good for values much closer to the resonance vahsaghie ones
we have considered are.

Then we obtain the values listed in tables 11, 12 and 13 faregabfw close, respectively, to 0,
1/2 and 13 (the same for which we determined numerically the critfoaltion); the slopeg\ are
listed in the last columns of these tables. Of course, if veetlis formula (4.2), a slope approximately
equal to 2 is expected, by the definition itself@f{w). The important fact is, in any case, that the
discrepancy with respect to the vajgie- 2 (which in such a cass knownto be the right one) is much
smaller. In other words the asymptotic formula (1.9) is hemcmuch earlier than the one which is
believed to hold for the critical function.

This different speed in reaching the asymptotic behavigs(af) and ec(w) can be explained in
terms of diterent corrections to the leading order when— p/q (and thereforeB(w) — ). We
shall now try to compute such correction, at least heudhyicboth forp(w) and forec(w), and try to
use them to extrapolate a better valuggof

For what concerng(w), we shall assume the validity of the heuristic formula Y4tRis of course
can introduce further corrections not accounted for, wiiemeglect assuming that they are smaller.

Consider for example, = 1/(n+ ), n — oo. Theny = wy in (4.2) and

B((J)n) = — |Og (J)n + (UnB(l/(Un),
which implies that logf + y) = B(wn) — B(y)/(n + ). Therefore in first approximation we have that

log(n+7) ~ B(wn) - B(y)e *",
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as the leading behavior &wy) is just logh + y). This gives
log p1(wn) = l0g(ICoal™*Ac) = 2B(wn) + 2B(y)e ), (4.3)

that is the correction to the linearly growing asymptotibdaor isexponentially smallAn analogous,
slightly more complicated, computation far, = 1/(q + 1/(n + y)) gives a correction of the form
B(wn) expqB(wn)), that is still essentially exponentially small. This &dps the exceptional rapidity
of the approach to the scaling behavior fdw).

Quantitatively, a fit of the numerical data of table 11 usiA@) to model the data gives f@rthe
value 19999989, whose flierence from the correct value of 2 is of the order of4@vhile a straight
linear fit gives 200091, whose error is three orders of magnitude larger.

Analogously, a fit of the numerical data of table 13 using

logp1(wn) = 10g(Co/1l™Ac) = BB(wn) + (b + CB(w)) 2Bln) | (4.4)

gives forg the value 2000000287, whose filerence from the correct value of 2 is of the order 0f10
while a straight linear fit gives.29984, whose error is again three orders of magnitude lafdeo a
comparison between the mean-square distances of the datdhe corresponding fits is remarkable:
we obtain 2389 x 1078 for the fit by (4.4), and 000858 for the linear fit. Note that also fits with
eitherb = 0 orc = 0 in (4.4) are worse: fob = 0 we obtain a valug = 1.99966 (with mean-square
distance 0000413), while forc = 0 we obtain a valug = 1.99967 with mean-square distance
0.0000393).

To compute the correction to the leading behaviog ) is of course quite another matter, since
we don’t even have a proof or at least a very strong theotetigament for the leading order. So the
following argument is more a qualitative explanation ratiian a quantitative attempt to extrapolate
seriously the value @8 (but we shall try nevertheless).

As before we shall consider only the casg = 1/(q + 1/(n + ¥)), n — oo, and we shall set
7n = lwn —1/q. Let

log ec(wn) + B(wn) = C(wn), (4.5)
where the functiorC(w) is believed to be continuous (see [30, 32]). Let ten im0 C(w). Itis
also conjectured (see [31]) tha{w) is Holder-continuous with some exponenfin the quoted paper
it is suggested that could be 12): so, by recalling thag, ~ e 98« — 0, a reasonable guess in
(4.5) could be

log ec(wn) = (const.)— BB(wp) + O(e™@4Bwn)) (4.6)
Despite the rough, qualitative nature of the argument abggecan try to fit the data with the formula
(4.6) and see whether the growth of the slopes is such thatallne of 1 can actually be reached.
The "best” value ofx is obtained by choosing it in such a way that the mean squatandie of the
experimental data from the values obtained from the fit isirmith As an alternative, we performed
also nonlinear fits using Levenberg-Marquardt method (88£33]), obtaining consistent results.



SCALING OF THE CRITICAL FUNCTION 15

Fitting the data relative tec(wn) for the sequence considered in table 1 with the formula) (46
obtain
log ec(wn) ~ —2.34630+ 1.00359B(wn) + 1.59684¢0-3302B(wn) 4.7)
that is finally a value much closer to 1 than the straight lirfigawhich gave 07052. Moreover, the
mean-square distance of the data from the fit@0210 in the case of the fit with corrections, while
is much larger, that is.0396, in the case of the linear fit (see figure 2a).

9 4
el 3.75 e
8 o -
o 3.5 -
7 e 3.25 g
. 3 .
6 * 2.75 .
g 2.5
5 .
. ol 2.25 .
7 8 9 10 11 4 4.5 5 5.5
(a) Sequence,, listed in table 1. (b) Sequence,, listed in table 3.
2.6 .
']
2.4 el
2.2 *
2 ']
1.8 *
1.6 o
v
1.4 .
1.2

3.2 3.4 3.6 3.8 4 4.2 4.4

(c) Sequence, listed in table 4.

Figure 2: Numerical values 6flog e¢(wn,), obtained with Greene’s method, verds(,,) for the
sequencev,, listed in tables 1, 3; and 4; the error bars are less than tleeo$ithe points. The solid
curve corresponds to the fits (4.7), (4.8) and (4.9).

If we consider the case — 1/2 as in subsection 3.2, the fit with formula (4.6) gives
log ec(wn) ~ —1.86364+ 1.00308B(wy,) + 1.43766e0-696718(wn) (4.8)

with mean-square distancke= 0.0000512 (the linear fit would give = 0.96413 andd = 0.0124); in
figure 2b we plot the data together with the fit.
Finally, in the casev — 1/3 as in subsection 3.3, the fit with formula (4.6) gives

log ec(wn) ~ —1.84393+ 1.00344B(wp) + 1.82643¢10300B(wn), (4.9)

with mean-square distance0D000403 (the linear fit would give = 0.96369 andd = 0.00832); in
figure 2c we plot the data together with the fit.
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The results, together with the interpolation formula (418t at a value ofr close to ¥3, while
C,(w), according to the formula (4.4), seems to be Holder-comtiis with any exponent, < 1 (and
@, = 1in 0). So while in both cases the corrections are exporignsmall in B(w), the codficient
in the exponential is about three times larger for4¢g), leading to smaller corrections and faster
approach to the asymptotic regime.

If we try to plot C,(w) for the values ofv close to O listed in table 1, and use the valuep(af) in
table 11 we find the behavior represented in figure 3a, whit support the smoothness conjecture.
Analogously, if we plotC(w) for the same set of values af, by using the values of(w) listed in
table 1, we find the behavior in figure 3b.

3.492
2.275
3.491 Y
2,250,
3.49 2.225
3.489 . 2.2
3 488 2.175
2.15
3.487} _ *
»” 2.125
3.486
0.0005 0.001 0.0015 0.002 0.0025 0.0005 0.001 0.0015 0.002 0.0025
(a) C,(w) for w close to 0. (b) C(w) for w close to 0.
1.875
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1.85
d
3.129 L 1.825 .
1.8
3.128 . 1.775
1.75
3.127
1.725
0.4995 0.4996 0. 4997 0.4998 0.4999 0.5 L7 6,495 0.4996 0.4997 0.4998 0.4998 0.5
(c) C,(w) for w close to ¥2. (d) C(w) for w close to J2.
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3. 32005 N 1.8
3 32 1.79
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(e) C,(w) for w close to ¥3. () C(w) for w close to 13.

Figure 3: Plot ofC,(w) = logp(w) + 2B(w) andC(w) = logec(w) + B(w) versusw for the sequence
wn, listed in tables 1 (plots a and b), 3 (plots ¢ and d) and 4 (@aisd f).
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In figures 3c and 3d we represent the functi@héw) andC(w) for the values otw close to 12
listed in table 3, and in figures 3e and 3f we represent thetifureC, (w) andC(w) for the values of
w close to ¥3 listed in table 4.

While the variation in the case ef.(w) is larger, all plots support the conjecture of a function
which is not only bounded but also Holder continuous clostia¢ resonances, but of course a deeper
numerical investigation is needed in order to draw more tiizdive deductions.

To conclude, we note also that the vafie 2, which holds for the radius of convergence, is found
both in [14] and in [15] for the critical function, if the cormafations are made without requiring a
high precision (this is attributed to the low precision id]and to the truncations and approximations
due to the numerical implementation of the renormalizagooup method in [15]). We find this
phenomenon at least very curious: it would be in fact quiterésting to understand why truncation
and approximation errors in the numerical computationg giviferent value of3 (and exactly the
one holding for the radius of convergence), while in our cageerical errors due to lack of precision
give just gibberish.

5. CoNCLUSIONS

We conclude by some general remarks about the advances hdniehbeen made and the conclu-
sions which can be drawn from our analysis.

(1) The numerical results of [14] have been improved by ariood magnitude, both in the size
of Aw and in the order of the numerical errors. Moreover, an héar@ggument providing
corrections to the leading order has been given: the asabfsihe numerical data, taking
into account the conjectured form of the corrections, stigdmoth (1.10) with3 = 1 and the
continuity of the functionC(w). A stronger support would require getting closer to th@+es
nances, and considering more resonances rather thar/just/@ and ¥3: all these actions
are clearly feasible but would require significantly morenpaiter time, which has already
reached the order of several CPU years on Compaq Alpha censgiot the calculations of
the present paper.

(2) While a reasonably complete analysis of what happensdquences of rotation numbers
which arenotthe best ones cannot be practically done, the study of a seguige |n, 20, 1*°]
shows that the behavior of the critical function along tligisence is the same that along the
“best” sequencen|, 1*°]. It is likely that this holds, in the limit of long periodicrbits, at least
for all sequences of noble numbers tending to a rationalevallye could investigate very
few non-noble sequences and no sequence at all made by swgnéitterent than quadratic
irrationals (which have measure 0). For a sequence hik&q] the values ok¢(w) seem to be
comparable to the ones of the “best” sequence quoted above.

(3) The study of the function€(w) = log&c(w) + B(w) andC,(w) = logp(w) + 2B(w) seem to
suggest that they depend smoothly«ann general such functions look as continuous in their
arguments, as also the comparison between the two sequené&€$ and [2Q n, 1*°] seem
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to support. This is in contrast with the conclusions made26i,[where doubts were raised
about continuity of the function logr(w) + SB(w) for any choice of3.

(4) Some interesting conclusions can be drawn for the behatihe critical residues. It appears
that a limit value is obtained only whenis of constant type, and this limit seems to depend
only on the “tail” of the expansion. l& is not of that form but still a quadratic irrational,
then the sequence of the partial quotients is eventuallpgier In this case it appears that
Ri(ec(w)), for largek, approaches a periodic sequence of values with the sanuepErthe
partial quotients. It is not a quadratic irrational, then it isfilcult to draw any conclusion
at all. If the partial quotients are bounded, then the @itiesidues seem to be bounded away
from zero and oscillating in an apparent random way, but dednfor unbounded sequences
of partial quotients no numerical data at all could be olgdinwWe note that such a scenario
is consistent with that arising within the renormalizatigroup approach as described, for
instance, in [15].

After submission of our paper we become aware of [13], whieeeptroblem of interpolation of
the radiug (w) of the Siegel disk in terms of the/2-Bryuno functionBy,2(w) is numerically studied
(The /2-Bryuno function solves a function equation of the kind ®f8) and difers from B(w) by
an essentially bounded function [31]). There numericallence is found that the function lo@w) +
B1/2(w) is 1/2-Holder continuous. The mainfékrences between our paper and [13] are the following
ones. First of all in the case of Siegel's problem the rad{ug is equal to the modulus of the so
called Yoccoz function [36], which is more accessible fromuanerical point of view, so that [13]
can not be used to compute the critical function of the stahdsap. Second: complex values ©f
are considered, with small imaginary part, so that the thiditsaof the interpolation formula on the
real axis has to be considered as an extrapolation from #ily @sailable numerical results. Third:
Holder continuity is checked by using the Littlewood-RBateeory, which requires to consider all
together all the values the function assumes (as one neéd®woits Fourier transform), while we
check Holder continuity where the function is expectedéddss smooth, that is in correspondence
of the real resonant values; of course this method could bgipd in principle also in our case, and
it would be interesting to compare the results found withttine different approaches.

Another interesting issue could be to study what happensiwe general maps, like the general-
ized standard maps considered in [4, 6]. In our case no ioiggipn formula in terms of the Bryuno
function is expected to hold for the radius of convergencel @ne can think that the same occurs
for the critical function. One can imagine that, for fixedatin numberw, either an interpolation
formula in terms of the Bryuno function with a rotation numioéferent fromw (but related to it!)
can be obtained (as it occurs in a somehow similar situatigh6], where the Escande-Doveil’s pen-
dulum was considered), or an interpolation formula in teafn@nother function holds. But of course
the problem is open, and one can not even exclude that n@atégion formula holds at all, that is
there, in the case of more general maps, there is no key atittahfunction playing the réle of the
Bryuno function for special models as the Siegel problemtaadtandard map are.
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SCALING OF THE CRITICAL FUNCTION

TABLES

Table 1: Values of the Bryuno function, of the critical fuiect and of the running slope&, =
A(wn,, wn,_;) corresponding to a finite sequence of rotation numbggs= 1/(ng +y) = [N, 1*].
The error orec(wn,) is of 1 unit on the last digit, and the corresponding slopescamputed with

consistent accuracy.

k Wny B(wnk) 8C(wnk) Ax

1 [5001%] 6.21836 0.016585

2 [7001%] 6.55376 0.0121005 0.9329.0002
3 [100Q1*] 6.90963 0.0086401 0.9469.0001
4 [200Q1*] 7.60184 0.0044599 0.95%8.0001
5 [400Q1*] 8.29452 0.0022854 0.96%P.0001
6 [700Q1*] 8.85393 0.0013265 0.97248.0002
7 [1000Q1*] 9.21053 0.00093627 0.97#0.0002
8 [1200Q1*] 9.39284 0.00078320 0.9728.0001
9 [1500Q1%*] 9.61593 0.00062927 0.98@8.0001
10 [180001*] 9.79823 0.00052610 0.9828.0002
11 [200001*] 9.90358 0.00047433 0.9838.0004
12 [250001*] 10.12671 0.00038081 0.9840.0002
13 [300001*] 10.30902 0.00031816 0.98%6.0003
14 [400001*] 10.59668 0.00023955 0.9866.0003
15 [500001*] 10.81982 0.000192161 0.98¥9.0003
16 [600001*] 11.00213 0.000160443 0.9896.0002

Table 2: Values of the Bryuno function, of the critical fuioct and of the running slope&, =
A(wn,, wn,_;) corresponding to a finite sequence of rotation numbggs= 1/(ng + 1/(20 + v)) =
[N, 20,1%]. The error one¢(wn,) is of 1 unit on the last digit, and the corresponding slopes a
computed with consistent accuracy.

(Unk B(wnk)

[500, 20, 1]

8c(wnk) Ak
0.016303

6.22088

g~ WON P | X

[700, 20, 1°]

[100Q 20, 1]
[200Q 20, 1]
[400Q 20, 1]

6.55556
6.91089
7.60247
8.29483

0.011926
0.008535
0.004421
0.002271

0.934D.0004
0.9419.0006
0.95%P.0005
0.9620.001
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Table 3: Values of the Bryuno function, of the critical fuiect and of the running slope&; =
A(wn,, wn,_,) corresponding to a finite sequence of rotation numbgs= 1/(2 + 1/(n« + 7)) =
[2,n, 17]. The error onec(wy,) is of 1 unit on the last digit, and the corresponding quasgiare
computed with consistent accuracy.

Wny B(wnk) gc(wnk) Ax

[2,500,1%] 3.80022 0.12872

[2,700 1] 3.96840 0.109967 0.9368.0005
[2,10001*] 4.14674 0.092932 0.9438.0001
[2,20001*] 4.49337 0.066777 0.9535.0001
[2,40001*] 4.84001 0.047805 0.9642.0001
[2,70001*] 5.11987 0.036420 0.9720.0002
[2,1000Q1*] 5.29823 0.030598 0.9766.0003
[2,130001*] 5.42943 0.026909 0.9792.0006
[2,1700Q1*] 5.56357 0.023591 0.98%#0.0006
10 [22000Q1*] 5.64484 0.021780 0.9880.001

© 00N OB~ WN - | X

Table 4: Values of the Bryuno function, of the critical fuioct and of the running slope&, =
A(wn,, wn,_,) corresponding to a finite sequence of rotation numbgs= 1/(3 + 1/(n« + 7)) =
[3,n, 1°]. The error onec(wy,) is of 1 unit on the last digit, and the corresponding quasiare
computed with consistent accuracy.

Wny B(wnk) gc(wnk) Ax

[3,500,1%] 3.17069 0.244787

[3,700,1%] 3.28264 0.22044 0.9358.0001
[3,10001*] 3.40139 0.197080 0.9438.0001
[3,200Q01*] 3.63230 0.158153 0.9529.0001
[3,400Q01*] 3.86330 0.126588 0.963D.0001
[3,70001*] 4.04983 0.105608 0.97#0.0001
[3,100001*] 4.16872 0.094035 0.9768.0002
[3,130001*] 4.25617 0.086319 0.978D.0003
[3,1700Q1>] 4.34559 0.079072 0.98@D.0003
10 [32000Q1~] 4.39977 0.074973 0.9826.0005

© 00 NOoO O~ WN PR | X




SCALING OF THE CRITICAL FUNCTION

Table 5: Critical residue®..(w) for some rotation numbeks. The error orec(wy,) is of 1 unit on
the last digit.

w gc(w) Reo(w)

[1%] 0.971635406 0.250088
[2*] 0.957445408 0.2275138
[3*] 0.890863502 0.202230
[4°] 0.80472544  0.17923

[10,2°] 0.481985986 0.22751
[1,3,2°] 0.829500533 0.22751
[7,3°] 0.615071885 0.2022
[1,2,4°] 0.86423037 0.1792

Table 6: Residues of critical periodic orbits for= V3-1=[1,2,1,2,1,2,...].

&c(w) 0.876067426 ec(w) 0.876067426)
approximant residue approximant  residue
3/4 0.24871 571780 0.25291
8/11 0.18612 15602131 0.18486
11/15 0.25216 21332911 0.25292
3041 0.18516 58227953 0.18485
41/56 0.25275 795310864 0.25292
112153 0.18493 2172829681 0.18485
153209 0.25288 2968740545 0.25292
418571 0.18487 81090110771 0.18486




ALBERTO BERRETTI AND GUIDO GENTILE

Table 7: Residues of critical periodic orbits for= (V3-1)/2=[2,1,2,1,2,1,...].

&c(w) 0.9402827 gc(w) 0.9402827
approximant residue approximant  residue
3/8 0.19574 571/1560 0.18490
4/11 0.24746 7802131 0.25290
11/30 0.18763 21315822 0.18486
1541 0.25145 29137953 0.25292
41112 0.18556 795321728 0.18486
56/153 0.25254 1086429681 0.25292
153418 0.18503 2968181090 0.18486
209571 0.25282 40545110771 0.25293

Table 8: Residues of critical periodic orbits for= v5/2-1=[1,1,2,1,1,2,1,1,2...].

&c(w) 0.9402827 &c(w) 0.9402827
approximant residue approximant  residue
3/5 0.2242 6841177 0.2226
47 0.2639 9491633 0.2656
7/12 0.2278 16332810 0.2271
1831 0.2222 42157253 0.2227
2543 0.2660 584810063 0.2656
4374 0.2270 1006317316 0.2271
113191 0.2227 2597444695 0.2227
154265 0.2656 3603762011 0.2656
265456 0.2272 62017106706 0.2272
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Table 9: Radius of convergence for some values of the retationberw close to ¥2 and slopes
A, = A'(wp,, wn ;). The valugp:(w) is given by the formula (4.2), whilep(w) is the value obtained
numerically by using Padé approximants. the two valuegHerslopes correspond to the values
p1(w) andpp(w), respectively. One hag= |w — 1/2).

Wny

n

Pl(wnk)

PP(wnk) AL

o o001~ WN PR |x

[2,10, 1]
[2,12,1%]
[2,15, 1]
[2,20, 1]
[2,30, 1]
[2,40, 1]
[2,50, 1]

0.0224860
0.0190577
0.0155106
0.0118382
0.0080339
0.0060801
0.0048906

0.51409
0.43571
0.35462
0.27066
0.18368
0.13901
0.11181

0.51052
0.43355
0.35352
0.27024
0.18361
0.13902
0.11184

2.1968517013
2.144282464
2.096588449
2.054394822
2.028202484
2.016291480

Table 10: Radius of convergence for some values of the ootaimberw close to ¥3 and slopes
A, = A'(wn, wn_,)- The valueo;(w) is given by the formula (4.2), whiles(w) is the value obtained
numerically by using Padé approximants; the two valuesHerslopes correspond to the values
p1(w) andpp(w), respectively. One hag= |w — 1/3|.

K wn n pilwn)  pe(wn,) A{(

1 [3,101*] 0.0101459 0.62329 0.61993

2 [3,121*] 0.0085791 0.55734 0.55524 2.282224934
3 [3,13 1] 0.0079642 0.53038 0.52858 2.237%22067
4 [3,20,1°] 0.0053033 0.40444 0.40400 2.172225360
5 [3,30,1*] 0.0035899 0.31180 0.31182 2.09¢329051
6 [3,40,1°] 0.0027132 0.25871 0.25872 2.0631.06339
7 [3,50,1°] 0.0021807 0.22364 0.22360 2.044204795
8 [3,1001*] 0.0011006 0.14177 0.14179 2.024%592313
9 [3,200 1] 0.0005529 0.08959 0.08961 2.0092D0866
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Table 11: Values of the radius of convergence and of the slépe= A (wy,, wn, ,) corresponding
to a finite sequence of rotation numberg = 1/(n« + ) = [N, 1°]. The radius of convergence is
computed with the formula (4.2).

k  wn plwn,) A

1 [50Q1%] 0.000130355

2 [70017] 0.0000665545 2.0042837
3 [100Q1*] 0.000032629 2.0030298
4 [200Q1*] 0.00000816229 2.0018183
5 [400Q1*] 0.0000020412 2.0009090
6 [700Q1*] 0.000000666603 2.0004825
7 [1000Q1*] 0.000000326653 2.0003028
8 [1200Q1*] 0.000000226847 2.00023Q3
9 [1500Q1*] 0.000000145185 2.0001882
10 [180001*] 0.000000100824  2.0001536
11 [200001*] 0.0000000816683 2.0001329
12 [250001*] 0.0000000522684 2.0001129
13 [300001*] 0.0000000362978 2.0000921
14 [400001*] 0.0000000204177 2.0000730
15 [500001*] 0.0000000130674 2.0000565

Table 12: Values of the radius of convergence and of the slape- A'(wp,, wy,_,) corresponding
to a finite sequence of rotation numbess, = 1/(2 + 1/(nc + y)) = [2,n, 1*]. The radius of
convergence is computed with the formula (4.2).

wl’lk P(wnk) A{(

[2,500, 1] 0.011405915

[2,700,1%] 0.008152279 1.9968638

[2,10001*] 0.005709327 1.9973651

[2,200Q01*] 0.002856258 1.998059/7

[2,400Q01*] 0.001428528 1.9987793

[2,70001*] 0.000816400 1.9992292
3
5
2
3

[2,100001*] 0.000571507 1.999459
[2,130001*] 0.000439632 1.999576
[2,1700Q1*] 0.000336196 1.999657
10 [22000Q1*] 0.000285770 1.999712
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Table 13: Values of the radius of convergence and of the slépe= A’ (wy,, wn, ,) corresponding
to a finite sequence of rotation numberg = 1/(3 + 1/(Nk + 7)) = [3, N, 1°]. The error orec(wn,)
is of 1 unit on the last digit, and the corresponding loganiik computed with consistent accuracy.

SCALING OF THE CRITICAL FUNCTION

k  wn plwn,) A

1 [3,50Q 1%] 0.04873028

2 [3,70Q0 1%] 0.03895268 2.0004598
3 [3,10001*] 0.03071760 2.000048P
4 [3,200Q1*] 0.01935701 1.9997910
5 [3,400Q01*] 0.01219611 1.999728B
6 [3,70001*] 0.00839894 1.9997744
7 [3,100001*] 0.00662168 1.9998204
8 [3,130001*] 0.00555920 1.9998501
9 [3,170001*] 0.00464887 1.999873[1
10 [3,200001*] 0.00417153 1.9998900
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