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A. The behavior of the critical function for the breakdown of the homotopically non-trivial

invariant (KAM) curves for the standard map, as the rotationnumber tends to a rational number, is in-

vestigated using a version of Greene’s residue criterion. The results are compared to the analogous ones

for the radius of convergence of the Lindstedt series, in which case rigorous theorems have been proved.

The conjectured interpolation of the critical function in terms of the Bryuno function is discussed.

1. I

A long-standing problem in the study of quasi-integrable Hamiltonian systems is the characteriza-

tion of the threshold for the break-down of KAM invariant surfaces in terms of the arithmetic proper-

ties of the frequencies vectors. In this context, we consider a simple, yet paradigmatic, discrete-time

model, the so calledstandard map, introduced originally in [17, 22]. The standard map is the dynam-

ical system defined by the iteration of the map

Tε :



















x′ = x+ y+ ε sinx ,

y′ = y+ ε sinx .
(1.1)

Here (x, y) ∈ T × R; but of course the mapTε could be lifted to a map

T∗ε : (ξ, η) 7→ (ξ′, η′)

on the planeR2 given by the same formula as (1.1) with (ξ, η) replacing (x, y). For some background

information, we refer the reader to the enormous literatureon the topic, and in particular to [27] for a

review.

Despite its apparent simplicity, there are only a few properties of the standard map which can be

considered really well understood to full extent, especially from an analytical point of view. For

instance the existence of KAM invariant curves, for values of the parameterε small enough and

Diophantine rotation numbers, has been proved a long time ago, but only recently the dependence of

the radius of convergence on the rotation number has been obtained [18, 5] as an interpolation formula

in terms of the Bryuno function (see below). Also for the studying of the separatrix splitting, only

recently the original program by Lazutkin [24] has been completely achieved in a rigorous way [21].

In particular no rigorous analysis has been implemented fordetecting the critical value ofε at which

the KAM invariant curve breaks down, and only numerical results and heuristic theories exist on that

subject; see [27, 29, 1].
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In (1.1) we can eliminate they variable by writing the dynamics “in Lagrangian form” as a second

order recursion:

xn+1 − 2xn + xn−1 = ε sinxn , (1.2)

for all n ∈ Z.

For ε = 0, the circlesy = (const.) are invariant curves on which the dynamics is givenby rotation

with angular velocityω = y/2π; we call ω the rotation number. Without generality loss we can

chooseω ∈ (0, 1) as the invariant curves of the standard map are invariant under translation of 2π in

they-direction.

As the perturbation is turned on, we face the classical KAM problem of determining which invariant

curves survive and up to which size of the perturbative parameterε. Such invariant curves are given

parametrically by the equation

Cε,ω :



















x = α + u(α, ε, ω) ,

y = 2πω + u(α, ε, ω) − u(α − 2πω, ε, ω) ,

where in theα variable the dynamics on the curveCε,ω is given by rotationsαn+1 = αn + 2πω (which

solve (1.2) forε = 0). The functionu(α, ε, ω) is called theconjugating functionor linearization, and

satisfies the functional equation
(

D2
ωu

)

(α, ε, ω) ≡ u(α + 2πω, ε, ω) − 2u(α, ε, ω) + u(α − 2πω, ε, ω)

= ε sin(α + u(α, ε, ω)) ,
(1.3)

whose solutions are formally unique if we impose thatu(α, ε, ω) has zero average in theα variable.

Therefore the study of the invariant curvesCε,ω and of their smoothness properties may be reduced to

the study of the existence and smoothness of the solutions ofthe functional equation (1.3).

The solutions of (1.3) can be studied perturbatively by formally expandingu(α, ε, ω) in Taylor

series inε and in Fourier series inα; the resulting series is what is traditionally called theLindstedt

series:

u(α, ε, ω) =
∞
∑

k=1

εk u(k)(α, ω) =
∞
∑

k=1

εk
∑

|ν|≤k

eiνα u(k)
ν (ω) . (1.4)

To characterize the breakdown of an invariant curveCε,ω we introduce theradius of convergenceof

the Lindstedt series

ρ(ω) = inf
α∈T

(

lim sup
k→∞

∣

∣

∣u(k)(α, ω)
∣

∣

∣

1/k
)−1

, (1.5)

the lower (analytic) critical function

εc(ω) = sup{ε′ ≥ 0 : ∀ ε′′ < ε′ Cε′′,ω exists and is analytic}, (1.6)

and theupper (analytic) critical function

ε̃c(ω) = inf {ε′ ≥ 0 : ∀ ε′′ > ε′ Cε′′,ω does not exists as an analytic curve}. (1.7)

In general one could define analogous functions for negativevalues ofε; for the standard map they

would be anyhow identical (by symmetry properties).
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Clearlyρ(ω) ≤ εc(ω) (in the early papers on the subject some confusion was oftenmade betweenρ

andεc). It is insteadbelievedthat,for the standard map, εc(ω) = ε̃c(ω), so we can speak generically of

onecritical functionεc(ω) without further qualification. Note that for similar maps with more general

perturbations numerical results [35] suggest that the two critical functions may be indeed different.

Note also that one could define breakdown thresholds with theanalyticity condition in (1.6), (1.7)

replaced by a weaker one (such asC∞ or Ck); again those thresholds could, in principle, be different

from the analytical one, though for the standard map it isbelievedthat no such difference exists, so

that the analytic category is the right one to investigate the breakdown phenomenon.

The radius of convergence of the series (1.4) is zero – and no KAM invariant curve exists – when

ω is rational. Whenω satisfies an irrationality condition known as theBryuno condition(see below),

instead, it can be proved thatρ(ω) > 0 – so that analytic invariant curves exist forε small – and

even precise upper and lower bounds on the dependence ofρ(ω) onω can be given, up to a bounded

function ofω [18, 5]. More precisely for any rotation numberω one can define theBryuno function

B(ω), as the solution of the functional equation [36, 31]


















B(ω) = − logω + ωB(ω−1) for ω ∈ (0, 1) and irrational,

B(ω + 1) = B(ω) .
(1.8)

By a fixed-point argument it can be proved that a solution to (1.8) exists and is unique inLp(T) for

eachp ≥ 1.

We shall callBryuno numbera numberω satisfying theBryuno condition B(ω) < ∞. Then for any

Bryuno numberω one has
∣

∣

∣logρ(ω) + 2B(ω)
∣

∣

∣ < C0 , (1.9)

for a universal constantC0, that is for a constantC0 independent ofω (see [18, 5] for a proof); in

particular this implies that an invariant curve with rotation numberω exists if and only ifω satisfies

the Bryuno condition. Equation (1.9) and similar formulas are referred to as “Bryuno’s interpolation

formulas”.

The claim is often made that a formula analogous to (1.9) should hold forεc(ω): for anyω satisfying

the Bryuno condition one should have
∣

∣

∣logεc(ω) + βB(ω)
∣

∣

∣ < C1 , (1.10)

for a universal constantC1, with an exponentβ ≤ 2; it is conjectured thatβ = 1 (seee.g.[32, 14]).

Equation (1.10) implies a scaling law for the critical function εc(ω) asω → p/q on suitable se-

quences of Bryuno numbers. In fact, given (1.10), there are sequences of Bryuno (even Diophantine)

rotation numbers chosen in such a way that along them the critical function tends to zeroin any arbi-

trarily fast way. For example, we can consider the two sequences of Diophantine (even noble) rotation

numbers

ωk =
1

k+ γ
, ω̃k =

1

k+
1

2k2
+ γ

, (1.11)
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whereγ = (
√

5 − 1)/2 = [1∞] is the golden mean; then (1.10), withβ = 1, would imply that

εc(ωk) = O(1/k) while εc(ω̃k) = O(e−k/k), that ismuch faster(see [5], p. 625-626). It is therefore

essential to have a good control over the arithmetic properties of the rotation numbers one considers

when speaking of scaling properties of the critical function εc(ω).

The conjecture of Bryuno’s interpolation was actually madefor the critical functionεc(ω) more

than 10 years ago in [32] (motivated also by the numerical results in [30] for related complex area-

preserving maps and in [12] for modular smoothing); in that paper, Bryuno’s interpolation is stated

formally for the radius of convergence, but the numerical calculations, with Greene’s method, compute

the critical function. The main motivation behind [32] was the comparison with the work of Yoccoz

in [36], together with the claims of universality coming from the renormalization description of the

critical invariant circle. In [18, 5] (see also [3]) Bryuno’s interpolation for the radius of convergence

was indeed proved; the mechanism of proof in [5], based on themultiscale decomposition of the

propagators in the tree expansion, naturally generates an estimate ofρ(ω) in terms of the Bryuno

function for the semi-standard and standard maps. On the other hand, there is no compellinga priori

heuristic reason for the critical functionεc(ω) for the standard map to satisfy an interpolation formula

in terms of the same arithmetical function as the radius of convergenceρ(ω); put it in another way, it

is by no means obvious that| logρ(ω) − (2/β) logεc(ω)| should be bounded.

From this point of view, it would be interesting to consider generalized standard maps,i.e. maps

where the nonlinear term in (1.1) is an arbitrary analytic, periodic function ofx (see [4, 6]). In these

cases a Bryuno’s interpolation formula for the radius of convergence of their Lindstedt series is not

known.

The method used in [2] cannot be pushed so far to get reasonable numerical data on the critical

function, for some rather obvious reasons; in fact, the method we used there (Padé approximants)

attempts at modeling thewhole natural boundary, giving particular weight at those regions of the

boundary where the singularity is “strongest”: that is, to those regions closer to the origin (thefirst

order or dominant singularitiesas defined in [2]), which determineρ(ω); so that part of the natural

boundary near the realε axis, which determinesεc(ω), is represented, asω is closer and closer to

a rational value, as a few scattered points from which no reliable information can be extracted: this

happens already for rotation numbers as little close to a rational value as, for instance, 1/(50+ γ) is to

0, that is still quite far from the rational value. One clearly needs a method in which all the computing

power is dedicated to the calculation of the quantity one is interested in, that isεc(ω).

To this aim, two methods have been used previously in the literature: Greene’s method (also known

as residue criterion; more about it in the next section), used in [32], and the frequency map analysis

[23], used in [14]. As we also use Greene’s method, we shall postpone a more thorough analysis to

the next section, and go on to a discussion of the results of [14].

In [14] the following functions are defined:

ω+p/q(ε) = inf

{

ω >
p
q

: Cε,ω exists and isC1
}

, (1.12)
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and

ω−p/q(ε) = sup

{

ω <
p
q

: Cε,ω exists and isC1
}

. (1.13)

The meaning of those functions is that, for the given value ofε, no (C1) invariant curves exist

with rotation numbers betweenω−p/q(ε) andω+p/q(ε). The frequency map analysis method computes

∆p/q(ε) = ω+p/q(ε) − ω−p/q(ε) for selected values ofε; ∆p/q(ε) should tend to 0 withε and in this way

a lower bound onβ should be obtained (see below). Note thatε is fixed, and correspondingly some

rotation numbers arecomputed numerically, therefore losing any strict control over their arithmetical

properties.

We remark that the regularity properties of the functionsω±p/q(ε) are quite hard to understand, and

in particular their relation with the critical function is far from obvious. In fact, while it is certainly

true that

εc(ω̃) < ε ∀ω̃ ∈ (ω−p/q(ε), ω+p/q(ε)), (1.14)

the formulas at p. 2037 and p. 2052 of [14], that isεc(ω±p/q(ε)) = ε, cannot be claimed in full rigor

since an invariant curve with rotation number very close top/q can be broken by the effect ofanother

resonancep′/q′ ≈ p/q, but distinct, so that we can at most claim that

εc(ω
±
p/q(ε)) ≤ ε. (1.15)

This implies that the law|ω±p/q(ε)− p/q| ≈ εq, numerically determined in [14], provides for the critical

exponent an estimate from below of the actual valueβ, which in principle could be higher (if it does

exist at all). Equality in (1.15) can be safely assumed at best for ε such that the corresponding value

ω±p/q(ε) belongs to a special class of rotation numbers tending top/q (in some sense the “best ones”,

that is the ones whose partial quotients grow as slow as possible), which are indeed the ones considered

in [14] and in the present paper (and which are the only reallyaccessible to a numerical investigation).

Note also that to saturate (1.15) one should assume other qualitative features (like monotonicity) on

the functionsω±p/q(ε), which are far from being proved. Howeverfor the caseω → 0 only this is

enough, since estimates in [34] implyan upper boundon the critical exponent, which closes the gap

(the analytical estimates in [14] are indeed obtained for such a case by combining the results of [34]

for the upper bound with those of [21] for the lower bound).

The numerical lower bounds found in [14] forβ are consistent withβ = 1 with errors of orders 4%

for ω close to 0/1, 10% forω close to 1/2, 5% forω close to 1/3, 10% forω close to 1/4, 8% forω

close to 1/5 and 10% forω close to 2/5.

Establishing a condition like (1.10) is out of reach from thenumerical point of view if one wants to

take into accountarbitrary sequences of Bryuno numbers. In fact for the frequency map analysis this

is a limitation intrinsic to the method itself, since it automatically sort of chooses the best sequence

of Diophantine numbers tending to any given rational value.For any other method, like Greene’s

residue criterion, to investigate Bryuno non-Diophantinenumbers would require computer resources

far beyond current availability, while computing the critical function even for Diophantine numbers

with large partial quotients becomes substantially hard. So the question of establishing a Bryuno
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interpolation formula forεc(ω), and obtaining the correct critical exponentβ if such a formula is

indeed established, is still quite open.

In this paper we use Greene’s method to compute the critical function when the distance of the

rotation numbers from the resonances is of order 10−5. As the computations close to resonances

become very time-consuming we look at only three resonances(0, 1/2 and 1/3). We then use the

conjectured Hölder-continuity property of the function logεc(ω) + βB(ω) to derive the corrections to

the asymptotic behavior of logεc(ω), so improving significantly the agreement of the data with the

conjectured value ofβ = 1.

Of course the problem is not completely solved, even from thenumerical point of view, for two

reasons. The first is that we consider only three resonances,so that a more exhaustive investigation

would be needed. The second is the aforementioned very special choice of the sequences of rotation

numbers tending to the resonances that we have to use. Nevertheless we improve the results existing

in literature by one order of magnitude both in the distance from the resonance and in the value ofβ,

finding further support for the conjectured Bryuno’s interpolation formula for the critical function.

2. G’ 

The main tool we use to determine numerically the break-downthresholds for analytic invariant

curves for the standard map is Greene’s method, known also asresidue criterion. We now recall the

main properties of the periodic solutions of the standard map used to formulate Greene’s method, and

sketch briefly its foundations, referring to the original paper [22] for more details.

We also recall that in [19] and [28] some theorems are proved that go some way in the direction of

proving the validity of Greene’s method, at least in specialcases. While a full rigorous justification

of its use has not yet been achieved, Greene’s method is considered one of the most accurate way to

compute the critical functionεc for the standard map.

If ω is a rational number, given as the irreducible fractionp/q, then Birkhoff theory [10, 11] applies;

its consequences for maps like the standard mapTε are the following. Ifε = 0 (unperturbed, linear

case) then there are trivially invariant curves with rational rotation numberp/q, such that every point

on them is a fixed point of the iterated mapT◦qε . As the perturbation is turned on, only 2kq, k ∈ N,

points survive as fixed points of theq-th iterate of the mapTε. These correspond to an even number

(2k) of periodic orbits of periodq. Such orbits – that we callperturbative– are the ones which will

be studied within a perturbative framework; a simple perturbative calculation (seee.g.[7]) shows that

for the standard map the even number of such periodic orbits is indeed just 2.

Of course this does not mean that such orbits are the only periodic ones for the standard map, but

they are those which are obtained by continuation (inε) from unperturbed ones. In other words such a

scenario does not consider the new periodic orbits arising when the perturbation is switched on. If we

pass to the planeR2 and consider the mapT∗ε , then the situation can be clarified in the following way.

Whenω is irrational and satisfies the Bryuno condition, then the invariant curve with rotation number

ω of the unperturbed map survives for small values ofε, while an invariant curve with rational rotation

numberp/q is suddenly destroyed; instead, only two discrete invariant sets of points{(ξ(ℓ)j , η
(ℓ)
j )} j∈Z,
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ℓ = 1, 2 survive, such that


















ξ
(ℓ)
j+1 > ξ

(ℓ)
j ,

ξ
(ℓ)
j+q = ξ

(ℓ)
j + 2πp, ℓ = 1, 2.

(2.1)

By taking the quotient in the first variable by the group of discrete translations by multiples of 2π, we

obviously get two periodic orbits of periodq, on which the motion has rotation numberp/q.

In [7] it is also proved that, for small values ofε, each such periodic orbit lies on an analytic curve

– called aremnantof the rational invariant curve of the unperturbed map –, andfor rational numbers

which approximate a Bryuno numberω such remnants approximate the invariant curve with rotation

numberω.

The basic idea of Greene’s method consists in relating the break-down of an invariant curve with

the loss of stability of nearby perturbative periodic orbits. In practice, the hypothesis behind Greene’s

method is that, ifε < εc(ω), then there is a sequence of stable perturbative periodic orbits with rotation

numberspk/qk; asε grows beyondεc(ω), these periodic orbits lose stability in the largek limit.

The criterion can be formulated more precisely in the following way. Let{(x(k)
i , y

(k)
i )}qi=1 be a per-

turbative periodic orbit with rotation numberpk/qk, approximating the irrational rotation numberω.

LetTk(ε) be the trace of the tangent dynamics along the periodic orbit:

Tk(ε) = tr
qk
∏

i=1















1+ ε cosx(k)
i 1

ε cosx(k)
i 1















. (2.2)

Then the periodic orbit is stable if−2 < Tk(ε) < 2, unstable otherwise. For historical reasons, the

criterion is usually formulated in term of theresidueRk(ε) of the orbit, related to the above trace by

Rk(ε) =
2− Tk(ε)

4
.

Therefore in terms of the residue the orbit is stable if 0< Rk(ε) < 1, unstable otherwise. We then

track, for a fixed value ofε, the residue of those perturbative periodic orbits with rotation numbers

pk/qk which are stable forε = 0; if the residue diverges ask→ ∞, thenε > εc(ω), while if the residue

tends to 0 thenε < εc(ω).

It is actually conjectured (see [28]) that ifε < εc(ω), then the residueRk(ε) tends exponentially to

zero ask→ ∞, with a rate of decay proportional to the width of the analyticity strip of the conjugating

functionu(α, ε, ω) on the complexα plane for the values ofε andω considered. So Greene’s method

can also be used also to provide numerical information on theanalytic properties ofu in α, assuming

this conjecture.

An interesting question is what actually happens to the residueat the critical functionεc(ω). It was

originally conjectured that fornoblerotation numbers (that is, rotation numbers which are obtained by

applying a modular transformation to the golden mean, so that their continued fraction expansion has

a “tail” of 1’s) it tends to a limit value, which should be about 0.25. We present below some numerical

results which show that generally the situation is more complicate, and that suchlimit residueR∞(ε)

could be not only different for different classes of rotation numbers, but could also be non-existent,

and relate the behavior of the sequence of residuesRk(ε) for a fixed value ofε along the sequence
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of perturbative periodic orbits of rotation numberspk/qk to the arithmetic properties of the rotation

number.

From the practical, computational standpoint, the implementation of Greene’s method faces some

challenges if we wish to use it near resonances. The first is that, if ω is near a resonance, then the

qk become soon quite large, that is we have to find manylong periodic orbits, which takes a lot of

computer time.

The second, hardest, challenge is more subtle. In fact, if ithappens that the rotation number of a

periodic orbit isp/q ≈ p′/q′, with q≫ q′ (the typical situation arising when approximating irrational

rotation numbers close to small-denominator rationals) then it appears numerically that the periodic

orbit of rotation numberp/q tends to consist in lots (q is supposed to be large) of points accumulating

near the points making the periodic orbit of rotation numberp′/q′. The consequences for the compu-

tation of the residue are dire, as in this case the matrix in (2.2) has two very large, opposite, nearly

equal in absolute value diagonal elements, so that when computing the trace the real data cancels and

one is left with just the numerical error. Note that using a low precision with Greene’s method so

close to resonances gives essentially noise instead of the residue, so we get no values at all forβ.

We choose a brute-force solution to this precision problem,which consists in increasing the number

of digits in the calculations until some data is left when computing the trace. Empirically, this could

mean that one has to usehundredsof digits of precision in computing (2.2) numerically,therefore also

the periodic orbits must be known with such a precision: considering that one easily needs periodic

orbits of period in the range of several tens of thousands – weactually reach orbits of length of the

order of 150000 –, the calculation of a single value ofεc can require a great amount of computer time.

3. N 

3.1. Rotation numbers close to 0. Consider rotation numbersωn = 1/(n+ γ) = [n, 1∞], with n ∈ N:

in table 1 we give the values of the Bryuno function and of the critical function for rotation numbers

ωnk, with {nk} a finite increasing sequence. Note that we reach values of rotation number close more

than 2× 10−5 to the resonance value (0 in this case), which corresponds tovalues ofn up to 60000.

By fitting y = − logεc(ωnk) as a linear function ofx = B(ωnk), we obtain

y = ax+ b a= 0.9705, b = −1.9553. (3.1)

As we see the slope is close to (but different from) 1: the relative difference is about 3.0%.

One also realizes that the slope of the line increases if we neglect the rotation numbersωn corre-

sponding to smaller values ofn: this suggests that, if we consider just pairs of successiverotation

numbers and evaluate the slope of the line passing through them, then we obtain an increasing func-

tion. This can be formulated more precisely as follows. Forn,m ∈ N define

A(ωn, ωm) = − logεc(ωn) − logεc(ωm)
B(ωn) − B(ωm)

, (3.2)

which measures the slopea of the line

− logεc(ω) = aB(ω) + b, (3.3)
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passing through the points (B(ωn),− logεc(ωn)) and (B(ωm),− logεc(ωm)). We setAk = A(ωnk+1, ωnk).

In table 1 we give also the values of the slopesAk: as we notedAk steadily increases.

The valueβ = 1 is anyhow still far from being reached: at best, just considering the last value ofAk

in table 1 we obtain a value whose relative difference from 1 is greater than 1%. Moreover, though the

values of the slopes increase asn→ ∞, the convergence to 1 is very slow. In the next section we shall

provide a heuristic argument which allows to guess the correction to the asymptotic behavior and so

try to extrapolate a better value ofβ; this applies also to the cases considered in the next subsections.

In table 2 we give the values of the Bryuno function and of the critical function for a finite sequence

of rotation numbersωnk, with ωnk = 1/(nk + 1/(20+ γ)) = [nk, 20, 1∞]: such numbers tend to 0 as the

previously considered ones, and share with them, essentially, the same Diophantine properties, as they

have the same “tail” of 1’s in their continued fraction expansion, with the only difference that there

is a partial quotient 20 before such a “tail”. The distance ofthe rotation numbers considered is up to

2× 10−4 from 0, i.e. an order less than in the previous case: this is due to the fact the partial quotients

go faster, and it becomes longer for the residue to reach the asymptotic value (so that periodic orbits

with larger periods should be considered in order to obtain for the rotation numbers the same distance

from the resonance value).

As one can see, the values of the Bryuno function and of the critical function are comparable with

those listed in table 1: the introduction of a larger partialquotient does not introduce any relevant

change. As a consequence, also the slopesAk, defined as before with the new definition ofωnk, are

very similar (as a look at the last column of table 2 immediately confirms).

Note however that to compute numerically the critical function for rotation numbers of the form

[nk, 20, 1∞] for given k is much more time consuming, since, in general, to obtain a reliable precision

we are forced to reach periodic orbits with very high periods(say more than a hundred thousand),

which requires a precision of about 600 digits.

3.2. Rotation numbers close to 1/2. In table 3 we consider a sequence of rotation numbers tending

to 1/2 of the formωn = 1/(2 + 1/(n + γ)) = [2, n, 1∞]. The rotation numbers considered are up to

10−5 close to the resonance value 1/2 (which correspond to values ofn up to 20000).

The fit for y = − logεc(ωnk) as a linear function ofx = B(ωnk) gives

y = ax+ b a= 0.9641, b = −1.6203. (3.4)

Again we see the slope is not 1, and the relative error is now about 3.6%. It is greater than in the

previous case because we stopped to smaller values ofn; in fact the values of the slopes listed in table

3 show that again the functionAk, defined exactly as before with the new definition for the rotation

numbersωnk, is increasing ink. The relative difference from 1 of the last value ofAk is about 1.7%.

3.3. Rotation numbers close to 1/3. In table 4 we consider a sequence of rotation numbers tending

to 1/3 of the formωn = 1/(3 + 1/(n + γ)) = [3, n, 1∞]. The rotation numbers considered are up to

5× 10−6 close to the resonance value 1/3 (which correspond to values ofn up to 20000).
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The fit for y = − logεc(ωnk) as a linear function ofx = B(ωnk) gives

y = ax+ b a= 0.9637, b = −1.6526. (3.5)

while in the last column of table 4 we list the slopesAk, again defined as before with the new definition

for the rotation numbersωnk; the relative difference of the slope with respect to 1 is more than 3.7%,

while the relative difference from 1 of the last value ofAk is about 1.7%.

3.4. Behavior of the critical residues and other rotation numbers. The behavior of the residue for

ε exactlyequal to the critical functionεc(ω) when the rotation number of the approximating periodic

orbits tends toω has been considered since the very first papers on the subjects (for example, in [22]

itself). In particular, one considers the sequence of residuesRk(εc(ω)) whenk → ∞; it appears that

this sequence has a limit only whenω is a number of so called “constant type”,i.e. whenω can be

written as [a1, . . . , aN, d∞]. This limit moreover seems to depend only on the integerd, and not at all

from the “head” of the continued fraction expansion [a1, . . . , aN]. Unfortunately, a sound numerical

evidence can be obtained only ford = 1 and for short “heads” in the continued fraction expansion,

otherwise the partial quotients gets soon large and it becomes difficult to compute the critical residues

with the accuracy required: therefore we state this more as asomewhat numerically founded and

reasonable conjecture than else. In table 5 we give some values of the critical residue for a few values

of d.

If a rational number is not of constant type, then a limit doesnot seem to be achieved for the

sequence of critical residues. In fact, it seems to happen that if ω is a quadratic irrational, so that the

sequence of the partial quotientsak is eventually periodic, the sequence of critical residues is itself

eventually periodic with the same period. In tables 6, 7, 8 wecan see the sequence of critical residues

for some quadratic irrationals with short periods (resp. 2,2 and 3). If the rotation number is not a

quadratic irrational, so the partial quotients are aperiodic, the sequence of critical residues does not

seem to have any regularity (but see below for a numerical difficulty).

So far only quadratic irrationalω have been considered. This is of course a limitation, due mainly

to practical reasons; in fact, quadratic irrationals are the only irrationals with an eventually periodic

continued fraction expansion, so they are particularly suited to Greene’s residue criterion for two

reasons: (1) the partial quotientsak are bounded, since they are periodic, so the approximantspk/qk

have denominators which do not grow too much and (2) if the period is reasonably small, one can

tell whether the critical function has been reasonably approximated by looking at the sequence of

residues over a span of periods and easily see whether it decreases or increases instead of being

periodic. Instead, if the sequence of the partial quotientsis aperiodic (and worst yet, unbounded)

one can never be sure that the critical function has been obtained since the next periodic orbit to be

considered (corresponding to the next approximantpk/qk) could come from an abnormally high (or

low) partial quotientak. Note that in [15], where general irrationals are also considered in Subsection

3.3, in the numerical calculations of the critical function, only the first ten partial quotients of the

rotation numbers are retained, and all the others are set to 1, so one practically comes back to the case

of noble numbers like ours.
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This raises the question whether thealgebraic(rather than just number-theoretic) properties of the

rotation number have any role in the properties of the corresponding invariant curve. Lindstedt series

expansion methods for instance do not care about the algebraic properties ofω, as the only relevant

property is whetherω is a Bryuno number or not. “Phase space” renormalization group methods

instead seem to work (or at least they have been applied) onlyin the case of quadratic irrational

rotation numbers, so their results could depend on the algebraic layer. We expect that the algebraic

properties ofω could show up, maybe, in discussing the smoothness of the natural boundary in the

complexε plane, but of course this is just a speculation.

4. D

Despite intensive numerical calculations, the problem of confirming the conjecture expressed in

(1.10) and estimating the exponentβ cannot be considered completely settled even from the numerical

point of view. In fact, as we noted earlier, only the three resonances 0/1, 1/2 and 1/3 have been

considered, and only very special sequences of rotation numbers tending to such rational numbers

have been used: considering other sequences of rotation numbers, in fact, means using numbers

which have quite soon very large partial quotients, so that they are very bad from the numerical point

of view.

Moreover, a simple linear fit of logεc(ω) againstB(ω), that is a fit which takes into account only

the leading conjectured asymptotic behavior without any corrections, still gives results which are quite

unsatisfying, as the difference between the estimated value ofβ and the conjectured valueβ = 1 is still

of the order of a few percent. What is worst, the “running slopes” Ak defined in the preceding section

continue to grow monotonically from below, slowly but steadily, so that one cannot even conclude

that the conjecture is false or that the value ofβ is actually smaller than 1. Clearly corrections must

be taken into account, or otherwise rotation numbers even closer to the resonances (and significantly

such) must be considered, which is numerically unfeasible with current resources.

Note also the apparently quite singular fact that forρ(ω) the value 2 of the corresponding critical

exponent seems to be obtained within a few percentmuch earlier. For instance for the rotation num-

bersω close to 1/2 listed in table 9, by using for the corresponding radii of convergence the values

ρP(ω) computed by Padé approximants, we obtain for the slopesA′k = A′(ωnk+1, ωnk), with

A′(ωn, ωm) = − logρ(ωn) − logρ(ωm)
B(ωn) − B(ωm)

, (4.1)

the values in the last column of table 9. Analogously for the rotation numbersω close to 1/3 listed in

table 10, again by using the valuesρP(ω) computed by Padé approximants for the corresponding radii

of convergence, we obtain the slopesA′k in the last column of the same table.

In figure 1 we represent the analyticity domains forω = [3, 20, 1∞], [3, 50, 1∞], [3, 100, 1∞] and

[3, 200, 1∞] as given by the poles of the Padé approximants [240/240]. As noted in Section 1 for

ω getting closer to 1/2 the poles tend to accumulate near the strongest singularity: therefore Padé

approximants are not suitable for determining the criticalfunction, but they can be fruitfully used in

order to detect the radius of convergence.
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(d) n = 200.

Figure 1: Poles of the Padé approximant [240/240] forω = [3, n,1∞] andα = 1.

The relative errors with respect to 2 for the values corresponding ton = 40, taken from tables 9 and

10, are about 1.4% and 3.0%, respectively, therefore they are comparable with the errors for the last

entries of the corresponding tables 3 and 4 for the critical function for rotation numbersmuch closer

to the resonance values: in the latter case indeed such errors are about 1.7%. And for larger values of

n the relative errors become much smaller: for instance, forn = 100 andn = 200, we find from table

10 errors about 1.0% and 0.5%, respectively.

Of course it would be also interesting to have the slopes for the rotations numbers appearing in

tables 3 and 4. To obtain the values ofρ(ω) numerically can be as hard as to determine the critical

function εc(ω). Also using the method of Padé approximants can be delicate, as in order to obtain

reliable results a very high precision could be necessary. One could think of using the complex

extension of Greene’s method envisaged in [20], and the analysis, at best, could be as delicate as

in the present paper, where real values ofε have been studied. We have also two more difficulties

with respect to the case ofεc(ω). First one has to guess the direction in the complex plane where

the singularities of the boundary of the analyticity domainare the closest to the origin; in this respect
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the results of [2] suggest, as a natural Ansatz, that, for rotation numbers close top/q, they such

singularities lie along the directions of the 2qth roots of−1. Next, for fixedω close to a resonance

value, the value ofρ(ω) should be much smaller than the value ofεc(ω), again as a byproduct of the

numerical analysis of [2] (and also that of [14]), so that thevalue ofρ(ω) is expected to be harder to

detect thanεc(ω), as it should require more precision and hence more computing time. However we

prefer to avoid any technical difficulties and to circumvent the problem by using the heuristicformula

introduced in [2], sayρ(ω) ≈ ρ1(ω), with

ρ1(ω) = η2/q
(

q|Cp/q|−1λc

)1/q
, (4.2)

whereη = |ω − p/q| if ω is close to the resonancep/q, Cp/q is the numerical constant introduced in

[3] (one hasC0/1 = 1, C1/2 = −1/8 andC1/3 = −1/24), andλc = 4π2 × 0.827524≈ 32.669338.

In [2] we have already seen that there is a good agreement between the valueρP(ω) of the radius

of convergence found by Padé approximants and the valueρ1(ω) predicted by the formula (4.2).

Furthermore the formula (4.2) becomes more and more reliable asω approaches an rational value.

See for instance tables 9 and 10, which show how the difference between the two valuesρP(ω) and

ρ1(ω) tend to shrink to zero when making the rotation numberω closer to the rational values 1/2

and 1/3, respectively. So we can expect that the approximation we make by evaluating the radius of

convergenceρ(ω) with ρ1(ω) is very good for values much closer to the resonance values,as the ones

we have considered are.

Then we obtain the values listed in tables 11, 12 and 13 for values ofω close, respectively, to 0,

1/2 and 1/3 (the same for which we determined numerically the criticalfunction); the slopesA′k are

listed in the last columns of these tables. Of course, if we use the formula (4.2), a slope approximately

equal to 2 is expected, by the definition itself ofρ1(ω). The important fact is, in any case, that the

discrepancy with respect to the valueβ = 2 (which in such a caseis knownto be the right one) is much

smaller. In other words the asymptotic formula (1.9) is reached much earlier than the one which is

believed to hold for the critical function.

This different speed in reaching the asymptotic behavior ofρ(ω) andεc(ω) can be explained in

terms of different corrections to the leading order whenω → p/q (and thereforeB(ω) → ∞). We

shall now try to compute such correction, at least heuristically, both forρ(ω) and forεc(ω), and try to

use them to extrapolate a better value ofβ.

For what concernsρ(ω), we shall assume the validity of the heuristic formula (4.2); this of course

can introduce further corrections not accounted for, whichwe neglect assuming that they are smaller.

Consider for exampleωn = 1/(n+ γ), n→ ∞. Thenη = ωn in (4.2) and

B(ωn) = − logωn + ωnB(1/ωn),

which implies that log(n+ γ) = B(ωn) − B(γ)/(n+ γ). Therefore in first approximation we have that

log(n+ γ) ≈ B(ωn) − B(γ)e−B(ωn),
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as the leading behavior ofB(ωn) is just log(n+ γ). This gives

logρ1(ωn) ≈ log(|C0/1|−1λc) − 2B(ωn) + 2B(γ)e−B(ωn), (4.3)

that is the correction to the linearly growing asymptotic behavior isexponentially small. An analogous,

slightly more complicated, computation forωn = 1/(q + 1/(n + γ)) gives a correction of the form

B(ωn) exp(−qB(ωn)), that is still essentially exponentially small. This explains the exceptional rapidity

of the approach to the scaling behavior forρ(ω).

Quantitatively, a fit of the numerical data of table 11 using (4.3) to model the data gives forβ the

value 1.9999989, whose difference from the correct value of 2 is of the order of 10−7, while a straight

linear fit gives 2.00091, whose error is three orders of magnitude larger.

Analogously, a fit of the numerical data of table 13 using

logρ1(ωn) ≈ log(|C0/1|−1λc) − βB(ωn) + (b+ cB(ω))−3B(ωn) , (4.4)

gives forβ the value 2.000000287, whose difference from the correct value of 2 is of the order of 10−7,

while a straight linear fit gives 1.99984, whose error is again three orders of magnitude larger. Also a

comparison between the mean-square distances of the data from the corresponding fits is remarkable:

we obtain 2.389× 10−8 for the fit by (4.4), and 0.0000858 for the linear fit. Note that also fits with

eitherb = 0 or c = 0 in (4.4) are worse: forb = 0 we obtain a valueβ = 1.99966 (with mean-square

distance 0.0000413), while forc = 0 we obtain a valueβ = 1.99967 with mean-square distance

0.0000393).

To compute the correction to the leading behavior ofεc(ω) is of course quite another matter, since

we don’t even have a proof or at least a very strong theoretical argument for the leading order. So the

following argument is more a qualitative explanation rather than a quantitative attempt to extrapolate

seriously the value ofβ (but we shall try nevertheless).

As before we shall consider only the caseωn = 1/(q + 1/(n + γ)), n → ∞, and we shall set

ηn = |ωn − 1/q|. Let

logεc(ωn) + B(ωn) = C(ωn), (4.5)

where the functionC(ω) is believed to be continuous (see [30, 32]). Let then ¯c = limω→0 C(ω). It is

also conjectured (see [31]) thatC(ω) is Hölder-continuous with some exponentα (in the quoted paper

it is suggested thatα could be 1/2): so, by recalling thatηn ≈ e−qB(ωn) → 0, a reasonable guess in

(4.5) could be

logεc(ωn) = (const.)− βB(ωn) +O(e−αqB(ωn)). (4.6)

Despite the rough, qualitative nature of the argument above, we can try to fit the data with the formula

(4.6) and see whether the growth of the slopes is such that thevalue of 1 can actually be reached.

The “best” value ofα is obtained by choosing it in such a way that the mean square distance of the

experimental data from the values obtained from the fit is minimal. As an alternative, we performed

also nonlinear fits using Levenberg-Marquardt method (see [25, 33]), obtaining consistent results.
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Fitting the data relative toεc(ωn) for the sequence considered in table 1 with the formula (4.6), we

obtain

logεc(ωn) ≈ −2.34630+ 1.00359B(ωn) + 1.59684e−0.3302B(ωn), (4.7)

that is finally a value much closer to 1 than the straight linear fit, which gave 0.97052. Moreover, the

mean-square distance of the data from the fit is 0.000210 in the case of the fit with corrections, while

is much larger, that is 0.0396, in the case of the linear fit (see figure 2a).
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(a) Sequenceωnk listed in table 1.
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(b) Sequenceωnk listed in table 3.
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(c) Sequenceωnk listed in table 4.

Figure 2: Numerical values of− logεc(ωnk), obtained with Greene’s method, versusB(ωnk) for the

sequenceωnk listed in tables 1, 3; and 4; the error bars are less than the size of the points. The solid

curve corresponds to the fits (4.7), (4.8) and (4.9).

If we consider the caseω→ 1/2 as in subsection 3.2, the fit with formula (4.6) gives

logεc(ωn) ≈ −1.86364+ 1.00308B(ωn) + 1.43766e−0.69671B(ωn) (4.8)

with mean-square distanced = 0.0000512 (the linear fit would giveβ = 0.96413 andd = 0.0124); in

figure 2b we plot the data together with the fit.

Finally, in the caseω→ 1/3 as in subsection 3.3, the fit with formula (4.6) gives

logεc(ωn) ≈ −1.84393+ 1.00344B(ωn) + 1.82643e−1.0300B(ωn), (4.9)

with mean-square distance 0.0000403 (the linear fit would giveβ = 0.96369 andd = 0.00832); in

figure 2c we plot the data together with the fit.
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The results, together with the interpolation formula (4.6), hint at a value ofα close to 1/3, while

Cρ(ω), according to the formula (4.4), seems to be Hölder-continuous with any exponentαρ < 1 (and

αρ = 1 in 0). So while in both cases the corrections are exponentially small in B(ω), the coefficient

in the exponential is about three times larger for logρ(ω), leading to smaller corrections and faster

approach to the asymptotic regime.

If we try to plotCρ(ω) for the values ofω close to 0 listed in table 1, and use the values ofρ(ω) in

table 11 we find the behavior represented in figure 3a, which also support the smoothness conjecture.

Analogously, if we plotC(ω) for the same set of values ofω, by using the values ofε(ω) listed in

table 1, we find the behavior in figure 3b.
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Figure 3: Plot ofCρ(ω) = logρ(ω) + 2B(ω) andC(ω) = logεc(ω)+ B(ω) versusω for the sequence

ωnk listed in tables 1 (plots a and b), 3 (plots c and d) and 4 (plotse and f).
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In figures 3c and 3d we represent the functionsCρ(ω) andC(ω) for the values ofω close to 1/2

listed in table 3, and in figures 3e and 3f we represent the functionsCρ(ω) andC(ω) for the values of

ω close to 1/3 listed in table 4.

While the variation in the case ofεc(ω) is larger, all plots support the conjecture of a function

which is not only bounded but also Hölder continuous close to the resonances, but of course a deeper

numerical investigation is needed in order to draw more quantitative deductions.

To conclude, we note also that the valueβ = 2, which holds for the radius of convergence, is found

both in [14] and in [15] for the critical function, if the computations are made without requiring a

high precision (this is attributed to the low precision in [14] and to the truncations and approximations

due to the numerical implementation of the renormalizationgroup method in [15]). We find this

phenomenon at least very curious: it would be in fact quite interesting to understand why truncation

and approximation errors in the numerical computations give a different value ofβ (and exactly the

one holding for the radius of convergence), while in our casenumerical errors due to lack of precision

give just gibberish.

5. C

We conclude by some general remarks about the advances whichhave been made and the conclu-

sions which can be drawn from our analysis.

(1) The numerical results of [14] have been improved by an order of magnitude, both in the size

of ∆ω and in the order of the numerical errors. Moreover, an heuristic argument providing

corrections to the leading order has been given: the analysis of the numerical data, taking

into account the conjectured form of the corrections, supports both (1.10) withβ = 1 and the

continuity of the functionC(ω). A stronger support would require getting closer to the reso-

nances, and considering more resonances rather than just 0/1, 1/2 and 1/3: all these actions

are clearly feasible but would require significantly more computer time, which has already

reached the order of several CPU years on Compaq Alpha computers for the calculations of

the present paper.

(2) While a reasonably complete analysis of what happens forsequences of rotation numbers

which arenot the best ones cannot be practically done, the study of a sequence like [n, 20, 1∞]

shows that the behavior of the critical function along this sequence is the same that along the

“best” sequence [n, 1∞]. It is likely that this holds, in the limit of long periodic orbits, at least

for all sequences of noble numbers tending to a rational value. We could investigate very

few non-noble sequences and no sequence at all made by something different than quadratic

irrationals (which have measure 0). For a sequence like [n, 2∞] the values ofεc(ω) seem to be

comparable to the ones of the “best” sequence quoted above.

(3) The study of the functionsC(ω) = logεc(ω) + B(ω) andCρ(ω) = logρ(ω) + 2B(ω) seem to

suggest that they depend smoothly onω. In general such functions look as continuous in their

arguments, as also the comparison between the two sequences[n, 1∞] and [20, n, 1∞] seem
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to support. This is in contrast with the conclusions made in [26], where doubts were raised

about continuity of the function logεc(ω) + βB(ω) for any choice ofβ.

(4) Some interesting conclusions can be drawn for the behavior of the critical residues. It appears

that a limit value is obtained only whenω is of constant type, and this limit seems to depend

only on the “tail” of the expansion. Ifω is not of that form but still a quadratic irrational,

then the sequence of the partial quotients is eventually periodic. In this case it appears that

Rk(εc(ω)), for largek, approaches a periodic sequence of values with the same period of the

partial quotients. Ifω is not a quadratic irrational, then it is difficult to draw any conclusion

at all. If the partial quotients are bounded, then the critical residues seem to be bounded away

from zero and oscillating in an apparent random way, but bounded; for unbounded sequences

of partial quotients no numerical data at all could be obtained. We note that such a scenario

is consistent with that arising within the renormalizationgroup approach as described, for

instance, in [15].

After submission of our paper we become aware of [13], where the problem of interpolation of

the radiusr(ω) of the Siegel disk in terms of the 1/2-Bryuno functionB1/2(ω) is numerically studied

(The 1/2-Bryuno function solves a function equation of the kind of (1.8) and differs fromB(ω) by

an essentially bounded function [31]). There numerical evidence is found that the function logr(ω) +

B1/2(ω) is 1/2-Hölder continuous. The main differences between our paper and [13] are the following

ones. First of all in the case of Siegel’s problem the radiusr(ω) is equal to the modulus of the so

called Yoccoz function [36], which is more accessible from anumerical point of view, so that [13]

can not be used to compute the critical function of the standard map. Second: complex values ofω

are considered, with small imaginary part, so that the the validity of the interpolation formula on the

real axis has to be considered as an extrapolation from the really available numerical results. Third:

Hölder continuity is checked by using the Littlewood-Paley theory, which requires to consider all

together all the values the function assumes (as one needs toknow its Fourier transform), while we

check Hölder continuity where the function is expected to be less smooth, that is in correspondence

of the real resonant values; of course this method could be pursued in principle also in our case, and

it would be interesting to compare the results found with thetwo different approaches.

Another interesting issue could be to study what happens formore general maps, like the general-

ized standard maps considered in [4, 6]. In our case no interpolation formula in terms of the Bryuno

function is expected to hold for the radius of convergence, and one can think that the same occurs

for the critical function. One can imagine that, for fixed rotation numberω, either an interpolation

formula in terms of the Bryuno function with a rotation number different fromω (but related to it!)

can be obtained (as it occurs in a somehow similar situation in [16], where the Escande-Doveil’s pen-

dulum was considered), or an interpolation formula in termsof another function holds. But of course

the problem is open, and one can not even exclude that no interpolation formula holds at all, that is

there, in the case of more general maps, there is no key arithmetical function playing the rôle of the

Bryuno function for special models as the Siegel problem andthe standard map are.
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Preprint Orsay 1988



SCALING OF THE CRITICAL FUNCTION 21

T

Table 1: Values of the Bryuno function, of the critical function and of the running slopesAk =

A(ωnk , ωnk−1) corresponding to a finite sequence of rotation numbersωnk = 1/(nk + γ) = [nk,1∞].

The error onεc(ωnk) is of 1 unit on the last digit, and the corresponding slopes are computed with

consistent accuracy.

k ωnk B(ωnk) εc(ωnk) Ak

1 [500, 1∞] 6.21836 0.016585

2 [700, 1∞] 6.55376 0.0121005 0.9399±0.0002

3 [1000, 1∞] 6.90963 0.0086401 0.9465±0.0001

4 [2000, 1∞] 7.60184 0.0044599 0.9553±0.0001

5 [4000, 1∞] 8.29452 0.0022854 0.9652±0.0001

6 [7000, 1∞] 8.85393 0.0013265 0.9724±0.0002

7 [10000, 1∞] 9.21053 0.00093627 0.9770±0.0002

8 [12000, 1∞] 9.39284 0.00078320 0.9793±0.0001

9 [15000, 1∞] 9.61593 0.00062927 0.9808±0.0001

10 [18000, 1∞] 9.79823 0.00052610 0.9823±0.0002

11 [20000, 1∞] 9.90358 0.00047433 0.9833±0.0004

12 [25000, 1∞] 10.12671 0.00038081 0.9842±0.0002

13 [30000, 1∞] 10.30902 0.00031816 0.9859±0.0003

14 [40000, 1∞] 10.59668 0.00023955 0.9865±0.0003

15 [50000, 1∞] 10.81982 0.000192161 0.9879±0.0003

16 [60000, 1∞] 11.00213 0.000160443 0.9895±0.0002

Table 2: Values of the Bryuno function, of the critical function and of the running slopesAk =

A(ωnk , ωnk−1) corresponding to a finite sequence of rotation numbersωnk = 1/(nk + 1/(20+ γ)) =

[nk,20, 1∞]. The error onεc(ωnk) is of 1 unit on the last digit, and the corresponding slopes are

computed with consistent accuracy.

k ωnk B(ωnk) εc(ωnk) Ak

1 [500, 20, 1∞] 6.22088 0.016303

2 [700, 20, 1∞] 6.55556 0.011926 0.9341±0.0004

3 [1000, 20, 1∞] 6.91089 0.008535 0.9415±0.0006

4 [2000, 20, 1∞] 7.60247 0.004421 0.9512±0.0005

5 [4000, 20, 1∞] 8.29483 0.002271 0.962±0.001
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Table 3: Values of the Bryuno function, of the critical function and of the running slopesAk =

A(ωnk , ωnk−1) corresponding to a finite sequence of rotation numbersωnk = 1/(2 + 1/(nk + γ)) =

[2, nk,1∞]. The error onεc(ωnk) is of 1 unit on the last digit, and the corresponding quantities are

computed with consistent accuracy.

k ωnk B(ωnk) εc(ωnk) Ak

1 [2, 500, 1∞] 3.80022 0.12872

2 [2, 700, 1∞] 3.96840 0.109967 0.9362±0.0005

3 [2, 1000, 1∞] 4.14674 0.092932 0.9438±0.0001

4 [2, 2000, 1∞] 4.49337 0.066777 0.9535±0.0001

5 [2, 4000, 1∞] 4.84001 0.047805 0.9642±0.0001

6 [2, 7000, 1∞] 5.11987 0.036420 0.9720±0.0002

7 [2, 10000, 1∞] 5.29823 0.030598 0.9766±0.0003

8 [2, 13000, 1∞] 5.42943 0.026909 0.9792±0.0006

9 [2, 17000, 1∞] 5.56357 0.023591 0.9810±0.0006

10 [2, 20000, 1∞] 5.64484 0.021780 0.983±0.001

Table 4: Values of the Bryuno function, of the critical function and of the running slopesAk =

A(ωnk , ωnk−1) corresponding to a finite sequence of rotation numbersωnk = 1/(3 + 1/(nk + γ)) =

[3, nk,1∞]. The error onεc(ωnk) is of 1 unit on the last digit, and the corresponding quantities are

computed with consistent accuracy.

k ωnk B(ωnk) εc(ωnk) Ak

1 [3, 500, 1∞] 3.17069 0.244787

2 [3, 700, 1∞] 3.28264 0.22044 0.9358±0.0001

3 [3, 1000, 1∞] 3.40139 0.197080 0.9433±0.0001

4 [3, 2000, 1∞] 3.63230 0.158153 0.9529±0.0001

5 [3, 4000, 1∞] 3.86330 0.126588 0.9637±0.0001

6 [3, 7000, 1∞] 4.04983 0.105608 0.9715±0.0001

7 [3, 10000, 1∞] 4.16872 0.094035 0.9763±0.0002

8 [3, 13000, 1∞] 4.25617 0.086319 0.9787±0.0003

9 [3, 17000, 1∞] 4.34559 0.079072 0.9807±0.0003

10 [3, 20000, 1∞] 4.39977 0.074973 0.9826±0.0005
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Table 5: Critical residuesR∞(ω) for some rotation numbersω. The error onεc(ωnk) is of 1 unit on

the last digit.

ω εc(ω) R∞(ω)

[1∞] 0.971635406 0.250088

[2∞] 0.957445408 0.2275138

[3∞] 0.890863502 0.202230

[4∞] 0.80472544 0.17923

[10, 2∞] 0.481985986 0.22751

[1, 3, 2∞] 0.829500533 0.22751

[7, 3∞] 0.615071885 0.2022

[1, 2, 4∞] 0.86423037 0.1792

Table 6: Residues of critical periodic orbits forω =
√

3− 1 = [1, 2,1, 2,1,2, . . . ].

εc(ω) 0.876067426

approximant residue

3/4 0.24871

8/11 0.18612

11/15 0.25216

30/41 0.18516

41/56 0.25275

112/153 0.18493

153/209 0.25288

418/571 0.18487

εc(ω) 0.876067426

approximant residue

571/780 0.25291

1560/2131 0.18486

2131/2911 0.25292

5822/7953 0.18485

7953/10864 0.25292

21728/29681 0.18485

29681/40545 0.25292

81090/110771 0.18486
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Table 7: Residues of critical periodic orbits forω = (
√

3− 1)/2 = [2, 1,2, 1,2, 1, . . . ].

εc(ω) 0.9402827

approximant residue

3/8 0.19574

4/11 0.24746

11/30 0.18763

15/41 0.25145

41/112 0.18556

56/153 0.25254

153/418 0.18503

209/571 0.25282

εc(ω) 0.9402827

approximant residue

571/1560 0.18490

780/2131 0.25290

2131/5822 0.18486

2911/7953 0.25292

7953/21728 0.18486

10864/29681 0.25292

29681/81090 0.18486

40545/110771 0.25293

Table 8: Residues of critical periodic orbits forω =
√

5/2− 1 = [1,1, 2,1, 1,2, 1,1, 2 . . . ].

εc(ω) 0.9402827

approximant residue

3/5 0.2242

4/7 0.2639

7/12 0.2278

18/31 0.2222

25/43 0.2660

43/74 0.2270

111/191 0.2227

154/265 0.2656

265/456 0.2272

εc(ω) 0.9402827

approximant residue

684/1177 0.2226

949/1633 0.2656

1633/2810 0.2271

4215/7253 0.2227

5848/10063 0.2656

10063/17316 0.2271

25974/44695 0.2227

36037/62011 0.2656

62011/106706 0.2272
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Table 9: Radius of convergence for some values of the rotation numberω close to 1/2 and slopes

A′k = A′(ωnk , ωnk−1). The valueρ1(ω) is given by the formula (4.2), whileρP(ω) is the value obtained

numerically by using Padé approximants. the two values forthe slopes correspond to the values

ρ1(ω) andρP(ω), respectively. One hasη = |ω − 1/2|.

k ωnk η ρ1(ωnk) ρP(ωnk) A′k

1 [2, 10, 1∞] 0.0224860 0.51409 0.51052

2 [2, 12, 1∞] 0.0190577 0.43571 0.43355 2.19667/2.17013

3 [2, 15, 1∞] 0.0155106 0.35462 0.35352 2.14426/2.12464

4 [2, 20, 1∞] 0.0118382 0.27066 0.27024 2.09658/2.08449

5 [2, 30, 1∞] 0.0080339 0.18368 0.18361 2.05439/2.04822

6 [2, 40, 1∞] 0.0060801 0.13901 0.13902 2.02821/2.02484

6 [2, 50, 1∞] 0.0048906 0.11181 0.11184 2.01612/2.01480

Table 10: Radius of convergence for some values of the rotation numberω close to 1/3 and slopes

A′k = A′(ωnk , ωnk−1). The valueρ1(ω) is given by the formula (4.2), whileρP(ω) is the value obtained

numerically by using Padé approximants; the two values forthe slopes correspond to the values

ρ1(ω) andρP(ω), respectively. One hasη = |ω − 1/3|.

k ωnk η ρ1(ωnk) ρP(ωnk) A′k

1 [3, 10, 1∞] 0.0101459 0.62329 0.61993

2 [3, 12, 1∞] 0.0085791 0.55734 0.55524 2.28295/2.24934

3 [3, 13, 1∞] 0.0079642 0.53038 0.52858 2.23762/2.22067

4 [3, 20, 1∞] 0.0053033 0.40444 0.40400 2.17212/2.15360

5 [3, 30, 1∞] 0.0035899 0.31180 0.31182 2.09982/2.09051

6 [3, 40, 1∞] 0.0027132 0.25871 0.25872 2.06311/2.06339

7 [3, 50, 1∞] 0.0021807 0.22364 0.22360 2.04490/2.04795

8 [3, 100, 1∞] 0.0011006 0.14177 0.14179 2.02455/2.02313

9 [3, 200, 1∞] 0.0005529 0.08959 0.08961 2.00902/2.00866
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Table 11: Values of the radius of convergence and of the slopes A′k = A′(ωnk , ωnk−1) corresponding

to a finite sequence of rotation numbersωnk = 1/(nk + γ) = [nk,1∞]. The radius of convergence is

computed with the formula (4.2).

k ωnk ρ(ωnk) A′k

1 [500, 1∞] 0.000130355

2 [700, 1∞] 0.0000665545 2.0042837

3 [1000, 1∞] 0.000032629 2.0030298

4 [2000, 1∞] 0.00000816229 2.0018183

5 [4000, 1∞] 0.0000020412 2.0009090

6 [7000, 1∞] 0.000000666603 2.0004825

7 [10000, 1∞] 0.000000326653 2.0003028

8 [12000, 1∞] 0.000000226847 2.0002303

9 [15000, 1∞] 0.000000145185 2.0001882

10 [18000, 1∞] 0.000000100824 2.0001536

11 [20000, 1∞] 0.0000000816683 2.0001329

12 [25000, 1∞] 0.0000000522684 2.0001129

13 [30000, 1∞] 0.0000000362978 2.0000921

14 [40000, 1∞] 0.0000000204177 2.0000730

15 [50000, 1∞] 0.0000000130674 2.0000565

Table 12: Values of the radius of convergence and of the slopes A′k = A′(ωnk , ωnk−1) corresponding

to a finite sequence of rotation numbersωnk = 1/(2 + 1/(nk + γ)) = [2,nk, 1∞]. The radius of

convergence is computed with the formula (4.2).

k ωnk ρ(ωnk) A′k

1 [2, 500, 1∞] 0.011405915

2 [2, 700, 1∞] 0.008152279 1.9968638

3 [2, 1000, 1∞] 0.005709327 1.9973651

4 [2, 2000, 1∞] 0.002856258 1.9980597

5 [2, 4000, 1∞] 0.001428528 1.9987793

6 [2, 7000, 1∞] 0.000816400 1.9992292

7 [2, 10000, 1∞] 0.000571507 1.9994593

8 [2, 13000, 1∞] 0.000439632 1.9995765

9 [2, 17000, 1∞] 0.000336196 1.9996572

10 [2, 20000, 1∞] 0.000285770 1.9997123



SCALING OF THE CRITICAL FUNCTION 27

Table 13: Values of the radius of convergence and of the slopes A′k = A′(ωnk , ωnk−1) corresponding

to a finite sequence of rotation numbersωnk = 1/(3+ 1/(nk + γ)) = [3,nk,1∞]. The error onεc(ωnk)

is of 1 unit on the last digit, and the corresponding logarithm is computed with consistent accuracy.

k ωnk ρ(ωnk) A′k

1 [3, 500, 1∞] 0.04873028

2 [3, 700, 1∞] 0.03895268 2.0004598

3 [3, 1000, 1∞] 0.03071760 2.0000489

4 [3, 2000, 1∞] 0.01935701 1.9997910

5 [3, 4000, 1∞] 0.01219611 1.9997289

6 [3, 7000, 1∞] 0.00839894 1.9997744

7 [3, 10000, 1∞] 0.00662168 1.9998204

8 [3, 13000, 1∞] 0.00555920 1.9998501

9 [3, 17000, 1∞] 0.00464887 1.9998731

10 [3, 20000, 1∞] 0.00417153 1.9998900
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