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Abstract

We consider, from a mathematical perspective, the power generated by a contact-mode tri-
boelectric nanogenerator, an energy harvesting device that has been thoroughly studied recently.
We encapsulate the behaviour of the device in a differential equation, which although linear and
of first order, has periodic coefficients, leading to some interesting mathematical problems. In
studying these, we derive approximate forms for the mean power generated and the current wave-
forms, and describe a procedure for computing the Fourier coefficients for the current, enabling
us to compute the power accurately and show how the power is distributed over the harmonics.
Comparisons with numerics validate our analysis.

1 Introduction

Triboelectric nanogenerators (TENGs) have received considerable attention recently as potential
candidates for energy scavenging [1, 2, 3, 4]. These devices have been shown to convert mechanical
energy into electricity in applications such as energy harvesting and self-powered sensors [5, 6, 7].
Furthermore, TENGs have many advantages over existing energy harvesting technologies [2, 3, 5, 7, 8],
such as low cost, simple construction, relatively high power, flexibility and robustness.
The contact-mode triboelectric nanogenerator is the most commonly used TENG architecture owing
to its simplicity and output performance [8, 9]. Typically, it consists of two triboelectric plates, at
least one being of dielectric material, each attached to an electrode. When the plates come into
contact, one becomes positively charged and the other, negatively. (Static electricity produced by
friction is a well-known example of the same effect.) We feel that it is timely to discuss, from an
applied mathematical point of view, the power produced by a TENG, whose construction is described
in detail in for example [1, 4, 8].
A related device, a piezo-electric generator designed to harvest energy from the heartbeat, is described
in [10], but its mathematical modelling, at least from the point of view we take here, is straightforward
and so of less interest.
In this paper, we consider the most common configuration — two metal electrodes, each with a layer
of dielectric attached — in order to assess its power output characteristics. Our starting point is the
ordinary differential equation (o.d.e.) that describes such a TENG connected to a load resistance R.
Our main assumption is that the TENG is being driven periodically at a frequency ω, that is to say,
the separation of the plates varies periodically with time. We then adopt a circuit theory approach,
as laid out in [11], by modelling the system as the circuit in Figure 1. The circuit leads directly
to a differential equation, and this forms the basis for our study. The circuit and its mathematical
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description are both straightforward, the only complication arising from the fact that the capacitance,
C(t), is a periodic function of time: this is inescapable and is a direct consequence of the periodically
varying plate separation. It is this that generates the time variation in both the capacitance and the
input voltage, and guarantees that their fundamental frequencies, ω, are identical.
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Figure 1: A circuit model of the TENG studied in this paper, in which the voltage source V (t)
and the capacitance C(t) are both periodic with the same fundamental frequency ω. This circuit is
described by the differential equation (2).

We are particularly interested in computing, both accurately and approximately, the mean power
delivered to the load as a function of the parameters of the system, and in order to investigate this,
we first take a perturbation theory approach. This leads to two formulae for the power, one valid for
small R and the other for large R. We also tackle the same problem via Fourier series, this approach
showing how the power generated is distributed over different harmonics, that is, integer multiples
of ω. The mean (as opposed to, say, the peak) power is especially amenable to calculation, and is
also the most appropriate measure of the effectiveness of the generator.
We should give here some justification for our analytical approach, which takes up the bulk of the
paper. After all, the mean power, current waveforms and so on can also be computed numerically —
why, then, compute them analytically? We offer several reasons for our approach. In general, ana-
lytical results give deeper insight into the problem, and in this paper, we derive several approximate
expressions for the variables of interest, and use these, for instance, to optimise the power output
by means of simple arguments. For example, we derive, by perturbation theory, a simple expression
for the value of R that maximises the mean power. Contrast this with a purely numerical approach,
in which such an optimisation would have to be carried out for one set of parameters at a time.
Furthermore, for large R, the transient times are large — a numerical solution would have to be con-
tinued for long times in order to ensure that the transient has decayed sufficiently. By contrast, our
analytical solution is set up specifically to correspond to the steady state (post-transient) behaviour.
The Fourier series approach, which we also discuss, immediately gives insight into how rapidly the
Fourier coefficients decrease in magnitude with index. It also turns out to be possible to express
these coefficients explicitly in terms of Bessel functions.
The rest of the paper is organised as follows. We first derive the o.d.e., including the periodic
functions V (t) and the reciprocal capacitance (elastance), B(t) := 1/C(t). Both of these depend
on a function I(x), which in turn comes from calculating the electric field in the system. This was
derived in [1] for square plates; for the sake of completeness, we give the derivation in the slightly
more general case of rectangular plates in Appendix I. On examining both V (t) and B(t) for practical
values of the parameters, we make simple approximations to them, which in turn leads to a simplified
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version of the o.d.e. We then carry out the mean power calculations mentioned above, in both the
case of general periodic source voltage and elastance, and their approximations, and follow this with
some comparisons between numerical solutions of the o.d.e. in both cases. This comparison shows
the approximations to be very good. We then discuss an approach to power computation based on
Fourier series, after which we draw some conclusions.

2 The o.d.e.

The o.d.e. in its original form

ARσ̇ +
1

π

(
1

ǫ1
+

1

ǫ2

)
{I(x1 + x2 + z(t)) − I0}

︸ ︷︷ ︸
G(t)

σ = F1(t) + F2(t) (1)

was discussed in [1]. Here, σ(t), to be solved for, is the surface charge density and σ̇ is its time
derivative. Also, A = wl = αw2 is the area of the plates, α = l/w is their aspect ratio, R > 0
is a fixed load resistance, ǫ1 and ǫ2 are the permittivities of the dielectrics, with thickness x1 and
x2 respectively; and σT is the triboelectric charge density, which is constant and a property of the
materials used. Furthermore, the excitation z(t) = z0[1 + sin(ωt + φ)], where z0 is the amplitude, φ
is a fixed phase angle, and ω = 2πf is the excitation frequency; and Fi = σT

πǫi
{I (xi + z(t)) − I(xi)},

with i = 1, 2, where I(x) is defined in equation (28) in Appendix I. Finally, I0 = limx→0 I(x). The
variable parameters of interest are R and ω — we consider all the other parameters to be fixed.
Since σ is a charge density, we interpret q := Aσ as a charge. Hence, replacing Aσ in equation (1)
with q, we have

Rq̇ +
G(t)

A
q = F1(t) + F2(t),

where G(t) is defined in equation (1); and it becomes clear that the function of time that multiplies q
can be interpreted as the reciprocal of a time-dependent capacitance, provided that this is defined as
the ratio of the change in the charge in the system to the change in potential difference (as opposed
to the derivative of the charge with respect to potential difference); and that the term on the right
hand side is a time-dependent voltage, V (t) = F1(t) + F2(t). That is,

Rq̇ + B(t)q = V (t) (2)

where

B(t) =
G(t)

A
=

1

Aπ

(
1

ǫ1
+

1

ǫ2

)
{I(x1 + x2 + z(t)) − I0} . (3)

We claim that equation (2) models the TENG and the rest of this paper discusses its periodic solution,
q(t), from which the current, i(t) := q̇(t), and much else, can be deduced.

2.1 Practical parameter values

Typical values for the parameters, taken from [1], are given in Table 1. Plots of the exact C(t),
B(t) and V (t) are given in Figure 2 for these parameter values. Note that, despite the fact that z(t)
contains only one harmonic, C(t) and V (t) contain all harmonics owing to the nonlinear function
I(const.+z(t)) used in their definition. However, Figure 2 suggests that a good approximation might
be obtained by only considering the first harmonic.
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Parameter values for practical triboelectric nanogenerator

Name Symbol Numerical value

Permittivity of free space ǫ0 8.854 × 10−12 Fm−1

Permittivity of dielectric 1 ǫ1 3.30ǫ0

Permittivity of dielectric 2 ǫ2 3.27ǫ0

Triboelectric charge density σT 4.8 × 10−5 Cm−2

Thickness of dielectric 1 x1 200 µm
Thickness of dielectric 2 x2 20 µm

Default aspect ratio, l/w α 1
Default plate dimensions l, w l = w = 5 × 10−2 m
Default plate area A 2.5 × 10−3 m2

Excitation amplitude & phase z0, φ resp. 1.0 × 10−3 m, 3π/2
Elastance parameters B0, B1 resp. 1.6 × 1010, 1.3 × 1010 F−1

Drive voltage amplitude V0 1550 V

Excitation frequency f = ω/2π 0.1 – 103 Hz (nom. 1 Hz)
Load resistance R 105 – 1015Ω

Table 1: Names, symbols and numerical values for the parameters for a practical TENG. Note the
very large range of the parameter R.

2.2 The practical approximation

Clearly, I(constant + z(t)) is not sinusoidal, even though z(t) is: so strictly speaking, B(t) and V (t)
should be expanded as Fourier series, both with identical fundamental frequency ω. However, in the
practical case considered here, x1, x2, z0 and I are such that good first approximations for B(t) and
V (t) are

B(t) =
∑

k∈Z bke
ikωt ≈ B0 − B1 cos ωt V (t) =

∑

k∈Z vke
ikωt ≈ V0(1 − cos ωt), (4)

as suggested by Figure 2. In fact, |b2/b1| ≈ 9.385 × 10−3, |b3/b1| ≈ 7.610 × 10−6 and |v2/v1| ≈
9.351× 10−3, |v3/v1| ≈ 6.898× 10−6. Thus, we study where appropriate both the general o.d.e. with
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Figure 2: The periodic functions of time in equation (2), for ω = 2π rad/s: C(t), left; B(t) = 1/C(t),
middle; and V (t), right. None of the functions are approximated. Parameter values are from Table 1.
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B(t) and V (t) subject to some mild conditions but otherwise arbitrary, and also the approximate
o.d.e.

Rq̇ + (B0 − B1 cos ωt)q = V0(1 − cos ωt). (5)

We refer to equation (5) as the ‘practical approximation’ in what follows. A better approximation
would take into account more terms in the Fourier series expansions of B(t) and V (t), but in practice,
for the parameter values given in Table 1, this approximation gives good results — as we shall see.

3 Analytical results

3.1 Unique periodic attractor

In this section, we show that, under conditions that must apply on physical grounds, there is a unique
periodic solution to the differential equation (2), and that solutions starting from any initial condition
are attracted to it. We can then talk about ‘the periodic solution’, knowing that this exists.
In a real system described by the differential equation (2), on physical grounds alone, B(t) and V (t)
must satisfy the Dirichlet conditions [12], and so both functions can be expanded in Fourier series.
Furthermore, as shown in the Appendix I, B(t) > 0 for all t and so the mean value of B(t) > 0. We
will use both these facts in what follows.
In practice, we will be interested only in periodic solutions to the o.d.e. (2), but in this section alone,
we need to solve the o.d.e. for the complete solution, which we call qc(t). The standard way to solve
such an o.d.e. is by the integrating factor method [13], which gives

qc(t) = exp

{
− 1

R

∫ t

0
B(t′) dt′

}[
1

R

∫ t

0
V (t′) exp

{
1

R

∫ t′

0
B(t′′) dt′′

}
dt′ + qc(0)

]
. (6)

Although the solution in this form is not obviously useful for direct computation of, for instance,
the mean power, it is useful to show that for any initial condition, qc(0), there is a unique periodic
attractor. We now prove this.
We introduce the notation for the mean, 〈f〉, of any periodic function f(t) with period T0, which is

〈f〉 :=
1

T0

∫ T0/2

−T0/2
f(t) dt.

We then define f̃(t) := f(t) − 〈f〉 as the zero-mean, time-varying part of f(t).
Since B(t) and V (t) both have the same period T0 = 2π/ω, all the time-varying terms in equation (6)
have period T0. Hence, writing B(t) = 〈B〉 + B̃(t), we can make the following Fourier expansion:

V (t)

R
exp

{
1

R

∫ t

0
B(t′) dt′

}
= e〈B〉t/R V (t)

R
exp

{
1

R

∫ t

0
B̃(t′) dt′

}
= et/τ

∑

k∈Z Ike
ikωt,

where τ = R/〈B〉 > 0 since both R and 〈B〉 are positive, and Fourier coefficients Ik ∈ C have
dimensions of current. Using this in (6) then gives

qc(t) = e−t/τ exp

{
− 1

R

∫ t

0
B̃(t′) dt′

}[∫ t

0

∑

k∈Z Ike
(1+ikωτ)t′/τ dt′ + qc(0)

]

= exp

{
− 1

R

∫ t

0
B̃(t′) dt′

}[∑

k∈Z τIke
ikωt

1 + ikωτ
+ e−t/τ

(
qc(0) −

∑

k∈Z τIk

1 + ikωτ

)]
.
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From this we deduce that

1. Since τ > 0, as t → ∞, for all initial conditions qc(0), qc(t) tends to the period-T0 function

q(t) = exp

{
− 1

R

∫ t

0
B̃(t′) dt′

}∑

k∈Z τIke
ikωt

1 + ikωτ
;

2. Any solution qc(t) approaches this periodic attractor exponentially,1 that is, |qc(t) − q(t)| <
ce−t/τ for some positive constant c.

3. The choice qc(0) =
∑

k∈Z τIk/(1 + ikωτ) puts the solution directly on the periodic attractor.

3.2 Perturbation series — small R

Although the previous section derives an exact expression for the complete solution, qc(t), and the
periodic solution, q(t), these expressions do not lend themselves to direct computation of the power,
or simple approximations to it. To circumvent this, we estimate q(t) using a perturbation theory
approach. Underlying this approach is the assumption that B(t) and V (t) are both infinitely differ-
entiable (which is clearly the case for the practical approximation).
Our starting point is to define the dimensionless parameter ε := ωR/〈B〉, which is small for small R.
In terms of this, we re-write the o.d.e. (2) as

εq̇ +
ω

〈B〉B(t) q =
ω

〈B〉V (t). (7)

We now set
q(t) = q0(t) + εq1(t) + ε2q2(t) + . . . , (8)

and substituting this into (7), and equating to zero the coefficients of each power of ε, we find

ε0 : q0 =
V

B
, ε1 : q̇0 +

ω

〈B〉 Bq1 = 0, ε2 : q̇1 +
ω

〈B〉 Bq2 = 0, . . . , εk : q̇k−1 +
ω

〈B〉Bqk = 0,

where for brevity we have dropped the argument (t) for B, V and qk. Hence, we have

q0 =
V

B
, q1 = −〈B〉

ωB

d

dt

(
V

B

)
= −〈B〉

ω

BV̇ − ḂV

B3
,

q2 = −〈B〉
ωB

q̇1 =
〈B〉2
ω2

1

B

d

dt

(
1

B

d

dt

(
V

B

))
=

〈B〉2
ω2

B(BV̈ − B̈V ) − 3Ḃ(BV̇ − ḂV )

B5

with obvious generalisations for qk, k > 2. The above expressions for qk are general, in that they
apply for any infinitely differentiable functions B,V provided only that B > 0, ∀t.
The power series expansion (8) is very unlikely to converge. Even in the case of constant B, it is
easy to check that the periodic solution q(t) is not analytic around ε = 0 for a generic, analytic V (t)
containing all the harmonics. Additionally, the presence of the function B(t) will only complicate the
situation. However, even though the series expansion is not expected to be convergent, it is likely to

1Although the rate of approach to the attractor will be very slow for large R (i.e. large τ ).
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be an asymptotic series, and hence any truncation of it should provide a reliable approximation of
the full solution, for ε small enough.
We can make further progress from this point if we use the practical approximation, which is that
B(t) = B0 − B1 cos ωt and V (t) = V0(1 − cos ωt), where B0 = 〈B〉 > B1 > 0. With these definitions
of B and V in force, we have that, for k ∈ N, q2k−1 are odd and q2k are even functions of t; hence,
q̇2k−1 are even and q̇2k are odd. The instantaneous power p(t) := q̇(t)2R and the mean power is
defined as 〈p〉 := 〈q̇2〉R. From the perturbation series (8), we have

〈q̇2〉 = 〈q̇2
0〉 + 2ε〈q̇0q̇1〉 + ε2(2〈q̇0q̇2〉 + 〈q̇2

1〉) + O(ε3).

Now, by the definition of 〈f〉 we have that 〈f〉 = 0 if f is an odd function of t. Thus, using the parity
of functions qk and their first derivatives, we have that 〈q̇0q̇1〉 = 0 and so on. Hence, for small R,
and so for small ε, we have

〈p〉s = R〈q̇2
0〉 + Rε2

(
2〈q̇0q̇2〉 + 〈q̇2

1〉
)

+ O
(
ε4
)
.

Since it is useful to know the dependence of 〈p〉 on ω as well as R, we compute

〈q̇2
0〉 =

1

T0

∫ T0/2

−T0/2

(BV̇ − ḂV )2

B4
dt =

ω2

2π

∫ π

−π

(BV ′ − B′V )2

B4
dx := ω2a1,

where we have substituted x = ωt and used a prime to denote differentiation with respect to x. In
fact, this integral can be evaluated in closed form; it is

a1 =
V 2

0 B0

2
√

B2
0 − B2

1(B0 + B1)2
. (9)

From our previous definitions of q0, q1 and q2, we also have

2

ω2B2
0

〈q̇0q̇2〉 =
1

π

∫ π

−π

(
V

B

)′ d

dx

{
1

B

d

dx

[
1

B

(
V

B

)′]}
dx

and
1

ω2B2
0

〈q̇2
1〉 =

1

2π

∫ π

−π

{
d

dx

[
1

B

(
V

B

)′]}2

dx.

Defining a3 as the sum of the right hand sides of these two expressions, we can also determine that

a3 =
V 2

0 B0

(
8B4

0 + 44B2
0B2

1 + 17B4
1

)

16
√

B2
0 − B2

1(B0 − B1)3(B0 + B1)5
.

Bearing in mind now that ε = ωR/B0, and that a1, a3 do not depend on ω or R, we have that

〈p〉s = a1ω
2R + a3ω

4R3 + O
(
ω6R5

)

= 2.45018 × 10−15ω2R − 1.35505 × 10−33ω4R3 + O
(
ω6R5

)
(10)

where a1 and a3 have been evaluated using the values in Table 1.
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3.3 Perturbation series — large R

In the case of large R, we compute a solution to the o.d.e. in a similar way to the previous section,
this time expanding as a power series in the dimensionless, small parameter δ := 〈B〉/ωR (= 1/ε).
In terms of δ, the o.d.e. (2) becomes

q̇ = δ
ω

〈B〉 [V (t) − q B(t)] . (11)

Again, we expand q(t) = q0(t) + δq1(t) + δ2q2(t) + δ3q3(t) + . . . and, substituting this into (11) and
matching powers of δ, we find

δ0 : q̇0 = 0, δ1 : q̇1 =
ω

〈B〉 (V − q0 B) , δ2 : q̇2 = − ω

〈B〉 B q1, δ3 : q̇3 = − ω

〈B〉 B q2

and so on.
The guiding principle for finding qk is that for each k, qk is periodic. Hence, when qk is expressed as
an integral, we must ensure that the integrand has, in each case, zero mean (otherwise the integral
will grow linearly with t).
The equation q̇0 = 0 has solution q0 = c0 for c0 an as yet undetermined constant. Hence, we have
q̇1 = ω(V − c0B)/〈B〉. Recalling that B(t) = 〈B〉 + B̃(t) and V (t) = 〈V 〉 + Ṽ (t), we find

q1(t) =
ω

〈B〉

∫ t

0
〈V 〉 − c0〈B〉 + Ṽ (t′) − c0B̃(t′) dt′ + c1,

where c1 is a constant to be determined at the next stage. Furthermore, in order for the integrand
here to have zero mean, we require c0 = 〈V 〉/〈B〉. Hence,

q1(t) =
ω

〈B〉2
∫ t

0
〈B〉Ṽ (t′) − 〈V 〉B̃(t′) dt′ + c1 and q̇1(t) =

ω

〈B〉2
(
〈B〉Ṽ (t) − 〈V 〉B̃(t)

)
.

The constant c1 is found in an analogous way to c0. Since q̇2(t) = −ωB(t)q1(t)/〈B〉, we have, using
our expression for q1(t),

q2(t) = − ω

〈B〉

∫ t

0

(
〈B〉 + B̃(t′)

){∫ t′

0

ω

〈B〉2
(
〈B〉Ṽ (t′′) − 〈V 〉B̃(t′′)

)
dt′′ + c1

}
dt′ + c2, (12)

where c2 is a new constant that can be determined at the next stage. Reasoning as before, for q2(t)
to be periodic, the integrand of the integral w.r.t. t′ in equation (12) must have mean zero, which
fixes c1 by

c1 = − ω2

2π〈B〉3
∫ T0/2

−T0/2

(
〈B〉 + B̃(t′)

){∫ t′

0

(
〈B〉Ṽ (t′′) − 〈V 〉B̃(t′′)

)
dt′′

}
dt′.

We can in principle continue in the same way to find qk, k > 2.
Using the practical approximation for B(t) and V (t), we find q0 = V0/B0, c1 = 0 and so

q1(t) = −V0(B0 − B1)

B2
0

sinωt, q2(t) =
V0(B0 − B1)

4B3
0

(B1 cos 2ωt − 4B0 cos ωt + 4B0 − B1) + c2.
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In what follows, we also need an expression for q̇3, which obeys q̇3 = −ωB(t)q2(t)/B0. Hence, we
require a value for c2, which we again deduce by imposing the condition that

q3 = − ω

B0

∫ t

0

(
B0 − B1 cos ωt′

) {
K1

(
B1 cos 2ωt′ − 4B0 cos ωt′ + 4B0 − B1

)
+ c2

}
dt′ + c3,

where K1 = V0(B0 − B1)/4B
3
0 , is bounded as t → ∞. Since 〈cos ωt〉 = 〈cos ωt cos 2ωt〉 = 0 but

〈cos2 ωt〉 = 1/2, this condition gives

c2 = −V0(B0 − B1)(4B0 + B1)

4B3
0

and so

q3(t) =
V0(B0 − B1)

24B4
0

(
3(8B2

0 − 3B2
1) sin ωt − 9B0B1 sin 2ωt + B2

1 sin 3ωt
)

+ c3.

To find the mean power, we again need to compute 〈q̇〉2 = δ2〈q̇2
1〉+ δ3〈q̇1q̇2〉+ δ4〈2q̇1q̇3 + q̇2

2〉+ O(δ6),
where, as before, we observe that q̇1(t)q̇2(t) is an odd function of t in the practical approximation,
so its mean is zero. From the above expressions for q1, q2, q3, we find

〈q̇2
1〉 =

1

2

(
V0(B0 − B1)

B2
0

)2

ω2, 〈2q̇1q̇3 + q̇2
2〉 = −V 2

0 (B0 − B1)
3(B0 + B1)

2B6
0

ω2.

Defining the mean power for large R, 〈p〉l, as 〈p〉l := R〈q̇2〉 we have

〈p〉l =
1

2

(
V0(B0 − B1)

B0

)2

R−1 − V 2
0 (B0 − B1)

3(B0 + B1)

2B2
0

ω−2R−3 + O
(
ω−4R−5

)

= 42231.4R−1 − 3.67414 × 1024ω−2R−3 + O
(
ω−4R−5

)
(13)

where we have used the parameter values in Table 1 to obtain the last expression.

3.4 Comparison with numerics

We now make two comparisons. The first, in Figure 3, is a plot of the mean power, computed in four
different ways:

• By solving the o.d.e. (2) numerically, using a good numerical algorithm (the Livermore Stiff
o.d.e. solver [14]), with the value of q(0) computed by Fourier series, using (a) the approximate
B(t), V (t) functions (circles in Figure 3) and (b) the exact expressions for them (crosses);

• By perturbation theory, as derived in the previous two subsections, with the dashed line show-
ing 〈p〉s for R ∈ [105, 108], as given by equation (10), and the continuous line, 〈p〉l from
equation (13), for R ∈ [3 × 109, 1015].

The agreement between approximate and exact B,V is seen to be very good, as are the perturbation
expressions (within their ranges of applicability).
The second comparison is between currents, computed numerically using the exact B(t), V (t), and
from perturbation theory up to and including the terms q̇3(t), both in the small and large R cases
(q̇3 is only needed for large R). See Figure 4, which compares the numerical solution with the small
R perturbation solution (R = 107 Ω) and with the large R perturbation solution (R = 1010 Ω). The
two curves are almost exactly superimposed.
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Figure 3: Left: The mean power, computed directly from a numerically-obtained i(t) = q̇(t) waveform
and not from Fourier series, versus R, using the approximate (circles) and exact (crosses) expressions
for B(t) and V (t). Also shown, over appropriately restricted ranges of R, are the series/asymptotic
expansions for 〈p〉s and 〈p〉l, from equations (10) and (13) respectively. Right — see section 3.6:
mean power from the numerical i(t) as in the left-hand figure with approximate B,V , (solid line),
and also using the rational approximation 〈p(R)〉, equation (15) (dashed line).
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Figure 4: The current, computed by solving the o.d.e. (2) numerically (continuous lines) and using
the perturbation series (dashed lines). On the left, R = 107 Ω and the small R series is used; on
the right, R = 1010 Ω and the large R series is used. The curves are sufficiently close that they are
almost indistinguishable.
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3.5 Applications of the perturbation solutions

We now briefly discuss some applications of equations (10) and (13), the mean power expressions for
small and large R respectively.
In general, these expressions between them give a good approximation to 〈p〉, in a very simple form,
for all R except 108 ≤ R ≤ 3 × 109, and this may in itself be useful. Furthermore, we have derived
expressions for q(t) up to O(ε2) for small R and O(δ3) for large R, where ε = ωR/〈B〉 and δ = 1/ε.
These approximations are good, as can be seen from Figure 4.
Less obviously, the perturbation series can also be used to estimate Rpk, the value of R for which the
peak mean power is obtained. Taking logarithms, and only including the first terms of equations (10)
and (13) respectively, we find

ln〈p〉 = ln
(
a1ω

2R
)

+ O
(
R2
)

and ln〈p〉 = ln
(
b1R

−1
)

+ O
(
R−2

)
,

where a1 and b1 are given in (9) and (13) respectively. On a plot of ln〈p〉 versus lnR, these are
straight lines, and their intersection point gives an estimate of Rpk. This is

Rpk ≈ 1

ω

√
b1

a1
=

B0

ω

(
1 − B2

1

B2
0

)5/4

=
4.152

ω
GΩ. (14)

We postpone discussion of the accuracy of this until we have a more accurate computation of Rpk at
the end of section 4.1. Note that this argument will always overestimate the power, however.

3.6 Mean power for all R?

We end this section with an observation. Clearly, it would be useful to have a simple formula for
the mean power, 〈p(R)〉, valid for all R, rather than the restricted ranges accessible via perturbation
theory. A heuristic approach yields a non-rigorous result, which we now briefly discuss.
Looking at equations (10) and (13) suggests that these expressions might be, respectively, the Maclau-
rin series and an asymptotic expansion of a single odd function of ωR

ω F (ωR) = ω
A1 · ωR + A3 · ω3R3

1 + B2 · ω2R2 + B4 · ω4R4
,

where A1, A3, B2 and B4 are constants to be found. By definition, this function is a candidate for
〈p(R)〉. In fact, all F does is to interpolate smoothly between the small and large R regimes; how it
behaves for intermediate values of R is beyond our control.
Expanding ωF (ωR) in a Maclaurin series, we find

〈p〉s = A1ω
2R + (A3 − A1B2)ω

4R3 + O(ω6R5)

whereas the asymptotic expansion, that is, the Maclaurin series for ωF
(

1
ωR

)
in powers of 1

ωR , is

〈p〉l =
A3

B4

1

R
+

A1B4 − A3B2

B2
4

1

ω2R3
+ O(ω−4R−5).

Matching the coefficients of the various powers of R with equations (10) and (13) gives four equations
to solve for A1, A3, B2 and B4, and doing so gives

ω F (ωR) = ω2R
2.45018 × 10−15 + 2.99655 × 10−34ω2R2

1 + 6.75329 × 10−19ω2R2 + 7.09553 × 10−39ω4R4

?
= 〈p(R)〉. (15)
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Figure 3, right-hand side, shows a comparison between 〈p(R)〉 approximated in this way, and a
numerical computation. Solving ∂〈p(R)〉/∂R = 0 for R gives one positive, one negative and four
complex values of R. The positive one is Rmax = 8.09 × 109/ω = 1.29 × 109Ω for ω = 2π, and
〈p(Rmax)〉 = 15.2µW. Compare these with the numerical computation in Figure 3, which gives
Rmax = 6.8 × 108Ω and 〈p(Rmax)〉 = 18.2µW.

4 A Fourier series approach

An alternative approach to computing q(t) is to use Fourier series: having established in section 3.1
that there is a unique attracting periodic solution, the idea here is to expand it as a Fourier series.
In this section, we use the practical approximation for B(t) and V (t), although the ideas could be
applied for any B, V of the same period. We start by setting

q(t) =
∑

k∈Zαke
ikωt, (16)

where αk ∈ C, with α−k = α∗
k, so α0 ∈ R, as is q(t) for real t. Substituting this in the o.d.e., we find

that the αk must obey the following relations:

α1 = ηα0 − α−1 − 2Q0, (17a)

α2 = η(1 + iε)α1 − α0 + Q0, (17b)

αk+1 = η(1 + iεk)αk − αk−1, |k| ≥ 2, (17c)

where we have used the dimensionless real parameters ε = ωR/B0, as before, and η := 2B0/B1 > 0.
Also, Q0 := V0/B1, and both Q0 and αk have dimensions of charge. In what follows, we sometimes
need to distinguish between the two ‘exceptional equations’, (17a) and (17b), and the ‘general equa-
tion’, (17c), which is true for |k| ≥ 2. Here, there are just two exceptional equations because B(t)
and V (t) are truncated at the first harmonic: the number of exceptional equations grows linearly
with the number of harmonics retained in B(t) and V (t).
There are two approaches to solving equations (17), and we explain these in the following two
subsections. In the first, we show an arithmetical solution and in the second, we show how the same
solution can be constructed using Bessel functions, and we briefly discuss the asymptotic behaviour
of this solution.

4.1 Arithmetical solution

Here is a practical method for solving the difference equations (17) for αk, k ∈ Z and with α−k = α∗
k.

There should be no free parameters in the solution, even though solving (17) is equivalent to solving
the original o.d.e., whose general solution contains one arbitrary constant. However, here we seek
only the periodic solution, q(t), to the o.d.e., and not the general solution, qc(t): only the latter
contains an arbitrary constant.
The general solution to (17c), which is of second order, has two arbitrary parameters. One just sets
the scale, since, if αk is a solution, then so is λαk for any λ. In fact, this scaling is set by either one
of (17a), (17b). However, we still need one more relation in order to pin down the second arbitrary
parameter. By analogy with the usual procedure for solving Mathieu’s equation [16], this is furnished
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by considering the ratio ρk := αk/αk−1. For k ≥ 2, we have

ρk+1 = η(1 + iεk) − 1

ρk
= dk − 1

ρk
,

where dk := η(1 + iεk). Hence, ρk = 1/(dk − ρk+1), giving the continued fraction expansion

ρn =
αn

αn−1
=

1

dn − 1
dn+1−

1

dn+2−...

(18)

From equation (18), we can now compute ρ3, which depends on η, ε but not on αk. Then we use
equations (17a) and (17b), and equation (17c) with k = 2, along with the definition of ρ3, to find
α0, . . . , α3. That is, we solve

2Re α1 = ηα0 − 2Q0, α2 = d1α1 − α0 + Q0, α3 = d2α2 − α1 and α3 = ρ3α2 (19)

for α0, . . . , α3, obtaining

α0 =
2Q0(x + 1)

η + 2x
, α1 = w(Q0 − α0); (20)

then we use the second and third expressions in equation (19) to find α2, α3 in terms of α0, α1.
Here, w = (d2 − ρ3)/(1 − d1(d2 − ρ3)) and x = Rew.
Knowing α2, α3, we can now compute αk for k ≥ 4 from the general equation — but not in the
obvious way, that is, by finding α4, followed by α5 and so on, since iteration in this direction is
unstable: the values of αk so obtained rapidly become inaccurate, even for moderate values of k,
and especially for large R. Instead, following section 19.28 in [16], where an analogous problem is
solved, we iterate in the reverse direction: we fix a maximum value of k, K, say, and invert the
general equation (17) to give αk−1 = dkαk − αk+1. We then use this to find, successively αK−j,
j = 1, . . . ,K − 2, each in terms of αK , αK+1, which are, for the moment, unknown. At stage j, we
will have an expression of the form αK−j = ujαK + vjαK+1, where uj, vj ∈ C. Now, for j = K − 3
and K − 2, we have α3 = uK−3αK + vK−3αK+1 and α2 = uK−2αK + vK−2αK+1, and, since α2 and
α3 are known, we can solve these two equations for αK and αK+1. With these now known, we can
find αk, k = 4, . . . ,K + 1, and hence q(t) (from equation (16)). In particular, q(0) ≈ ∑|k|≤K+1 αk,
which we used as our initial condition in the numerical computation of q(t) in section 3.4.
Figure 5 shows a logarithmic plot of the modulus of the first 21 Fourier coefficients so obtained,
in the cases R = 107, 109 and 1010Ω. For comparison, we compute the mean power 〈p(R)〉 by (a)
2ω2R

∑
k k2|αk|2; (b) by solving the o.d.e. (2) numerically, as was done for Figure 3; and (c) by using

the approximate formulae (10), (13), if they apply. The agreement is very good — see Table 2.

Method R = 107Ω R = 109Ω R = 1010Ω

(a) Sum of Fourier coefficients 0.9652µW 17.80µW 4.132µW
(b) Numerical solution of o.d.e 0.9652µW 17.80µW 4.132µW
(c) Eq. (10) or (13) if valid 0.9652µW — 4.130µW

Table 2: Comparison of the mean power computed in three different ways, for three different values
of R. The first value in row (c) comes from equation (10), the third from (13). Neither formula
applies for R = 109Ω.
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Figure 5: Left: A logarithmic plot of the energy in the k-th harmonic, log10 2Rω2k2|αk|2, k =
1, . . . , 20, computed as described in section 4.1, for R = 107, 109 and 1010Ω. Right: Mean power as a
function of R computed from 2ω2R

∑nh

k=1 k2|αk|2, with nh = 30 and nh = 3. Compare with Figure 3.

We now make a practical point. In general, the values of |αk| decrease very rapidly with k, the more
so with increasing R. In fact, to a good approximation, for R ∈ [105, 1015]Ω, we can use

〈p(R,nh)〉 := 2ω2R

nh∑

k=1

k2|αk|2, (21)

for a small number of harmonics, nh. For an accurate estimate of the mean power, we use nh =
30. However, even with nh = 3, using equations (19) and (20) to find α1, α2 and α3, the largest
relative error between 〈p(R, 3)〉 and 〈p(R, 30)〉 is about 15%; this largest relative error occurs for
R ∈ [105, 3 × 107] and is approximately constant over this range — see Figure 5. For other values of
nh, we find the following maximum relative errors: nh = 4 : 6%, nh = 5 : 2.5%, nh = 7 : 0.3%.
With an algorithm to compute the Fourier coefficients now in place, we can do more however. For
instance, we can study the effect of ω on the power output, and we include in Figure 6 a plot
of the peak mean power obtained as R varies, as a function of ω. Specifically, we compute the
mean power, 〈p(R,nh)〉, from (21) with nh = 30, which is large enough to ensure that the error is
completely negligible, and then vary R to find the maximum value of the mean power, 〈p(ω)〉pk. That
is, 〈p(ω)〉pk := maxR>0〈p(R, 30)〉. We then denote by Rpk(ω) the value of R for which 〈p(ω)〉pk is
obtained. A very strong linear trend is noticeable in both 〈p(ω)〉pk and Rpk(ω)−1, and using the data
in Figure 6, we find 〈p(ω)〉pk ≈ 2.92ω µW and Rpk(ω) ≈ 4.33/ω GΩ. The latter should be compared
with equation (14), which predicts that Rpk(ω) ≈ 4.15/ω GΩ for the parameter values in Table 1 —
a very good agreement.
The fact that Rpk(ω) is proportional to 1/ω suggests the following way of understanding qualitatively
the behaviour of the circuit in Figure 1. If we replace C(t) by a constant capacitance Ceff and compute
the power transferred to load R, we find that it is a maximum when R = Rpk = 1/(ωCeff ). Now,
from above, we have that Rpk(ω) ≈ 4.33 × 109/ω, suggesting that Ceff ≈ 2.31 × 10−10 F. Looking
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now at Figure 2, left, we see that Ceff lies between the maximum and minimum values of C(t). It is
similar, but not equal to the mean value of C(t), which is about 1.05 × 10−10 F, and it is clear that
the actual value of Ceff can only be computed from an accurate power computation, such as that
carried out here using Fourier series.
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Figure 6: Fourier-series-based power computations. Left: the peak mean power, 〈p(ω)〉pk, µW, as
a function of frequency f = ω/2π = 1, 2, 5, 10, 20 and 50 Hz. Right: Rpk(ω)−1, the value of load
resistance at which this peak mean power is obtained, plotted for the same values of ω (solid line),
alongside the estimate of Rpk given in equation (14) (dashed line). The range of Rpk itself, as opposed
to its reciprocal, is about 14–690 MΩ.

4.2 A solution based on Bessel functions

Along with equations (17), consider also

βk+1 + βk−1 = η(1 + iεk)βk, k ∈ Z (22)

and
γk+1 + γk−1 = η(1 − iεk)γk, k ∈ Z. (23)

The Bessel function of the first kind [16], Jν(z), is defined for ν, z ∈ C, with ν referred to as the
order, and this function obeys

Jν+1(z) + Jν−1(z) =
2ν

z
Jν(z). (24)

In the light of this, solutions to equation (22) can be expressed in terms of a Bessel function of the
appropriate (complex) order. For this to work, we require that η(1+ iεk) = 2ν/z for all k, where z is
independent of k, and ν = k +iξ for ξ ∈ R. Taking these together, we see that zη(1+ iεk) = 2k +2iξ,
and so z must be purely imaginary. Hence ν = k − i/ε and z = −2i/ηε, giving βk = CWk where
Wk := Jk−i/ε(−2i/ηε) and C is an arbitrary constant. Note that Jν(z) is bounded as Re(ν) → +∞,
as shown in Appendix II, Property 1. Analogously, for any k ∈ Z, equation (23) has the solution
γk = DZk, where D is an arbitrary constant and Zk := Jk+i/ε(2i/ηε).
Now set δk = βk for k ≥ 1 and δk = γ−k for k ≤ −1. Then, for k ≥ 2, we have

δk+1 + δk−1 = βk+1 + βk−1 = η (1 + iεk) βk = η (1 + iεk) δk,
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while, for k ≤ −2,

δk+1 + δk−1 = γ−(k+1) + γ−(k−1) = γ−k−1 + γ−k+1 = η (1 + iεk) γ−k = η (1 + iεk) δk,

so that, comparing the last two equations with (17c), we see that, if we set αk = δk for all |k| ≥ 1,
we obtain a solution to (17c) depending on the complex constants C and D.
Now, Property 2 in Appendix II states that Jν∗(z∗) = (Jν(z))∗. Hence, setting D = C∗, for all k ≥ 1,
we have

α∗
k = β∗

k = C∗W ∗
k = C∗

(
Jk−i/ε(−2i/ηε)

)∗
= DJk+i/ε(2i/ηε) = DZk = γk = α−k (25)

so that α∗
k = α−k for all k 6= 0. So, if we require q(t) to be real, we are left with only one free

parameter C ∈ C.
To compute C, we go back to equations (17a), (17b). Solving these for α0 gives

α0 =
CW1 + C∗W ∗

1 + 2Q0

η
= η(1 + iε)CW1 − CW2 + Q0, (26)

where we have used αi = CWi for i = 1, 2. The right-hand equality can be rewritten in the form
z1C + z2C

∗ = r, where z1, z2, C ∈ C and r ∈ R. Specifically, z1 = W1

(
1 − η2(1 + iε)

)
/η + W2,

z2 = W ∗
1 /η and r = Q0(1− 2/η). By considering z1C + z2C

∗ = r and its complex conjugate, we can
solve for C to obtain C = r(z∗1 − z2)/∆, where ∆ = |z1|2 − |z2|2. Numerical evidence indicates that
∆ ∈ (0, 1) for all R > 0, so C exists for all positive R.
The expression αk = CJk−i/ε(−2i/ηε), k ≥ 1, with α0 being given by (26), is in principle good for
any values of the parameters. In practice, however, the method for computing αk in Section 4.1 is
often useful, especially for small R (leading to small ε = ωR/B0, which requires the evaluation of
Jk−i/ε(z) for small ε — algorithms to do this tend to be slow, especially when |k − i/ε| ≈ |z|).
One advantage of expressing the Fourier coefficients in terms of Bessel functions is that we immedi-
ately see from our expression for αk, along with (31) in Appendix II, that

|αk| ∼
(

e

ηε

)k 1

kk+ 1

2

,

so clearly the Fourier series for q(t) converges for all non-zero ε, η.

5 Conclusions and further work

We have studied the periodically-excited triboelectric nanogenerator (TENG) from a mathematical
viewpoint. Our main aim has been to derive expressions for the mean power as a function of load
resistance R and excitation frequency ω, although as a by-product, we also compute the current,
from which other quantities of interest can be derived.
The TENG has a single state variable, the charge, q(t), and the time evolution of q(t) is described
by the linear, first-order, non-autonomous o.d.e. in equation (2). This has a periodically-varying
coefficient, the reciprocal capacitance B(t), which makes analysis of the problem less straightforward
than, say, the piezoelectric device discussed in [10], the o.d.e. for which, while still non-autonomous,
has constant coefficients.
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After proving that the o.d.e. (2) has a unique periodic attractor, we derive perturbation series for q(t)
in the cases of small and large R, equations (10) and (13) respectively. We give general expressions
for the first few coefficients in these series before using them to estimate the current, i(t) = q̇(t),
and the mean power, R×[mean squared current over one period]. Comparison with numerics shows
these expressions to be good for all R except R ∈ [108, 3 × 109]Ω (approximately), these values of R
being neither ‘small’ nor ‘large’ in the context of this problem. However, by using a simple argument
based on the intersection of straight lines, the two perturbation series can be used to estimate Rpk,
the value of R that maximises the mean power, and this approach results in a simple expression,
equation (14), for Rpk(ω).
Since the o.d.e. has a unique periodic solution q(t), we then discuss its Fourier expansion. We give
two procedures to find the Fourier coefficients, αk, for k as large as desired. The first is an algorithm
to find αk, which requires only simple computing machinery, and the second is an expression for αk

in terms of Bessel functions of the first kind, Jν(z). From αk, the mean power, for any R and ω,
can be computed to any degree of precision, as can q(t) and i(t) — from the latter, the peak current
and peak power can then be found if desired. One important aspect of the connection with Bessel
functions is that we can deduce the behaviour of αk for large k.
Our chief interest has been the mean power as a function of R and ω and we discuss how this may be
estimated by a single expression, valid for all R. We propose two possibilities. The first is heuristic
and comes from an observation about the two series, equations (10) and (13): we show that if these
series are both expansions of the same rational function, then we can compute an approximation to
this function explicitly — see equation (15). This estimate is simple to use but entirely heuristic,
although it does compare favourably with the exact result.
The second possibility comes from our study of the Fourier coefficients in terms of Bessel functions,
which shows that they decrease in magnitude rapidly (as 1/k! in fact) with increasing index k. In
practice, even the first three coefficients are enough to give a reasonable power estimate (relative
error ≤ 15%) for all R.
Clearly, the power output also depends on other parameters in the problem, for example the thickness
x1, x2 of the dielectrics, the excitation amplitude z0 and the triboelectric charge density σT . A study
of the effects of these parameters and others has recently been published in [17].
This work raises some interesting questions for further investigation. For example, in the TENG
context, the fundamental frequencies of B(t) and V (t) have to be the same. What can we say about
solutions to o.d.e.s like (2) where this is not the case? What more can we say about the convergence
of the perturbation series? Can we say anything about the the behaviour of the modulus of the
Fourier coefficients in the case where B(t) and/or V (t) are not approximated as truncated Fourier
series? What can we say in the case of a load that is not purely resistive?
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[10] Y. Zhang, B. Lu, C. Lü and X. Feng, Theory of energy harvesting from heartbeat including the

effects of pleural cavity and respiration, Proceedings of the Royal Society A vol. 473, 2214
(2017) doi.org/10.1098/rspa.2017.0615

[11] S. Niu and Z.L. Wang, Theoretical systems of triboelectric nanogenerators, Nano Energy vol.
14, pp 161–192 (2015) doi.org/10.1016/j.nanoen.2014.11.034

[12] S. Haykin, Communication systems, John Wiley & sons, ISBN 0471 57176 8 (1994)

[13] H.T.H. Piaggio, An elementary treatise on differential equations and their applications Bell’s

Mathematical Series, G. Bell and sons Ltd, London, (1944)

[14] Documentation for the Livermore Solver for Ordinary Differential Equations —
https://computation.llnl.gov/casc/nsde/pubs/u113855.pdf

[15] C.J. Tranter, Bessel functions with some physical applications, The English Universities

Press Ltd., ISBN 0340 04959 6 (1968)

[16] M. Abramowitz and I.A. Stegun, Handbook of Mathematical Functions, Dover Publications

Inc., New York, ISBN 0486 61272 4 (1972)

[17] R.D.I.G. Dharmasena, J.H.B. Deane and S.R.P. Silva, Nature of Power Generation and Out-

put Optimisation of Triboelectric Nanogenerators, Advanced Energy Materials, (in press)
doi:10.1002/aenm.201802190

18



Appendix I — derivation of I(x)

This appendix gives the mathematical part of the derivation of the function I(x) that features in the
o.d.e. studied in this paper, and it is included for the sake of completeness. The context is a device
known as a triboelectric generator, consisting of a pair of parallel rectangular plates whose sides are
of length l and w.
The definition of I(x) is the following indefinite integral:

I(x) :=

∫
arctan

(
l/w

2(x/w)
√

4(x/w)2 + (l/w)2 + 1

)
dx.

It arises as a consequence of Gauss’ law, and we have taken the integral directly from [1], which
should be consulted for further details. Setting α = l/w and substituting y = x/w, this becomes

I(y) = w

∫
arctan

(
α

2y
√

4y2 + α2 + 1

)
dy. (27)

Perhaps surprisingly, this integral can be expressed in closed form for all α > 0, provided that x > 0.
The first step to showing this is to multiply the integrand by 1 and integrate by parts, giving

I

w
= y arctan

(
α

2y
√

4y2 + α2 + 1

)
−
∫

y
d

dy
arctan

(
α

2y
√

4y2 + α2 + 1

)
dy.

We then use
d

dy
arctan

(
1

g(y)

)
=

−g′(y)

1 + g2(y)
,

and with g(y) = (2y/α)
√

4y2 + α2 + 1, we find

I

w
= y arctan

(
α

2y
√

4y2 + α2 + 1

)
+ 2α

∫
y(8y2 + α2 + 1)√

4y2 + α2 + 1 [4y2(4y2 + α2 + 1) + α2]
dy.

Now define

I1 =

∫
y(8y2 + α2 + 1)√

4y2 + α2 + 1 [4y2(4y2 + α2 + 1) + α2]
dy

and substitute u2 = 4y2 + α2 + 1. This gives

I1 =

∫
y(2u2 − α2 − 1)

u(4u2y2 + α2)

u

4y
du =

1

4

∫
2u2 − α2 − 1

4u2y2 + α2
du,

and using 4y2 = u2 − α2 − 1, we find

I1 =
1

4

∫
2u2 − α2 − 1

u2(u2 − α2 − 1) + α2
du =

1

4

∫
2u2 − α2 − 1

(u2 − α2)(u2 − 1)
du

=
1

4

∫
(u2 − α2) + (u2 − 1)

(u2 − α2)(u2 − 1)
du =

1

4

∫
1

u2 − 1
+

1

u2 − α2
du.
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Expressing both these terms in partial fractions, we then obtain

I1 =
1

8
ln

u − 1

u + 1
+

1

8α
ln

u − α

u + α
.

Hence, finally, we have

I(x) = x arctan
αw

2xu
+

w

4

(
α ln

u − 1

u + 1
+ ln

u − α

u + α

)
, (28)

where u =
√

4(x/w)2 + α2 + 1.
Points to note:

• The expressions for I(x) and I0 are unchanged if l and w are swapped (which also replaces
α = l/w with α−1). This is, of course, exactly as it should be: it cannot matter which way
round we label the sides of the rectangular plates.

• Since both arctan x > 0 and α/(2x
√

4x2 + α2 + 1) > 0 for x > 0, I(x) is the integral of a
strictly positive function, and so I(x) is a monotonically increasing function of x > 0. Hence,
G(t) as defined in equation (1) is always positive provided only that x1 + x2 > 0; and so
B(t) = G(t)/A > 0 for all t.

We shall also need I0 = limx→0 I(x), which is

I0 =
αw

4
ln

(
α2 + 2 − 2

√
α2 + 1

α2

)
+

w

4
ln
(
2α2 + 1 − 2α

√
α2 + 1

)
.

When α = 1, this gives I0 = (w/2) ln(3 − 2
√

2) ≈ −0.881374w.

Appendix II — properties of Jν(z)Jν(z)Jν(z)

Property 1. Fix u 6= 0 ∈ R and z ∈ C. Then, as k → ∞, |Jk+iu(z)| → 0.

Proof. Equations (29) and (30) below are taken from [16], [15]. Equations (29) and (30), and all the
asymptotic expansions in this proof, have an error term which multiplies the right-hand sides by a
factor (1 + O(|ν|−1)). We start from the asymptotic expansion

Jν(z) ∼ 1

Γ(ν + 1)

(z

2

)ν
. (29)

The latter is valid for fixed z ∈ C and complex ν with |ν| ≫ |z|. Stirling’s approximation for large
|ν| is

Γ(ν + 1) ∼
√

2πν
(ν

e

)ν
. (30)

We put ν = k + iu, where k ∈ Z, and set θ = arg ν. With these definitions, applying Stirling’s
approximation to equation (29), we obtain

Jν(z) ∼ 1√
2πν

( ze

2ν

)ν
=

1√
2π

(ze

2

)iu
× euθ e−iu ln |ν|e−iθ(k+ 1

2
)
(ze

2

)k 1

|ν|k+ 1

2

.
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Only terms to the right of the × symbol depend on k. Furthermore, we can replace euθ with unity,
since u is fixed, so θ = limk→∞ arg(k + iu) = 0. Hence, taking the modulus,

|Jk+iu(z)| ∼ C

( |z|e
2

)k 1

kk+ 1

2

, (31)

where C > 0 is independent of k. The property is then established by letting k → ∞.

Property 2. For ν, z ∈ C, Jν∗(z∗) = (Jv(z))∗.

Proof. This follows from the series representation [16] of the Bessel function

Jν(z) =

∞∑

m=0

(−1)m

m! Γ(m + ν + 1)

(z

2

)2m+ν

along with the property that Γ(z∗) = (Γ(z))∗ of the Gamma function [16] and the fact that (z∗)α
∗

=
(zα)∗. The latter can be seen by writing z = reiθ, α = a + ib and expanding.
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