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Introduction

Consider the dynamical system

u̇ =
du

dt
= G(u) + εF (u), [1]

where F,G : S ⊂ R
d
→ R

d
are analytic functions and ε a real (small) parameter.

Suppose also that for ε = 0 a solution u0 : R → S (for some initial condition

u0(0) = u) is known.

We look for a solution of [1] which is a perturbation of u0, that is for a solution u

which can be written in the form u = u0+U , with U = O(ε) and U(0) = U ≡ u(0)−u.

Then we can consider the variational equation

U̇ = M(t)U + Φ(t), Mij(t) = ∂ui
Gj(u0(t)), [2]

where we have set Φ(t) = Φ̃(u0(t), U), with Φ̃(u0, U) = G(u0 + U) − ∂uG(u0)U +

εF (u0 + U). By defining the Wronskian matrix W as the solution of the matrix

equation Ẇ = M(t)W such that W (0) = 11 (the columns of W are given by d

independent solutions of the linear equation u̇ = M(t) u) we can write

U(t) = W (t)U +W (t)

∫ t

0

dτ W−1(τ)Φ(τ). [3]
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If we expect the solution U to be of order ε we can try to write it as a Taylor series

in ε, that is

U(t) =
∞
∑

k=1

εkU (k), [4]

and, by inserting [4] into [3] and equating the coefficients with the same Taylor order,

we obtain

U (k)(t) = W (t)U
(k)

+W (t)

∫ t

0

dτ W−1(τ)Φ(k)(τ), [5]

where Φ(k)(t) is defined as

Φ(1)(t) = F (u0(t)),

Φ(k)(t) =

∞
∑

p=2

1

p!

∂pG

∂up
(u0(t))

∑

k1+...+kp=k

U (k1) . . .U (kp)

+

∞
∑

p=1

1

p!

∂pF

∂up
(u0(t))

∑

k1+...+kp=k−1

U (k1) . . .U (kp), k ≥ 2,

[6]

hence Φ(k)(t) depends only on coefficients of orders strictly less than k. In such a

way we obtain an algorithm allowing us to construct the solution recursively, so that

the problem is solved, up to (essential) convergence problems.

Historical excursus

To study a system like [1] by following the strategy outlined above can be hopeless

if we do not make some further assumptions on the kind of motions we are looking

for.

We shall see later in a concrete example that the coefficients U (k)(t) can increase

in time, in a k-dependent way, so preventing the convergence of the series for large t.

This is a general feature of this class of problems: if no care is made in the choice of
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the initial datum, the algorithm can provide a reliable description of the dynamics

only for a very short time.

Anyway if one looks for solutions having a special dependence on time, things

can work better. This happens, for instance, if one looks for quasi-periodic solutions,

that is functions which depend on time through the variable ψ = ωt, with ω ∈ R
N

a vector with rationally independent components, that is such that ω · ν 6= 0 for

all ν ∈ Z
N
\ {0} (here and henceforth the dot denotes the standard inner product,

ω · ν = ω1ν1 + . . . + ωNνN ). A typical problem of interest is: what happens to a

quasi-periodic solution u0(t) when a perturbation εF is added to the unperturbed

vector field G, as in [1]? Situations of this kind arise when considering perturbations

of integrable systems: a classical example is provided by planetary motion in celestial

mechanics.

Perturbation series like [4] have been extensively studied by astronomers in

order to obtain a more accurate description of the celestial motions compared to

that following from Kepler’s theory (in which all interactions between planets are

neglected and the planets themselves are considered as points). In particular we

recall the works of Newcomb and Lindstedt (series like [4] are nowadays known

as Lindstedt series). At the end of the XIXth century Poincaré showed that the

series describing quasi-periodic motions are well defined to any perturbation order

k (at least if the perturbation is a trigonometric polynomial), provided that the

components of ω are assumed to be rationally independent: this means that, under

this condition, the coefficients U (k)(t) are defined for all k ∈ N. However Poincaré

also showed that, in general, the series are divergent; this is due to the fact that, as

we shall see, in the perturbation series there appear small divisors ω · ν which, even

if they do not vanish, can be arbitrarily close to zero.

The convergence of the series can be proved indeed (more generally for analytic,

or even differentiably smooth enough, perturbations) by assuming on ω a stronger

non-resonance condition, such as the Diophantine condition

|ω · ν| >
C0

|ν|τ
∀ν ∈ Z

N
\ {0}, [7]

where |ν| = |ν1| + . . . + |νN |, and C0 and τ are positive constants. We note that
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the set of vectors satisfying [7] for some positive constant C0 has full measure in R
N

provided one takes τ > N − 1.

Such a result is part of the KAM theorem, and it was first proved by Kolmogorov

in 1954, following an approach quite different fom the one described here. New proofs

were given in 1962 by Arnol′d and by Moser, but only very recently, in 1988 (in a

paper published 8 years later), Eliasson gave a proof in which a bound Ck is explicitly

derived for the coefficients U (k)(t), again implying convergence for ε small enough.

Eliasson’s work was not immediately widely known, and only after publication

of papers by Gallavotti and by Chierchia and Falcolini, in which Eliasson’s ideas

were revisited, did his work come fully appreciated. The study of perturbation

series [4] employs techniques very similar to those typical of a very different field of

mathematical physics, quantum field theory, even if such an analogy was stressed

and used to full extent only in subsequent papers.

Up to now the techniques have been applied to a wide class of problems of

dynamical systems: a list of original results is given at the end.

A paradigmatic example

Consider the case S = A×T
N

, with A an open subset of R
N

, and let H0 :A → R and

f :A× T
N

be two analytic functions. Then consider the Hamiltonian system with

Hamiltonian H(A, α) = H0(A) + εf(A, α). The corresponding equations describe a

dynamical system of the form [1], with u = (A, α), which we can write explicitly:

{

Ȧ = −ε∂αf(A, α),
α̇ = ∂AH0(A) + ε∂Af(A, α).

[8]

Suppose for simplicity we have H0(A) = A2/2 and f(A, α) = f(α), where A2 = A·A.

Then we obtain for α the closed equation

α̈ = −ε∂αf(α), [9]

while A can be obtained by direct integration once [9] has been solved.
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For ε = 0 [9] gives trivially α = α0(t) ≡ α0 + ωt, where ω = ∂AH0(A0) = A0

is called the rotation (or frequency) vector. Hence for ε = 0 all solutions are quasi-

periodic. We are interested in the preservation of quasi-periodic solutions when

ε 6= 0.

For ε 6= 0 we can write, as in [3],

α = α0(t) + a(t), a(t) =
∞
∑

k=1

εka(k)(t), [10]

where a(k) is determined as the solution of the equation

a(k) = tA
(k)

+ a(k) −

∫ t

0

dτ

∫ τ

0

dτ ′ [∂αf(α(τ ′)]
(k−1)

, [11]

with [∂αf(α(τ ′)]
(k−1)

expressed as in [6].

Since we are looking for quasi-periodic solutions with rotation vector ω we can

try to write the solution as a Fourier series, by expanding

a(k)(t) =
∑

ν∈Z
N

eiν·ωt a(k)
ν , [12]

with ω as before. If the series [10], with the Taylor coefficients as in [12], exists, it

will describe a quasi-periodic solution analytic in ε, and in such a case we say that

it is obtained by continuation of the unperturbed one with rotation vector ω, that

is α0(t).

Suppose that the integrand [∂αf(α(τ ′)]
(k−1)

in [11] has vanishing average. Then

the integral over τ ′ in [11] produces a quasi-periodic function, which in general have a

non-vanishing average, so that the integral over τ produces a quasi-periodic function

plus a term linear in t. If we choose A
(k)

in [11] so as to cancel out exactly the term

linear in time we end up with a quasi-periodic function. In Fourier space an explicit
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calculation gives for all ν 6= 0

a(1)
ν =

1

(ω · ν)2
iνfν ,

a(k)
ν =

1

(ω · ν)2

∞
∑

p=1

∑

k1+...+kp=k−1
ν0+ν1+...+νp=ν

(iν0)
p+1

p!
a(k1)

ν1
. . . a(kp)

νp
, k ≥ 2,

[13]

which again is suitable for an iterative construction of the solution.

Of course the property that the integrand in [11] has zero average is fundamen-

tal, otherwise, terms increasing as powers of t would appear (the so called secular

terms). Indeed it is easy to realize that to order k, terms proportional to t2k could

be present, so requiring, at best, |ε| < |t|−2 for convergence up to time t, and so

excluding a fortiori the possibility of quasi-periodic solutions.

The aforementioned property of zero average can be verified only if the rotation

vector is non-resonant, that is if its components are rationally independent, or more

particularly if the Diophantine condition [7] is satisfied. Such a result was first proved

by Poincaré, and it holds however the parameters a(k) appearing in [11] are fixed.

This reflects the fact that quasi-periodic motions take place on invariant surfaces

(KAM tori), which can be parameterized in terms of the angle variables α(t), so

that the values a(k) contribute to the initial phases, and the latter can be arbitrarily

fixed.

The recursive equations [13] can be suitably studied by introducing a diagram-

matic representation, as explained below.

Graphs and trees

A (connected) graph G is a collection of points (called vertices) and lines connecting

all of them. We denote with V (G) and L(G) the set of vertices and the set of lines,

respectively. A path between two vertices is a subset of L(G) connecting the two

vertices. A graph is planar if it can be drawn in a plane without graph lines crossing.
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A tree is a planar graph G containing no closed loops (cycles); in other words, it

is a connected acyclic graph. One can consider a tree G with a single special vertex

V0: this introduces a natural partial ordering on the set of lines and vertices, and

one can imagine that each line carries an arrow pointing toward the vertex V0. We

can add an extra oriented line ℓ0 connecting the special vertex V0 to another point

which will be called the root of the tree; the added line will be called the root line.

In this way we obtain a rooted tree θ defined by V (θ) = V (G) and L(θ) = L(G)∪ℓ0.

A labelled tree is a rooted tree θ together with a label function defined on the sets

V (θ) and L(θ).

We shall call equivalent two rooted trees which can be transformed into each

other by continuously deforming the lines in the plane in such a way that the latter

do not cross each other (i.e. without destroying the graph structure). We can extend

the notion of equivalence also to labelled trees, simply by considering equivalent two

labelled trees if they can be transformed into each other in such a way that also the

labels match.

Given two vertices V,W ∈ P (θ), we say that W ≺ V if V is on the path connecting

W to the root line. We can identify a line with the vertices it connects;given a line

ℓ = (V,W) we say that ℓ enters V and exits W. For each vertex V we define the branching

number as the number pV of lines entering V.

The number of unlabelled trees with k vertices can be bounded by the number

of random walks with 2k steps, that is by 4k.

The labels are as follows: with each vertex V we associate a mode label νV ∈ Z
N ,

and with each line we associate a momentum νℓ ∈ Z
N

, such that the momentum of

the line leaving the vertex V is given by the sum of the mode labels of all vertices

preceding V (with V being included): if ℓ = (V
′, V) then νℓ =

∑W�V νW . Note that for a

fixed unlabelled tree the branching labels are uniquely determined, and, for a given

assignment of the mode labels, the momenta of the lines are uniquely determined

too.

Define

VV =
(iνV)pV
pV! fνV, gℓ =

1

(ω · νℓ)2
, [14]

where we refer to the tensor VV as the node factor of V and to the scalar gℓ as the
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propagator of the line ℓ. One has |fν | ≤ F e−κ|ν| for suitable positive constants F

and κ, by the analyticity assumption. Then one can check that the coefficients a
(k)
ν ,

defined in [12], for ν 6= 0 can be expressed in terms of trees as

a(k)
ν =

∑

θ∈Θ
(k)
ν

Val(θ), Val(θ) =
(

∏V∈V (θ)

VV)(

∏

ℓ∈L(θ)

gℓ

)

, [15]

where Θ
(k)
ν denotes the set of all inequivalent trees with k vertices and with momen-

tum ν associated with the root line, while the coefficients a
(k)
0 can be fixed a

(k)
0 = 0

for all k ≥ 1, by the arbitrariness of the initial phases previously remarked.

The proof of such an assertion can be performed by induction on k. Alterna-

tively we can start from the recursive definition [13], whereby the trees naturally

arise in the following way.

Represent graphically the coefficient a
(k)
ν as in Figure 1; to keep track of the

labels k and ν we assign k to the black bullet and ν to the line. For k = 1 the black

bullet is meant as a grey vertex.

k

ν

Figure 1

Then recursive equation [13] can be graphically represented as in Figure 2,

provided that we associate with the (grey) vertex V0 the node factor VV0 , with νV0 =

ν0 and pV0 = p denoting the number of lines entering V0, and with the lines ℓi,

i = 1, . . . , p, entering V0 the momenta νℓi
, respectively. Of course the sums over p

and over the possible assignments of the labels {ki}
p
i=1 and {νi}

p
i=0 are understood.

Each black bullet on the right hand side of Figure 2, together with its exiting line

looks like the diagram on the left hand side, so that it represents a
(ki)
νi , i = 1, . . . , p.

Note that Figure 2 has to be interpreted in the following way: if one associates with

the diagram as drawn in the right hand side a numerical value (as described above)
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k

ν
=

ν ν0

k1

k2

k3

kp

ν1

ν2

ν3

νp

Figure 2

and one sums all the values over the assignments of the labels, then the resulting

quantity is precisely a
(k)
ν .

The (fundamental) difference between the black bullets on the right and left

hand side is that the labels ki of the latter are strictly less than k, hence we can

iterate the diagrammatic decomposition simply by expressing again each a
(ki)
νi as a

(k)
ν

in [13], and so on, until one obtains a tree with k grey vertices and no black bullets;

see Figure 3, where the labels are not explicitly written. This corresponds to the

tree expansion [15].

The property that [∂αf(α(τ ′))](k−1) in [11] has zero average for all k ≥ 1 implies

that for all lines ℓ ∈ L(θ) one has νℓ 6= 0, so that the propagators gℓ, hence the

numerical values Val(θ), are well defined for all trees θ.

Any tree appearing in [15] is an example of what is called in physics a Feynman

graph, while the diagrammatic rules one has to follow in order to associate to the tree

θ its right numerical value Val(θ) are usually called the Feynman rules for the model

under consideration. Such a terminology is borrowed from quantum field theory.

Multiscale analysis and clusters

Suppose we replace [9] with α = ε∂αf(α), so that no small divisors appear (that is
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Figure 3

gℓ = 1 in [14]). Then convergence is easily proved for ε small enough, since (by using

e−xxk/k! ≤ 1 for all x ∈ R+ and all k ∈ N) one finds

∏V∈V (θ)

|VV| ≤ (

43F

κ3

)k

e−κ|ν|/2
(

∏V∈V (θ)

e−κ|νV|/2
)

, [16]

and the sum over the mode labels can be performed by using the exponential decay

factors e−κ|νV|/2, while the sum over all possible unlabelled trees gives 4k.

Of course the interesting case is when the propagators are there. In such a case,

even if no division by zero occur, as ω ·νℓ 6= 0 (by the assumed Diophantine condition

[13] and the absence of secular terms previously discussed), the quantities ω · νℓ in

[14] can be very small.

Then we can introduce a scale h characterising the size of each propagator: we

say that a line ℓ has scale hℓ = h ≥ 0 if ω · νℓ is of order 2−hC0 and scale hℓ = −1 if

ω · νℓ is greater than C0 (of course a more formal definition can be easily envisaged,

10



but we refer to the original papers for this). Then we can write

∏

ℓ∈L(θ)

|gℓ| ≤ C−2k
0

∞
∏

h=0

22hNh(θ) ≤ C−2k
0 22h0k exp

(

∞
∑

h=h0

log 2 2hNh(θ)
)

, [17]

where Nh(θ) is the number of lines in L(θ) with scale h and h0 is a (so far arbitrary)

positive integer. The problem is then reduced to that of finding an estimate for

Nh(θ).

To identify which kinds of tree are the source of problems, we introduce the

notion of a cluster and a self-energy graph. A cluster T with scale hT is a connected

set of nodes which are linked by a continuous path of lines with the same scale label

hT or a lower one and which is maximal, namely all the lines not belonging to T

but connected to it have scales higher than hT . An inclusion relation is established

between clusters, in such a way that the innermost clusters are the clusters with

lowest scale, and so on. Each cluster T can have an arbitrary number of lines

coming in it (entering lines), but only one or zero lines coming out from it (exiting

line): we call external lines of T the lines which either enter or exit T . A cluster

T with only one entering line ℓ2T and with one exiting line ℓ1T such that one has

νℓ1
T

= νℓ2
T

will be called a self-energy graph (SEG) or resonance. In such a case we

shall call a resonant line the line ℓ1T . Examples of clusters and SEGs are suggested

by the bubbles in Figure 4; the mode labels are not represented, whereas the scales

are explicitly written. Note that in Figure 4 the tree itself is a cluster (with scale 6),

and each of the two clusters with one entering and one exiting lines is a SEG only if

the momenta of its external lines are equal to each other.

If we call Sh(θ) the number of SEGs whose resonant lines have scales h, then

N∗
h(θ) = Nh(θ) − Sh(θ) will denote the number of non-resonant lines with scale h.

A fundamental result, known as Siegel-Bryuno lemma, shows that, for some

positive constant c, one has

N∗
h(θ) ≤ 2h/τc

∑V∈V (θ)

|νV|, [18]
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which, if inserted into [17] instead of Nh(θ), would give a convergent series; then h0

should be chosen in such a way that the sum of the series in [17] is less than, say,

κ/4.

The bound [18] is a very deep one, and was originally proved by Siegel for a

related problem (Siegel’s problem), in which, in the formalism we are following, SEGs

do not occur; such a bound essentially shows that accumulation of small divisors is

possible only in the presence of SEGs. A possible tree with k vertices whose value

can be proportional to some power of k! is represented in Figure 5, where a chain of

(k − 1)/2 SEGs, k odd, is drawn with external lines carrying a momentum ν such

that ω · ν ≈ |ν|−τ .

In order to take into account the resonant lines, we have to add a factor (ω·νℓ)
−2

for each resonant line ℓ. It is a remarkable fact that, even if there are trees whose

value cannot be bounded as a constant to the power k, there are compensations

(that is partial cancellations) between the values of all trees with the same number

of vertices, such that the sum of all such trees admits a bound of this kind.
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−ν0

ν0

−ν0

ν0

−ν0

ν0

−ν0

ν0

−ν0

ν

Figure 5

The cancellations can be described graphically as follows. Suppose we have

a tree θ with a SEG T . Consider all trees which can be obtained by shifting the

external lines of T , that is by attaching such lines to all possible vertices internal to

T , and sum together the values of all such trees. An example is given in Figure 6.

The corresponding sum turns out to be proportional to (ω ·ν)2, if ν is the momentum

of the resonant line of T , and such a factor compensates exactly the propagator of

this line. The argument above can be repeated for all SEGs: this requires a little

care because there are SEGs which are inside some other SEGs. Again we refer to

the original papers for a more formal discussion.

Figure 6

The conclusion is that we can take into account the resonant lines: this simply

adds an extra constant to the power k, so that an overall estimate Ck, for some

C > 0, follows for U (k)(t), and the convergence of the series follows.
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Other examples and applications

The discussion carried out so far proves a version of the KAM theorem, for the

system described by [9], and it is inspired by the original papers by Eliasson (1988)

and, mostly, by Gallavotti (1994).

Here we list some problems in which original results have been proved by means

of the diagrammatic techniques described above, or by some variants of them.

An expansion like the one considered so far can be envisaged also for the motions

occurring on the stable and unstable manifolds of hyperbolic lower-dimensional tori

for perturbations of Hamiltonians describing a system of rotators (as in the previous

case) plus n pendulum-like systems. In such a case the function G(u) has a less

simple form. For n = 1 one can look for solutions which depend on time through

two variables, ψ = ωt and x = e−gt, with (ω, g) ∈ R
N+n

, and ω Diophantine as

before and g related to the time-scale of the pendulum. This has been worked out

by Gallavotti (1994), and then used by Gallavotti, Gentile and Mastropietro (1999)

to study a class of three time-scale systems, in order to obtain a lower bound on the

homoclinic angles, that is on the angles between the stable and unstable manifolds

of hyperbolic tori which are preserved by the perturbation. The formalism becomes

a little more involved, essentially because of the entries of the Wronskian matrix

appearing in [5]. In such a case the unperturbed solution u0(t) corresponds to the

rotators moving linearly with rotation vector ω and the pendulum moving along

its separatrix; a nontrivial fact is that if g0 denotes the Lyapunov exponent of the

pendulum in the absence of the perturbation, then one has to look for an expansion

in x = e−gt with g = g0 +O(ε), because the perturbation changes the value of such

an exponent.

The same techniques have also been applied to study the relation of the radius

of convergence of the standard map, an area-preserving diffeomorphism from the

cylinder to itself which has been widely studied in literature since the original papers

by Greene and by Chirikov (1979), with the arithmetical properties of the rotation

vector (which is in this case just a number). In particular it has been proved that

the radius of convergence is naturally interpolated through a function of the rotation

number known as Bryuno function (which has been introduced by Yoccoz as the
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solution of a suitable functional equation completely independent of the dynamics);

we refer to a paper by Berretti and Gentile (2001) for a review of results of this and

related problems.

Also the generalized Riccati equation u̇− iu2 − 2if(ωt)+ iε2 = 0, where ω ∈ T
d

is Diophantine and f is an analytic periodic function of ψ = ωt, has been studied

with the diagrammatic technique by Gentile (2003). The interest of such an equation

relies on the fact that it is related to quantum two-level systems (as first used by

Barata), and existence of quasi-periodic solutions of the generalized Riccati equation

for a large measure set E of values of ε can be exploited to prove that the spectrum

of the corresponding two-level system is pure point for those values of ε; analogously

one can prove that, for fixed ε, one can impose some further non-resonance conditons

on ω, still leaving a full measure set, in such a way that the spectrum is pure point.

We note also, as a side remark, that, technically, such a problem is very similar

to that of studying conservation of elliptic lower-dimensional tori with one normal

frequency

Finally we mention a problem of partial differential equations, where, of course,

the scheme described above has to be suitably adapted: this is the study of periodic

solutions for the nonlinear wave equation utt − uxx + mu = ϕ(u), with Dirichlet

boundary conditions, where m is a real parameter and ϕ(u) is a strictly nonlinear

analytic function. Gentile and Mastropietro (2004) reproduced the result of Craig

and Wayne of existence of periodic solutions for a large measure set of periods, and,

in a subsequent paper by the same authors with Procesi, an analogous result was

proved in the case m = 0, which was an open problem in literature.

See also

KAM theory and celestial Mechanics. Stability theory and KAM. Sta-

tionary solutions of PDEs and heterocline/homocline connections of dy-

namical systems. Integrable systems and differential geometry. Pertur-

bations of integrable Hamiltonian systems.
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