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Introduction

A Hamiltonian system is a dynamical system whose equations of motions can be

written in terms of a scalar function, called the Hamiltonian of the system: if one

uses coordinates (p,q) in a domain (phase-space) D ⊂ R
2N

, where N is the mini-

mum number of independent variables one needs to identify a configuration of the

system (degrees of freedom), there is a function H(p,q) such that ṗ = −∂H/∂q and

q̇ = ∂H/∂p. An integrable (Hamiltonian) system is a Hamiltonian system which,

in suitable coordinates (A, α) ∈ A × T
N

, where A is an open subset of R
N

and

T = R/2πZ is the standard torus, can be described by a Hamiltonian H0(A), i.e.

depending only on A. The coordinates (A, α) are called action-angle variables. In

such a case the dynamics is trivial: any initial condition (A0, α0) evolves in such a

way that the action variables are constants of motion (i.e. A(t) = A0 for all t ∈ R),

while the angles grow linearly in time according to the low α(t) = α0 + ωt, where

ω = ω(A0) ≡ ∂AH0(A0) is called the rotation (or frequency) vector. An integrable

system can be thought of as a collection of decoupled (that is independent) rotators:

the entire phase space A × T
N

is foliated into invariant tori and all motions are

quasi-periodic. Integrable systems are stable, in the sense that nearby initial condi-

tions separate at most linearly in time (in particular the actions do not separate at

all): mathematically this is expressed by the fact that all the Lyapunov exponents

are non-positive.

An example of an integrable system is any one-dimensional conservative me-

chanical system, in any region of phase-space in which motions are bounded. By

increasing the number of degrees of freedom, exhibiting nontrivial integrable sys-
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tems can become a difficult task. The problem of studying the effects of even small

Hamiltonian perturbations on integrable systems and of understanding if the latter

remain stable, in the aforementioned sense, was considered by Poincaré to be the

fundamental problem of dynamics. For a long time it was commonly thought that

all motions could be reduced to superpositions of periodic motions, hence to quasi-

periodic motions, but at the end of XIXth century it was realized by Boltzmann and

Poincaré that such a picture was too naive, and that in reality more complicated

motions were possible. As a consequence of this it became a widespread belief that,

even when starting from an integrable system, the introduction of an arbitrarily

small perturbation would break integrability.

This belief was straightened by the work of Poincaré (1898), who showed that

the series describing the solution in a perturbation theory approach are in general

divergent. The source of divergences of the perturbation series is the presence of small

divisors, that is of denominators of the kind of ω · ν, where ω is the rotation vector

that should characterize the invariant torus (if existent) and ν is any integer vector.

Despite this, however, perturbation series (known as Lindstedt series), continued to

be extensively used by astronomers in problems of celestial mechanics, such as the

study of planetary motions, for the reason that they provided predictions in good

agreement with the observations. But the feeling that the underlying mathematical

tools were unsatisfactory persisted.

In fact the well-known Fermi-Pasta-Ulam numerical experiment (1955) was orig-

inally conceived in the spirit of confirming that integrability would in general be

easily lost. Consider a chain with N harmonic oscillators, with, say, periodic bound-

ary conditions, coupled with cubic and quartic two-body potentials, so that the

Hamiltonian is

H(p,q) =
N

∑

i=1

1

2
p2

i + W (qi+1 − qi), W (x) =
1

2
x2 +

α

3
x3 +

β

4
x4, [1]

for α, β real parameters and (p,q) ∈ R
N × R

N
. One can introduce new variables
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such that the Hamiltonian, for α = β = 0, can be written as

H0(A) =

N
∑

i=1

1

2

(

P 2
k + ωkQ2

k

)

= ω · A, [2]

for a suitable rotation vector ω = (ω1, . . . , ωN) ∈ R
N (an explicit computation gives

ωk = 2 sin(kπ/N)).

Imagine we take an initial condition in which all the energy is confined to a few

modes, i.e. Ak 6= 0 at t = 0 only for a few values of k. For α = β = 0 the system is

integrable, so that Ak(t) = 0 for all t ∈ R and for all k such that Ak(0) = 0. If the

system ceases to be integrable when the perturbation is switched on, the energy is

likely to start to be shared among the various modes, and after a long enough time is

elapsed, an equidistribution of the energy among all modes (thermalization) might

be expected. At least this behaviour was expected by Fermi, Pasta and Ulam, but

it was not what they found numerically: on the contrary all the energy seemed to

remain associated with the modes close the few initially excited ones.

At about the same time, Kolmogorov (1954) published a breakthrough paper

going exactly in the opposite direction: if one perturbes an integrable system, under

some mild conditions on the integrable part, most of the tori are preserved, although

slightly deformed. A more precise statement is the following.

Theorem 1. Let an N -degree-of-freedom Hamiltonian system be described by an

analytic Hamiltonian of the form

H(A, α) = H0(A) + εf(A, α), [3]

with ε a real parameter (perturbation parameter), f a 2π-periodic function of each

angle variable (potential or perturbation) and H0(A) satisfying the non-degeneracy

condition det ∂2
A
H0(A) 6= 0 (anisochrony condition). If ω = ω(A) ≡ ∂AH0(A) is

fixed to satisfy the Diophantine condition

|ω · ν| >
C0

|ν|τ ∀ν ∈ Z
N \ 0, [4]
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for some constants C0 > 0 and τ > N − 1 (here |ν| = |ν1|+ . . . + |νN | and · denotes

the standard inner product: ω · ν = ω1ν1 + . . . + ωNνN ), then there is an invariant

torus with rotation vector ω for ε small enough, say for ε smaller than some value

ε0 depending on C0 and τ (and on the function f).

By saying that there is an invariant torus with rotation vector ω, one means

that there is an invariant surface in phase space on which, in suitable coordinates,

the dynamics is like the one in the unperturbed case, and the conjugation, that is

the change of variables which leads to such coordinates, is analytic in the angles

variables and in the perturbation parameter. One also says that the torus of an

integrable system (ε = 0) is preserved (or even persists) under a small perturbation.

Note that, a posteriori, this proves convergence of the perturbation series: how-

ever a direct check of convergence was performed only recently by Eliasson (1988).

Kolmogorov’s proof was based on a completely different idea, that is performing it-

eratively a sequence of canonical transformations (which are changes of coordinates

preserving the Hamiltonian structure of the equations of motion) such that at each

step the size of the perturbation is reduced. Of course, on the basis of Poincaré’s

result, this iterative procedure cannot work for all initial conditions (for instance

when ω does not satisfy [4]). The key point in Kolmogorov’s scheme is to fix the

rotation vector ω of the torus one is looking for, in such a way that the small divi-

sors are controlled through the Diophantine condition [4] and the exponentially fast

convergence of the algorithm.

New proofs and extensions of Kolmogorov’s theorem were given later by Arnol′d

and Moser (1962), hence the acronym KAM to denote such a theorem. Arnol′d gave

a more detailed (and slightly different) proof compared to the original one by Kol-

mogorov, and applied the result to the planar three-body problem, so showing that

physical applications of the theorem were possible, while Moser proposed a modified

method using a technique introduced by Nash (which approximates smooth functions

with analytical ones) to deal with the case of systems with finite smoothness.

For fixed small enough ε the surviving invariant tori cover a large portion of the

phase space, called the Kolmogorov set; the relative measure of the region of phase

space which is not filled by such tori tends to zero at least as
√

ε for ε → 0. A system
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described by a Hamiltonian like [3] is then called a quasi-integrable Hamiltonian

system.

The excluded region of phase space corresponds to the unperturbed tori which

are destroyed by the perturbation: the rotation vectors of such tori are close to a

resonance, that is to a value ω such that ω · ν = 0 for some integer vector ν, and

these are exactly the vectors which do not satisfy the Diophantine condition [4] for

any value C0. A subset of phase space of this kind is called a resonance region.

At first sight this would seem to provide an explanation for the results found

by Fermi, Pasta and Ulam, but this is not quite the case. First, the threshold value

ε0 depends on N , and goes to zero very fast as N → ∞ (in general as N !−α for some

α > 0); however the results of the numerical experiments apparently were insensitive

to the number N of oscillators. Second, the KAM theorem deals with maximal tori,

i.e. tori characterized by rotation vectors which have as many components as the

number of degrees of freedom, while the rotation vectors of the numerical quasi-

periodic solutions seem to involve just a small number of components.

Finally, as an extra problem, the validity of the non-degeneracy condition for the

unperturbed Hamiltonian is violated, because the unperturbed Hamiltonian is linear

in the action variables (one says that the Hamiltonian is isochronous). Recently Rink

(2001), by continuing the work by Nishida (1971), showed that in the Fermi-Pasta-

Ulam problem it is possible to perform a canonical change of coordinates such that

in the new variables the Hamiltonian becomes anisochronous: one uses part of the

perturbation to remove isochrony. But the other two obstacles remain.

Lower-dimensional tori

A natural question is what happens to the invariant tori corresponding to rotation

vectors which are not rationally independent, that is vectors satisfying n resonance

conditions, such as ω·νi = 0 for n independent vectors ν1, . . . , νn, with 1 ≤ n ≤ N−2

(the case n = N − 1 corresponds to periodic orbits and is comparatively easy); for

instance one can take ω = (ω1, . . . , ωn, 0, . . . , 0), and by a suitable linear change of

coordinates one can always make the reduction to a case of this kind. In particular

one can ask if a result analogous to the KAM theorem holds for these tori. Such a
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problem for the model [3] has not been studied very widely in the literature. What

has usually been considered is a system of n rotators coupled with a system with

s = N − n degrees of freedom near an equilibrium point: then one calls normal

coordinates the coordinates describing the latter, and the role of the parameter

ε is played by the size of the normal coordinates (if their initial conditions are

chosen near the equilibrium point). In the absence of perturbation one has either

hyperbolic or elliptic or, more generally, mixed tori, according to the nature of

the equilibrium points: one refers to these tori as lower-dimensional tori, as they

represent n-dimensional invariant surfaces in a system with N degrees of freedom.

Then one can study the preservation of such tori.

One can prove that in such a case, in suitable coordinates, n angles rotate with

frequencies ω1, . . . , ωn, respectively, while the remaining N − n angles have to be

fixed close to some values corresponding to the extremal points of a the function

obtained by averaging the potential over the rotating angles.

The case of hyperbolic tori is easier, as in the case of elliptic tori one has to

exclude some values of ε to avoid some further resonance conditions between the

rotation vector ω and the normal frequencies λk (that is the eigenvalues of the

linearized system corresponding to the normal coordinates), known as the first and

second Mel′nikov conditions:

|ω · ν ± λk| >
C0

|ν|τ ∀ν ∈ Z
N \ 0, ∀1 ≤ k ≤ s,

|ω · ν ± λk ± λk′ | >
C0

|ν|τ ∀ν ∈ Z
N \ 0, ∀1 ≤ k, k′ ≤ s.

[5]

Such conditions appear, with the values of the normal frequencies slightly modified

by terms depending on ε, at each iterative step, and at the end only for values of ε

belonging to some Cantor set one can have elliptic lower-dimensional tori.

The second Mel′nikov conditions are not really necessary, and in fact they can

be relaxed as Bourgain (1997) has showed; this is an important fact, as it allows de-

generate normal frequencies, which were forbidden in the previous works by Eliasson

(1988) and Pöschel (1989).
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Similar results also apply in the case of lower-dimensional tori for the model

[3], which represents sort of a degenerate situation, as the normal frequencies vanish

for ε = 0. Again one has to use part of the perturbation to remove the complete

degeneracy of normal frequencies.

Quasi-periodic solutions in PDE

For explaining the Fermi-Pasta-Ulam experiment, one has to deal with systems with

arbitrarily many degrees of freedom. Hence it is natural to investigate systems

which have ab initio infinitely many degrees of freedom, such as the nonlinear wave

equation, utt −uxx +V (x)u = ϕ(u), the nonlinear Schrödinger equation, iut −uxx +

V (x)u = ϕ(u), the nonlinear Korteweg-de Vries equation ut + uxxx − 6uxu = ϕ(u),

and other systems of nonlinear partial differential equations (PDE); the continuum

limit of the Fermi-Pasta-Ulam model gives indeed a nonlinear Korteweg-de Vries

equation, as shown by Zabuski and Kruskal (1965). Here (t, x) ∈ R × [0, π]d, if d

is the space dimension, and either periodic (u(0, t) = u(π, t)) or Dirichlet (u(0, t) =

u(π, t) = 0) boundary conditions can be considered; ϕ(u) is a function analytic in u

and starting from orders strictly higher than one, while V (x) is an analytic function of

x, depending on extra parameters ξ1, . . . , ξn. Such a function is introduced essentially

for technical reasons, as we shall see that the eigenvalues λk of the Sturm-Liouville

operator −∂2
x + V (x) have to satisfy some Diophantine conditions. If we set V (x) =

µ ∈ R in the nonlinear wave equation we obtain the Klein-Gordon equation, which,

in the particular case µ = 0, reduces to the string equation. Again the role of the

perturbation parameter is played by the size of the solution itself.

Small-amplitude periodic and quasi-periodic solutions for PDE systems have

been extensively studied, among others, by Kuksin, Wayne, Craig, Pöschel and Bour-

gain. Results for this kind of system read as follows. Consider for concreteness the

one-dimensional nonlinear wave equation with Dirichlet boundary conditions and

with ϕ(u) = u3 +O(u5). When the nonlinear function ϕ(u) is absent any solution of

the linear wave equation utt − uxx + V (x)u = 0 is a superposition of either finitely

or infinitely many periodic solutions with frequencies λk determined by the function

V (x). Let u0(ωt, x) be a quasi-periodic solution of the linear wave equation with
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rotation vector ω ∈ R
n
, where ωk = λmk

, for some n-ple {m1, . . . , mn}. Then for ε

small enough there exists a subset Ξε of the space of parameters with large Lebesgue

measure (more precisely with complementary Lebesgue measure which tends to zero

when ε → 0) such that for all ξ = (ξ1, . . . , ξn) ∈ Ξε there is a solution uε(t, x) of the

nonlinear wave equation and a rotation vector ωε satisfying the conditions

∣

∣uε(t, x) −
√

εu0(ωεt, x)
∣

∣ ≤ Cε,

|ωε − ω| < Cε,
[6]

for some positive constant C.

The case n = 1 (periodic solutions) is not as easy as the finite-dimensional case,

because there are infinitely many normal frequencies, so that there are small divisor

problems which for finite-dimensional systems appears only for n ≥ 2.

For the nonlinear wave and Schrödinger equations, if n ≥ 1 one can take V (x) =

µ, but one needs µ 6= 0; for n > 1 one can take V (x) = µ as one can perform a

preliminary transformation leading to an equation in which a function depending

on parameters naturally appears. For n = 1 the case µ = 0 has been very recently

solved by Gentile, Mastropietro and Procesi (2004).

Statements for more general situations can be also obtained, while extensions

to space dimensions d ≥ 2 are not trivial and have been obtained only in recent

years by Bourgain (1998). The above result also holds if the number of components

of the rotation vector is less than the number of parameters: one uses such param-

eters as one needs to impose some Diophantine conditions like [5], now for all the

frequencies λk = ωk, k /∈ {m1, . . . , mn}. Again the second Mel′nikov conditions

were shown by Bourgain to be unnecessary, and this an essential ingredient for the

higher-dimensional case.

Even if systems of the kind considered above have been widely studied, they

remain different in a deep way from a discrete system like the chain of oscillators

[1] for N large enough (also in the limit N → ∞), so that the results which have

been found for PDE systems do not really provide an explanation for the numerical

findings.

Also in the case of lower-dimensional tori for finite-dimensional systems the

main problem is that, even if such tori exist, it is not clear what relevance they can
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have for the dynamics (but we shall see later a case in which hyperbolic tori play a

role). An important feature of maximal tori is that they fill most of phase space, a

property which certainly does not hold for lower-dimensional tori, which lie outside

the Kolmogorov set.

In the Fermi-Pasta-Ulam experiment one considers initial conditions close to

lower-dimensional tori; hence an interesting problem is to study their stability, that

is how fast the trajectories starting from such initial conditions drift away.

Arnol′d diffusion and Nekhoroshev’s theorem

Let us come back to the maximal tori. For N = 2 the preservation of most of the

invariant tori prevents the possibility of diffusion in phase space: the tori represent

two-dimensional surfaces in a three-dimensional space (as dynamics occur on the level

surfaces of the energy in a four-dimensional space), so that if an initial condition is

trapped in a gap between two tori the corresponding trajectory remains confined

forever between them. The situation is quite different for N ≥ 3: in such a case the

tori do not represent a topological obstruction to diffusion any more.

That mechanisms of diffusion are really possible was shown by Arnol′d (1963).

Because of the perturbation, lower-dimensional hyperbolic tori appear inside the

resonance regions, with their the stable and unstable manifolds (whiskers). It can

happen that the unstable and stable manifolds of the same torus intersect with a

non-vanishing angle (homoclinic angle); as a consequence also the angles between

the stable and unstable manifolds of nearby tori (heteroclinic angles) can be different

from zero, and one can find a set of hyperbolic lower-dimensional tori such that the

unstable manifold of each of them intersects the stable manifold of the torus next

to it: one says that such tori form a transition chain of heteroclinic connections.

Then there can be trajectories moving along such connections, producing at the end

a drift of order 1 (in ε) in the action variables. Such a phenomenon is refered to as

Arnol′d diffusion.

Of course, diffusing trajectories have to be located in the region of phase space

where there are no invariant tori (hence a very small region when ε is small), but an

important consequence is that, unlike what happens in the unperturbed case, not all
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motions are stable: in particular the action variables can change by a large amount

over long times.

Providing interesting examples of Hamiltonian systems in which Arnol′d dif-

fusion can occur is not so easy: in fact for the diffusion to really occur one needs

a lower bound on the homoclinic angles, and to evaluate these angles can be diffi-

cult. For instance Arnol′d’s original example (1963), which describes a system near

a resonance region, is a two-parameter system given by

1

2

(

A2
1 + A2

2

)

+ A3 + µ (cos α1 − 1) + εµ (cos α1 − 1) (sin α2 + cos α3) , [7]

and the angles can be proved to be bounded from below only by assuming that the

perturbation parameter ε is exponentially small with respect to the other parameter

µ, which in turns implies a situation not really convincing from a physical point

of view. More generally for all the examples which are discussed in literature the

relation with physics (as the d’Alembert problem on the possibility for a planet to

change the inclination of the precession cone) is not obvious.

So the question naturally arises how fast can such a mechanism of diffusion

be, and how relevant is it for practical purposes. A first answer is provided by

Nekhoroshev’s theorem (1977), which states the following result.

Theorem 2. Suppose we have an N -degree-of-freedom quasi-integrable Hamiltonian

system, where the unperturbed Hamiltonian satisfies some condition like convexity

(or a weaker one, known as steepness, which is rather involved to state in a concise

way); for concreteness we can consider a function H0(A) in [2] which is quadratic

in A. Then there are two positive constants a and b such that for times t up to

O(exp(ε−b)) the variations of the action variables cannot be larger than O(εa).

The constants a and b depend on N , and they tend to zero when N → ∞;

Lochak and Nĕıshtadt (1992) and Pöschel (1993) found estimates a = b = 1/2N ,

which are probably in general optimal. Nekhoroshev’s theorem is usually stated in

the form above, but it provides more information than that explicitly written: the

trajectories, when trapped into a resonance region, drift away and come close to

some invariant torus, henceforth they behave like quasi-periodic motions, up to very
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small corrections, for a long time, until they enter some other resonance region, and

so on. Of course for initial conditions on some invariant torus KAM theorem applies,

but the new result is about initial conditions which do not belong to any tori.

Nekhoroshev’s theorem gives a lower bound for the diffusion time, that is the

time required for a drift of order 1 to occur in the action variables. But of course also

an upper bound would be desirable. The diffusion times are related to the amplitude

of the homoclinic angles, which are very small (and difficult to estimate as stated

before). The strongest results in this direction have been obtained with variational

methods, for instance by Bessi, Bernard, Berti and Bolle: at best one finds for the

diffusion time an estimate O(µ−1 log µ−1), if µ is the amplitude of the homoclinic

angles (which in turn are exponentially small in some power of ε, as one can expect

as a consequence of Nekhoroshev’s theorem).

Then one can imagine that also the results of the Fermi-Pasta-Ulam experiment

can be interpreted in the light of Nekhoroshev’s theorem. The solutions one finds

numerically certainly do not correspond to maximal tori, but one could make the

guess that they could be solutions which appear to be quasi-periodic for long but

finite times (for instance, moving near some lower-dimensional torus determined by

the initial conditions), and that if one really insists on observing the time evolution

for a very long time then deviations from quasi-periodic behaviour could be detected.

This is an appealing interpretation, and the most recent numerical results make it

plausible: Galgani and Giorgilli (2002) have found numerically that the energy, even

if initially confined to the lower modes, tend to be shared among all the other modes,

and the higher are the modes the longer is the time needed for the energy to flow

to them. Of course this does not settle the problem, as there is still the issue of the

large number of degrees of freedom; furthermore for large N the spacing between the

frequencies is small, and they become almost degenerate. Hence the problem still

has to be considered as open.

Stability versus chaos

The main problem in applying the KAM theorem seems to be related to the small

value of the threshold ε0 which is required. In general, when the size of the per-
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turbation parameter grows too much, the region of phase space filled with invariant

tori decreases (or even disappears), and chaotic motions appear. By the latter one

generally means motions which are highly sensitive to the initial conditions: a small

variation of the initial conditions produces a catastrophic variation in the corre-

sponding trajectories (this is due to the appearance of strictly positive Lyapunov

exponents).

A natural question is then how such a result as the KAM theorem is meaningful

in physical situations: in other words for which systems the KAM theorem can really

apply.

One of the main motivations to study this kind of problem was to explain

astronomical observations and to study the stability of the Solar system. In order to

apply the KAM theorem to the Solar system, one has to interpret the gravitational

forces between the planets as perturbations of a collection of several decoupled two-

body systems (each planet with the Sun). One can write the masses of the planets

as εmi, and ε plays the role of the perturbation parameter. The corresponding

Hamiltonian (after suitable reductions and scalings) is

N
∑

i=1

p2
i

2µi

−
N

∑

i=1

mim0

|qi|
+ ε

∑

1≤i<j≤N

pi · pj

m0

+ ε
∑

1≤i<j≤N

mimj

|qi − qj |
, [8]

where i = 0 corresponds to the Sun, while i = 1, . . . , N correspond to the planets

(hence N = 9), m0 is the mass of the sun, and εµi are the reduced masses (µ−1
i =

m−1
i + εm−1

0 ); here the inner product in pi · pj is in R
3 and the norm | · | is the

Euclidean one.

A first difficulty is that the Solar system is a properly degenerate system, that is

the unperturbed Hamiltonian does not depend on all the action variables. But such

a degeneracy can be removed by performing a canonical change of coordinates which

produces a new Hamiltonian in which the integrable part contains new terms of order

ε depending on all action variables and is non-degenerate, while the perturbation

becomes of order ε2: the angle variables corresponding to the actions not originally

appearing in the unperturbed Hamiltonian are called the slow variables, while the

other ones are called the fast variables.
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However, a naive implementation of the KAM theorem, in general, even for

simplified but still realistic systems, would provide preposterously small value of

the threshold ε0. The problem could be just a computational one: in principle a

very refined estimate of the threshold could give a better value, so that it is very

difficult to decide analytically if the real values of the planetary masses allow the

Solar system to fall inside the regime of applicability of the KAM theorem. Results

in this direction have been obtained, but only for special situations: for instance

if one considers the restricted planar circular three-body problem (which provides

a simplified description of the system Sun + Jupiter + asteroid), Chierchia and

Celletti found analytical bounds on the perturbation parameters comparable with

the physical values. Of course this is not conclusive at all for the general situation

in which all planets (with their satellites and the asteroids) are considered together;

in particular does not shed light on the problem of the stability of the entire Solar

system.

On the contrary extensive numerical simulations performed by Laskar (starting

from 1989) seem to suggest that the Solar system is unstable. Deflections from the

current orbits could be produced, to such an extent that collisions between planets

could not be avoided: Mercury could collide with Venus and be ejected from the Solar

system. An important issue is to consider the times over which such phenomena

can occur. Laskar’s numerical simulations show that such times are less than the

estimated age of the Solar system, and that one can make accurate predictions for

the planetary motions only for a finite amount of time (about 100 millions of years).

Furthermore, assumed partial instability of the Solar system has also been used by

Laskar (2004) to explain some observed phenomena like evolution of the obliquity

(which is the angle between equator and orbital plane) of some planets. Of course

these simulations have been carried out with several approximations, as that of

averaging over the fast variables, which allows one to use a large integration step in

the numerical integration of the equations of motion for the resulting system. This

is the so-called secular system introduced by Lagrange: instead of the fast motion of

the planets, one describes the slow deformations of the planetary orbits (imagining
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the planets as regions of mass spread along their obits).

See also

KAM theory and celestial Mechanics. Diagrammatic techniques in per-

turbation theory. Perturbations of integrable Hamiltonian systems. Inte-

grable systems and differential geometry. Mechanics and stability results.

Stability and instability theory of Hamiltonian systems. Stationary solu-

tions of PDEs and heterocline/homocline connections of dynamical sys-

tems. Weakly coupled oscillators.
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Arnol′d V I, Kozlov V V, Nĕıshtadt A I (1988), Dynamical systems III, Encyclopedia

of Mathematical Sciences 3, Berlin: Springer-Verlag.

Bourgain J (1998) Quasi-periodic solutions of Hamiltonian perturbations of 2D linear

Schrödinger equations, Annals of Mathematics 148: 363–439.

Ford J (1992) The Fermi-Pasta-Ulam problem: paradox turns discovery, Phys. Rep.

213: 271–310.

Gallavotti G (1986) Quasi-integrable mechanical systems, Phénomènes critiques,
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