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Glossary

Dynamical system

Let W ⊆ R
N be an open set and f : W × R → R

N be a smooth function. The ordinary differential
equation ẋ = f(x, t) on W defines a continuous dynamical system. A discrete dynamical system on W is
defined by a map x→ x′ = F (x), with F depending smoothly on x.

Hamiltonian system

Let A ⊆ R
d be an open set and H :A×R

d×R → R be a smooth function (A×R
d is called the phase space).

Consider the system of ordinary differential equations q̇k = ∂H(q, p, t)/∂pk, ṗk = −∂H(q, p, t)/∂qk, for
k = 1, . . . , d. The equations are called Hamilton equations, and H is called a Hamiltonian function. A
dynamical system described by Hamilton equations is called a Hamiltonian system.

Integrable system

A Hamiltonian system is called integrable if there exists a system of coordinates (α,A) ∈ T
d×R

d, called
angle-action variables, such that in these coordinates the motion is (α,A) → (α + ω(A)t, A), for some
smooth function ω(A). Hence in these coordinates the Hamiltonian function H depends only on the
action variables, H = H0(A).

Invariant torus

Given a continuous dynamical system we say that the motion occurs on an invariant d-torus if it takes
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place on a d-dimensional manifold and its position on the manifold is identified through a coordinate in
T
d. In an integrable Hamiltonian system all phase space is filled by invariant tori. In a quasi-integrable

system the KAM theorem states that most of the invariant tori persist under perturbation, in the sense
that the relative Lebesgue measure of the fraction of phase space filled by invariant tori tends to 1 as the
perturbation tends to disappear. The persisting invariant tori are slight deformations of the unperturbed
invariant tori.

Quasi-integrable system

A quasi-integrable system is a Hamiltonian system described by a Hamiltonian function of the form
H = H0(A) + εf(α,A), with (α,A) angle-action variables, ε a small real parameter and f periodic in its
arguments α.

Quasi-periodic motion

Consider the motion α → α + ωt on T
2, with ω = (ω1, ω2). If ω1/ω2 is rational, the motion is periodic,

that is there exists T > 0 such that ω1T = ω2T = 0 mod 2π. If ω1/ω2 is irrational, the motion never
returns to its initial value. On the other hand it densely fills T

2, in the sense that it comes arbitrarily
close to any point of T2. We say in that case that the motion is quasi-periodic. The definition extends
to T

d, d > 2: a linear motion α → α+ ωt on T
d is quasi-periodic if the components of ω are rationally

independent, that is if ω · ν = ω1ν1 + . . .+ ωdνd = 0 for ν ∈ Z
d if and only if ν = 0 (a · b is the standard

scalar product between the two vectors a, b). More generally we say that a motion on a manifold is quasi-
periodic if, in suitable coordinates, it can be described as a linear quasi-periodic motion. The vector ω is
usually called frequency or rotation vector.

Renormalisation group

By renormalisation group one denotes the set of techniques and concepts used to study problems where
there are some scale invariance properties. The basic mechanism consists in considering equations de-
pending on some parameters and defining some transformations on the equations, including a suitable
rescaling, such that after the transformation the equations can be expressed, up to irrelevant corrections,
in the same form as before but with new values for the parameters.

Torus

The 1-torus T is defined as T = R/2πZ, that is the set of real numbers defined modulo 2π (this means
that x is identified with y if x − y is a multiple of 2π). So it is the natural domain of an angle. One
defines the d-torus Td as a product of d 1-tori, that is Td = T× . . .×T. For instance one can imagine T
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as a square with the opposite sides glued together.

Tree

A graph is a collection of points, called nodes, and of lines which connect the nodes. A walk on the graph
is a sequence of lines such that any two successive lines in the sequence share a node; a walk is nontrivial
if it contains at least one line. A tree is a planar graph with no closed loops, that is, such that there is no
nontrivial walk connecting any node to itself. An oriented tree is a tree with a special node such that all
lines of the tree are oriented toward that node. If we add a further oriented line connecting the special
node to another point, called the root, we obtain a rooted tree (see Figure 1 in Section 4).

1 Definition of the Subject and Its Importance

Recursive equations naturally arise whenever a dynamical system is considered in the regime of perturba-
tion theory; for an introductory article on perturbation theory see Gallavotti (2008). A classical example
is provided by Celestial Mechanics, where perturbation series, known as Lindstedt series, are widely used;
see Gallavotti (2006) and Celletti (2008).

A typical problem in Celestial Mechanics is to study formal solutions of given ordinary differential
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equations in the form of expansions in a suitable small parameter, the perturbation parameter. In the
case of quasi-periodic solutions, the study of the series, in particular of its convergence, is made difficult
by the presence of the small divisors – which will be defined later on. Under some non-resonance condition
on the frequency vector, one can show that the series are well-defined to any order. The first proof of
such a property was given by Poincaré (1892-1899), even if the convergence of the series remained an
open problem up to the advent of KAM theory – an account can be found in Gallavotti (1983) and in
Arnold et al. (1988); see also Chierchia (2008). KAM is an acronym standing for Kolmogorov (1954),
Arnold (1963) and Moser (1962), who proved in the middle of last century the persistence of most of
invariant tori for quasi-integrable systems.

Kolmogorov and Arnold proofs apply to analytic Hamiltonian systems, while Moser’s approach deals
also with the differentiable case; the smoothness condition on the Hamiltonian function was therafter
improved by Pöschel (1982). In the analytic case, the persisting tori turn out to be analytic in the
perturbation parameter, as explicitly showed by Moser (1967). In particular, this means that the per-
turbation series not only are well-defined, but also converge. However, a systematic analysis with dia-
grammatic techniques started only recently after the pioneering, fundamental works by Eliasson (1996)
and Gallavotti (1994), and were subsequently extended to many other problems with small divisors, in-
cluding dynamical systems with infinitely many degrees of freedom, such as nonlinear partial differential
equations, and non-Hamiltonian systems. Some of these extensions will be discussed in Section 8.

From a technical point of view, the diagrammatic techniques used in classical perturbation theory
are strongly reminiscent of the Feynman diagrams used in quantum field theory: this was first pointed
out by Gallavotti (1994). Also the multiscale analysis used to control the small divisors is typical of
renormalisation group techniques, which have been successfully used in problems of quantum field theory,
statistical mechanics and classical mechanics; see Gallavotti (2001) and Gentile & Mastropietro (2002)
for some reviews.

Note that there exist other renormalisation group approaches to the study of dynamical systems, and
of KAM-like problems in particular, different from that outlined in this article. By confining ourselves
to the framework of problems of KAM-type, we can mention the paper by Bricmont et al. (1999), which
also stressed the similarity of the technique with quantum field theory, and the so called dynamical renor-
malisation group method – see MacKay (1993) – which recently produced rigorous proofs of persistence
of quasi-periodic solutions; see for instance Koch (1997) and Khanin et al. (2007).

2 Introduction

Consider the ordinary differential equation on R
d

Du = G(u) + εF (u), (2.1)

where D is a pseudo-differential operator and G,F are real analytic functions. Assume that the equation
(2.1) admits a solution u(0)(t) for ε = 0, that is Du(0) = G(u(0)). The problem we are interested in is to
investigate whether there exists a solution of (2.1) which reduces to u(0) as ε→ 0. For simplicity assume
G = 0 in the following.

The first attempt one can try is to look for solutions in the form of power series in ε,

u(t) =

∞∑

k=0

εku(k)(t), (2.2)

which, inserted into (2.1), when equating the left and right hand sides order by order, gives the list of
recursive equations Du(0) = 0, Du(1) = F (u(0)), Du(2) = ∂uF (u(0))u(1), and so on. In general to order
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k ≥ 1 one has

Du(k) =

k−1∑

s=0

1

s!
∂suF (u(0))

∑

k1+...+ks=k−1
ki≥1

u(k1) . . . u(ks), (2.3)

where ∂suF , the s-th derivative of F , is a tensor with s+1 indices (s must be contracted with the vectors
u(k1), . . . , u(ks)), and the term with s = 0 in the sum has to be interpreted as F (u(0)) and appears only
for k = 1.

For instance for F (u) = u3 the first orders give

Du(1) = u(0)3,

Du(2) = 3u(0)2 u(1),

Du(3) = 3u(0)2 u(2) + 3u(0) u(1)2,

Du(4) = 3u(0)2 u(3) + 6u(0) u(1) u(2) + u(1)3, (2.4)

as is easy to check.

If the operator D can be inverted then the recursions (2.3) provide an algorithm to compute the
functions u(k)(t). In that case we say that (2.2) defines a formal power series: by this we mean that the
functions u(k)(t) are well-defined for all k ≥ 0. Of course, even if this can be obtained, there is still the
issue of the convergence of the series that must be dealt with.

3 Examples

In this section we consider a few paradigmatic examples of dynamical systems which can be described by
equations of the form (2.1).

3.1 A class of quasi-integrable Hamiltonian systems

Consider the Hamiltonian system described by the Hamiltonian function

H(α,A) =
1

2
A2 + εf(α), (3.1)

where (α,A) ∈ T
d×R

d are angle-action variables, with T = R/2πZ, f is a real analytic function, 2π-
periodic in each of its arguments, and A2 = A ·A, if (here and henceforth) · denotes the standard scalar
product in R

d, that is a · b = a1b1 + . . . + adbd. Assume also for simplicity that f is a trigonometric
polynomial of degree N .

The corresponding Hamilton equations are (we shorten ∂x = ∂/∂x)

α̇ = ∂AH(α,A) = A, Ȧ = −∂αH(α,A) = −ε∂αf(α),

which can be written as an equation involving only the angle variables:

α̈ = −ε∂αf(α), (3.2)

which is of the form (2.1) with u = α, G = 0, F = −∂αf , and D = d2/dt2.

For ε = 0, α(0)(t) = α0 + ωt is a solution of (3.2) for any choice of α0 ∈ T
d and ω ∈ R

d. Take for
simplicity α0 = 0: we shall see that this choice makes sense. We say that for ε = 0 the Hamiltonian
function (3.1) describes a system of d rotators.
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We call ω the frequency vector, and we say that ω is irrational if its components are rationally
independent, that is if ω · ν = 0 for ν ∈ Z

d if and only if ν = 0. For irrational ω the solution α(0)(t)
describes a quasi-periodic motion with frequency vector ω, and it densely fills T

d.

Then (2.3) becomes

α̈(k) = − [εf(α)]
(k)

:= −

k−1∑

s=0

1

s!
∂s+1
α f(ωt)

∑

k1+...+ks=k−1
ki≥1

α(k1) . . . α(ks). (3.3)

We look for a quasi-periodic solution of (3.2), that is a solution of the form α(t) = ωt + h(ωt), with
h(ωt) = O(ε). We call h the conjugation function, as it “conjugates” (that is, maps) the perturbed
solution α(t) to the unperturbed solution ωt. In terms of the function h (3.2) becomes

ḧ = −ε∂αf(ωt+ h), (3.4)

where ∂α denotes derivative with respect to the argument. Then (3.4) can be more conveniently written
in Fourier space, where the operator D acts as a multiplication operator.

If we write

h(ωt) =
∑

ν∈Zd

eiω·νthν , hν =

∞∑

k=1

εkh(k)
ν , (3.5)

and insert (3.5) into (3.4) we obtain

(ω · ν)2h(k)
ν = [ε∂αf(α)](k)ν :=

k−1∑

s=0

∑

k1+...+ks=k−1
ki≥1

∑

ν0+ν1+...+νs=ν
νi∈Z

n

1

s!
(iν0)

s+1fν0h
(k1)
ν1 . . . h(ks)

νs
. (3.6)

These equations are well-defined to all orders provided [ε∂αf(α)]
(k)
ν = 0 for all ν such that ω · ν = 0.

If ω is an irrational vector we need [ε∂αf(α)](k)0 = 0 for the equations to be well-defined. In that case the

coefficients h
(k)
0 are left undetermined, and we can fix them arbitrarily to vanish (which is a convenient

choice).

We shall see that under some condition on ω a quasi-periodic solution α(t) exists, and densely fills
a d-dimensional manifold. The analysis carried out above for α0 = 0 can be repeated unchanged for all
values of α0 ∈ T

d: α0 represents the initial phase of the solution, and by varying α0 we cover all the
manifold. Such a manifold can be parameterised in terms of α0, so it represents an invariant torus for
the perturbed system.

3.2 A simplified model with no small divisors

Consider the same equation as (3.4) with D = d2/dt2 replaced by −1, that is

h = ε∂αf(ωt+ h). (3.7)

Of course in this case we no longer have a differential equation; still, we can look again for quasi-periodic
solutions h(ωt) = O(ε) with frequency vector ω. In such a case in Fourier space we have

h(k)
ν = [ε∂αf(α)]

(k)
ν :=

k−1∑

s=0

∑

k1+...+ks=k−1
ki≥1

∑

ν0+ν1+...+νs=ν
νi∈Z

n

1

s!
(iν0)

s+1fν0h
(k1)
ν1 . . . h(ks)

νs
. (3.8)
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For instance if d = 1 and f(α) = cosα the equation, which is known as the Kepler equation, can be
explicitly solved by the Lagrange inversion theorem (Wintner, 1941), and gives

h(k)
ν =





−i

(−1)k+(ν−k)/2

2k
νk−1

((k − ν)/2)!((k + ν)/2)!
, |ν| ≤ k, ν + k even,

0, otherwise.

(3.9)

We shall show in Section 5 that a different derivation can be provided by using the forthcoming diagram-
matic techniques.

3.3 The standard map

Consider the finite difference equation

Dα = −ε sinα, (3.10)

on T, where now D is defined by

Dα(ψ) := 2α(ψ) − α(ψ + ω) − α(ψ − ω). (3.11)

By writing α = ψ + h(ψ), (3.10) becomes

Dh = −ε sin(ψ + h), (3.12)

which is the functional equation that must be solved by the conjugation function of the standard map

{
x′ = x+ y + ε sinx,

y′ = y + ε sinx.
(3.13)

In other words, by writing x = ψ + h(ψ) and y = ω + h(ψ) − h(ψ − ω), with (ψ, ω) solving (3.13) for
ε = 0, that is (ψ′, ω′) = (ψ + ω, ω), we obtain a closed-form equation for h, which is exactly (3.12).

In Fourier space the operatorD acts asD : eiνψ → 4 sin2(ων/2) eiνψ , so that, by expanding h according
to (3.5), we can write (3.12) as

h(k)
ν =

1

4 sin2(ων/2)

k−1∑

s=0

∑

k1+...+ks=k−1
ki≥1

∑

ν0+ν1+...+νs=ν
νi∈Z

1

s!
(iν0)

s+1fν0h
(k1)
ν1 . . . h(ks)

νs
, (3.14)

where ν0 = ±1 and f±1 = 1/2.

Note that (3.13) is a discrete dynamical system. However, when passing to Fourier space, the equation
(3.14) acquires the same form as for the continuous dynamical systems previously considered, simply with
a different kernel for D. In particular if we replace D with 1 we recover the Kepler equation.

The number ω is called the rotation number. We say that ω is irrational if the vector (2π, ω) is
irrational according to the previous definition.

4 Trees and Graphical Representation

Take ω to be irrational. We study the recursive equations

{
h

(k)
ν = g(ω · ν) [ε∂αf(α)]

(k)
ν , ν 6= 0,

[ε∂αf(α)]
(k)
0 = 0, ν = 0,

(4.1)
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where the form of g depends on the particular model we are investigating. Hence one has either g(ω ·ν) =
(ω · ν)−2 or g(ω · ν) = 1 or g(ω · ν) = (2 sin(ων/2))−2 according to models described in Section 3.

For ν 6= 0 we have equations which express the coefficients h
(k)
ν , ν ∈ Z

d, in terms of the coefficients

h
(k′)
ν , ν ∈ Z

d, with k′ < k, provided the equations for ν = 0 are satisfied for all k ≥ 1. Recursive
equations, such as (4.1), naturally lead to a graphical representation in terms of trees.

4.1 Trees

A connected graph G is a collection of points (nodes) and lines connecting all of them. Denote with N(G)
and L(G) the set of nodes and the set of lines, respectively. A path between two nodes is the minimal
subset of L(G) connecting the two nodes. A graph is planar if it can be drawn in a plane without graph
lines crossing.

A tree is a planar graph G containing no closed loops. Consider a tree G with a single special node v0:
this introduces a natural partial ordering on the set of lines and nodes, and one can imagine that each
line carries an arrow pointing toward the node v0. We add an extra oriented line ℓ0 exiting the special
node v0; the added line will be called the root line and the point it enters (which is not a node) will be
called the root of the tree. In this way we obtain a tree θ defined by N(θ) = N(G) and L(θ) = L(G)∪ ℓ0.
A labelled tree is a rooted tree θ together with a label function defined on the sets L(θ) and N(θ).

We call equivalent two rooted trees which can be transformed into each other by continuously de-
forming the lines in the plane in such a way that the lines do not cross each other. We can extend the
notion of equivalence also to labelled trees, by considering equivalent two labelled trees if they can be
transformed into each other in such a way that the labels also match. In the following we shall deal
mostly with nonequivalent labelled trees: for simplicity, where no confusion can arise, we call them just
trees.

Given two nodes v, w ∈ N(θ), we say that w ≺ v if v is on the path connecting w to the root line.
We can identify a line ℓ through the node v it exits by writing ℓ = ℓv.

We call internal nodes the nodes such that there is at least one line entering them, and end-points the
nodes which have no entering line. We denote with L(θ), V (θ) and E(θ) the set of lines, internal nodes
and end-points, respectively. Of course N(θ) = V (θ) ∪ E(θ).

The number of unlabelled trees with k nodes (and hence with k lines) is bounded by 22k, which is a
bound on the number of random walks with 2k steps (Gentile & Mastropietro, 2001).

For each node v denote by S(v) the set of the lines entering v and set sv = |S(v)|. Hence sv = 0 if v
is an end-node, and sv ≥ 1 if v is an internal node. One has

∑

v∈N(θ)

sv =
∑

v∈V (θ)

sv = k − 1; (4.2)

this can be easily checked by induction on the order of the tree. An example of unlabelled tree is
represented in Figure 1.

For further details on graphs and trees we refer to the literature; cf. for instance Harary (1969).

4.2 Labels and diagrammatic rules

We associate with each node v ∈ N(θ) a mode label νv ∈ Z
d, and with each line ℓ ∈ L(θ) a momentum

label νℓ ∈ Z
d, with the constraint

νℓv =
∑

w∈N(θ)
w�v

νw = νv +
∑

ℓ∈S(v)

νℓ, (4.3)
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θ =

Figure 1: An unlabelled tree with 17 nodes.

which represents a conservation rule for each node.

Call Tk,ν the set of all trees θ with k nodes and momentum ν associated with the root line. We call
k and ν the order and the momentum of θ, respectively.

We want to show that trees naturally arise when studying the equations (4.1). Let h
(k)
ν be represented

with the graph element in Figure 2 as a line with label ν exiting from a ball with label (k).

=h
(k)
ν

ν

(k)

Figure 2: Graph element.

Then we can represent (4.1) graphically as depicted in Figure 3. Simply represent each factor h
(ki)
νi

on the right hand side as a graph element according to Figure 2. The lines of all such graph elements
enter the same node v0. This is a graphical expedient to recall the conservation rule: the momentum ν
of the root line is the sum of the mode label ν0 of the node v0 plus the sum of the momenta of the lines
entering v0.

ν

(k)

=
ν ν0

ν1

(k1)

ν2

(k2)

ν3

(k3)

νs (ks)

Figure 3: Graphical representation of the recursive equations.

The first few orders k ≤ 4 are as depicted in Figure 4. For each node the conservation rule (4.3)
holds: for instance for k = 2 one has ν = ν1 + ν2, for k = 3 one has ν = ν1 + νℓ1 and νℓ1 = ν2 + ν3 in the
first tree and ν = ν1 + ν2 + ν3 in the second tree, and so on. Moreover one has to sum over all possible
choices of the labels νv, v ∈ N(θ), which sum up to ν.

Given any tree θ ∈ Tk,ν we associate with each node v ∈ N(θ) a node factor Fv and with each line

8



=
ν

(1)

ν ν

=
ν

(2)

ν ν1 ν2 ν2

=
ν

(3)

ν ν1 νℓ1 ν2 ν3 ν3
+

ν ν1

ν2
ν2

ν3
ν3

=
ν

(4)

ν ν1 νℓ1 ν2 νℓ2 ν3 ν4 ν4
+

ν ν1

νℓ1
ν2

ν3
ν3

ν4
ν4

+
ν ν1

νℓ1
ν2

ν3
ν3

ν4
ν4

+
ν ν1

ν2

ν3

ν4

ν2

ν3

ν4

Figure 4: Trees of lower orders.

ℓ ∈ L(θ) a propagator gℓ, by setting

Fv :=
1

sv!
(iνv)

sv+1fνv
, gℓ := g(ω · νℓ), (4.4)

and define the value of the tree θ as

Val(θ) :=
( ∏

v∈N(θ)

Fv

)( ∏

ℓ∈L(θ)

gℓ

)
. (4.5)

The propagators gℓ are scalars, whereas each Fv is a tensor with sv + 1 indices, which can be associated
with the sv + 1 lines entering or exiting v. In (4.5) the indices of the tensors Fv must be contracted: this
means that if a node v is connected to a node v′ by a line ℓ then the indices of Fv and Fv′ associated
with ℓ are equal to each other, and eventually one has to sum over all the indices except that associated
with the root line.

For instance the value of the tree in Figure 4 contributing to h
(2)
ν is given by

Val(θ) = (iν1)
2fν1 (iν2) fν2 g(ω · ν) g(ω · ν2),

with ν1 + ν2 = ν, while the value of the last tree in Figure 4 contributing to h
(4)
ν is given by

Val(θ) =
(iν1)

4

3!
fν1 (iν2) fν2 (iν3) fν3 (iν4) fν4 g(ω · ν) g(ω · ν2) g(ω · ν3) g(ω · ν4),

with ν1 + ν2 + ν3 + ν4 = ν.

It is straightforward to prove that one can write

h(k)
ν =

∑

θ∈Tk,ν

Val(θ), ν 6= 0, k ≥ 1. (4.6)
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This follows from the fact that the recursive equations (4.1) can be graphically represented through Figure
3: one iterates the graphical representation of Figure 3 until only graph elements of order k = 1 appear,
and if θ is of order 1 (cf. Figure 4) then Val(θ) = (iν) fν g(ω · ν).

Each line ℓ ∈ L(θ) can be seen as the root line of the tree consisting of all nodes and lines preceding

ℓ. The choice h
(k)
0 = 0 for all k ≥ 1 implies that no line can have zero momentum: in other words we

have νℓ 6= 0 for all ℓ ∈ L(θ).

Therefore in order to prove that (3.5) with h
(k)
ν given by (4.6) solves formally, that is order by order,

the equations (4.1), we have only to check that [ε∂αf(ωt+ h(ωt))]
(k)
0 = 0 for all k ≥ 1.

If we define gℓ = 1 for νℓ = 0, then also the second relation in (4.1) can be graphically represented as

in Figure 3 by setting ν = 0 and requiring h
(k)
0 = 0, which yields that the sum of the values of all trees

on the right hand side must vanish. Note that this is not an equation to solve, but just an identity that
has to be checked to hold at all orders.

For instance for k = 2 (the case k = 1 is trivial) the identity [ε∂αf(ωt+ h(ωt))]
(2)
0 = 0 reads (cf. the

second line in Figure 4) ∑

ν1+ν2=0

(iν1)
2 fν1 (iν2) fν2 g(ω · ν2) = 0,

which is found to be satisfied because the propagators are even in their arguments.

Such a cancellation can be graphically interpreted as follows. Consider the tree with mode labels ν1
and ν2, with ν1 + ν2 = 0: its value is (iν1)

2
fν1 (iν2) fν2 g(ω · ν2). One can detach the root line from the

node with mode label ν1 and attach it to the node with mode label ν2, and reverse the arrow of the other
line so that it points toward the new root line. In this way we obtain a new tree (cf. Figure 5): the value

of the new tree is (iν1) fν1 (iν2)
2
fν2 g(ω · ν1), where g(ω · ν1) = g(−ω · ν2) = g(ω · ν2), so that the values

of the two trees contain a common factor (iν1) fν1 (iν2) fν2 g(ω · ν2) times an extra factor which is (iν1)
for the first tree and (iν2) for the second tree. Hence the sum of the two values gives zero.

ν1 ν2 ν2 ν1

Figure 5: Trees to be considered together to prove that [ε∂f(α)]
(2)
0 = 0.

The cancellation mechanism described above can be generalised to all orders. Given a tree θ one
considers all trees which can be obtained by detaching the root line and attaching to the other nodes of
the tree, and by reversing the arrows of the lines (when needed) to make them point toward the root
line. Then one sums together the values of all the trees so obtained: such values contain a common factor
times a factor iνv, if v is the node which the root line exits (the only nontrivial part of the proof is to
check that the combinatorial factors match each other: we refer to Gentile & Mastropietro (1996) for
details). Hence the sum gives zero, as the sum of all the mode labels vanishes.

For instance for k = 3 the cancellation operates by considering the three trees in Figure 5: such trees
can be considered to be obtained from each other by shifting the root line and consistently reversing the
arrows of the lines.

ν1 ν2 ν3 ν2

ν3

ν1

ν3 ν2 ν1

Figure 6: Trees to be considered together to prove that [ε∂f(α)]
(3)
0 = 0.
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In such a case the combinatorial factors of the node factors are different, because in the second tree
the node factor associated with the node with mode label ν2 contains a factor 1/2: on the other hand
if ν1 6= ν3 there are two nonequivalent trees with that shape (with the labels ν1 and ν3 exchanged
between themselves), whereas if ν1 = ν3 there is only one such tree, but then the first and third trees
are equivalent, so that only one of them must be counted. Thus, by using that ν1 + ν2 + ν3 = 0 – which
implies g(ω · (ν2 + ν3)) = g(−ω · ν1) and g(ω · (ν1 + ν2)) = g(−ω · ν3), – in all cases we find that the sum
of the values of the trees gives a common factor (iν1)fν1(iν2)

2fν2(iν3)fν3 g(ω · ν3)g(ω · ν1) times a factor
1 or 1/2 times i(ν1 + ν2 + ν3), and hence vanishes: once more the property that g is even is crucial.

5 Small Divisors

We want to study the convergence properties of the series

h(ωt) =
∑

ν∈Zd

eiω·νthν , hν =

∞∑

k=1

εkh(k)
ν , (5.1)

which has been shown to be well-defined as a formal power series for the models considered in Section 3.

Recall that the number of unlabelled trees of order k is bounded by 22k. To sum over the labels we
can confine ourselves to the mode labels, as the momenta are uniquely determined by the mode labels. If
f is a trigonometric polynomial of degree N , that is fν = 0 for all ν such that |ν| := |ν1|+ . . .+ |νd| > N ,

we have that h
(k)
ν = 0 for all |ν| > kN (which can be easily proved by induction), and moreover we can

bound the sum over the mode labels of any tree of order k by (2N + 1)dk. Finally we can bound
∏

v∈N(θ)

|νv|
sv+1 ≤

∏

v∈N(θ)

Nsv+1 ≤ N2k, (5.2)

because of (4.2).

For the model (3.7), where gℓ = 1 in (4.4), we can bound
∣∣∣h(k)
ν

∣∣∣ ≤
∑

ν∈Zd

∣∣∣h(k)
ν

∣∣∣ ≤ 22k(2N + 1)dkN2kΦk, Φ = max
|ν|≤N

|fν |, (5.3)

which shows that the series (5.1) converges for ε small enough, more precisely for |ε| < ε0, with

ε0 := C0(4N
2Φ(2N + 1)d)−1, (5.4)

where C0 = 1. Hence the function h(ωt) in that case is analytic in ε. For d = 1 and f(α) = cosα, we can

easily provide an exact expression for the coefficients h
(k)
ν : all the computational difficulties reduce to a

combinatorial check, which can be found in Gentile & van Erp (2005), and the formula (3.9) is recovered.

However for the models where gℓ 6= 1, the situation is much more involved: the propagators can be
arbitrarily close to zero for ν large enough. This is the so-called small divisor problem. The series (5.1) is
formally well-defined, assuming only an irrationality condition on ω. But to prove the convergence of the
series, we need a stronger condition. For instance one can require the standard Diophantine condition

|ω · ν| >
γ

|ν|τ
∀ν 6= 0, (5.5)

for suitable positive constants γ and τ . For fixed τ > d − 1, the sets of vectors which satisfy (5.5) for
some constant γ > 0 has full Lebesgue measure in R

d (Gallavotti, 1983). We can also impose a weaker
condition, known as the Bryuno condition, which can be expressed by requiring

B(ω) :=

∞∑

k=0

1

2k
log

1

min0<|ν|≤2k |ω · ν|
<∞. (5.6)

11



We call Diophantine vectors and Bryuno vectors the vectors satisfying (5.5) and (5.6), respectively. Note
that any Diophantine vector satisfies (5.6).

If we assume only analyticity on f – that is, we remove the assumption that f be a trigonometric
polynomial, – then we need a Diophantine condition, such as (5.5) or (5.6), also to show that the series
(5.1) are well-defined as formal power series: the condition is needed, as one can easily check, in order to
sum over the mode labels.

In the case of the standard map |ω · ν| must be replaced with minp∈Z |ων − p|, and the function B(ω)
can be expressed in terms of the best approximants of the number ω (Davie, 1994).

For the models with small divisors considered in Section 3 convergence of the series (5.1) can be proved
for ω satisfying (5.5) or (5.6). But this requires more work, and, in particular, a detailed discussion of
the product of propagators in (4.6). In the following we shall consider the case of Diophantine vectors,
by referring to the bibliography for the Bryuno vectors (cf. Section 8.3).

6 Multiscale Analysis

Consider explicitly the case g(ω · ν) = (ω · ν)−2 in (4.1) and ω satisfying (5.5). We can introduce a label
characterising the size of the propagator: we say that ν ∈ Z

d is on scale
{
n ≥ 1, if 2−nγ ≤ |ω · ν| < 2−(n−1)γ,

n = 0, if γ ≤ |ω · ν|,
(6.1)

where γ is the constant appearing in (5.5), and we say that a line ℓ has a scale label nℓ = n if νℓ is on
scale n. If Nn(θ) denotes the number of lines ℓ ∈ L(θ) with scale nℓ = n, then we can bound in (4.5)

∣∣∣
∏

ℓ∈L(θ)

gℓ

∣∣∣ ≤ γ−2k
∞∏

n=0

22nNn(θ), (6.2)

so that the problem is reduced to bounding Nn(θ).

The product of propagators gives problems when the small divisors “accumulate”. To make more
precise the idea of accumulation we introduce the notion of cluster. Once all lines of a tree θ have been
given their scale labels, for any n ≥ 0 we can identify the maximal connected sets of lines with scale not
larger than n. If at least one among such lines has scale equal to n we say that the set is a cluster on
scale n. For instance consider the tree in Figure 1, and assign the mode labels to the nodes: this uniquely
fixes the momenta, and hence the scale labels, of the lines. Suppose that we have found the scales as in
Figure 7 (a). Then a cluster decomposition as in Figure 7 (b) follows. Given a cluster T call L(T ) the
set of lines of θ contained in T , and denote by N(T ) the set of nodes connected by such lines. We define
kT = |N(T )| the order of the cluster T .

Any cluster has either one or no exiting line, and can have an arbitrary number of entering lines. We
call self-energy clusters the clusters which have one exiting line and only one entering line and are such
that both lines have the same momentum. This means that if T is a self-energy cluster and ℓ1 and ℓ2 are
the lines entering and exiting T , respectively, then νℓ1 = νℓ2 , so that

∑

v∈N(T )

νv = 0. (6.3)

By definition of scale, both lines ℓ1 and ℓ2 have the same scale, say n, and that, by definition of cluster,
one has nℓ < n for all ℓ ∈ L(T ).

We define the value of the self-energy cluster T whose entering line has momentum ν as the matrix

VT (ω · ν) :=
( ∏

v∈N(T )

Fv

)( ∏

ℓ∈L(T )

gℓ

)
, (6.4)
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Figure 7: Example of clusters with their scales.

where all the indices of the node factors must be contracted except those associated with the line ℓ1
entering T and with the line ℓ2 exiting T .

We can extend the notion of self-energy clusters also to a single node, by saying that v is a self-energy
cluster if sv = 1 and the line entering v has the same momentum as the exiting line. In that case (6.4)
has to be interpreted as VT (ω · ν) = Fv: in particular it is independent of ω · ν.

The simplest self-energy cluster one can think of consists of only one node v, but then (6.3) implies
νv = 0, so that Fv = 0, see (4.4), hence the corresponding value is zero. Thus the simplest non-trivial self-
energy clusters contain at least two nodes, and are represented by the clusters T1, T2 and T3 of Figure 8. In
all cases one has ν1 +ν2 = 0. By using the definition (6.4) one has VT1

(x) = (iν1)
2fν1(iν2)

2fν2g(ω ·ν2 +x)
and VT2

(x) = VT3
(x) = (iν1)

3fν1(iν2)fν2g(ω · ν2)/2, with x = ω · ν. Hence for x = 0 the sum of the three
values gives zero. It is not difficult to see that also the first derivatives of the values of all self-energy
clusters of order 2 sum up to zero, that is the sum of the values of all possible self-energy clusters of order
k = 2 gives zero up to order x2. (The only caveat is that, if we want to derive VT (x), the sharp multiscale
decomposition in (6.1) can be a little annoying, hence it can be more convenient to replace it with a
smooth decomposition through C∞ compact support functions; we refer to the literature for details).
This property generalises to all orders k, and the underlying cancellation mechanism is essentially the
same that ensures the validity of the second relation in (4.1).

T1 =
ν1 ν2ν ν

T2 =
ν1

ν2

ν

ν
T3 =

ν1

ν2

ν

ν

Figure 8: Self-energy clusters of order k = 2.

The reason why it is important to introduce the self-energy clusters is that if we could neglect them
then the product of small divisors would be controlled. Indeed, let us denote by Rn(θ) the number of
lines on scale n which do exit a self-energy cluster, and set N∗

n(θ) = Nn(θ) − Rn(θ). Then an important
result, known as the Siegel-Bryuno lemma, is that

N
∗
n(θ) ≤ c 2−n/τk, (6.5)

for some constant c, where k is the order of θ and τ is the Diophantine exponent in (5.5).

The bound (6.5) follows from the fact that if N∗
n(θ) 6= 0 then N∗

n(θ) ≤ E(n, k) := 2Nk2−(n−2)/τ − 1,
which can be proved by induction on k as follows. Given a tree θ let ℓ0 be its root line, let ℓ1, . . . , ℓm,
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m ≥ 0, be the lines on scales ≥ n which are the closest to ℓ0, and let θ1, . . . , θm the trees with root
lines ℓ1, . . . , ℓm, respectively (cf. Figure 9 – note that by construction all lines ℓ in the subgraph T
have scales nℓ < n, so that if nℓ0 ≥ n then T is necessarily a cluster). If either ℓ0 is not on scale
n or it is on scale n but exits a self-energy cluster then N∗

n(θ) = N∗
n(θ1) + . . . + N∗

n(θm) and the
bound N∗

n(θ) ≤ E(n, k) follows by the inductive hypothesis. If ℓ0 does not exit a self-energy cluster
and nℓ0 = n then N∗

n(θ) = 1 + N∗
n(θ1) + . . . + N∗

n(θm), and the lines ℓ1, . . . , ℓm enter a cluster T with
kT = k− (k1 + . . .+ km), where k1, . . . , km are the orders of θ1, . . . , θm, respectively. If m ≥ 2 the bound
N∗
n(θ) ≤ E(n, k) follows once more by the inductive hypothesis. If m = 0 then N∗

n(θ) = 1; on the other
hand for ℓ0 to be on scale nℓ0 = n one must have |ω ·νℓ0 | < 2−n+1γ (see (6.1)), which, by the Diophantine
condition (5.5), implies Nk ≥ |νℓ0 | > 2(n−1)/τ , hence E(n, k) > 1. If m = 1 call ν1 and ν2 the momenta
of the lines ℓ0 and ℓ1, respectively. By construction T cannot be a self-energy cluster, hence ν1 6= ν2, so
that, by the Diophantine condition (5.5),

2−n+2γ ≥ |ω · ν1| + |ω · ν2| ≥ |ω · (ν1 − ν2)| >
γ

|ν1 − ν2|τ
, (6.6)

because nℓ0 = n and nℓ1 ≥ n. Thus, one has

NkT ≥
∑

v∈N(T )

|νv| ≥ |ν1 − ν2| > 2(n−2)/τ , (6.7)

hence T must contain “many nodes”. In particular, one finds also in this case N∗
n(θ) = 1 + N∗

n(θ1) ≤
1 + E(n, k1) ≤ 1 + E(n, k) − E(n, kT ) ≤ E(n, k), where we have used that E(n, kT ) ≥ 1 by (6.7).

θ =

T
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ℓm
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θm
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Figure 9: Construction for the proof of the Siegel-Bryuno lemma.

The argument above shows that small divisors can accumulate only by allowing self-energy clusters.
That accumulation really occurs is shown by the example in Figure 10, where a tree θ of order k containing
a chain of p self-energy clusters is depicted. Assume for simplicity that k/3 is an integer: then if p = k/3
the subtree θ1 with root line ℓ is of order k/3. If the line ℓ entering the rightmost self-energy cluster Tp
has momentum ν, also the lines exiting the p self-energy clusters have the same momentum ν. Suppose
that |ν| ≈ Nk/3 and |ω · ν| ≈ γ/|ν|τ (this is certainly possible for some ν). Then the value of the tree θ
grows like ak1(k!)a2 , for some constants a1 and a2: a bound of this kind prevents the convergence of the
perturbation series (5.1).

θ = ν

T1 T2 Tp

ν ν ν ν

θ1
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
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Figure 10: Example of accumulation of small divisors because of the self-energy clusters.
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If no self-energy clusters could occur (so that Rn(θ) = 0) the Siegel-Bryuno lemma would allow us to
bound in (6.2)

∞∏

n=0

22nNn(θ) =

∞∏

n=0

22nN
∗

n(θ) ≤ exp
(
C1k

∞∑

n=0

n2−n/τ
)
≤ Ck2 , (6.8)

for suitable constants C1 and C2. In that case convergence of the series for |ε| < ε0 would follow, with ε0
defined as in (5.2) with C0 = γ2/C2. However, there are self-energy clusters and they produce factorials,
as the example in Figure 10 shows, so that we have to deal with them.

7 Resummation

Let us come back to the equation (3.6). If we expand g(ω · ν)[ε∂αf(α)]
(k)
ν in trees according to the

diagrammatic rules described in Section 4, we can distinguish between contributions in which the root
line exits a self-energy cluster T , that we can write as

g(ω · ν)
∑

T :kT<k

VT (ω · ν)h(k−kT )
ν , (7.1)

and all the other contributions, that we denote by [ε∂αf(α)]
(k)∗
ν . We can shift the contributions (7.1) to

the left hand side of (3.6) and divide by g(ω · ν), so to obtain

D(ω · ν)h(k)
ν −

∑

T :kT<k

VT (ω · ν)h(k−kT )
ν = [ε∂αf(ωt+ h)](k)∗ν . (7.2)

where D(ω · ν) = 1/g(ω · ν) = 1/(ω · ν)2. By summing over k and setting

M(ω · ν; ε) =
∞∑

k=1

εk
∑

T :kT =k

VT (ω · ν), (7.3)

then (7.2) gives

D(ω · ν)hν = [ε∂αf(ωt+ h)]∗ν , D(ω · ν) := D(ω · ν) −M(ω · ν; ε). (7.4)

The motivation for proceeding in this way is that, at the price of changing the operator D into D, hence
of changing the propagators, lines exiting self-energy clusters no longer appear. Therefore, in the tree
expansion of the right hand side of the equation, we have eliminated the self-energy clusters, that is the
source of the problem of accumulation of small divisors.

Unfortunately the procedure described above has a problem: M(ω · ν; ε) itself is a sum of self-energy
clusters, which can still contain some other self-energy clusters on lower scales. So finding a good bound
for M(ω · ν; ε) could have the same problems as for the values of the trees.

To deal with such a difficulty we modify the prescription by proceeding recursively, in the following
sense. Let us start from the momenta ν which are on scale n = 0. Since there are no self-energy clusters
with exiting line on scale n = 0, for such ν one has M(ω · ν; ε) = 0. Next, we consider the momenta
ν which are on scale n = 1, and we can write (7.4), where now all self-energy clusters T whose values
contribute to M(ω · ν; ε) cannot contain any self-energy clusters, because the lines ℓ ∈ T are on scale
nℓ = 0. Then, we consider the momenta ν which are on scale n = 2: again all the self-energy clusters
contributing to M(ω · ν; ε) do not contain any self-energy clusters, because the lines on scale n = 0, 1
cannot exit self-energy clusters by the construction of the previous step, and so on. The conclusion is
that we have obtained a different expansion for h(ωt), that we call a resummed series,

h(ωt) =
∑

ν∈Zd

eiω·νthν , hν =

∞∑

k=1

εkh[k]
ν (ε), (7.5)
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where the self-energy clusters do not appear any more in the tree expansion and the propagators must
be defined recursively: the propagator gℓ of a line ℓ on scale nℓ = n and momentum νℓ = ν is the matrix

gℓ := g[n](ω · ν; ε) =
(
D(ω · ν) −M[n](ω · ν; ε)

)−1

, (7.6)

with
M[n](ω · ν; ε) :=

∑

T :nT<n

εkT VT (ω · ν), (7.7)

where the value VT (ω · ν) is written in accord with (6.4), with all the lines ℓ′ ∈ L(T ) on scales nℓ′ < n
and the corresponding propagators gℓ′ expressed in terms of matrices M[nℓ′ ](ω · νℓ′ ; ε) as in (7.6). By

construction, the new propagators depend on ε, so that the coefficients h
[k]
ν (ε) depend explicitly on ε:

hence (7.5) is not a power series expansion.

The coefficients h
[k]
ν (ε) still admit a tree expansion

h[k]
ν (ε) =

∑

θ∈T R

k,ν

Val(θ), Val(θ) :=
( ∏

v∈N(θ)

Fv

)( ∏

ℓ∈L(θ)

g[nℓ](ω · νℓ; ε)
)

ν 6= 0, k ≥ 1, (7.8)

which replaces (4.6). In particular T R
k,ν is defined as the set of renormalised trees of order k and momentum

ν, where “renormalised” means that the trees do not contain any self-energy clusters. Now the propagators
are matrices: the contractions of the indices in (7.8) yields that if ℓ connects v to v′ the indices of Fv and
Fv′ associated with ℓ must be equal to the colum and row indices of gℓ, respectively.

Since for any tree θ ∈ T R
k,ν one has Nn(θ) = N∗

n(θ), we can bound the product of propagators according

to (6.6) provided the propagators on scale n can still be bounded proportionally to 22n. This is certainly
not obvious, because of the extra term M[n](ω · ν; ε) appearing in (7.6).

It is a remarkable cancellation that M[n](x; ε) vanishes up to second order, that is M[n](x; ε) = O(x2),
so that, by taking into account also that VT (x) 6= 0 requires kT ≥ 2, we can write, for some constant C,

M[n](x; ε) = ε2x2M
[n]

(x; ε),
∥∥∥M[n]

(x; ε)
∥∥∥ ≤ C, (7.9)

where ‖·‖ denotes – say – the uniform norm. The cancellation leading to (7.9) can be proved as discussed
in Section 6 – where it has been explicitly proved for k = 2 in the absence of resummation. Now the
propagators are matrices, but one can prove (by induction on n) that M[n](x; ε) = (M[n](−x; ε))T =
(M[n](x; ε))†, with T and † denoting transposition and adjointness, respectively, and this is enough to
see that the same cancellation mechanism applies (Gallavotti et al., 2004).

Thus (7.9) implies that

∥∥∥g[n](x; ε)
∥∥∥ =

∥∥∥∥
(
x2 − ε2x2M

[n]
(x; ε)

)−1
∥∥∥∥ ≤

2

x2
, (7.10)

and the same argument as used in Section 5 implies that the series in (7.5) for hν converges for |ε| < ε0,
where ε0 is defined as in (5.2) with C0 = 2γ2/C2. Moreover (7.9) also implies that h(ωt) is analytic in ε
(notwithstanding that the expansion is not a power expansion), so that we can say a posteriori that the
original power series (5.1) also converges.

8 Generalisations

The case where the function G(u) in (2.1) does not vanish is notationally more involved, and it is explictly
discussed in Gentile (2006a).
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Extensions of the results described above to Hamiltonian functions more general than (3.1) require
only some notational complications, and can be found in Gentile & Mastropietro (1996) for anisochronous
systems and in Bartuccelli & Gentile (2002) for isochronous systems. The case (3.1) with f a real analytic
function was first discussed by using trees in Chierchia & Falcolini (1994).

8.1 Lower-dimensional tori

A tree formalism for hyperbolic lower-dimensional tori was introduced and studied in Gallavotti (1994b),
Gentile (1995) and Gallavotti, Gentile & Mastropietro (1999), for systems consisting of a set of rotators
interacting with a pendulum. In that case also the stable and unstable manifolds (whiskers) of the tori
were studied with diagrammatic techniques.

For Hamiltonian functions of the form (3.1) solutions of the form (7.5) describe quasi-periodic motions
with frequency vector ω on a d-dimensional manifold. If we fix t, say t = 0, and keep α0 as a parameter,
we obtain a parameterisation of the manifold in terms of α0 ∈ T

d, hence the manifold is an invariant
torus. We say that the torus is a maximal torus.

We can study the problem of persistence of lower-dimensional tori by considering unperturbed solu-
tions α(t) = α0 + ωt, where the components of ω are rationally dependent. For instance we can imagine
that there exist s linearly independent vectors ν̂1, . . . , ν̂s ∈ Z

d such that ω · ν̂k = 0 for k = 1, . . . , s. In
that case, we say that the unperturbed torus is a resonant torus of order s. We can imagine performing
a linear change of variables which transforms the frequency vector into a new vector, that we still denote
with ω, such that ω = (ω̄, 0), where ω̄ ∈ R

r and 0 ∈ R
s, with r+s = d, and ω̄ is irrational. This naturally

suggests that we write α = (ᾱ, β), with ᾱ ∈ T
r and β ∈ T

s. More generally, here and henceforth in
this subsection for any vector v ∈ R

d we denote by v̄ the vector in R
r whose components are the first r

components of v. For instance for the initial phase α0 we write α0 = (ᾱ0, β0).

In general the resonant torus is destroyed by the perturbation, and only some lower-dimensional tori
persist under perturbation. We assume on ω̄ one of the Diophantine conditions of Section 5 in R

r, for
instance |ω̄ · ν̄| > γ/|ν̄|τ for all ν̄ ∈ Z

r, ν̄ 6= 0.

To prove the existence of a maximal torus for the system with Hamiltonian function (3.1) we needed
no condition on the perturbation f . On the contrary to prove existence of lower-dimensional tori, we
need some non-degeneracy condition: by defining

f0(β) =

∫

Tr

dᾱ

(2π)r
f(ᾱ, β), (8.1)

if ∂βf0(β∗) = 0 for some β∗ then we assume that the matrix ∂2
βf0(β∗) is positive definite (more generally

one could assume it to be non-singular, that is det ∂2
βf0(β∗) 6= 0).

The formal analysis can be carried out as in Section 4, with the only difference being that now the

compatibility conditions [ε∂αf(α)]
(k)
ν = 0 have to be imposed for all ν such that ν̄ = 0, because ω·ν = ω̄·ν̄.

It turns out to be an identity only for the first r components (this is trivial for k = 1, whereas it requires
some work for k > 1). For the last s components, for k = 1 it reads ∂βf0(β0) = 0, hence it fixes β0 to be
a stationary point for f0(β), while for higher values of k it fixes the corrections of higher order of these
values (to do this we need the non-degeneracy condition). Thus, we are free to choose only ᾱ0 as a free
parameter, since the last s components of α0 have to be fixed.

Clusters and self-energy clusters are defined as in Section 6. Note that only the first r components
ν̄ of the momenta ν intervene in the definition of the scales – again because ω · ν = ω̄ · ν̄. In particular,
in the definition of self-energy clusters, in (6.3) we must replace νv with ν̄v. Thus, already to first order
the value of a self-energy cluster can be non-zero: for kT = 1, that is for T containing only a node v with
mode label (ν̄v, ν̃v) = (0, ν̃v), the matrix VT (x; ε) is of the form

VT (x) =

(
0 0
0 bν̃v

)
, (bν̃v

)i,j = eiν̃v ·β0(iν̃v,i)(iν̃v,j)f(0,ν̃v), (8.2)
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with i, j = r + 1, . . . , d. If we sum over ν̃v ∈ Z
s and multiply times ε, we obtain

M0 :=

(
0 0
0 εB

)
, Bi,j =

∑

ν̃∈Zs

eiν̃·β0(iν̃i)(iν̃j)f(0,ν̃) = ∂βi
∂βj

f0(β0). (8.3)

The s×s block B is non-zero: in fact, the non-degeneracy condition yields that it is invertible.

To higher orders one finds that the matrix M[n](x; ε), with x = ω · ν = ω̄ · ν̄, is a self-adjoint matrix
and M[n](x; ε) = (M[n](−x; ε))T , as in the case of maximal tori. Moreover the corresponding eigenvalues

λ
[n]
i (x; ε) satisfy λ

[n]
i (x; ε) = O(ε2x2) for i = 1, . . . , r and λ

[n]
i (x; ε) = O(ε) for i = r + 1, . . . , d; this

property is not trivial because of the off-diagonal blocks (which in general do not vanish at orders k ≥ 2),
and to prove it one has to use the self-adjointness of the matrix M[n](x; ε). More precisely one has

λ
[n]
i (x; ε) = εai+O(ε2) for i > r, where ar+1, . . . , ad are the s eigenvalues of the matrix B in (8.3). From

this point on the discussion proceeds in a very different way according to the sign of ε (recall that we are
assuming that ai > 0 for all i > r).

For ε < 0 one has λ
[n]
i (x; ε) = aiε+ O(ε2) < 0 for i > r, so that we can bound the last s eigenvalues

of x2 −M[n](x; ε) with x2, and the first r with x2/2 by the same argument as in Section 7. Hence we
obtain easily the convergence of the series (7.5); of course, analyticity at the origin is prevented because
of the condition ε < 0. We say in that case that the lower-dimensional tori are hyperbolic. We refer to
Gallavotti & Gentile (2002) and Gallavotti et al. (2004) for details.

The case of elliptic lower-dimensional tori – that is ε > 0 when ai > 0 for all i > r – is more difficult.
Essentially the idea is as follows (we only sketch the strategy: the details can be found in Gentile &
Gallavotti (2005)). One has to define the scales recursively, by using a variant, first introduced in Gentile
(2003), of the resummation technique described in Section 7. We say that ν is on scale 0 if |ω̄ · ν̄| ≥ γ
and on scale [≥1] otherwise: for ν on scale 0 we write (7.4) with M = M0, as given in (8.3). This defines
the propagators of the lines ℓ on scale n = 0 as

gℓ = g[0](ω · νℓ) =
(
(ω̄ · ν̄ℓ)

2 −M0

)−1
. (8.4)

Denote by λi the eigenvalues of M0: given ν on scale [≥ 1] we say that ν is on scale 1 if 2−1γ ≤
mini=1,...,d

√
|(ω̄ · ν̄)2 − λi|, and on scale [≥2] if mini=1,...,d

√
|(ω̄ · ν̄)2 − λi| < 2−1γ. For ν on scale 1 we

write (7.4) with M replaced by M[0](ω · ν̄; ε), which is given by M0 plus the sum of the values of all
self-energy clusters T on scale nT = 0. Then the propagators of the lines ℓ on scale nℓ = 1 is defined as

gℓ = g[1](ω · νℓ) =
(
(ω̄ · ν̄ℓ)

2 −M[0](ω̄ · ν̄ℓ; ε)
)−1

. (8.5)

Call λ
[n]
i (x; ε) the eigenvalues of M[n](x; ε): given ν on scale [≥2] we say that ν is on scale 2 if 2−2γ ≤

mini=1,...,d

√
|(ω̄ · ν̄)2 − λ

[0]
i (ω̄ · ν̄; ε)|, and on scale [≥ 3] if mini=1,...,d

√
|(ω̄ · ν̄)2 − λ

[0]
i (ω̄ · ν̄; ε)| < 2−2γ.

For ν on scale 2 we write (7.4) with M replaced by M[1](ω̄ · ν̄; ε), which is given by M[0](ω̄ · ν̄; ε) plus
the sum of the values of all self-energy clusters T on scale nT = 1. Thus, the propagators of the lines ℓ
on scale nℓ = 2 will be defined as

gℓ = g[2](ω · νℓ) =
(
(ω̄ · ν̄ℓ)

2 −M[1](ω̄ · ν̄ℓ; ε)
)−1

, (8.6)

and so on. The propagators are self-adjoint matrices, hence their norms can be bounded through the
corresponding eigenvalues. In order to proceed as in Sections 6 and 7 we need some Diophantine conditions
on these eigenvalues. We can assume for some τ ′ > τ

∣∣∣∣|ω̄ · ν̄| −

√
|λ

[n]
i (ω̄ · ν̄; ε)|

∣∣∣∣ >
γ

|ν̄|τ ′
∀ν̄ 6= 0, (8.7)
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for all i = 1, . . . , d and n ≥ 0. These are known as the first Melnikov conditions.

Unfortunately, things do not proceed so plainly. In order to prove a bound like (6.5), possibly with a
different τ ′ replacing τ , we need to compare the propagators of the lines entering and exiting clusters T
which are not self-energy clusters. This requires replacing (6.6) with

2−n+2γ ≥

∣∣∣∣ω̄ · (ν̄1 − ν̄2)±

√
|λ

[n]
i (ω̄ · ν̄1; ε)|±

√
|λ

[n]
j (ω̄ · ν̄2; ε)|

∣∣∣∣ >
γ

|ν̄1 − ν̄2|τ
′
, (8.8)

for all i, j = 1, . . . , d and choices of the signs ±, and hence introduces further Diophantine conditions,
known as the second Melnikov conditions.

The conditions in (8.8) turn out to be too many, because for all n ≥ 0 and all ν̄ ∈ Z
r such that

ν̄ = ν̄1 − ν̄2 there are infinitely many conditions to be considered, one per pair (ν̄1, ν̄2). However we can

impose both the conditions (8.7) and (8.8) not for the eigenvalues λ
[n]
i (ω̄ · ν̄; ε), but for some quantities

λ
[n]
i (ε) independent of ν̄ and then use the smoothness of the eigenvalues in x to control (ω̄·ν̄)2−λ

[n]
i (ω̄·ν̄; ε)

in terms of (ω̄ · ν̄)2 − λ
[n]
i (ε). Eventually, beside the Diophantine condition on ω̄, we have to impose the

Melnikov conditions
∣∣∣∣|ω̄ · ν̄| −

√
|λ

[n]
i (ε)|

∣∣∣∣ >
γ

|ν̄|τ ′
,

∣∣∣∣|ω̄ · ν̄|±

√
|λ

[n]
i (ε)|±

√
|λ

[n]
j (ε)|

∣∣∣∣ >
γ

|ν̄|τ ′
, (8.9)

for all ν̄ 6= 0 and all n ≥ 0. Each condition in (8.9) leads us to eliminate a small interval of values of ε.
For the values of ε which are left define h(ωt) according to (7.5) and (7.8), with the new definition of the
propagators. If ε is small enough, say |ε| < ε0, then the series (7.5) converges. Denote by E ⊂ [0, ε0] the
set of values of ε for which the conditions (8.9) are satisfied. One can prove that E is a Cantor set, that
is a perfect, nowhere dense set. Moreover E has large relative Lebesgue measure, in the sense that

lim
ε→0

meas(E ∩ [0, ε])

ε
= 1, (8.10)

provided τ ′ in (8.9) is large enough with respect to τ . The property (8.10) yields that, notwithstanding
that we are eliminating infinitely many intervals, the measure of the union of all these intervals is small.

If ai < 0 for all i > r we reason in the same way, simply exchanging the role of positive and negative
ε. On the contrary if ai = 0 for some i > r, the problem becomes much more difficult. For instance if
s = 1 and ar+1 = 0, then in general perturbation theory in ε is not possible, not even at a formal level.
However, under some conditions, one can still construct fractional series in ε, and prove that the series
can be resummed (Gallavotti, Gentile & Giuliani, 2006).

8.2 Other ordinary differential equations

The formalism described above extends to other models, such as skew-product systems (Gentile, 2006b)
and systems with strong damping in the presence of a quasi-periodic forcing term (Gentile, Bartuccelli
& Deane, 2005).

As an example of skew-product system one can consider the linear differential equation ẋ =
(λA+ εf(ωt))x on SL(2,R), where λ ∈ R, ε is a small real parameter, ω ∈ R

n is an irrational vec-
tor, and A, f ∈ sl(2,R), with A is a constant matrix and f an analytic function periodic in its arguments.
Trees for skew-products were considered by Iserles and Nørsett (1999), but they used expansions in time,
hence not suited for the study of global properties, such as quasi-periodicity.

Quasi-periodically forced one-dimensional systems with strong damping are described by the ordinary
differential equations ẍ+ γẋ+ g(x) = f(ωt), where x ∈ R, ε = 1/γ is a small real parameter, ω ∈ R

n is
irrational, and f, g are analytic functions (g is the “force”), with f periodic in its arguments.

We refer to the bibliography for details and results on the existence of quasi-periodic solutions.
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8.3 Bryuno vectors

The diagrammatic methods can be used to prove the any unperturbed maximal torus with frequency
vector which is a Bryuno vector persists under perturbation for ε small enough (Gentile, 2007). One
could speculate whether the Bryuno condition (5.6) is optimal. In general the problem is open. However,
in the case of the standard map – see Section 3.3, – one can prove (Davie, 1994; Berretti & Gentile,
2001b) that, by considering the radius of convergence ε0 of the perturbation series as a function of ω, say
ε0 = ρ0(ω), then there exists a universal constant C such that

|log ρ0(ω) + 2B(ω)| ≤ C. (8.11)

In particular this yields that the invariant curve with rotation number ω persists under perturbation if
and only if ω is a Bryuno number. The proof of (8.11) requires the study of a more refined cancellation
than that discussed in Section 7. We refer to Berretti & Gentile (2001b) and Gentile (2006a) for details.

Extensions to Bryuno vectors for lower-dimensional tori can also be found in Gentile (2007). For the
models considered in Section 8.2 we refer to Gentile (2006b) and Gentile, Bartuccelli & Deane (2006).

8.4 Partial differential equations

Existence of quasi-periodic solutions in systems described by one-dimensional nonlinear partial differential
equations (finite-dimensional tori in infinite-dimensional systems) was first studied by Kuksin (1993),
Craig and Wayne (1993) and Bourgain (1998). In these systems, even the case of periodic solutions yields
small divisors, and hence requires a multiscale analysis. The study of persistence of periodic solutions
for nonlinear Schrödinger equations and nonlinear wave equations, with the techniques discussed here,
can be found in Gentile & Mastropietro (2004), Gentile, Mastropietro & Procesi (2005), and Gentile &
Procesi (2006).

The models are still described by (2.1), with G(u) = 0, but now D is given by D = ∂2
t − ∆ + µ in

the case of the wave equation and by D = i∂t − ∆ + µ in the case of the Schrödinger equation, where
∆ is the Laplacian and µ ∈ R. In dimension 1, one has ∆ = ∂2

x. If we look for periodic solutions with
frequency ω it can be convenient to pass to Fourier space, where the operator D acts as

D : eiωnt+imx →
(
−ω2n2 +m2 + µ

)
eiωnt+imx, (8.12)

for the wave equation; a similar expression holds for the Schrödinger equation. Therefore the kernel of
D can be arbitrarily close to zero for n and m large enough.

Then one can consider, say, (2.1) for x ∈ [0, π] and F (u) = u3, with Dirichlet boundary conditions
u(0) = u(π) = 0, and study the existence of periodic solutions with frequency ω close to some of the
unperturbed frequencies. We refer to the cited bibliography for results and proofs.

9 Conclusions, and Future Directions

The diagrammatic techniques described above have been applied also in cases where no small divisors
appear; cf. Berretti & Gentile (1999) and Gentile, Bartuccelli & Deane (2007). Of course, such problems
are much easier from a technical point of view, and can be considered as propaedeutic examples to
become familiar with the tree formalism. Also the study of lower-dimensional tori becomes easy for r = 1
(periodic solutions): in that case one has |ω̄ · ν̄| ≥ |ω̄| for all ν̄ 6= 0, so that the product of the propagators
is bounded by |ω̄|−2k, and one can proceed as in Section 5 to obtain analyticity of the solutions.

In the case of hyperbolic lower-dimensional tori, if ω is a two-dimensional Diophantine vector of
constant type (that is, with τ = 1) the conjugation function h can be proved to be Borel summable
(Costin et al., 2007). Analogous considerations hold for the one-dimensional systems in the presence of
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friction and of a quasiperiodic forcing term described in Section 8.2; in that case one has Borel summability
also for one-dimensional ω, that is for periodic forcing (Gentile, Bartuccelli & Deane, 2006). It would be
interesting to investigate whether Borel summability could be obtained for higher values of τ .

Recently existence of finite-dimensional tori in the nonlinear Schrödinger equation in higher dimensions
was proved by Bourgain (2005). It would be interesting to investigate how far the diagrammatic techniques
extend to deal with such higher dimensional generalisations. The main problem is that (the analogues
of) the second Melnikov conditions in (8.9) cannot be imposed.

In certain cases the tree formalism was extended to non-analytic systems, such as some quasi-integrable
systems of the form (3.1) with f in a class of Cp functions for some finite p (Bonetto et al., 1998a and
1998b). However, up to exceptional cases, the method described here seems to be intrinsically suited in
cases in which the vector fields are analytic. The reason is that in order to exploit the expansion (2.3),
we need that F be infinitely many times differentiable and we need a bound on the derivatives. It is a
remarkable property that the perturbation series can be given a meaning also in cases where the solutions
are not analytic in ε.

An advantage of the diagrammatic method is that it allows rather detailed information about the
solutions, hence it could be more convenient than other techniques to study problems where the underlying
structure is not known or too poor to exploit general abstract arguments.

Another advantage is the following. If one is interested not only in proving the existence of the
solutions, but also in explicitly constructing them with any prefixed precision, this requires performing
analytical or numerical computations with arbitrarily high accuracy. Then high perturbation orders have
to be reached, and the easiest and most direct way to proceed is just through perturbation theory: so the
approach illustrated here allows a unified treatment for both theoretical investigations and computational
ones.

The resummation technique described in Section 7 can also be used for computational purposes. With
respect to the naive power series expansion it can reduce the computation time required to approximate
the solution within a prefixed precision. It can also provide accurate information on the analyticity
properties of the solution. For instance, for the Kepler equation, Levi-Civita at the beginning of the
last century described a resummation rule (see Levi-Civita, 1954), which gives immediately the radius
of convergence of the perturbation series. Of course, in the case of small divisor problems, everything
becomes much more complicated.
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