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Abstract: A classical mechanics problem, the existence of whiskered tori for an almost

integrable hamiltonian system, is analyzed with techniques reminiscent of the quantum

field theory, following the strategy developed in recent works. The system consists in

a collection of rotators interacting with a pendulum via a small potential depending

only on the angle variables. The proof of the existence of the stable and unstable

manifolds (“whiskers”) of the rotators invariant tori corresponding to diophantine

rotation numbers is simplified by setting the Lyapunov spectrum to prefixed values

via the introduction, in the hamiltonian function, of “counterterms” depending on

the strength of the interaction; this is a feature usual in quantum field theory, and

emphasizes the analogy between the the field theory and the KAM framework pointed

out already in the mentioned works.

Key words: KAM, perturbation theory, classical mechanics, quantum field theory,

renormalization group

1. Introduction

In the conclusive chapter of his book on celestial mechanics, [P], Vol. III, Ch. XXXIII,

Poincaré studies the problem of existence of stable and unstable manifolds correspond-

ing to trajectories asymptotic to quasiperiodic motions in the three body problem. We

can denote by W+(T ) the stable manifold and by W−(T ) the unstable manifold of

the torus T : the motion on W+(T ) is asymptotic to T in the future, while the mo-

tion on W−(T ) is asymptotic to T in the past. Then, by following [P], we define

homoclinic the orbits such that W+(T ) ∩ W−(T ) 6= ∅, and heteroclinic the orbits

such that W+(T ) ∩W−(T ′) 6= ∅ for T 6= T ′: the solution of the equations of motion

which describes a homoclinic or heteroclinic orbit will be called, for evident reasons,

a doubly asymptotic solution. Poincaré proved the existence of homoclinic orbits, but

was not able to draw a conclusion in the heteroclinic case, “au moins dans le cas du

problème des trois corps”, (ibidem, §394). Furthermore he proved some properties of

the doubly asymptotic solutions, e.g. the fact that the number of homoclinic points
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and the number of heteroclinic points corresponding to two fixed tori (if there are any)

are infinite, and noticed the effects connected to the non integrability of the perturbed

system to be exponentially small with respect to the perturbation parameter.

Since Poincaré’s work, the properties of the stable and unstable manifolds have

become a problem of great interest, both theoretically and experimentally. In fact the

existence of such manifolds is intimately related to the possibility of diffusion in phase

space, a property which, obviously, can occur only in the not integrable case (as a

byproduct of the KAM theorem, [K]).

The starting point is the well known fact (connected to the Nekhoroshev theorem,

[N], see also [BG]) that, given an ℓ–dimensional hamiltonian integrable system, near to

a simple resonance, there exists a change of coordinates which leads the hamiltonian

in a form which can be written, up to arbitrarily higher order corrections, as the sum

of (1) a function depending only on ℓ − 1 actions plus (2) a hamiltonian describing a

system which “behaves” as a 1–dimensional pendulum. By this we mean that the phase

portrait of the 1–dimensional system has the characteristic of a standard pendulum:

there are two lines separating regions covered with curves of the same kind (which do

not contain equilibrium points and can be deformed into each other without crossing

any equilibrium points). We call separatrices such lines: they are given by the union of

a stable and an unstable manifold, which are called whiskers and represent the orbits

of motions asymptotic to some unstable equilibrium point, respectively in the future

and in the past. If we consider the cartesian product of the phase spaces of the two

decoupled systems, then the motions on the whiskers become asymptotic to (ℓ − 1)–

dimensional tori (low dimensional tori). Obviously, we have to take into account the

terms describing the corrections, and study how they modify the just described phase

portrait. A simplified model has been considered in [A2], and the analysis has been

extended to cover more general cases in [CG], [G1] and [Ge].

Before entering into the analytic treatment of the problem, we can briefly discuss

the practical interest of the study of the doubly asymptotic orbits. There are indeed a

lot of physical applications of the theory, for instance: (1) the beam–beam interaction

in a storage ring, (2) the motion of charged particles in a magnetic bottle, (3) the

interaction of colliding e+-e− beams or hadron beams in acceleratos, (4) the motion

of particles in a plasma, (5) stability problems in celestial mechanics. For a review of

applications, we refer to a classical paper by Chirikov, [C], where the problem of item

(2) is specially studied.

A discussion of problem (1) can be found in [I], and a comparison between theory and

experiments is proposed, e.g. , in [GITT]: the model describing the physical situation

consists in two linear oscillators coupled through a periodic kick. The interaction

produces the creation of instability regions in the phase space, which consist of some

thin layers, with finite width, enclosing the resonance lines (defined by the equation

~ω · ~ν = ~0, ~ν ∈ Zℓ−1, where ~ω ∈ Rℓ−1 is the unperturbed frequency vector): such
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regions form a network. Then there can be diffusion phenomena, related either to (1)

the intersection of separatices corresponding to different resonances (Arnol′d diffusion),

or (2) to the intersection of the layers (Chirikov’s criterion for instability). The first

kind of diffusion is very slow, and often results to be negligible in comparison to other

effects, while the latter is dominant when the interaction becomes very large.

However Arnol′d diffusion occurs for any value of the perturbation parameter, so

that it can turn out to be of fundamental importance when the perturbation is very

small, for instance in some problems of celestial mechanics, (see item (5) above). An

application in this field (d’Alembert precession problem) is explicitly studied in [CG],

where it is shown that there exist initial data such that a planet can change the

inclination of the precession cone of a finite observable quantity (even if a very long

time is required).

In general the diffusing orbits can be constructed along neighborhoods of the stable

and unstable manifolds, with the transition into each other occurring near the hetero-

clinic points. The motion “follows” the heteroclinic orbits connecting not too far tori

in phase space: the tori are said to form a transition chain, [A2], and the sequence

of interconnections is called Arnol′d web. The diffusion time is related to the ampli-

tude of the heteroclinic angles, hence to that of the homoclinic angles (by continuity):

therefore it can be useful to be able to use a costructive algorithm allowing us to

estimate the amplitude of such angles.

We consider the same model as in [G1], [Ge], which is known as Thirring model and

can be consedered a (not trivial) generalization of the model considered by Arnol′d

in [A2]. The model consists of a family of rotators, say ℓ − 1 in number, interacting

with a pendulum via a conservative force. The moments of inertia Jj , j = 1, . . . , ℓ−1,

of the rotators form a matrix J which we can take diagonal, and are supposed to be

Jj ≥ J0 > 0, if J0 is the inertia of the pendulum, so setting a scale for the size of the

inertia moments; for simplicity’s sake we assume Jj = J , for all j. The model can be

described by the ℓ degrees of freedom hamiltonian Hµ ≡ H0 + µf given by

~ω · ~A+
1

2
J−1 ~A · ~A+

I2

2J0
+ g2J0(cosϕ− 1) + µ

∑

|ν|≤N

fν cos(~α · ~ν + nϕ) , (1.1)

where (ϕ, I) ∈ R2, (~α, ~A) ∈ R2(ℓ−1) are canonically conjugated variables, ~ω ∈ Rℓ−1,

ν ≡ (n, ~ν) ∈ Zℓ, |ν| = |n| + |~ν| = |n| +
∑ℓ−1
i=1 |νi|, g > 0 (g2 is the “gravity”), ~ω, µ are

parameters (~ω is the rotation vector, and µ is the perturbation strenght), and fν are

fixed constants. A natural energy scale for the model will be E = g2J0. We suppose

a priori that:

Hypothesis H. The rotation vector ~ω is a diophantine vector, i.e. C0|~ω·~ν| ≥ |~ν|−τ , for

all ~0 6= ~ν ∈ Zℓ−1, for some diophantine constant C0 and some diophantine exponent

τ > 0.
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For µ = 0, the hamiltonian equations generated by (1.1), (i.e. İ = −∂ϕHµ, ϕ̇ =

∂IHµ, ~̇A = −∂~αHµ, ~̇α = ∂ ~AHµ), admit (ℓ− 1)–dimensional invariant tori

T0 ≡ {I = 0 = ϕ} × { ~A ≡ ~A0 , ~α ∈ Tℓ−1} (1.2)

possessing homoclinic stable and unstable manifolds, called whiskers. The manifolds

equations are

W±
0 ≡ W0 ≡ { I2

2J0
+ g2J0(cosϕ− 1) = 0} × { ~A ≡ ~A0 , ~α ∈ Tℓ−1} , (1.3)

so that the non trivial Lyapunov exponents of T0 are ±g, (note that the whiskers are

degenerate for µ = 0).

Under perturbation we expect the tori to be deformed and to remain unstable with

only two non trivial Lyapunov exponents ±g′(µ), where g′(µ) is a suitable analytic

function of µ; this is indeed proved in [CG] and [Ge]. The change of the Lyapunov

exponents has the consequence that the solutions of the perturbed motion equations

depend naturally on t, (besides via exp[±i~ω · ~νt]), via e±g
′(µ)t = e±gt[1 ± µg1t +

µ2(±g2
2t+g

2
1t

2/2)+O(µ3)], where gi, i > 0, are the coefficients of the series expansion of

the function g′(µ). Therefore, in a perturbation theory, this will generate contributions

to the solutions of the equations of motion which depend on time via e±gt tk for various

values of k ∈ N. In fact this does happen, [Ge], and it is the source of rather deep

technical intricacies: then one has to exhibit some cancellations which ultimately are

probably related to the fact that the terms e±gt tk appearing in the solutions of the

equations of motion can be resummed into “pure exponentials” like e±g
′(µ)t.

It is therefore natural to ask if one can fix the Lyapunov exponents a priori, as one

does with the frequencies. This should allow us to get rid of the terms e±gt tk and

leave us with “pure exponentials”, eliminating at the same time also the necessity of

the analysis of cancellations between terms with dependence on t through powers of t.

Then, instead of studying the model (1.1), we consider the modified model

~ω · ~A+
1

2
J−1 ~A · ~A+

I2

2J0
+ g2(µ)J0(cosϕ− 1) + µ

∑

|ν|≤N

fν cos(~α · ~ν + nϕ) , (1.4)

where g2(µ) is a function of µ admitting the series expansion

g2(µ) = g2
∞
∑

h=0

γhµ
h , (1.5)

with γ0 = 1 and the coefficients γh, h ≥ 1, to be determined, as it will be explained

later, (see §5), in such a way to guarantee that the frequencies and the non trivial

Lyapunov exponents corresponding to the perturbed system whiskered tori are, re-

spectively, ~ω and ±g, (and we shall see that, if such a request is fulfilled, then the

series convergence automatically follows).
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We shall prove that the perturbed system still admits (ℓ−1)–dimensional invariant

tori Tµ, obtained by analytic continuation from the unpertured ones, with their stable

and unstable whiskers

W±
µ = {(ϕ, ~α, I, ~A) = (ϕ, ~α, I±µ (ϕ, ~α), ~A±

µ (ϕ, ~α)) : ~α ∈ Tℓ−1, |ϕ| < 2π} (1.6)

characterized by the sets of initial data X±
µ (0) such that the distance(StµX

±
µ (0), Tµ) →

0 fast as e−g
′(µ)|t| t → ±∞; here Stµ is the hamiltonian flow generated by (1.4). Note

that the point (ϕ, ~α) = (π,~0) is a homoclinic point, at least if µ is small enough so that

the whiskers can be proven to exist: this can be deduced from the parity properties in

(ϕ, ~α) of the hamiltonina (1.1). Therefore we have not to worry about the problem of

proving the existence of homoclinic points, (anyway the existence of homoclinic points

for systems of the considered form is proven in [HM]).

The proof of the above statements within the “usual” KAM framework is given in

[CG]. Until the Eliasson’s work, [E], proofs of the KAM theorem, ([K], [A1], [Mo1]),

assuring the existence of infinetely many invariant tori for perturbed systems, were

all based on a rapidly convergent iteration technique leading to solve recursively a

sequence of approximate equations. Recently, new direct (i.e. non recursive) proofs

of the KAM theorem have been proposed by following the ideas in [E], (see [G1],

[G2], [CF]), by exhibiting explicitly cancellations occuring between contributions to

the formal expansion series of the quasiperiodic solutions: in fact to order k, there

are terms of the perturbative expansion growing like O((k!)α), for some α > 0, but

the sum of such terms can be bounded by Ck, for some constant C, as there are sign

compensations between them.

By extending the important ideas of Mel′nikov, [Me], the same techniques have

been applied, [G1], to the study of low dimensional tori and their stable and unstable

manifolds, whose existence was known from the several classical works, [Mo2], [Gr],

(a general theory can be found also in [LW]). In [G1], [G2], [GGe], [G5], the analogy

between the methods implemented in the direct proofs and those used in quantum field

theory, expecially in the renormalization group approach, have been pointed out.1

In this work such ideas will be developed further, by giving a proof of the existence

of the whiskered tori in a class of almost integrable hamiltonian systems alternative to

that proposed in [Ge], and based on the introduction of “counterterms” (a technique

usual in quantum field theory) in the hamiltonian function; the advantage of such a pro-

cedure is that some symmetry properties of the solutions can be directly visualized for

the modified hamiltonian, so simplifying in a remarkable way the topological structure

1 In [G5] it has been shown that the function describing the invariant tori of a system of rotators

interacting via a potential which is a trigonometrical polynomial in the angle variables, (i.e. the

hamiltonian system (1.1) without the pendulum), can be represented as the one point Schwinger

function of a quantum field model.
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of the diagrams (trees, see below) in terms of which the solutions can be graphically

represented. Then, once this preliminar step is performed, one can can prove that, as

for the KAM theorem, there are sharp compensations between huge terms appearing

in the perturbative expansion. In this way one can find a “good” bound, i.e. a Ck

bound, if C is a suitable positive constant, for the sum of all contributions to the k-th

perturbative order: the final result is the bound (A1.7), which shows that the products

of small divisors (which are the source of convergence problems) can be controlled.

Once the problem is solved, the solutions of the original hamiltonian equations

can be recovered in a trivial way, and, by construction, they exhibit explicitly the

symmetry properties.

As far as the existence of the whiskered tori for systems described by the hamiltonian

(1.1) is concerned, the direct check of the cancellations has the advantage, if one wants

to apply the results in numerical experiments, that provides a criterion to single out

a priori the terms which can be source of problems in the perturbative expansion, so

that one can get rid of them since from the beginning, and one has not to exploit any

cancellations between huge terms (i.e. terms which behave as (k!)α, for some α > 0,

to order k), from which also small computational errors turn out to be amplified

in a critical way. Analogously, the technical simplification in the proof which is a

consequence of the introduction of a suitable counterterm in the hamiltonian reduces

the quantity of cancellations that one has to analyze in order to obtain a bound Ck,

for some C > 0, to order k: again such a fact can be profitably exploited in numerical

simulations.

Note also that, as implicit in the previous paragraph, the proof is constructive: not

only the existence of the whiskers is proven, but an algorithm allowing to construct

them within any prefixed precision is explicitly furnished as a byproduct of the proof

itself.

The paper is selfcontained: §2 has a definitory nature and partially overlaps with

§2, 3, 4 of [Ge], (which in turn were often literally taken from the review article [G1],

with some abstraction effort), while §3 introduces the diagrammatic formalism, which

is similar but not quite identical to the corresponding one of [Ge], and in fact is less

involved, (less definitions have to be given). The original work is in §4÷§5 (and in

the appendices). The theory of the homoclinic splitting, discussed in [G1] and briefly

mentioned in [Ge], will be not even barely touched: here we confine ourselves to the

problem of existence of the whiskered tori. We simply remark that the angles of the

homoclinic points are esponentially small in the perturbative parameter, so that the

Arnol′d diffusion can occur only in a very large time.

Acknowledgements. The author would thank G. Gallavotti for having proposed the

argument and indicated to him the way how to approach it.
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2. Analytic formalism

In this section we review the formalism which will be used in the proof of existence of

the whiskered tori. With respect to [G1] and [Ge], there are a few differences here and

there, so that the main aim of the present section is just to introduce the notations,

referring to [G1] for a clearer explanation of the mathematical and physical meaning

of the described operations.

2.1 Recursive formulae

We derive simple recursive formulae for the functions I±µ , ~A±
µ in (1.6) and their time

evolution (see also [G1], §2, and [CG], Appendix A10).

Let us consider the unperturbed motion:

X0(t) ≡ (ϕ0(t), ~α+ ~ωt, I0(t),~0) , (2.1)

where (ϕ0(t), I0(t)) is the separatrix motion, generated by the pendulum in (1.1)

starting, say, at t = 0 in ϕ = π, and ϕ0(t) = 4 arctan e−gt. Let Xσ
µ (t;α), σ = sign t =

±, be the evolution, under the flow generated by (1.1), of the point on W σ
µ given by

(π, ~α, Iσµ (~α, π), ~Aσµ(~α, π)), see (1.6); let

Xσ
µ (t) ≡ Xσ

µ (t; ~α) ≡
∑

h≥0

Xhσ(t; ~α)µh =
∑

h≥0

Xhσ(t)µh, σ = ± , (2.2)

be the power series in µ of Xσ
µ , (which we will show to be convergent for µ small);

note that X0σ ≡ X0 is the unperturbed whisker. We shall often not write explicitly

the ~α variable among the arguments of various ~α dependent functions, to simplify the

notations, and we shall regard the two functions Xhσ(t), as forming a single function

Xh(t), which is Xh+(t) if σ = +, and Xh−(t) if σ = −.

Inserting (2.2) into the Hamilton equation associated with (1.4), we see that the

coefficients Xhσ(t) satisfy the hierarchy of equations

d

dt
Xhσ ≡ Ẋhσ = LXhσ + Fhσ , (2.3)

where

L(t) =







0 ~0 J−1
0

~0
~0 0 ~0 J−1

g2J0 cosϕ0(t) ~0 0 ~0
~0 0 ~0 0






,

F 1(t) =







0
0

−∂ϕf(ϕ0(t), ~α+ ~ωt) + g2γ1J0 sin(ϕ0(t))
−∂~αf(ϕ0(t), ~α+ ~ωt)






,

(2.4)
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and where Fhσ depends upon X0, ..., Xh−1σ but not on Xhσ; here (as everywhere else)

the arrows denote (ℓ− 1)–vectors. The entries of the (2ℓ× 2ℓ) matrix L have different

meaning according to their position: the ~0’s in the first and third row are (ℓ−1) (row)

vectors, the ~0’s in the first and third column are (ℓ− 1) (column) vectors, and the 0’s

and J−1 in the second and fourth column are (ℓ− 1)× (ℓ− 1) matrices, while the 0’s

in the first and third columns are scalars.

Then, if we number the components of X with a label j, j = 0, . . . , 2ℓ− 1, with the

convention that

X0 = X−, (Xj)j=1,...,ℓ−1 = ~X↓, Xℓ = X+, (Xj)j=ℓ+1,...,2ℓ−1 = ~X↑ (2.5)

(i.e. we write first the angle and then the action components; first the pendulum and

then the rotators), we see that (2.3) takes the form:

d

dt
Xhσ

+ = (g2J0 cosϕ0)Xhσ
− + Fhσ+ ,

d

dt
~Xhσ
↑ = ~Fhσ↑

d

dt
Xhσ

− = J−1
0 Xhσ

+ ,
d

dt
~Xhσ
↓ = J−1 ~Xhσ

↑

(2.6)

as Fhσ− , ~Fhσ↓ vanish identically, for h ≥ 1. And, for all h ≥ 1, we can write the following

formula for Fhσ in terms of the coefficients X0, . . . , Xh−1σ and of the derivatives of

H0 and f :

Fhσ− ≡ 0 , ~Fhσ↓ ≡ 0 ,

~Fhσ↑ = −
∑

|~m|≥0

(∂~αf)~m(ϕ0, ~α+ ~ωt)
∑

(hi
j
)~m,h−1

ℓ−1
∏

i=0

mi
∏

j=1

X
hi

jσ

i ,

Fhσ+ ≡
∑

|~m|≥2

(g2J0 sinϕ)~m(ϕ0)
∑

(h0
j
)~m,h

m
∏

j=1

X
h0

jσ

−

+
∑

|~m|≥0

h
∑

p=1

(g2γpJ0 sinϕ)~m(ϕ0)
∑

(h0
j
)~m,h−p

m
∏

j=1

X
h0

jσ

−

−
∑

|~m|≥0

(∂ϕf)~m(ϕ0, ~α+ ~ωt)
∑

(hi
j
)~m,h−1

ℓ−1
∏

i=0

mi
∏

j=1

X
hi

jσ

i ,

(2.7)

where (G)~m(·), with G = ∂~αf, ∂ϕf, g
2J0 sinϕ, and (hij)~m,q, with hij ≥ 1, mi ≥ 0,

~m = (m0, . . . , m2ℓ−1), are defined as

(G)~m(·) ≡
(∂m0

ϕ ∂m1
α1

. . . ∂
mℓ−1
αℓ−1 ∂

mℓ

I ∂
mℓ+1

A1
. . . ∂

m2ℓ−1

Aℓ−1
G

m0!m1! . . . mℓ−1!mℓ!mℓ+1! . . . m2ℓ−1!

)

(·) ,

(hij)~m,q ≡ (h0
1, . . . , h

0
m0
, h1

1, . . . , h
1
m1
, . . . , h2ℓ−1

1 , . . . , h2ℓ−1
m2ℓ−1

) , s.t.
∑

hij = q .

(2.8)
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Note that the first two sums in the expression for Fhσ+ can only involve vectors ~m

with mj = 0 if j ≥ 1, because the function J0g
2 sinϕ depends only on ϕ and not

on ~α). The evolution of Xh is determined by integrating (2.6), if the initial data are

known. The h = 1 case requires a suitable interpretation of the symbols, in according

to equation (2.4).

We introduce the dimensionless quantities related to the perturbed motions by







Xhσ
j = Ξhσj , if 0 ≤ j ≤ ℓ− 1,

Xhσ
ℓ = gJ0 Ξhσℓ ,

Xhσ
j = gJ Ξhσj , if ℓ+ 1 ≤ j ≤ 2ℓ− 1,

and to the functions Fhσ through the transformations ~Fhσ↑ = (g2J)−1~Φhσ↑ , Fhσ+ =

(g2J0)
−1 Φhσ+ , (obviously: Φhσj = Fhσj ≡ 0, for j = 0, . . . , ℓ− 1).

We recall that the wronskian matrix W (t) of a solution t → x(t) of a differential

equation ẋ = f(x) in Rn is a n×n matrix whose columns are formed by n linearly in-

dependent solutions of the linear differential equation obtained by linearizing f around

the solution x and assuming W (0) = identity.

The solubility by elementary quadrature of the free pendulum equations on the

separatrix leads after a well known classical calculation to the following expression for

the wronskian W (t) of the separatrix motion of the pendulum appearing in (1.1), with

initial data at t = 0 given by ϕ = π, I = 2gJ0, (i.e. Ξ0
+ = 2),

W (t) =

(

1
cosh gt

w̄(t)
4

− sinh gt
cosh2 gt

(1 − w̄(t)
4

sinh gt
cosh2 gt

) cosh gt

)

, w̄(t) ≡
2gt+ sinh 2gt

cosh gt
, (2.9)

And the evolution of the ± (i.e. ϕ, I) components can be determined by using the

above wronskian:

(

Ξhσ−
Ξhσ+

)

= W (t)

(

0
Ξhσ+ (0)

)

+W (t)

∫ gt

0

W −1(τ)

(

0
Φhσ+ (τ)

)

d gτ . (2.10)

Thus, denoting by wij (i, j = 0, ℓ) the entries of W we see immediately that

Ξhσ+ (t) = wℓℓ(t)Ξ
hσ
+ (0)

+ wℓℓ(t)

∫ gt

0

w00(τ)Φ
hσ
+ (τ) d gτ − wℓ0(t)

∫ gt

0

w0ℓ(τ)Φ
hσ
+ (τ) d gτ ,

Ξhσ− (t) = w0ℓ(t)Ξ
hσ
+ (0)

+ w0ℓ(t)

∫ gt

0

w00(τ)Φ
hσ
+ (τ) d gτ − w00(t)

∫ gt

0

w0ℓ(τ)Φ
hσ
+ (τ) d gτ .

(2.11)
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The integration of the equations (2.6) for the ↑, ↓ components yields

~Ξhσ↑ (t) = ~Ξhσ↑ (0) +

∫ gt

0

~Φhσ↑ (τ) d gτ ,

~Ξhσ↓ (t) =
(

gt~Ξhσ↑ (0) +

∫ gt

0

g(t− τ) ~Φhσ↑ (τ) d gτ
)

,

(2.12)

having used that the ~Ξhσ↓ (0) ≡ ~0 because the initial datum is fixed and µ independent;

and (2.11), (2.12) can be used to find a reasonably simple algorithm to represent the

whiskers equations to all orders h ≥ 1 of the perturbation expansion.

2.2 The improper integration I.

We introduce some integrations operations which can be performed on the functions

introduced in §2.1. The operation is simply the integration over t from σ∞ to t,

σ = sign t. In general such an operation cannot be defined as an ordinary integral

of a summable function, because the functions on which it has to operate (typically

the integrands in (2.11) and (2.12)) do not, in general, tend to 0 as t → ∞. But the

simplicity of the initial hamiltonian has the consequence that the functions Ξh(t), and

the matrix elements wij in (2.9), belong to a very special class of analytic functions

on which the integration operations that we need can be given a meaning.

To describe such class we introduce various spaces of functions; all of them are

subspaces of the space M̂ of the functions of t defined as follows.

Definition 2.1. Let M̂ be the space of the functions of t which can be represented,

for some h ≥ 0, as

M(t) =

h
∑

j=0

(σtg)j

j!
Mσ
j (x, ~ωt) , x ≡ e−σgt , σ = sign t , (2.13)

with Mσ
j (x, ~ψ) a trigonometric polynomial in ~ψ with coefficients holomorphic in the x-

plane in the annulus 0 < |x| < 1, with: (1) possible singularities, outside the open unit

disk, in a closed cone centered at the origin, with axis of symmetry on the imaginary

axis and half opening d < π
2
; (2) possible polar singularities at x = 0; (3) Mσ

h 6= 0.

The number h will be called the t–degree of M . The smallest cone containing the

singularities will be called the singularity cone of M .

Definition 2.2. Let M̂0 be the subspace of the functions M ∈ M̂ such that the

residuum at x = 0 of x−1〈Mσ
j (x, ·)〉 is zero (here the average is over ~ψ , i.e. it is an

“angle average”).

Definition 2.3. Let M and M0 be the subspaces of the functions M ∈ M̂ and,

respectively, M ∈ M̂0 bounded near x = 0.
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Definition 2.4. Let M̂h,M̂h
0 ,M

h,Mh
0 denote the subspaces of M̂,M̂0,M,M0, re-

spectively, containing the functions of t–degree ≤ h.

In the following part of this section we describe briefly the properties of the func-

tions contained in the above defined spaces, referring to [G1] for details.

(1) If a function admits a representation like (2.13), with the above properties, then

such a representation is unique (see [CG], §10).

(2) If M ∈ M, or M ∈ M0, then Mσ
j have no pole at x = 0 and, furthermore,

Mσ
j (0, ~ψ) = 0 if j > 0.

(3) M ∈ M̂ can be written as M = P +M ′ with P being a polynomial in σt (with σ

dependent coefficients) and with M ′ ∈ M̂0: this can be done in only one way and we

call P the “polynomial component” of M , and M ′ the “non singular” component of

M .

(4) M ∈ M can be written as M = p + M ′ with p being a constant function (with

constant value depending on σ) and M ′ ∈ M0: p will be called the “constant compo-

nent” of M , and M ′ will be the “non singular” component of M .

(5) The functions in M̂ can be expanded as sums of the following monomials:

σχ (σtg)j

j! xhei~ω·~ν t (2.14)

where χ = 0, 1 (i.e. the (2.14) span the space M̂).

(6) The coefficients of the above mentioned expansions and polynomials depend on

σ = ±, i.e. each M ∈ M̂ is, in general, a pair of functions Mσ defined and holomorphic

for t > 0 and t < 0, respectively (and, more specifically, in a domain {σRe t > 0,

| Im gt| < π/2 − d ≡ ξ}). The functions Mσ(t) might sometimes (as in our cases

below) be continued analytically in t but in general M+(−t) 6= M−(−t) even when it

makes sense (by analytic continuation) to ask whether equality holds.

(7) If M ∈ M the points with Re t = 0 and | Im gt| < ξ (gt = ±iπ/2 corresponds

to x = ∓i) are, (by our hypothesis on the location of the singularities of the Mj

functions), regularity points so that the values at t±, “to the right” and “to the left”

of t, will be regarded as well defined and given by M(t±) ≡ limt′→t, Re t′→Re t± M(t′);

in particular M±(0±) ≡M±
0 (1−,~0).

(8) Since f in (1.1), or (1.4), is a trigonometric polynomial, the function F 1, see (2.4),

belongs to M and, in fact, the component ~F 1
↑ belongs to M0 (as accidentally does F 1

+

as well).

On the class M̂ we can define the following operation.

Definition 2.5. If M ∈ M̂, and t = τ + iθ, with τ, θ real, and τ = Re t 6= 0,

σ = sign Re t, the function

IRM(t) ≡

∫ gt

σ∞+iθ

e−RgσzM(z) d gz (2.15)
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is defined for ReR > 0 and large enough, the integral being on an axis parallel to the

real axis. If M ∈ M̂ then the function of R in (2.15) admits an analytic continuation

to ReR < 0 with possible poles at the integer values of R and at the values ig−1~ω · ~ν

with |~ν| < (trigonometric degree of M in the angles ~ψ); and we can then set

IM(t) ≡

∮

dR

2πiR
IRM(t) , (2.16)

where the integral is over a small circle of radius r < 1 and r < min |g−1~ω · ~ν|, the

minimum being taken over the ~ν 6= ~0 which appear in the Fourier expansion of M .

¿From the above definition one can immediately derive an expression for the action

of I on the monomial (2.14) and check, in particular, that the radius of convergence

in x of IM , for a general M , is the same of that of M (but in general the singularities

at ±i will no longer be polar, even if those of the Mj’s were such). In general, I :

M̂h → M̂h+1; but we note that the I operation does not increase the degree in t when

|h| + |~ν| > 0, (see [G1]).

One readily checks that IM is a primitive of M (i.e. the increment of IM between

t0 and t is the integral of M between the same extremes). The similarities of the I

operation with a definite integral justify the use of the notation

gt
∫

(σ)

M(τ) d gτ ≡ IM(t) , M ∈ M̂, σ = sign Re t . (2.17)

In fact many standard properties of integration are, in such a way, extended to the

space M̂, see [G1]. In particular we can define

gt
∫

σ∞

M(τ) d gτ ≡ IM(0σ) +

∫ gt

0

M(τ) d gτ . (2.18)

2.3 Analytic expressions of the expansion coefficients for the whiskers

We will show that the Ξh’s defined through (2.2) admit rather simple expressions in

terms of the operation I (and other related operations introduced below). Recall that

in §2.1 we have fixed ~α ∈ Tℓ−1 and ϕ = π, and we are looking for the motions, on the

stable (σ = +) or unstable (σ = −) whisker, which start with the given ~α and ϕ = π

at t = 0; in the following ~α is kept constant and usually notationally omitted.

We suppose inductively that Ξh
′

∈ M2h′−1, h′ < h, and Φh
′

∈ M2(h′−1), ~Φh
′

↑ ∈

M
2(h′−1)
0 , h′ ≤ h, and, furthermore, that the singularity cone consists of just the imag-

inary axis, i.e. the singularities of the functions defining Ξh,Φh are on the segments

on the imaginary axis (−i∞,−i] and [+i,+i∞).
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This means, in particular, that Φh
′

,Ξh
′

can be represented as

Φh
′

(x, ~ψ, t) =

2(h′−1)
∑

j=0

(σtg)j

j!
Φh

′σ
j (x, ~ψ), h′ = 1, . . . , h ,

Ξh
′

(x, ~ψ, t) =
2h′−1
∑

j=0

(σtg)j

j!
Ξh

′σ
j (x, ~ψ), h′ = 1, . . . , h− 1 ,

(2.19)

by setting ~ψ = ~ωt, σ = sign t, x = e−gσt, with Φh
′σ
j ,Ξh

′σ
j holomorphic at x = 0 and

vanishing at x = 0 if j > 0. Hence if x = e−gσt and ~ψ is kept fixed, the Φh
′

j ’s, Ξh
′

j ’s

tend exponentially to zero as t→ σ∞, if j > 0; while if j = 0 they tend exponentially

fast to a limit as t → σ∞ (i.e. as x → 0), which we denote Φh
′

(~ψ , σ∞) dropping the

subscript 0 as there is no ambiguity.

Furthermore the inductive hypothesis is enriched by:

~Φh
′σ

↑~0
(σ∞) = ~0, for all h′ ≤ h , (2.20)

recalling that, in general, a subscript ~ν affixed to a function denotes the Fourier com-

ponent of order ~ν ∈ Zℓ−1 of the considered function: Ξh
′σ
j~ν (t) and Φh

′σ
j~ν (t) are the

Fourier transforms in ~ψ of Ξh
′σ
j (t, ~ψ) and Φh

′σ
j (t, ~ψ), respectively.

Let us suppose, just as an assumption for the time being, that Ξh
′σ(t) and, from

(2.7), hence also Φh
′σ(t) are bounded as t → σ∞ for all h′, so that Ξh

′σ
j (0, ~ψ) = 0

if j ≥ 1: we show then that the latter information is very strong and permits us to

determine Ξh. This does not imply the convergence of the series: however in §5.2

such a result is proven, so justifying the boundedness hypothesis and completing the

research of bounded motions.

We note that, since Φhσ ∈ M2(h−1) and ~Φhσ
↑~0

(σ∞) = ~0 hold, the function ~Ξhσ↑ (t),

given by the first of (2.12), is in fact in M2(h−1) (by integration). But of course we do

not know (yet) the initial data Ξhσ(0).

To find expressions for Ξh↑ we start from the equations (2.6) with initial time at some

instant T . And we use that IΦ(t) is a primitive of the function Φ(t), see comment

preceding (2.17), so that

~Ξhσ↑ (t) = ~Ξhσ↑ (T ) + I~Φhσ↑ (t) − I~Φhσ↑ (T ) , (2.21)

where σ = sign t, and T has the same sign of t.

The function ~Ξhσ↑ (T ) tends to become quasi periodic with exponential speed as

T → σ∞: in fact it becomes asymptotic to the j = 0 component, see (2.19), at x = 0:
~Ξhσ0↑ (0, ~ωT ), (in the sense that the difference tends to 0, bounded proportionally to

(g|T |)2h−1e−g|T |). The function I~Φhσ↑ (T ) also becomes asymptotically quasi periodic

with exponential speed and ~0 average, because ~Φhσ↑ ∈ M
2(h−1)
0 and by the definition
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of I: therefore the two quasi periodic functions of T must cancel modulo a constant

equal to 〈~Ξhσ0↑ (0, ·)〉 ≡ ~Ξhσ
↑~0

(σ∞).

Hence it follows that

~Ξhσ↑ (t) = ~Ξhσ
↑~0

(σ∞) + I~Φhσ↑ (t) , (2.22)

and, by inserting (2.22) into the second of (2.12), (considering also that
∫ gt

0
gτ ~Φhσ↑ (τ)

d gτ = gtI~Φhσ↑ (t)+ a t-bounded function), we see that the ~Ξhσ↓ (t) can be bounded only

if
~Ξhσ
↑~0

(σ∞) = ~0, hence: ~Ξhσ↑ (t) = I~Φhσ↑ (t) , (2.23)

yielding, setting t = 0σ, the initial values of Ξh↑ and a simple form for its time evolution.

Analogously, recalling that ~Ξhσ↓ (0) = ~0, essentially by definition, one finds

~Ξhσ↓ (t) =
(

I2~Φhσ↑ (t) − I2~Φhσ↑ (0σ)
)

≡ Ī2~Φhσ↑ (t) , (2.24)

which gives a simple form to the time evolution of the ~α (i.e. ↓) component of Ξh in

terms of the operator I
2

defined by the r.h.s. of (2.24).

Likewise considering the (2.11) and the behaviour at σ∞ of W in (2.9), if Ξhσ(t)

has to be bounded at σ∞, we see from the second of (2.11) that

Ξhσ+ (0) = −

σ∞
∫

0

w00(τ)Φ
hσ
+ (τ) d gτ . (2.25)

Thus we get (defining at the same time also O and O+)

Ξhσ+ (t) = wll(t)

gt
∫

(σ)

w00(τ)Φ
hσ
+ (τ) d gτ

− wl0(t)

∫ gt

0

w0l(τ)Φ
hσ
+ (τ) d gτ ≡ O+(Φhσ+ )(t) ,

Ξhσ− (t) =w0l(t)

gt
∫

(σ)

w00(τ)Φ
hσ
+ (τ) d gτ

− w00(t)

∫ gt

0

w0l(τ)Φ
hσ
+ (τ) d gτ ≡ O(Φhσ+ )(t) ,

(2.26)

The (2.23), (2.24) and (2.26), and the boundedness request imply (2.19) for h′ =

h + 1, as we can show by reasoning as in [G1]. As already remarked before (2.21)

we note again that, since Φh
′σ

↑~0
(σ∞) = ~0 for h′ ≤ h, the ~Ξh↑ ,

~Ξh↓ functions are in fact
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in M2(h−1), as the I operation, on such ~Φh↑ functions, does not increase the degree.

Also, if one looks carefully at the evaluation of Ξh
′σ

± in terms of Φh
′σ

+ , one realizes that

the O,O+ operations may increase the degree but by at most 1. Thus the inductive

hypothesis made in connection with (2.19) is proved for Ξh, and it remains to check it

for Φh+1. This follows from the expression of Φh+1, see (2.7), in terms of the Ξh
′

with

h′ ≤ h: see (2.7). One treats separately the sums in (2.7) with |~m| ≥ 2 and |~m| ≥ 0:

one just has to consider that in the first case, which might look dangerous for the

inductive hypothesis, the products of Ξ’s contains at least two factors (which therefore

have order labels smaller than h and verify the inductive hypothesis); and, furthermore,

the coefficients (g2J0)
−1(∂ϕf)~m(ϕ0, ~ωt) or (g2J)−1(∂~αf)~m(ϕ0, ~ωt) or sinϕ0 or cosϕ0

do not contain any terms that can possibly increase the degree. Hence Φh+1 ∈ M2h.

To see that ~Φ
(h+1)σ
↑ ∈ M2h

0 , i.e. ~Φ
(k+1)σ

↑~0
(σ∞) = ~0, we simply remark that otherwise

the second of (2.12) could not be bounded in t as t→ ∞.

We can summarize the above considerations as:

~Φhσ
↑~0

(σ∞) ≡
∫

Tℓ−1
~Φhσ↑ (~ψ, σ∞) d~ψ

(2π)ℓ−1 ≡ 〈~Φhσ↑ (·, σ∞)〉 = ~0 , (2.27)

for all h ≥ 1, and, still for all h ≥ 1, as:

Ξh−(t) = w0l(t)I(w00Φ
h
+)(t)

− w00(t)
(

I(w0lΦ
h
+)(t) − I(w0lΦ

h
+)(0σ)

)

≡ O(Φh+)(t) ,

~Ξh↓(t) =
(

I2(~Φh↑)(t) − I2(~Φh↑)(0σ)
)

≡ I
2
(~Φh↑(t)) ,

Ξh+(t) = wll(t)I(w00Φ
h
+)(t)

− wl0(t)
(

I(w0lΦ
h
+)(t) − I(w0lΦ

h
+)(0σ)

)

≡ O+(Φh+)(t) ,

~Ξh↑(t) = I(~Φh↑)(t) ,

(2.28)

where O,O+, I
2
, I are defined here and in §2.2; and Ξh ≡ (Ξ−, ~Ξ↓,Ξ+, ~Ξ↑) = (Ξhj ),

j = 0, . . .2ℓ−1, Φh = (0,~0,Φh+,
~Φh↑). Note that, while Ξh has non zero components over

both the angle (j = 0, . . . , ℓ−1) and over the action (j = ℓ, . . . , 2ℓ−1) componenents,

the Φh has only the action components non zero.

We can give the above discussion a more formal statement through the following

propositions.

Proposition 2.1. The series defining the functions ~ψ → Xσ(x, ~ψ , t) =
∑∞
h=0 µ

hXhσ

(x, ~ψ, t) are convergent for µ small enough and |x| ≤ 1, σt ≥ 0. And if x = e−gσt

the surfaces (~ψ , t) → Xσ(x, ~ψ , t) are stable and unstable whiskers W±
µ , (respectively,

if σ = ±). The functions ~ψ → Xσ(0, ~ψ , σ∞) describe invariant tori T , on which

the motion is ~ψ → ~ψ + ~ωt. The two tori coincide as sets, although they may be
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parameterized differently (i.e. points with the same ~ψ may be different in the two

parametrizations).

Remark. The map on such torus defined by the correspondence established by having

the same ~ψ leads to the notion of homoclinic splitting, homoclinic scattering and

homoclinic phase shifts, see [CG], [G1].

Proposition 2.2. If (ϕ, ~α, I, ~A) ∈ W±
µ , i.e. if (ϕ, ~α, I, ~A) = Xσ

µ , then the evolution

St(ϕ, ~α, I, ~A) converges to a quasiperiodic motion on the torus T of Proposition 2.1.

And in fact the convergence is exponential in the sense that, for σt ≥ 0,
∣

∣Xσ(x, ~ψ +

~ωt, t) −Xσ(0, ~ψ, σ∞)
∣

∣ ≤ Ce−
1
2 gσt, for some constant C > 0, and for µ small enough.

The above propositions are immediate consequences of the previous discussion: the

only result we have not yet is the convergence of the series (2.2), but this will be

obtained in §5.2.

Remark. The reason for the above bound of the exponential damping constant by
1
2g is that the true decay is g(µ) = g + O(µ), see [CG], §5, Lemma 1. In fact, in

next sections, we exploit the µ-dependence of the function g2(µ), whose coefficients

γp, p ≥ 1, will be set up precisely to make the powers of the time do not arise: in

other words the terms to be integrated will have the form (2.14), and the coefficients

with |h| + |~ν| = 0 will be automatically vanishing, so that the degree of the functions

will never increase, and, since, it was originally zero, it will remain that. This means

that a suitable choise of the “counterterms” γp, p ≥ 1, yields that the functions Ξhσ,

Φhσ are in fact in M0, for any h ≥ 1.

3. Tree formalism

In this section we introduce the graphical formalism, partially developed in [G1], §5,

[Ge], §5, §7, in order to represent, via equations (2.28) and (2.7), the generic h-th order

contribution to the solutions of the perturbed motion equations. For the time being

we ignore the presence of the second sum in (2.7), (i.e. we reason as it was γp ≡ 0,

∀ p ≥ 1); we shall see in §5.1 how the discussion has to be modified when also such

terms are taken into account.

We introduce a label ν to split the functions appearing in (2.7) as sums of their
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Fourier components; let

f δ(ϕ, ~α) ≡
∑

ν=(n,~ν)

f δν
2
ei(nϕ+~ν·~α), δ = 0, 1 ,

f0(ϕ, ~α) ≡ J0g
2 cosϕ =

∑

ν, ~ν=~0
n=±1

f0
ν

2
einϕ ,

f1(ϕ, ~α) ≡ f(ϕ, ~α) =
∑

ν∈Zℓ

f1
ν

2
ei(nϕ+~ν·~α) ,

(3.1)

(the above Fourier representation is convenient as it eliminates the derivatives with

respect to ϕ, ~α in the coefficients of (2.7)).

A tree diagram (or simply tree) θ will consist of a family of lines (branches) arranged

to connect a partially ordered set of points (nodes), with the higher nodes to the right.

The branches are naturally ordered as well; all of them have two nodes at their extremes

(possibly one of them is a top node) except the lowest or first branch which has only

one node, the first node v0 of the tree. The other extreme r of the first branch will be

called the root of the tree and it will not be regarded as a node; moreover we shall call

root branch the branch connecting r to v0.

If v1 and v2 are two nodes we say that v1 < v2, if v2 follows v1 in the order

established by the tree: i.e. if on has to pass v1 before reaching v2, while climbing

the tree. If v is a node, we denote by v′ the (uniquely determined) node immediately

preceding v; we set v′0 ≡ r. Given a tree θ with first node v0, each node v > v0 can be

considered the first node of the tree constisting of the nodes following v: such a tree

will be called a subtree of θ.

Each node v of a tree θ can be considered the first node of the tree consisting of the

nodes w ≥ v: such a tree will be called a subtree of θ, and v′ will be called the root of

the subtree. A group G of transformations acts on the sets of trees, generated by the

permutations of the subtrees having the same root.

To each node v we attach a finite set of labels:

(1) the time label τv;

(2) the mode label νv ≡ (nv, ~νv), such that νv ∈ Zℓ, |νv| ≤ N ;

(3) the order label δv ∈ {0, 1};

(4) the action label jv, such that jv ∈ {ℓ, . . . , 2ℓ− 1};

and to each branch λv leading to v we attach

(5) the branch label jλv
: for each branch different from the root branch, the branch

label is an angle branch label, jλv
≡ jv − ℓ = 0, . . . , ℓ− 1, while the root branch label

can be either an angle branch label, or else an action branch label jλv
≥ ℓ, and in this

case jλv
= jv.

The order h ≡ hv0 of the tree θ with first node v0 is h =
∑

v≥v0
δv, i.e. the sum of

the order labels of the nodes. Given a node v in θ we define hv =
∑

v̄≥v δv̄. The number
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Fig.3.1. A tree θ with mv0 = 2, mv1 = 2, mv2 = 3, mv3 = 2, mv4 = 2 and m = 12; the root branch
label is defined to be jλv0

= j.

of branches connected to the node v is 1+mv, if mv is the number nodes immediately

following the considered node v (we have to count also the branch leading to v): then

m = 1 +
∑

v≥v0
mv, if m is the number of nodes in θ.

We imagine to have also a deposit of m branches numbered from 1 to m and lay

down them on the m branches of the tree θ: then we say that the tree is numbered,

and that each branch has also a number label.2 Two trees that can be superposed by

the action of a transformation of the group G, in such a way that all the labels match

(the number labels being included) will be regarded as identical.

We impose also the following:

Compatibility condition. Each node v with δv = 0 must have mv ≥ 2, and one has

δv = 1 if µv = 0. An immediate consequence of such a condition is that h ≤ m ≤ 2h−1.

In order to dispose of a label counting the number of nodes of a subtree, we introduce

an extra label (uniquely determined by the above ones), by defining the degree of

a node v, dv, as the number of nodes of the subtree having v as first node: then

dv = 1 +
∑

v̄≥vmv̄, dv0 = m. Note that, for each v ∈ θ, hv ≤ dv ≤ 2hv − 1.

We shall imagine that each branch carries also an arrow pointing to the root (“grav-

ity direction”, opposite to the ordering: if a branch leads from v′ to v then the arrow

points from v to v′).

We define the momentum of a node v or of the branch λv leading to v as ~ν(v) =

2 If we use the terminology of [G1], we can say that we are considering only labeled numbered trees,

(and not topological or semitopological trees).
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∑

w≥v ~νw, if νv = (nv, ~νv) is the mode label of v. The total momentum is ~ν(v0) =
∑

v≥v0
~νv; we say also that ~νv is the momentum “emitted” by the node v.

To each node v we associate also a factor

1

2
(−iνv)jv−ℓ cνv

ei(nvϕ
0(τv)+(~α+~ωτv)·~νv)

ℓ−1
∏

s=0

(iνvs)
ms

v , (3.2)

(the integers ms
v decompose mv and count the number of branches emerging from v

and carrying the labels s = 0, . . . , ℓ− 1, and the last product in (3.2) is missing if no

nodes follow v), where

cνv
≡ [(J0g

2)−1δjv,ℓ + (Jg2)−1
(

1 − δjv,ℓ
)

δv]f
δv
νv
,

(where δjv,ℓ is 1 if jv = ℓ, and 0 otherwise, i.e. jv = ℓ + 1, . . . , 2ℓ − 1), and to each

branch λ we associate an improper integration operation with upper limit t, denoted

O, I
2
, O+, I, like in (2.28), and the branch label will be jλ = 0 when representing O,

jλ = 1, . . . , ℓ− 1 for I
2
, jλ = ℓ for O+, and jλ = ℓ+ 1, . . . , 2ℓ− 1 for I.

Given all the above decorations on a labeled tree θ we define its value Ṽj(t; θ) via

the following operations:

(1) We first lay down a set of parentheses () ordered hierarchically and reproducing

the tree structure (in fact any ordered (topological) tree can be represented as a set of

matching parentheses representing the tree nodes). Matching parentheses correspond-

ing to a node v will be made easy to see by appending to them a label v. The root

will not be represented by a (unnecessary) parenthesis.

(2) Inside the parenthesis (v and next to it we write the factor (3.2).

(3) Furthermore out of (v and next to it we write a symbol ETv which we interpret

differently, depending on the label jλv
on λv,

ETv

(

v
·
)

v
≡































O
(

v
·
)

v
(τv′) , if v ≥ v0 , jλv

= 0 ,

I
2
(

v
·
)

v
(τv′) if v ≥ v0 , 1 ≤ jλv

≤ ℓ− 1 ,

O+

(

v
·
)

v
(τv′) , if v = v0 , jλv

= ℓ,

I
(

v
·
)

v
(τv′) , if v = v0 , ℓ+ 1 ≤ jλv

≤ 2ℓ− 1,

(3.3)

being τv′0 the root time label tσ of the tree and the superscript σ attached to t is

important only if t = 0: in such case (3.3), if v = v0, has to be interpreted as the limit

as t→ 0σ.

Let us denote Ξhσj~ν (t) the coefficient of order h in the Taylor expansion in powers of

µ and of order ~ν in the Fourier expansion in ~α of the function (µ, ~α) → Ξσµ(t; ~α). Then
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it follows that Ξhσj~ν (t) can be written as3

Ξhσj~ν (t) =
∑

θ∈trees

1

m(θ)!

∑

labels:
∑

v
δv=h

Ṽj~ν(t; θ) , (3.4)

where m(θ) = number of branches of θ = number of nodes of θ, and, if j ≥ ℓ,

Ṽj~ν(t; θ) =
∏

v0≤v∈θ

∮

dRv
2πiRv

∑

ρv=0,1

∫ ρvgτv′

σv′∞

d gτv e
−σvgRvτv wρv

jv
(τv′ , τv)

·
[ (−iνv)jv−ℓ

2
cνv

ei(nvϕ
0(τv)+~νv·~ωτv)

ℓ−1
∏

s=0

(iνvs)
ms

v

]

,

(3.5)

where τv′0 = t, (t = 0 is meant as t → 0σ, σ = ±, so that σ = σv′0 is well defined also

for t = 0, see (3.3)), jv0 = j, and we have used (2.28), by setting

w0
jv

(τv′, τv) =

{

w00(τv′)w0ℓ(τv), v > v0 , jv = ℓ,
gτv, v > v0 , jv > ℓ,

w0
jv0

(t, τv0) =

{

wℓ0(t)w0ℓ(τv0), jv = ℓ,
0, jv > ℓ,

w1
jv

(τv′, τv) =

{

w0ℓ(τv′)w00(τv) − w00(τv′)w0ℓ(τv), v > v0 , jv = ℓ ,
g(τv′ − τv), v > v0 , jv > ℓ,

w1
jv0

(t, τv0) =

{

wℓℓ(t)w00(τv0) − wℓ0(t)w0ℓ(τv0), jv0 = ℓ,
1, jv0 > ℓ,

(3.6)

If j < ℓ, then (3.5) still holds, but w
ρv0
jv0

, in (3.6), is defined as wρv

jv
, v > v0.

Remark 1. If we do not perform the operation ETv0 relative to the time τv0 of the first

node v0 and set it to be equal to t, setting also j ≡ jv0 , we see that the result is a

representation of Φhj (t).

Remark 2. Note that the tree value Ṽj(t; θ), defined through (3.5), is the same one

introduced in [G1]. The analysis of [G1] applies, and allows us, fixed the perturbative

order h, to give a bound on Ξhσj~ν (t), via (3.4). Nevertheless, in order to obtain our

stronger bound Ch, for some constant C > 0, some improvement is needed. The

special form of the kernels in (3.6) has to be exploited, and the terms from which

convergence problems arise have to be singled out: then we perform essentially an

3 The only non trivial property of the representation (3.4) is the combinatorics; however it is not

difficult to check it, say inductively. Note that the compatibility condition imposed on the labels

δv ’s corresponds to the fact that in the first sum contributing to F hσ
+ in (2.7) one has the constraint

|~m| ≥ 2.
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exact calculation on such terms, so that the involved cancellation mechanisms can be

implemented, while the other ones, harmless with respect to the estimates, can be

easily bounded. In order to achieve such a goal and distinguish between “dangerous”

and “harmless” contributions, some new labels will be introduced: only when such

labels will assume some particular values, a more careful analysis is required.

We can split wρv

jv
(τv′, τv), v > v0, as follows: if jv > ℓ we do nothing, otherwise we

decompose it as sum of two (if ρv = 0) or three (if ρv = 1) terms

w0
jv

(τv′ , τv) =
1

2

{

gτv
cosh gτv′ cosh gτv

+
sinh gτv
cosh gτv′

}

,

w1
jv

(τv′ , τv) =
1

2

{

g(τv′ − τv)

cosh gτv′ cosh gτv
+

sinh gτv′

cosh gτv
−

sinh gτv
cosh gτv′

}

.

(3.7)

Then we can write

w0
jv

(τv′, τv) e
invϕ

0(τv) =

{

gτv Y
(0)
v (τv′, τv) + Y

(−1)
v (τv′ , τv) , if jv = ℓ,

gτv Y
(2)
v (τv) , if jv > ℓ,

w1
jv

(τv′, τv) e
invϕ

0(τv) =











g(τv′ − τv)Y
(0)
v (τv′ , τv)

+Y
(1)
v (τv′ , τv) − Y

(−1)
v (τv′, τv) , if jv = ℓ,

g(τv′ − τv)Y
(2)
v (τv) , if jv > ℓ,

(3.8)

where the functions Y
(α)
v , α = −1, 0, 1, 2, are elements of a finite set of functions:

Y (−1)
v (τv′ , τv) =

1

2

sinh gτv
cosh gτv′

einvϕ
0(τv) ,

Y (1)
v (τv′ , τv) =

1

2

sinh gτv′

cosh gτv
einvϕ

0(τv) ,

Y (0)
v (τv′ , τv) =

1

2

1

cosh gτv cosh gτv′
einvϕ

0(τv) ,

Y (2)
v (τv′ , τv) = einvϕ

0(τv) ,

(3.9)

and admit the following Laurent series expansion:

Y (−1)
v (τv′, τv) =

∞
∑

k′v=1

∞
∑

kv=−1

y(−1)
v (k′v, kv)x

k′v
v′ x

kv
v ,

Y (1)
v (τv′, τv) =

∞
∑

k′v=−1

∞
∑

kv=1

y(1)
v (k′v, kv)x

k′v
v′ x

kv
v ,

Y (0)
v (τv′, τv) =

∞
∑

k′v=1

∞
∑

kv=1

y(0)
v (k′v, kv)x

k′v
v′ x

kv
v ,

Y (2)
v (τv) =

∞
∑

kv=0

y(2)
v (0, kv)x

kv
v ,

(3.10)

21



with xv = exp[−σvgτv], σv = sign τv, and xv′ = exp[−σv′gτv′], σv′ = sign τv′ . We

use the fact that [cosh gτ ]−1 = 2x/(1 + x2), sinh gτ = σ(1 − x2)/(2x), cosϕ0(τ) =

1 − 8x2/(1 + x2)2, and sinϕ0(τ) = 4σx(1 − x2)/(1 + x2)2, if x = exp[−σgτ ]. We

can compute some coefficients of the above expansions, which will turn out to be

useful in the following: y
(−1)
v (1,−1) = σv/2, y

(−1)
v (1, 0) = 2inv, y

(−1)
v (1, 1) = −σv/2,

y
(0)
v (1, 1) = 2, y

(0)
v (1, 2) = 8invσv, y

(1)
v (−1, 1) = σv′/2, y

(1)
v (0, 1) = 0, y

(1)
v (1, 1) =

−σv′/2, y
(2)
v (0, 0) = 1, y

(2)
v (0, 1) = 4invσv. We define the sets Λα, α = −1, 0, 1, 2, as:

Λα = {v ∈ θ : αv = α}.

If j < ℓ, a decomposition analogous to (3.7) is still possible also for the term

corresponding to the first node v0:

w0
jv0

(t, τv0) = −
1

2

{

gτv0 sinh gτv0
cosh2 gt cosh gτv0

+
sinh gt sinh gτv0

cosh2 gt

}

,

w1
jv0

(t, τv0) = −
1

2

{

g(t− τv0) sinh gt

cosh2 gt cosh gτv0
+

1 + cosh2 gt

cosh gt cosh gτv0
−

sinh gt sinh gτv0
cosh2 gt

}

,

(3.11)

and expressions similar to (3.8) can be easily found, being the functions Y
(αv)
v replaced

with new functions, say Ỹ
(αv)
v , admitting a series expansion differing from (3.10) only

in the values of the coefficients y
(αv)
v (k′v0 , kv0); we do not give the details, as the analysis

proceeds along the same lines, and no relevant difference is introduced.4

Then, for each tree node, we have four more labels, kv, k
′
v, ρv, αv, to add to the

previous ones τv, νv, δv, jv, and, in the end, we have to sum over all the possible

consistent collections of such labels, (note that the just introduced labels are not quite

independent on each other: e.g. αv = 1 is possible only if ρv = 1, and if an action label

is jv > ℓ, then necessarily it is αv = 2). Therefore the tree value Ṽj~ν(t; θ) introduced in

(3.3) can be replaced with a new tree value, Vj~ν(t; θ), taking into account also the new

labels, and (3.4) holds still provided Ṽj~ν(t; θ) is replaced with Vj~ν(t; θ). The generic

contribution (1/m!) Vj~ν(t; θ) to Ξhσj~ν , corresponding to a given tree θ, with m(θ) = m,

is
1

m!
Vj~ν(t; θ) =

1

m!

∏

v0≤v∈θ

∮

dRv
2πiRv

∫ ρvgτv′

σv′∞

d gτv Vv(θ) , (3.12)

where we have defined the node function Vv(θ), (depending on the tree to which the

node v belongs), as

Vv(θ) ≡ Fνv
Tv(gτv′, gτv) e

−σvRvgτv eiωvτv xkv
v

[

mv
∏

j=1

x
k′vj
v

]

, (3.13)

4 We only stress, (as it will turn out to be useful in the discussion of the renormalization procedure

of §5), that, as far the functions Y
(−1)
v and Ỹ

(−1)
v are concerned, the dependence on the τv0 variable

is through the same factor sinh gτv0 exp[invϕ0(τv0)].
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where:

(1) ωv = ~ω · ~νv;

(2) mv is the number of branches emerging from v, and v1, . . . , vmv
are the nodes

immediately following v moving along the tree (so that the product in square brackets

in (3.13) is missing if v is a top node);

(3) Tv(gτv′, gτv) is defined as

Tv(gτv′, gτv) = (δαv,2 + δαv,0) [(1 − ρv)gτv + ρvg(τv′ − τv)] + (δαv,−1 + δαv,1) (3.14)

(note that Tv(gτv′, gτv) ≡ Tv(gτv), if ρv = 0, and Tv(gτv′, gτv) ≡ Tv(gτv′ − gτv), if

ρv = 1);

(4) Fνv
is given by

Fνv
=

(−iνv)jv−ℓ
2

cνv

[

ℓ−1
∏

s=0

(iνvs)
ms

v

]

(−1)δαv,−1δρv,1 y(αv)
v (k′v, kv)

≡ F̄νv
(−1)δαv,−1δρv,1 y(αv)

v (k′v, kv) ,

(3.15)

where the coefficients F̄νv
satisfy the following bound:

∣

∣

∣

∏

v≥v0

F̄νv

∣

∣

∣
≤
(N

2
F0N

)m

≡ Cm , (3.16)

with F0 = (J0g
2)−1 maxν{fν}, and the coefficients y

(αv)
v (k′v, kv) satisfy the bound

∣

∣

∣

∣

∣

∣

∏

v≥v0

y(αv)
v (k′v, kv)

∣

∣

∣

∣

∣

∣

≤M2m
∏

v≥v0

λkv+k′v , (3.17)

if the arguments of the Y
(a)
v ’s are all inside an annulus 0 < |x| ≤ λ < 1, so that the

Laurent series defining the functions appearing in the Y
(v)
v ’s converge: therefore, to

order k ≥ 0, the coefficients can be bounded by a common value M1 on the maxima

of such functions (there are a finite number of them) in a disk of radius λ < 1 times

λ−k, and, for k = −1, their absolute values are known to be 1, so that we can set

M = max{M1, λ}.
5

For each v, once we have integrated over the τv variable, we have still to evaluate

the residue of the resulting expression at Rv = 0, so that, if we consider together

the two operations of integration over the time and of evaluation of the residue, we

5 The request that all the x satisfy the property |x| ≤ λ will turn out to be not very strong: in the

cases in which it will be used, the time variables will be ordered so that, if |xv0 | ≤ λ, then |xv| ≤ λ

for all v > v0 (see §5.2 below), and this will suffice.
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can imagine to handle a sequence of hierarchically ordered integrals. This means that

we first integrate with respect either to the (τv − τv′)’s, (if ρv = 1), or to the τv’s,

(if ρv = 0), the v’s being the top nodes, in an arbitrary order, then we evaluate the

corresponding residues, an so on until we reach the tree root.

Definition 3.1. Given a tree θ, let us define the reduced tree θ̄ in the following

way. Let us draw a bubble Bv encircling each node v > v0 with ρv = 0 and the entire

subtree emerging from it, and let us delete all the so obtained bubbles, but the outer

ones (i.e. the “maximal bubbles”); each remaining bubble encloses a subtree with first

node v and ρv label fixed to be zero. Then, inside each bubble Bv, we consider all the

possible trees with the same labels attached to the node v, (in particular with the same

hv and ρv = 0), and we sum their values (3.12): the so obtained quantity L
hvσv′

jv~ν(v)
(τv′)

will be associated with a fat point, replacing the original bubble, which will be called

a leaf (of the reduced tree). We call free nodes the reduced tree nodes different from

the leaves; the leaves will be considered a particular type of top nodes, but they will be

distinguished from the free nodes. We define the reduced degree and the reduced order

of a reduced tree, respectively, as the number of free nodes and as the sum of their order

labels, and the order of a leaf as the label hv associated with the fat point representing

it. We can associate to a reduced tree θ̄ a value Vj~ν(t; θ̄), where, corresponding to each

free node v, there is a factor Vv(θ̄) ≡ Vv(θ) as in (3.12), and, corresponding to each

leaf v, there is factor L
hvσv′

jv~ν(v)
(τv′).

Remark 1. A leaf value L
hvσv′

jv~ν(v)
(τv′) contributes to Ξ

hvσv′

jλv~ν(v)
(τv′), jλv

= jv − ℓ, where

~ν(v) the momentum of the node v, and σv′ is the sign of the time variable corresponding

to the node v′.

Remark 2. The reduced degree is so defined that the degree of a reduced tree turns

out to be equal to the reduced degree increased by the sum of the degrees of its leaves,

as it is natural to set. The analogous property holds for the reduced order.

Remark 3. Note that an integration time variable is associated only to the free nodes.

This could be found a little misleading with respect to the notion of node in the usual

terminology, (see [G1], [G2], [GGe]); nevertheless we use the name node also for the

leaves for convenience, since we want to affix to the leaves too the labels kv = 0 and

k′v, (see, in particular, the first paragraph in §4 below).

Remark 4. With respect to [Ge], we do not introduce the notion of generalized reduced

tree; this allows us to lighten the notations, (and to avoid using trees which are not

easy to visualize), but requires a refinement of the proof. However we shall see in the

following that not too much work must be done in order to achieve such a goal.

By construction all the free nodes have ρv = 1, except the first node v0 which can

have ρv0 = 0, 1, while the leaves have, by definition, ρv = 0. Given a reduced tree θ̄, we
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root v0

τv0 νv0
δv0 jv0

v1

τv1 νv1
δv1 jv1

v2

v3

νv4 dv4
hv4 jv4

v4

v5

v6

v9

v8

v7

Fig.3.2. A reduced tree θ̄ with NL = 3 leaves, mv0 = 2, mv1 = 2, mv2 = 3, mv3 = 2, and reduced
degree dv0 = 7; the branch label is defined to be jλ = j. Each fat point represents a leaf.

define θ̄f ≡ {v ∈ θ̄ : v is a free node } and θ̄L ≡ {v ∈ θ̄ : v is a leaf}; then θ̄ = θ̄f ∪ θ̄L
and θ̄f ∩ θ̄L = ∅. Note that, since ρv = 1, ∀ free node v > v0, the time variables of a

reduced tree are ordered: if σv0 = σ, then σv = σ, ∀ v > v0, v ∈ θ̄f , and σvτv > σv′τv′

for any pair of nodes v, v′, with v′ immediately preceding v.

A leaf v represents a factor contributing to Ξ
hvσv′

jλv~ν(v)
(τv′), jλv

= jv − ℓ, (see Remark

1 after Definition 3.1), whose dependence on τv′ reveals itself only through the factor

(see the third line in (3.7))

ξv(τv′) = [w00(τv′)δjv,ℓ + (1 − δjv,ℓ)] , (3.18)

so that we can write L
hvσv′

jv~ν(v)
(τv′) = ξv(τv′) L

hvσv′

jv~ν(v)
(0), being L

hvσv′

jv~ν(v)
(0) interpretated as

the limit as τv′ → 0σv′ . We define L
hvσv′

jv~ν(v)
(0) as the value of the leaf v of the reduced

tree. Also the factor (3.18) admits a series expansion like the functions Y
(αv)
v ’s in

(3.10):

ξv(τv′) =

∞
∑

k′v=1

ξv(k
′
v, 0)x

k′v
v′ . (3.19)

We can use explicitly the order of the integration variables, and define

k(v) =
∑

θ̄f∋w≥v

kw , k′(v) =
∑

θ̄∋w>v

k′w ,

ω(v) =
∑

θ̄f∋w≥v

ωw , p(v) = k(v) + k′(v) ,
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so that we can write

∏

θ̄f∋v≥v0

e−kvgστv = e−k(v0)gστv0

∏

θ̄f∋v>v0

e−k(v)gσ(τv−τv′) ,

∏

θ̄∋v≥v0

e−k
′
vgστv = e−[k′(v0)+k

′
v0

]gστv0

∏

θ̄∋v>v0

e−k
′(v)gσ(τv−τv′ ) ,

∏

θ̄f∋v≥v0

e−Rvgστv = e
−
∑

w≥v0
Rwgστv0

∏

θ̄f∋v>v0

e
−
∑

w≥v
Rwgσ(τv−τv′)

,

∏

θ̄f∋v≥v0

eiωvτv = eiω(v0)τv0

∏

θ̄f∋v>v0

eiω(v)(τv−τv′) ,

(3.20)

since σv = σv′0 ≡ σ, ∀ v ≥ v0, v ∈ θ̄f . We have used the fact that each leaf v

contributes to the reduced tree a value L
hvσv′

jv~ν(v)
(0), which is independent on τv′, times

a factor (3.18), which one has to take into account in the computation of p(ṽ), for

each ṽ < v. The leaves with jv = ℓ are such that, in (3.20), k′v ≥ 1, see (3.19), (3.10),

while, if jv > ℓ, it is k′v ≡ 0; in both cases we can define kv to be identically vanishing,

so attaching such a label, for convenience, also to the leaves. Note that only the free

nodes contribute to k(v) and ω(v); if we define the free momentum of the reduced tree

with first node v0 as ~ν(v0) =
∑

θ̄f∋w≥v0
~νw, then we can write ω(v) = ~ω · ~ν0(v). Note

also that, if (1/m!)Vj(t; θ̄) is a contribution to Ξ
hσv′

0

j~ν (t), ~ν ≡ ~ν(v0), then in general the

free momentum ~ν0(v0) is different from the “total momentum” ~ν, since ~ν0(v0) takes

into account only the free nodes of θ̄, while ~ν depends also on the momentum labels

affixed to the leaves.

Definition 3.2. Given a reduced tree θ̄, we define the stripped value of the reduced tree

V Sj~ν(t; θ̄) as the value we obtain by associating to each free node a factor Vv(θ̄) ≡ Vv(θ)

as in (3.12), but retaining for each leaf only the factor ξv(τv′) in (3.18). Note that

the discarded contribution of the leaf v is nothing else but its value, L
hvσv′

jv~ν(v)
(0), as it is

defined after (3.18).

Remark. Note that the contribution of a leaf v ∈ θ̄ to a stripped value V Sj~ν(t; θ̄) does

not depend on its order hv, but only on the label jλv
= jv − ℓ of the branch leading

to it, (see (3.18)).

4. Some topological properties of the reduced trees

As we shall see in §5, if it was p(v) 6= 0 ∀ v ≥ v0, no convergence problem would arise.

However, obviously, the case p(v) = 0 is possible and cannot be ruled out: to deal with

it, we need a very accurate analysis of the integrals appearing in (3.12).

26



Basically the reason why the bounds can be improved is the following. It is true

that the case p(v) = 0 is critical, but, when such value of p(v) occurs for some v ∈ θ,

then the values of the kw and k′w labels corresponding to the nodes w ≥ v cannot

be arbitrary: on the contrary they have to be arranged in a very special way. And

the fact that the cancellation mechanisms described in Appendix A1 work is strictly

connected to the possible special configurations: thereby in this section we study the

arrangement of the kw and k′w labels, w ≥ v, when p(v) = 0.

Let us consider a reduced tree θ̄, with first node v0 and j ≡ jλv0
< ℓ. For each

v ≥ v0, v ∈ θ̄, it is p(v) = kv +
∑

θ̄∋w>v(kw + k′w), see (3.20), where kw + k′w ≥ 0, for

each w, see (3.10), and kw ≡ 0 if w is a leaf, see (3.19). Therefore p(v0) can vanish

only if either kv0 = 0 and kw = −k′w for each w > v0, or kv0 = −1 and kw = −k′w for

each w > v′, except one single node w̃ such that kw̃ + k′w̃ = 1.

Let us discuss first the case kv0 = 0. Then, if w ∈ Λ−1, the above property requires

k′w = −kw = 1, because kw ≥ −1 and k′w ≥ 1; if w ∈ Λ1, then k′w = −kw = −1,

because kw ≥ 1 and k′w ≥ −1; otherwise, if w ∈ Λ2, it must be kw = k′w = 0; the

possibility w ∈ Λ0 has to be excluded as it would imply kw + k′w > 0, and, for the

same reason, if w is a leaf, it must be jw > ℓ, so that k′w = 0. Then we can write

∑

θ

Vj~ν(t; θ) =
∑

θ̄

V Sj~ν(t; θ̄)

NL(θ̄)
∏

i=1

L
hvi

σv′
i

ji~ν(vi)
(0) , (4.1)

where NL(θ̄) is the number of leaves of the reduced tree θ̄, and ji ≡ jλvi
, where vi

is the i-th leaf. Note that (4.1) is the product of factorizing terms, which can be

treated separately, being independent on each other; each L
hvi

σv′
i

ji~ν(vi)
(0), i = 1, . . . ,NL(θ̄),

corresponds to a leaf and has as first node a node vi with ρvi
= 0, while V Sj~ν(t; θ̄) can

have either ρv0 = 0 or ρv0 = 1. Moreover each L
hvi

σv′
i

ji~ν(vi)
(0) can have p(vi) = 0 only

if kvi
= 0 too; otherwise it is kvi

= ±1, and, correspondingly, p(vi) = ±1. Then we

confine ourselves to the study of V Sj~ν(t; θ̄), being the other terms either of the same

form, (and so admitting the same bound), or of a different type, since p(vi) 6= 0,

(and so requiring a different discussion, which we delay). If jw = ℓ, w ≥ v0, we

consider together the cases w ∈ Λ−1 and w ∈ Λ1: they give a contribution to (3.12),

containing, as far as the w node is concerned, a factor F̄νw
exp[iω(w)(τw − τ ′w)] times

e−gσ(τw−τw′ )y
(1)
w (−1, 1) −egσ(τw−τw′ )y

(−1)
w (1,−1) = (σ/2)[e−gσ(τw−τw′ ) − egσ(τw−τw′ )].

Let us consider now the case p(v0) = 0, kv0 = −1, (we note that such a case arise

only if jv0 = ℓ). Let us call w̃ the node such that kw̃ + k′w̃ = 1, (it is kw = −k′w
for each w > v0, w 6= w̃), and let us denote P the path leading from v0 to w̃, and

zi, i = 1, . . . , mP (with z1 = v0, and zmP = w̃) the nodes crossed by P.

For each zi ∈ P, it is p(zi) = kzi
+ 1, so that the possible values are p(zi) = 0, 1, 2,

corresponding, respectively, to the cases: zi ∈ Λ−1, zi ∈ Λ2, zi ∈ Λ1.
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v0 z2

z3
z4

w̃

Fig.4.1. A path P connecting the first node v0 of the reduced tree θ̄, with the node w̃, (defined as
the node verifying the condition kw̃ + k′

w̃
= 1), with mP = 5, z1 = v0 and z5 = w̃.

Note that nodes w with p(w) = 0 and αw = −1 can occur only along the path P,

as can be seen by reductio ad absurdum: in fact, if such a w is not in P, it contributes

k′w ≥ 1 to each p(ṽ), ṽ < w, so that, in particular, it produces a value p(v0) ≥ 1, which

is not possible under our assumption.

As a consequence of what has been said, we see that, in order to obtain the contri-

bution to Ξhσj~ν (t), with p(v0) = 0, kv0 = −1, we have to consider the sum of products

of several factorizing terms, as in (4.1), which are of the same type of before, up to the

first factor, which is given by the stripped value of a reduced tree with a fixed shape,

and labels p(v0) = 0, kv0 = −1. Therefore, with respect to the previous situation, only

this term is new.

Let us consider a reduced tree, with first node v0 having p(v0) 6= 0, with given shape

and collection of indices, and let us consider the p(v) labels, v > v0. Let us single out

the nodes v’s, with p(v) = 0: then each such node will be enclosed, together with all

the reduced subtree emerging from it, inside a bubble βv. Each branch leading to a

so characterized node v will be called the stem of the corresponding bubble. Let us

delete all the bubbles, but the outer ones, after summing the values of all the possible

reduced subtrees of fixed order hv and fixed p(v), kv labels attached to the first node

v represented by the end point of the bubble stem.

We can call flowers the bubbles; unlike the leaves, the flowers will not be considered

nodes. A reduced tree with first node v0 having p(v0) 6= 0 is decorated with flowers and

leaves, and, by construction, all its free nodes, (i.e. the nodes which are not leaves),

have p(v) 6= 0. Each flower βv will be characterized by the labels jv, hv, (hv will be

the order of the flower), and by a flower function, which is given by (4.1), where the

sum is over the reduced trees having the first node v with p(v) = 0, and kv = 0,−1.

The degree of a reduced tree is given by the number of its free nodes plus the sum

of the degrees of its flowers, and of its leaves; analogously, the order of a reduced tree

is given by the sum of the order labels of its nodes, (i.e. free nodes and leaves), plus

the sum of the orders of its flowers.

Let us consider now the case j ≥ ℓ. The only change we have with respect to the

previous situation is that the function w
ρv0
jv0

(t, τv0) which has to be associated with the

first node is not equal to those of the other nodes. Nevertheless, as we have said after
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(3.11), a decomposition like the one in (3.8) can be obtained, with the only difference

that the functions y
(αv)
v are repalced with some new functions, i.e. ỹ

(αv)
v , which admit

Laurent series expansions as (3.10) and, therefore, can be treated in the same way. In

other words, no further difficulty is introduced.

5. Analyticity of the whiskers

If all the nodes v had p(v) 6= 0, then all the integrals would trivially factorize, and

give an explicitly computable result bounded by Cm, for some constant C. Yet it

can happen that p(v) = 0, for some v: then, if ω(v) = 0, the integration would

increase by one the power of the time variable, and, moving backwards until the first

node is reached, in the end we could meet dangerously high powers of the time, say

τpv0 , p ≤ 2m, so that the last integration would give a p!-contribution. Also the case

ω(v) 6= 0 would give problems, since the result of the integration on the corresponding

time variable would be of the form 1/[iω(v)]−nv , for some integer nv ≥ 1, if nv is the

power of τv arising as a consequence of the mechanism previously described. In fact

both cases can be handled: the first one by setting the value of the “counterterms”

γp, p ≥ 1, so that the case p(v) = ω(v) = 0 can never occur, (and, therefore, nv ≤ 2

because of the form of the function (3.14)), the latter by exploiting some cancellation

mechanisms related to the particular structure of the kernels (3.7), which are partially

taken from [G1] and [Ge], and partially introduced in this work, (always by following

the same strategy of the quoted references).

The idea is the following. Let us consider only trees without leaves, for the time

being. We have seen that the only terms we have to handle carefully are those with

label p(v) = 0; because of the structure of the kernels (3.7), p(v) can never be “too

negative”, and, in fact, it is always p(v) ≥ −1; moreover p(v) can be vanishing only if

all the p(w) labels of the following w nodes are equal either to 0 or to ±1, (according

to the rules stated in §4). If p(v) = 0, as we have seen, kv can only assume the values

either kv = 0 or kv = −1: then the integrals over the τw’s, w ≥ v, can be bounded by

using the theory of the twistless KAM tori and the Eliasson’s cancellations, once the

values of the “counterterms” γp, p ≥ 1 have been suitably fixed. It remains to study

the cases p(v) 6= 0, but they are quite easily dealt with, by explicit calculations, if we

use the results for p(v) = 0. As far as the leaf values are concerned, it is enough to

note that a leaf v can be viewed as a contribution to Ξ
hvσv′

jλv~ν(v)
(0), so that it can be

studied in the same way as the other terms, and, therefore, admits the same bound.

5.1 Renormalization

In this section we confine ourselves to the first problem, i.e. the “elimination” of the

powers of the time variables. This will lead to a slightly modified definition of the

trees, (and therefore of their values): to be more precise, a restriction on the the
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compatibility of the node labels will be introduced: no node v with label jv = ℓ,

αv = −1, ρv = 1, p(v) = 0, ~ν0(v) = ~0 will be allowed.6 In §5.2, we shall show that

the values of the so modified trees, to degree m, admit the bound Cm, so that the

convergence of the formal series (2.2) follows.

Note also that, as it appears clear from the discussion in §4, if jv = ℓ, then the value

p(v) = 0 is possible only if αv = −1, i.e. if the contribution arising from y
(−1)
v (τv′ , τv),

(or ỹ
(−1)
v (τv′ , τv), see the end comments in §4), is studied. The dependence of both

such functions on the time variable τv is through the factor sinh gτv exp[invϕ
0(τv)]

(see note 4); this will imply that both cases can be handled at once. Therefore it will

be not restrictive to impose the renormalization condition only to the first function:

the latter will turn out to satisfy it automatically.

Recall Remark 1 after (3.6): the functions Φhσj~ν (t) admit a tree representation like the

functions Ξhσj~ν (t), the only difference being that the operation ETv0 relative to the time

τv0 of the first node v0 is not performed: on the contrary τv0 is set equal to t, and jv0
equal to j. Consider the ℓ–th component of Φhσ~ν (t), i.e. Φhσℓ~ν (t) ≡ Φhσ+~ν(t), and let us

define Φhσ+~ν(t; γ1, . . . , γh) the contribution to Φhσ+~ν(t) corresponding to fixed values of the

parameters γ1, . . . , γh; from the first equation in (3.9), we deduce that Y
(−1)
v (τv′ , τv)

can be written as Y
(−1)
v (τv′ , τv) = [cosh gτv′]

−1 Z
(−1)
v (τv), where Z

(−1)
v (τv) = 2−1

sinh gτv exp[invϕ
0(τv)] admitting a Laurent series in powers of x = exp[−σvgτv] with

coefficients z
(−1)
v (kv): then the following result holds.

Proposition 5.1. By (2.17), (3.8) and (3.10), we can write Z
(−1)
v (τv) Φhσ+~ν(τv; γ1, . . . ,

γh) as a function of x = exp[−gστv], ~ψ = ~ωτv, and consider its expansion in x and
~ψ. In general, given a function f(t), with f(t) =

∑

p,~q f̂(p, ~q) xp ei
~ψ·~q, let us denote by

f(t)
∣

∣

∣

p=~ω·~q=0
the coefficient f̂(0,~0) corresponding to the contribution (p, ~q) = (0,~0) in

the above powers expansion, (recall the hypothesis H of §1 on ~ω); note that f(t)
∣

∣

∣

p=~ω·~q=0

is a constant in t. Then the set of equations

{

Z(−1)
v (τv) Φhσ+~ν(τv; γ1, . . . , γh)

∣

∣

∣

p(v0)=0

ω(v0)=0

}

= 0 , (5.1)

with h ≥ 1, defines recursively the “counterterms” γp, p ≥ 1, satisfying the inequalities

γp ≤ Cp, for some constant C > 0.

Remark 1. The expression in left hand side of (5.1) means that the function

f(τv; γ1, . . . , γh) ≡ Z(−1)
v (τv) Φhσ+~ν(τv; γ1, . . . , γh) ,

6 Note that when ρv = 0, even if p(v) = 0 and ~ν(v) = ~0, no problem arises, as, in such a case, the

integral is automatically vanishing, essentially by definition.
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considered as a function of xv = exp[−σvgτv] and ψv = ~ωτv, has to be developed into

a power series

f(τv; γ1, . . . , γh) =

∞
∑

p(v0)=−1

∑

~ν0(v0)

|~ν(v0)|≥0

f̂(p(v0), ~ν(v0); γ1, . . . , γh) ,

and the contribution p(v0) = ~ω ·~ν(v0) = 0, (which is τv–independent), has to be taken.

Remark 2. Note that (5.1), with h = 1, fixes γ1 to a well defined value, then (5.1),

with h = 2, can be resolved giving γ2 as a function of γ1 which is now known, and

so on; therefore we dispose of a costructive algorithm to compute the “counterterms”.

Note that, although (5.1) has the appearance of an implicit equation for the γh, this

is not really the case. In fact, if we recall (2.7) and explicitly write down the terms in

which γh appears, (5.1) takes the form

∑

n=±1

n2f0
nγh + R̃hσ~ν (γ1, . . . , γh−1) = 0 , (5.2)

where
∑

n=±1 n
2f0
n ≡ 1, (see (3.1)), for a suitable function R̃hσ~ν (γ1, . . . , γh−1), taking

into account all the other terms. In fact the only contribution to (5.1) depending

on γh arises from the term of the second sum in the r.h.s. of (2.7) corresponding

to p = h, and, if we take into account also the explicit expression of the coefficients

z
(−1)
v (−1) and z

(−1)
v (0), (which can be deduced, respectively, from y

(−1)
v (kv′ ,−1) and

y
(−1)
v (kv′ , 0)), see (3.9) and the list of coefficients below (3.10)), necessary to produce

an exponent p(v0) = 0, one immediately sees that such a contribution is given by the

first term in (5.2).

Proof of Proposition 5.1. The statement of the proposition is a rewriting in terms of

the tree expansion of the property:

(

Z(−1)
v Fhσ

+,~0

)

(σ∞) ≡ 0 , (5.3)

analogous to (2.27). The only difference is that (2.27) is imposed by the motions

boundedness request, while (5.3) is imposed a priori in order to cancel all the terms

which could generate some time powers. In fact, when Ξ
hvσv′

j~ν(v) (t), j = 0, ℓ, is evaluated

from (2.28), according to the equations (3.12) and (3.20), then the condition that the

case p(v) = ω(v) = 0 can never occur implies that the degree of the time power is

never increased by one, and, since F 1σ
+ (t) ∈ M0, then Fhσ+ (t), Xhσ

± (t) ∈ M0 for all

h > 1. It is easy to check that (5.1) is of the form (5.2), say inductively, (it is an

obvious consequence of (2.7); see also the above remark), so that the only property

that remains to be checked is that γp, p ≥ 1, admits the bound Cp. But this will

follow from the discussion of §5.2, and from Remark 1 after (3.6), (or from the explicit
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formula (2.7) expressing the functions Fhσ’s in terms of the functions Xhσ’s). So that

Proposition 5.1 is proven.

The formal series expansion of g2(µ) will turn out to be convergent in µ; then the

only dependence on t of the functions (2.19), taking ~ψ to be a parameter, is through

the factor exp[−gσt]. If we recall that the original (true) model had g2 instead of

g2(µ), i.e. the parameter appearing in the hamiltonian is not g(µ) = g(1+Γ(µ)), with

Γ(µ) =
∑∞

p=1 Γpµ
p, but g ≡ g(µ) − gΓ(µ), we can conclude that the t-dependence

of the corresponding functions of the model (1.1) reveals itself through the factor

exp[−g(1 − Γ(µ))σt], (note that g(1 − Γ(µ)) = g′(µ), where g′(µ) is the function

introduced in §1). Obviously we can expand such a factor in powers of µ, so reobtaining

the powers of t, like in [Ge].

5.2 Bound on the tree values

In this section we prove the fundamental result of this paper, which assures the conver-

gence of the series defining the whiskered tori, and so completes the proof of Proposition

2.1 and Proposition 2.2:

Theorem 5.1. Let us denote by Ξhσj~ν (t) the dimensionless perturbed motion, 0 ≤

j < 2ℓ, σ = sign t. We can always write it in the form Ξhσj~ν (t) = Ξ̃hσj~ν (x, ~ωt), where

|~ν| ≤ (2h− 1)N , x = e−σgt, and Ξ̃hσj~ν (x, ~ωt) is an analytic function in x, Ξ̃hσj~ν (x, ~ωt) =
∑∞
p=0 Ξ̃hσj~ν (p, ~ωt)xp, satisfying the bound |Ξ̃hσj~ν (x, ~ωt)| ≤ D̄C̄2h−1, for some constants

C̄, D̄ > 0, and for any σt ≥ 0.

Proof of Theorem 5.1. Let us start by studying the term V Sj~ν(t; θ̄) in (5.1), where the

first node v0 of θ has p(v0) = 0, and kv0 = 0,−1; we can associate to such a tree a

path P, with the convention that P ≡ ∅ if kv0 = 0, jv0 > ℓ, and P ≡ v0 if kv0 = 0,

jv0 > ℓ. ¿From (3.12) and (3.20) we can obtain a sequence of factorizing integrals;

then, for the top nodes v /∈ P different from the leaves (top free nodes), we have

∮

dRv
2πiRv

∫ 0

σ∞

d gτv Tv(−gτv) e
−gRv

∑

w≤v
στw eiτvω(v) e−gp(v)στv , (5.4)

where p(v) = k(v) = kv and ω(v) = ωv, and Tv(−gτv) = (−gτv)1−δjv,ℓ , see (3.14).

The time integration is trivial and yields

(−σ)δjv,ℓ

∮

dRv
2πiRv

e
−gRv

∑

w<v
στw

(

Rv + p(v) − iσg−1ω(v)
)2−δjv,ℓ

.

The case ω(v) = p(v) = 0 can be excluded, since if jv = ℓ then p(v) = ±1, and if

jv > ℓ then p(v) = 0, but the property remarked in connection with (2.27) requires

in such a case ω(v) 6= 0. If jv = ℓ, as we have said before, we sum together the two
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contributions kv = ±1; if jv > ℓ, we have a factor y
(2)
v (0, 0) = 1. Therefore the residue

at Rv = 0 is
{

[

ig−1ω(v)
]−2

, if jv > ℓ,
[

1 + g−2ω2(v)
]−1

, if jv = ℓ,
(5.5)

(a factor 1/2 could be introduced in the second expression, in order to remind us not

to overcount the labels p(v) = ±1, when the sum over the trees is performed).

Next we pass to the nodes immediately preceding the top ones, which can be seen

as top ends of a new reduced tree obtained from θ̄ by deleting the original top free

nodes. For each v ∈ θ̄/P, (i.e. v ∈ θ̄, v /∈ P), we have again to consider an expression

like (5.4), so that all the integrations can be performed in the same way, if only we

bear in mind that the cases p(v) = 0, ω(v) = 0 can be excluded, for the same reasons

as before: this simply means that the residues are always of the form (5.5). If v ∈ P,

(i.e. v = zi, i = 1, . . . , mP), then the integration (5.4) yields

(−σ)δjv,ℓ [p(zi) − iσg−1ω(zi)]
−(2−δjv,ℓ) , (5.6)

where p(zi) = 0 is possible only if zi ∈ Λ−1; in such a case it must be ω(zi) 6= 0,

because of the renormalization procedure introduced in §5.1, so that (5.6) corresponds

to a factor which is bounded by 1, except for the case jzi
= ℓ, αzi

= −1, (i.e. p(zi) = 0),

which gives

[ig−1ω(zi)]
−1 (5.7)

with ω(zi) 6= 0.

In the end, only the node v0 is left. If kv0 = 0, jv0 > ℓ, we have a coefficient

y
(2)
v0 (0, 0) = 1, so we have to integrate the function g(t − τv0), if ρv0 = 1, or gτv0, if

ρv0 = 0, times exp[iω(v0)τv0 ]; if jv0 = ℓ, then kv0 = 0 requires v0 ∈ Λ−1, and (5.1)

imposes ω(v0) 6= 0. If kv0 = −1, again (5.1) requires ω(v0) 6= 0. In fact the term with

kv0 = 0, and p(v0) = ω(v0) = 0 vanishes when summed to the term having kv0 = −1,

and p(v0) = ω(v0) = 0, for a suitable choise of the “counterterms” γp, p ≥ 1, as

it has been shown in §4. We can summarize the results found so far and state the

fundamental convergence bound in the following lemma.

Lemma 5.1. Let us consider a reduced tree θ̄ with labels p(v0) = 0 and jλv0
≡ j < ℓ,

and let us define the family F0(θ̄) generated by θ̄ as follows: each time for some v > v0

we have αv = 1 (respectively αv = −1), we consider also the tree having αv = −1

(respectively αv = 1). Then the contribution to Ξhσj~ν (t), ~ν ∈ Zℓ−1, σ = ±, j < ℓ,

arising from the sum of the stripped values V Sj (t; θ̄′), θ′ ∈ F0(θ), enjoys the following

properties.

(1) Such a sum can be written as

Akv0
(t) ei~ω·~ν0(v0)ρv0

t
∏

θ̄f∋v≥v0

F̄νv
Gv[ω(v)] , (5.8)
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where F̄νv
is defined in (3.15), 0 < |~ν0(v0)| ≤ m0N , m0 being the number of free nodes

in θ̄, Akv0
(t) is the function

Akv0
(t) = (−1)ρv0 inv0 [cosh gt]−1 δkv0

,−1 + δkv0
,0 ,

and Gv[ω(v)] is defined to be

Gv[ω(v)] =















[ig−1ω(v)]−2 , if v /∈ P and jv > ℓ,
[1 + g−2ω2(v)]−1 , if v /∈ P and jv = ℓ,
(σ)δjv,ℓ [p(v) − iσg−1ω(v)]−(2−δjv,ℓ) , if v ∈ P and αv 6= −1,
[ig−1ω(v)]−1 , if v ∈ P and αv = −1,

(5.9)

with the third term always bounded by 1, since |p(v)| ≥ 1 in such a case.

(2) The sum over all the reduced trees with label p(v0) fixed to be zero, of the expression

(5.6), admits the bound D0C
m0−1
0 for some constants C0, D0 > 0, if m0 is the number

of free nodes, m0 < 2h0, with h0 ≤ h being the reduced order of θ̄.

Proof of Lemma 5.1. Note that the first statement is an easy consequence of the defini-

tions, as it has been shown, while the second one is rather deep, being essentially equal

to the KAM theorem, as it appears from the proof, (see also [G1], [G2], [GGe], [Ge]).

So Lemma 5.1 is proven if we show that the bound D0C
m0−1
0 , in the statement 2),

holds. The sums of the stripped values of all the reduced tree can be easily controlled.

If m0 is the reduced degree of the reduced tree, the number of addends is bounded

by the number of tree shapes, (≤ 22m0m0!), see [HP], times the number of ways of

attaching the νv, ρv, jv, αv and p(v) labels, (≤ (3N)ℓm0 · 2m0 · ℓm0 · 3m0 · 3m0). It

remains to check that the “small divisors” in (5.7) give no problems. This is the more

subtle, and will be done in Appendices A1, A2 and A3.

Now we pass to the reduced trees whose first node has p(v0) 6= 0. For the time being,

let us neglect the leaf values. If p(v0) = −1, then it is kv0 = −1, and kw + k′w = 0,

∀ w > v0, so that the case can be treated as the case p(v0) = kv0 = 0 of Lemma 5.1,

with respect to which only the first node v0 behaves in a different way; the analysis

can be carried out quite unchanged, and so we do not repeat it here. Therefore in the

following we can suppose p(v0) 6= −1.

¿From each flower a contribution (5.8) arises, and we can explicitly perform the

integrations over the time variables of the free nodes: each integration is a proper one,

and gives a factor bounded by 1, so that no new “small divisor” can arise.

Nevertheless we must be careful, because we still have to sum over the labels p(v),

v ≥ v0, (the sum over the other labels can be treated as in the previous case). We can

resolve this (apparent) problem as follows. If ρv0 = 1, σt ≤ g−1, we split the integral

over τv0

∫ gt

σ∞

d gτv0 (. . .) =

∫ σ1

σ∞

d gτv0 (. . .) +

∫ gt

σ1

d gτv0 (. . .) ≡ Im +

∫ gt

σ1

d gτv0 (. . .) , (5.10)
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and we consider the first term. Once all the integrations are performed, we are left

with a contribution which is the product of a factor admitting a “good m-bound”

times a factor of the form exp[−p(v0)]. Then we can choose λ = 1/2 in (3.17) in order

to get a convergent bound: at worst for every node v we have a factor 2kv+kv′ and a

factor e−kv−kv′ so that we can perform the summation over the indices kv, kv′ ≥ −1,

(see (3.10)), and the convergence follows. We have left the term in (5.10) in which the

first time variable τv0 has to be integrated between σg−1 and t, but one finds that, in

the more general case, the integrals can be written as

Im1
. . . Imp

∏

v∈θ̃f

gτv′
∫

σ1

dgτv(. . .) ,

(all the free nodes v’s have p(v) 6= 0, so that ρv = 1) where θ̃ is a subtree of θ̄ with

first node v0 and m̃ nodes, with m̃ + m1 + . . . + mp = m, and the last integral is

manifestly bounded (see also [G1]), so that we see that the only very problem is to

show that Im ≤ Cm, for some constant C. If σt > g−1, we obtain from the last

integration, (the one corresponding top the first node v0), the factor exp[−p(v0)gσt],

so that, since exp[−p(v0)gσt] ≤ exp[−p(v0)] we can repeat the above argument to

deduce the convergence. Eventually, if ρv0 = 0, the same discussion applies, and, in

particular, only the first case has to be treated.

Obviously we have to take into account also the values of the leaves. However,

if we are interested, say, in the contribution to order h, the reduced order h0 of the

reduced tree and the orders hi, i = 1, . . . ,NL, of the NL leaves have to be such that

h = h0 +
∑NL

i=1 hi. So we can arrange the sums as follows: fixed h, we sum over

h0 = 1, . . . , h, and, fixed h0, we sum over the orders of the leaves with the constraint
∑NL

i=1 hi = h − h0; then we sum over all the reduced trees of fixed order h0 with NL

leaves of fixed orders, respectively, hi, i = 1, . . . ,NL. Since the value of a leaf of order

hv represents a contribution to Ξhvσv

jλv~ν(v)
(0), it can be treated in the same way, and

therefore admits the same bound.

Therefore we can inductively check, by exploiting the results of Lemma 5.1 too, (as

far as the leaves with label p(v) = 0 are concerned), that the contribution to Ξhσj~ν (t),

~ν ∈ Zℓ−1, σ = ±1, 2ℓ > j ≥ 0, |~ν0(v0)| ≤ mN , arising from the sum of the values of all

the reduced trees of degree m, with labels p(v0) 6= 0, can be bounded by D2C
m−1
2 for

some constants D2, C2 > 0. In fact, a leaf v with p(v) = 0 contributing, e.g. , to the

reduced tree value through the factor L
hvi

σvi

ji~ν(vi)
(0) admits a representation analogous to

the same (5.1) and can be expressed as a sum of terms, which are given by the product

of the stripped value of the reduced tree with first node v times the values of its leaves.

The procedure can be iterated for all the leaves with p(v) labels equal to zero, and in

this way we can get rid of them and are left only with leaves having p(v) 6= 0. Then

the bound D2C
m−1
2 can be assumed to hold, and an inductive proof can be performed.
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It remains to study the case p(v0) = 0, j ≥ ℓ, but one immediately see that this

can be discussed as the case p(v0) = 0, j < ℓ, of Lemma 5.1, so that Theorem 5.1 is

proven.

Appendix A1. Proof of the convergence bound in Lemma 5.1

As we have seen in §5.2, from the case p(v0) = 0 we obtain a contribution to Ξhσj~ν (t)

containing a product
∏

v≥v0

F̄νv
Gv[ω(v)] , (A1.1)

where Gv[ω(v)] is defined in (5.9), and we want to find a bound on the sum of (A1.1)

over all the reduced trees with p(v0) fixed to the above value. We consider together

the cases kv0 = 0,−1; if kv0 = 0 the path P is supposed to be reduced to a single

node, v0, or to the empty set, ∅, according to the value of jv0 , (respectively jv0 = ℓ,

and jv0 > ℓ; see also the first paragraph in the proof of Theorem 5.1).

Given a reduced tree θ̄, it will be characterized by its shape and by a collections

of labels. Let us proceed as in [G1], [G2], and let us suppose a condition over the

rotation vectors stronger than the hypothesis H in §1, i.e. let us suppose that they

satisfy a strong diophantine condition. This is not really necessary, but it simplifies

the proof, and, once the result is obtained, we can reason as in [GGe] to eliminate

such an unneeded hypothesis; as the discussion can be repeated quite unchanged with

respect to [GGe], we simply refer to it. Therefore we shall make the assumption that

the rotation vectors ~ω’s satisfy the strong diophantine condition:

(1) C0|~ω · ~ν| ≥ |~ν|−τ , ~0 6= ~ν ∈ Zℓ−1,

(2) min
0≥p≥n

∣

∣

∣
C0|~ω · ~ν| − 2p

∣

∣

∣
≥ 2n+1 , if n ≤ 0, 0 < |~ν| ≤ (2n+3)−τ

−1

,
(A1.2)

where n, p ∈ Z, n ≤ 0. We fix a scaling parameter γ, which we take γ = 2, and define

(in analogy to quantum field theory: see, e.g., [BeG], [G4]) a propagator G ≡ Gv[ω(v)]

as

G =























(gC0)
2[i~ω0 · ~ν0(v)]−2 , if v /∈ P and jv > ℓ,

(gC0)
2
[

(gC0)
2 + (~ω0 · ~ν0(v))2

]−1
, if v /∈ P and jv = ℓ,

(σ)δjv,ℓ(gC0)
2−δjv,ℓ ·

· [(gC0)p(v) − iσ~ω0 · ~ν0(v)]
−(2−δjv,ℓ) , if v ∈ P and αv 6= −1,

(gC0) [i~ω0 · ~ν0(v)]
−1

, if v ∈ P and αv = −1,

(A1.3)

where ~ω0 = C0~ω is a dimensionless frequency, and we say that

(1) G is on scale 1, if |~ω0 · ~ν0(v)| > 1;

(2) G is on scale n ≤ 0, if 2n−1 < |~ω0 · ~ν0(v)| ≤ 2n.
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Note that, if v /∈ P, jv > ℓ, then, if G is on scale n ≤ 0, it is |G| < (gC0)
22−2(n−1),

and, if it is on scale 1, it is |G| < (gC0)
2, while, if v /∈ P, jv = ℓ, then |G| ≤ 1; if v ∈ P,

if αv 6= −1, then |G| ≤ 1, otherwise, if αv = −1, then |G| < (gC0)2
−(n−1). We can

get rid of the new factor (gC0)
2, by defining C1 = max{1, (gC0)

2}, and introducing a

coefficient Cm1 in the bound (3.16). This implies a simple redefinition of the constant

C in (3.16), and we can say that, if G is on scale n, then, ∀ n ≤ 1, |G| < 2−2(n−1), if

v /∈ P, and |G| < 2−(n−1), if v ∈ P.

Henceforth (and in the following two appendices), with an abuse of notation aim-

ing to not overwhelm the discussion, let us use the term “tree” instead of the more

cumbersome “reduced tree”, (and the symbol θ instead of θ̄); however it is always in

the meaning of the latter that the first one has to be interpretated. Moreover we call

momentum (tout court) of the node v the free momentum ~ν0(v).

Given a tree θ we can attach a scale label to each branch v′v (v′ being the node

preceding v): it is equal to n if n is the scale of the branch propagator. Note that

the labels thus attached to a tree are uniquely determined by the tree: they will have

only the function of helping to visualize the orders of magnitude of the various tree

branches.

Looking at such labels we identify the connected clusters T of nodes that are linked

by a continuous path of branches with the same scale label nT or a higher one. We

shall say that the cluster T has scale nT . Since the tree branches carry an arrow

pointing to the root, (see §3), we can associate to each cluster a collection of incoming

branches (branches entering T ) and a collection of outgoing branches (branches exiting

from T ).

Definition A1.1. Among the clusters we consider the ones with the property that

there is only one tree branch entering them and only one exiting and both carry the

same momentum. If V is one such cluster, we denote λV the outgoing branch, and

n = nλV
its scale label. We say that such a V is a resonance if the number of branches

contained in V is ≤ E 2−nε, where E, ε are defined by: E ≡ 2−3εN−1, ε = τ−1. We

shall say that nλV
is the resonance scale, and λV a resonant line.

Note that if λV is the branch exiting from the resonance V , the branch scale nλV

is smaller than the smallest scale n′ = nV of the branches inside V .

Definition A1.2. Given a resonance V , let λv and λv′ be, respectively, the incoming

and outgoing branches, (so that λV ≡ λv′), and v, v′ the nodes which λv, λv′, respec-

tively, lead to (v′ is inside the resonance, and v outside).7 We say that V is a strong

resonance if it is ~ν0(v) = ~ν0(v
′), (as in all resonances), and p(v) = p(v′) ≡ 0. A tree

with strong resonances will be called a resonant tree.

Remark. We shall see in the following discussion that only the strong resonances

7 Recall that the ordering is opposite to the gravity.
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can give problems, so that in fact they are the only “true resonances” (in the usual

meaning of the word). The reason why we have introduced a new name for them is

simply to maintain the definition of resonance given in [G1], as it will turn out that

some properties which we need follow from the very definition of resonance, and it will

be not important if the considered resonances are strong or not (see, in particular,

Appendix A3).

Definition A1.3. Given a propagator G as in (A1.3), we associate to it a label which

we call the degree DG of the propagator, and which we set equal to 2, if G is given by

the first or second term of the r.h.s. of (A1.3), and equal to 1, if G is given by the

third or fourth term. We associate to each cluster T a label DT , which we call the

degree of the cluster T : we set DT = j, j = 1, 2, if the propagator of the corresponding

outgoing branch has degree j. Given a strong resonance V on scale n, let us consider

the outgoing branch (resonant line); the corresponding propagator is given by either

the first term of the r.h.s. of (A1.3), or the fourth one; then the degree of a strong

resonance is equal to the degree of the corresponding resonant line, and the propagator

G of the resonant line on scale n is such that |G| < 2−DV (n−1), if DV is the degree of

the strong resonance.

The key remark is that the resonant trees (see Definition A1.1) cancel almost exactly.

We have already all is needed to see why this happens. We can reason in the following

way.

Given a tree θ with a strong resonance V , we call, as before, v the node which the

entering branch leads to, and v′ the node which the exiting branch leads to; moreover

let us call θ2 the subtree with first node v. Imagine to detach from the tree θ the

subtree θ2, then attach it to all the remaining nodes w ∈ V . We obtain a family of

trees whose contributions to Ξhσj~ν (t) differ because:

(1) some of the branches above v′ have changed momentum by the amount ~ν0(v): this

means that, if ε ≡ ω0(v) and w ∈ V , some of the propagators
[

iω0(w)
]−2

have become
[

i(ω0(w)+ε)
]−2

, some of the propagators
[

(gC0)
2+(ω2

0(w))2
]−1

have become
[

(gC0)
2+

(ω0(w)+ε)2
]−1

, some of the propagators (σ)δjw,ℓ
[

(gC0)p(w) −iσω0(w)
]−(2−δjw,ℓ) have

become (σ)δjw,ℓ
[

(gC0)p(w) −iσ(ω0(w) + ε)
]−(2−δjw,ℓ) and some of the propagators

[

iω0(w)
]−1

have become
[

iω0(w) + ε
]−1

, and:

(2) there is one of the node factors which changes by taking successively the values

νwj , j ≡ jλv
being the branch label of the branch leading to v, and w ∈ V is the node

to which such a branch is reattached.

Hence if ε = 0 we would build in this resummation a quantity proportional to:
∑

w∈V νwj = ν0j(v) − ν0j(v
′), which is zero, because ~ν0(v

′) = ~ν0(v) means that the

sum of the ~νw’s vanishes, and 0 < j < ℓ, if p(v) = 0.

Since ε 6= 0, we can expect to see a sum of order ε2 for the strong resonances
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of degree 2, if we sum as well on a overall change of sign of the νw values (whose

components ~νw sum up to ~0, so that all the ~νw can reverse their direction without

breaking the relationship which has to exist between the modes). We use the fact that

for each branch inside the resonance we have a propagator which is an even function

in its argument: if the strong resonance V has DV = 2, then there is no path P inside

V , so that the only propagators we can associate to the branches internal to V are

of the form of the first two terms in the r.h.s. of (A1.3).8 Moreover, in such cases,

no nw label apppears in the y
(αv)
w ’s, (see the list of coefficients after (3.10)), so that

all the dependence on the nw’s is through the factors F̄νw
of (3.15): therefore there is

an even number of the nw’s, (if there are any), corresponding to the nodes inside the

resonance (two for each branch), so that no change is produced by the sign reversal,

(recall also that f δv
νv

≡ f δv

−νv
). On the contrary, if the strong resonance V has degree

DV = 1, then only a sum of order ε can be obtained, but this is enough, since in this

case the “small divisor” appears to the first power.

All that has been said can be true only if ε≪ ω(w) for any w ∈ V : but our Definition

A1.1 of resonance has been set up precisely to make such property automatically

verified, as it is explained in Appendix A2.

Once we have singled out the trees which need a more careful analysis, and found

that they have almost the same properties of the resonant trees defined in [G1], we

can proceed in the same way of the quoted reference: in fact the discussion follows

quite closely [G1], Appendix A3, (with respect to which a slight change is required in

order to treat the strong resonance of degree 1), and so we relegate it to Appendix A2

below. Here we confine ourselves to state the final result.

Let us denote mj
T (n) the number of strong resonances of scale n and degree j,

contained in a cluster T , and define the tree family F(θ) as follows, (such definitions

will become more clear in Appendix A2, as that of resonance given above, which has

not been completely used so far). Given a strong resonance V of θ we detach the part of

θ above λv (λv included), being λv the entering branch of the resonance, (see Definition

A1.2), and attach it successively to the points w ∈ Ṽ , where Ṽ is the set of nodes of

V (including the endpoint w1 of λv contained in V ) outside the resonances contained

in V , and, if DV = 2, we add also the trees obtained by reversing simoultaneously

the signs of the node modes ~νw, w ∈ V . We repeat the entire procedure for all the

resonances of θ.

Then the result is that the contribution to Ξhσj~ν (t) we obtain from a given trees

8 More generally, if a cluster T has degree DT = 2, then all the clusters inside T have degree 2; and

if the propagator corresponding to a line λ has degree 2, the propagators of all the lines in θ following

λ have the same degree 2.
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family F(θ) is bounded by

1

m!

[

24me2m
∏

n≤0

2−2nN2
n2−nN

1
n

]

·

[

∏

n≤0

∏

T, nT =n

m1
T (n)
∏

i=1

2(n−ni+3)

m2
T (n)
∏

i=1

22(n−ni+3)
]

,

(A1.4)

where:

(1) N j
n is the number of propagators of scale n and of degree j in θ (n = 1 does not

appear as |G| ≥ 1 in such case), which can be written as

N j
n = N̄ j

n +
∑

T
nT =n,DT =j

(−1) +
∑

T
nT =n

mj
T (n) , (A1.5)

with the terms N̄ j
n, j = 1, 2, satisfying the inequality

2
∑

j=1

N̄ j
n ≤

4m

E 2−εn
, (A1.6)

(which is proven in Appendix A3).

(2) The first square bracket is the bound on the product of individual elements in the

family F(θ) times the bound e2m on their number (see Appendix A2).

(3) The second term is the part coming from the maximum principle, (in the form of

Schwarz’s lemma), applied to bound the resummations, as it is explained in Appendix

A2, ni being the scale of the cluster Vi which is the i-th resonance inside T , (note that

the resonance scale is n, see Definition A1.1).

Hence substituting (A1.5) and (A1.6) into (A1.4) we see that, for j = 1, 2, the

mj
T (n) is taken away by the first factor in 2jn2−jni , while the remaining 2−jni are

compensated by the −1 before the +mj
T (n) in (A1.4) taken from the factors with

T = Vi (note that there are always enough −1’s), and therefore the product (A1.4) is

bounded by

1

m!
e2m24m26m2m

∏

n

2−8nmE−1 2εn

≤
1

m!
Bm0 , (A1.7)

for B0 = e2211 exp
[(

23+3τ−1

log 2
)
∑∞
p=1 p2

−pτ−1]

. Note that the propagators with

jv = ℓ, v /∈ P, and the propagators with jv = ℓ, v ∈ P, αv 6= −1, are bounded by

1, independently on the scale label n: in fact the above described algorithm produces

a gain only for the strong resonances. Then the bound of the second statement of

Lemma 5.1, with m = m0, follows.
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Appendix A2. Approximate cancellation of the strong reso-

nances

Let us consider a tree θ and its clusters. We wish to estimate the number Nn of

branches with scale n ≤ 0 in it, assuming Nn > 0. Denoting T a cluster of scale n,

and mj
T (n) the number of resonances of scale n and degree j contained in T , (i.e. with

outgoing branches of scale n and degree j), we have the relation (A1.5) supplemented

by the inequality (A1.6), which is an adaptation of the version of Siegel–Bryuno’s

lemma, [S], [B], as it is exposed in [Pö]: a proof is in Appendix A3, and is taken from

[G1], with some minor changes.

Recall that, given a tree θ1, we define the family F(θ1) generated by θ1 as follows. If

V is a resonance of θ1 we detach the part of θ1 above λv, (recall Definition A1.2), and

attach it successively to the points w ∈ Ṽ , where Ṽ is the set of nodes of V (including

the endpoint w1 of λv contained in V ) outside the resonances contained in V . We say

that a branch λ is in Ṽ , if λ is contained in V and has at least one point in Ṽ ; we

denote by nλ its scale. For each resonance V of θ1 we shall call MV the number of

nodes in Ṽ . If the resonance degree is DV = 2, then to the just defined set of trees

we add the trees obtained by reversing simoultaneously the signs of the node modes

νw, for w ∈ Ṽ : the change of sign is performed independently for the various resonant

clusters. This defines a family of ≤
∏

2MV trees that we call F(θ1). The number
∏

2MV will be bounded by exp
∑

2MV ≤ e2m.

It is important to note that the definition of resonance given in Definition A1.1

is such that the above operation (of shift of the node to which the branch entering

V is attached) does not change too much the scales of the tree branches inside the

resonances: the reason is simply that inside a resonance of scale n the number of

branches is not very large being ≤ Nn ≡ E 2−nε. Let λ be a branch, in a cluster T ,

contained inside the resonances V = V1 ⊂ V2 ⊂ . . . of scales n = n1 > n2 > . . .:

then the shifting of the branches λVi
can cause at most a change in the size of the

propagator of λ by at most 2n1 + 2n2 + . . . < 2n+1.

Since the number of branches inside V is smaller than Nn the quantity ~ω0 · ~νλ of

λ has the form ~ω0 · ~ν0
λ + σλ~ω0 · ~νλV

if ~ν0
λ is the momentum of the branch λ “inside

the resonance V ”, i.e. it is the sum of all the ~νv of the nodes v preceding λ in the

sense of the branch arrows, but contained in V ; and σλ = 0,±1. Therefore not only

|~ω0 · ~ν
0
λ| ≥ 2n+3 (because ~ν0

λ is a sum of ≤ Nn node modes, so that |~ν0
λ| ≤ NNn), but

~ω0 · ~ν
0
λ is “in the middle” of the diadic interval containing it and does not get out of it

if we add a quantity bounded by 2n+1 (like σλ~ω0 · ~νλV
): this follows from the second

inequality in (A1.2), i.e. from the strong diophantine condition hypothesis. Hence no

branch changes scale as θ varies in F(θ1), if ~ω verifies a strong diophantine condition.

Let θ2 be a tree not in F(θ1) and construct F(θ2), then, if θ3 is a tree not in

F(θ1)∪F(θ2), we construct F(θ3), and so on. We define a collection {F(θi)}i=1,2,... of

pairwise disjoint families of trees. We shall sum all the contributions to Ξhσj~ν (t) coming
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from the individual members of each family. This is a basic feature of the summation

procedure.9

We call εV the quantity ~ω0 ·~νλV
associated with the resonance V . If λ is a line with

both extremes in Ṽ we can imagine to write the quantity ~ω0 · ~νλ as ~ω0 · ~ν0
λ + σλεV ,

with σλ = 0,±1. Since |~ω0 · ~νλ| > 2nV −1 we see that the product of the propagators is

holomorphic in εV for |εV | < 2nV −3. In fact |~ω0 ·~ν0
λ| ≥ 2n+3 because V is a resonance;

therefore |~ω0 · ~νλ| ≥ 2n+3 − 2n ≥ 2n+2 so that nV ≥ n + 3. On the other hand

note that |~ω0 · ~ν0
λ| > 2nV −1 − 2n so that |~ω0 · ~ν0

λ + σλεV | ≥ 2nV −1 − 2n − 2nV −3 ≥

2nV −1 − 2 2nV −3 ≥ 2nV −2, for |εV | < 2nV −3. While εV varies in such complex disk

the quantity |~ω0 · ~νλ| does not become smaller than 2nV −1 − 2 2nV −3 ≥ 2nV −2. Note

that the quantity 2nV −3 will usually be ≫ 2nλV
−1 which is the value εV actually can

reach in every tree in F(θ1); this can be exploited in applying the maximum priciple,

as done below.

It follows that, if V is a strong resonance, calling nλ the scale of the branch λ in

θ1, each of the ≤
∏

2MV ≤ e2m products of propagators of the members of the family

F(θ1) can be bounded above by
∏

λ 2−DV (nλ−2) ≤ 24m
∏

λ 2−DV nλ , if regarded as

a function of the quantities εV = ~ω0 · ~νλV
, for |εV | ≤ 2nV −3, associated with the

resonant clusters V . This even holds if the εV are regarded as independent complex

parameters.

By construction it is clear that the sum of the
∏

2MV ≤ e2m terms, giving the

contribution from the trees in F(θ1), vanishes to j-th order, j = DV , in the εV

parameters, (by the approximate cancellation discussed in Appendix A1). Hence we

can apply the maximum principle to bound the contribution from the family F(θ1),

so obtaining the second term in square brackets of (A1.6); the result is explained as

follows:

(1) the dependence on the variables εVi
≡ εi relative to resonances Vi ⊂ T with scale

nλV
= n is holomorphic for |εi| < 2ni−3 if ni ≡ nVi

, provided ni > n+ 3.

(2) the resummation says that the dependence on the εi’s has a first order zero in

each, if the strong resonance degree is 1, and a second order zero in each, if the strong

resonance degree is 2. Hence the maximum principle tells us that we can improve

the bound given by the first factor in (A1.4) by the product of factors (|εi| 2
−ni+3)j ,

j = DV , if ni > n+3. If ni = n+3 we cannot gain anything: but since the contribution

9 The proof of the convergence bound of Lemma 5.1 presented here is obtained by exploiting some

cancellations we can implement by summing together different reduced trees, (inside the same family

F(θ)); one could think that the leaf values give problems, since they introduce an extra difference

between the terms we sum, so making us loose the cancellation mechanism. This is not the case,

because the reduced trees appearing in F(θ) are obtained by shifting a part of θ, with all its leaves,

so that no further difference is introduced. To be more precise, we rearrange the sums as follows: fix

a reduced tree θ, with all its leaves of fixed orders; then we sum over all the terms of the family F(θ),

in which θ is contained, so that the cancellation mechanism is implemented.
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to the bound from such terms in (A1.4) is > 1, we can leave them in it to simplify the

notation. The details can be found in Appendix A4.

Appendix A3. Resonant Siegel-Bryuno bound

In the following discussion, we consider the scale labels, so that, it is quite irrelevant

which value the p(v)’s, v ∈ θ, assume, and therefore which resonances are strong and

which are not.

Calling N∗
n the number of non resonant lines carrying a scale label ≤ n. We shall

prove first that N∗
n ≤ 2m(E2−εn)−1 − 1 if N∗

n > 0.

If θ has the root line either with scale > n, or with scale n and resonant, then calling

θ1, θ2, . . . , θk the subtrees of θ emerging from the first node of θ and with mj > E 2−εn

lines, j = 1, . . . , k, it is N∗
n(θ) = N∗

n(θ1)+. . .+N
∗
n(θk) and the statement is inductively

implied from its validity for m′ < m provided it is true that N∗
n(θ) = 0 if m < E2−εn,

which is is certainly the case if E is chosen as in (A1.7). Note that, if m ≤ E 2−nε, it

is, for all momenta ~ν of the lines, |~ν| ≤ NE 2−nε, i.e. |~ω · ~ν| ≥ (NE 2−nε)−τ = 23 2n

so that there are no clusters T with nT = n and N∗
n = 0.

In the other case, i.e. if the root line is on scale n and non resonant, it is N∗
n ≤

1 +
∑k
i=1N

∗
n(θi), and if k = 0 the statement is trivial, if k ≥ 2 the statement is again

inductively implied by its validity for m′ < m.

If k = 1 we once more have a trivial case unless the order m1 of θ1 is m1 >

m − 1
2
E 2−nε. Finally, and this is the real problem as the analysis of a few examples

shows, we claim that in the latter case the root line of θ1 has scale > n.

Accepting the last statement it will be: N∗
n(θ) = 1 +N∗

n(θ1) = 1 +N∗
n(θ′1) + . . .+

N∗
n(θ′k′), with θ′j being the k′ subtrees emerging from the first node of θ′1 with orders

m′
j > E 2−εn: this is so because the root line of θ1 will not contribute its unit to

N∗(θ1). Going once more through the analysis the only non trivial case is if k′ = 1

and in that case N∗
n(θ′1) = N∗

n(θ′′1 ) + . . . + Nn(θ
′′
k′′), etc, until we reach a trivial case

or a tree of order ≤ m− 1
2
E 2−nε.

It remains to check that if m1 > m − 1
2E 2−nε then the root line of θ1 has scale

> n. Since the root line of θ is not a resonant line, the root line of θ1 cannot carry

the same momentum. Suppose that the root line of θ1 is on scale n. Then |~ω ·

~ν0(v0)| ≤ 2n, |~ω · ~ν0(v1)| ≤ 2n, if v0, v1 are the first nodes of θ and θ1 respectively.

Hence δ ≡ |(~ω · (~ν0(v0)− ~ν0(v1))| ≤ 2 2n and the diophantine assumption implies that

|~ν0(v0) − ~ν0(v1)| > (2 2n)−τ
−1

, or ~ν0(v0) = ~ν0(v1). The latter case being discarded as

the root line of θ is non resonant, it follows that m−m1 <
1
2E 2−nε is inconsistent: it

would in fact imply that ~ν0(v0)−~ν0(v1) is a sum of m−m1 node modes and therefore

|~ν0(v0) − ~ν0(v1)| <
1
2
NE 2−nε hence δ > 23 2n which is contradictory with the above

opposite inequality.

A similar induction can be used to prove that if N∗
n > 0 then the number p∗n of
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clusters of scale n verifies the bound p∗n ≤ 2m (E2−εn)−1 − 1. In fact this is true for

m ≤ E2−εn. Let, therefore, p(θ) be the number of clusters of scale n: if the first tree

node v0 is not in a cluster of scale n it is p(θ) = p(θ1) + . . . + p(θk), with the above

notation, and the statement follows by induction. If v0 is in a cluster of scale n we call

θ1, . . ., θk the subdiagrams emerging from the cluster containing v0 and with orders

mj > E2−εn. It will be p(θ) = 1 + p(θ1) + . . . + p(θk). Again we can assume that

k = 1, the other cases being trivial. But in such case there will be only one branch

entering the cluster V of scale n containing v0 and it will have a propagator of scale

≤ n− 1. Therefore the cluster V must contain at least E2−εn nodes. This means that

m1 ≤ m−E2−εn.

Therefore we add and subtract from N j
n the quantity

∑

T m
j
T (n), where the sum is

over the clusters satisfying the constraint nT = n,DT = j, and exploit the inequality

2
∑

j=1

[

N j
n +

∑

T
nT =n,DT =j

mj
T (n)

]

≤ N∗
n + p∗n ,

so that (A1.6) is proven.

Appendix A4. Dimensional estimate of the order of zero in εi.

Consider a family F(θ1) ≡ F . Let B be the first factor in (A1.4) without the e2k,

i.e. a “naive” bound on the sum of the values of each of the trees in the family.

Between the resonances there exists an inclusion relation; let us define “first genera-

tion resonances” the innermost resonances, i.e. the resonances V 1
j1

, j1 ≥ 1, containing

no other resonances, “second generation resonances” the next to innermost resonances

V 2
j2

, j2 ≥ 1, i.e. the resonances which become innermost if all the original innermost

ones are regarded as single nodes, and so on. Let εiji = ~ω · ~νλ
V i

ji

: each εiji is a function

of the values εkjk , corresponding to resonances following V iji along the tree.

Consider a first generation resonance V 1
1 of scale nV 1

1
: it is |ε11| < γnλ

V 1
1

, and

the values of the trees in F are analytic in ε11 for |ε11| < γn
V 1
1
−3. Note that if the

other εiji ’s vary in their analyticity domains, ε11, considered as a function of them, can

assume a value outside its own analyticity domain when nV 1
1

= nλ
V 1
1

+ 3,10 although

the contribution of the factors corresponding to the tree branches to the first square

bracket in (A1.4) remains as in (A1.4).

10 When the εi
ji

’s are considered as variables defined in a larger analyticity domain, the scale labels

can change but no more than one unity; this follows from the analysis in Appendix A2, as can be

easily checked.
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Then if we sum the values of the considered trees collecting them into families (of

≤ 2MV 1
1

terms) corresponding to the Eliasson’s resummation related to the resonance

V 1
1 , only, we obtain a sum of functions each of which has a zero of second order in ε11,

independently on the other values εiji ’s.

Therefore the considered sums are bounded by

B

(

2MV 1
1

2
D

V 1
1

(nλ
V 1
1

−n
V 1
1

+3)
)

,

when the “gain factor” can be left also when it is not obtained, (i.e. if nV 1
1

= nλ
V 1
1

+3),

since, in such a case, the dimensional bound, which cannot be improved, is given by

B, and nλ
V 1
1

− nV 1
1

+ 3 = 0.

We then consider another innermost resonance V 1
2 (if existent). We perform the

same resummation, obtaining a bound

B
2
∏

i=1

(

2MV 1
i
2
D

V 1
i

(nλ
V 1

i

−n
V 1

i
+3)
)

on each of the subfamilies of F that we consider in this way (each consisting of ≤

2MV 1
1

2MV 1
2

trees).

And we continue until all the N1 innermost resonances have been considered.

Then we consider a second generation resonance V 2
1 . As we perform the resumma-

tion related to the 2MV 2
1

terms associated with the new resonance, we regard the sum

of the values of each of the groups of trees as a function of ε21 = ~ω · ~νλ
V 2
1

(also the

values ε1j1 ’s corresponding to the innermost resonances contained in V 2
1 are regarded

as dependent on ε21): for all the values of ε21, with |ε21| < γn
V 2
1
−3, such a sum is analytic

if nV 1
1
> nλ

V 1
1

+ 3 for each first generation resonance, and is bounded, in every case

by

B1 ≡ B

N1
∏

i=1

(

2MV 1
i

2
D

V 1
i

(nλ
V 1

i

−n
V 1

i
+3)
)

,

as it can be argued analogously to the previous discussion. The further sum over the

values of the ≤ 2MV 2
1

elements involved in the new resummation creates a function

of ε21 with a second order zero so that we can improve the bound of such a larger

collection of trees by

B1 2MV 2
1

2
D

V 2
i

(nλ
V 2

i

−n
V 2

i
+3)

and we can continue in this way until the second generation of resonances is exhausted,

and so on until no resonances are left, and there is only a big group of terms collected
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in the successive resummations (containing all the values of the trees in F) and the

bound (A1.4) is consequently obtained.
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[Pö] J. Pöschel: Invariant manifolds of complex analytic mappings, Les Houches, XLIII

(1984), vol. II, p. 949-964, Ed. K. Osterwalder, R. Stora, North Holland (1986).

[S] K. Siegel: Iterations of analytic functions, Ann. of Math. 43, 607-612 (1943).

[T] W. Thirring: Course in mathematical physics, Springer, New York, Vol. 1 (1978),

Vol. 2 (1979), Vol. 3 (1981), Vol. 4 (1983), translation of Lehrbuch der Mathema-

tischer Physik, Springer, Wien, Vol. 1 (1977), Vol. 2 (1978), Vol. 3 (1979), Vol. 4

(1980).

47



Whiskered tori with prefixed

frequencies and Lyapunov spectrum

G. Gentile

Dipartimento di Fisica

Università di Roma, “La Sapienza”, 00185 Roma, Italia

ABSTRACT

A classical mechanics problem, as the existence of whiskered tori for an almost in-

tegrable hamiltonian system, is analyzed with techniques reminiscent of the quantum

field theory, following the strategy developed in recent works about the matter. The

system consists in a collection of rotators interacting with a pendulum via a small po-

tential depending only on the angle variables. The proof of the existence of the stable

and unstable manifolds (“whiskers”) of the rotators invariant tori corresponding to dio-

phantine rotation numbers is simplified by setting the Lyapunov spectrum to prefixed

values via the introduction, in the hamiltonian function, of “counterterms” depending

on the strength of the interaction; this is a feature usual in quantum field theory, and

emphasizes the analogy between the the field theory and the KAM framework pointed

out already in the mentioned works.
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Fig.3.1. A tree θ with mv0 = 2, mv1 = 2, mv2 = 3, mv3 = 2, mv4 = 2 and m = 12; the root branch
label is defined to be jλv0

= j.
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Fig.4.1. A path P connecting the first node v0 of the reduced tree θ̄, with the node w̃, (defined as
the node verifying the condition kw̃ + k′

w̃
= 1), with mP = 5, z1 = v0 and z5 = w̃.
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Fig.3.2. A reduced tree θ̄ with NL = 3 leaves, mv0 = 2, mv1 = 2, mv2 = 3, mv3 = 2, and reduced
degree dv0 = 7; the branch label is defined to be jλ = j. Each fat point represents a leaf.


