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Abstract. Quasi-periodic motions on invariant tori of an integrable system of

dimension smaller than half the phase space dimension may continue to exists after

small perturbations. The parametric equations of the invariant tori can often be

computed as formal power series in the perturbation parameter and can be given

a meaning via resummations. Here we prove that, for a class of elliptic tori, a

resummation algorithm can be devised and proved to be convergent, thus extending

to such lower-dimensional invariant tori the methods employed to prove convergence

of the Lindstedt series either for the maximal (i.e. KAM) tori or for the hyperbolic

lower-dimensional invariant tori.

1. Introduction

Quasi-integrable analytic Hamiltonian systems are described by Hamiltonians of the form H =

H0(I)+εH1(ϕ, I), where (ϕ, I) ∈ T
d×A, with A an open domain in R

d, are conjugate coordinates

(called angle-action variables), the functions H0 and H1 are analytic in their arguments, and ε is

a small real parameter. We shall consider for simplicity only Hamiltonians of the form

H =
1

2
I · I + εf(ϕ), (1.1)

where · denotes the inner product in R
d
.

Kolmogorov’s theorem (KAM theorem) yields, for ε small enough, the existence of many invariant

tori for Hamiltonian systems of the form (1.1): such tori can be parameterized by the corresponding

rotation vectors, at least if the latter satisfy some Diophantine conditions. On the other hand

Poincaré’s theorem states the existence of periodic orbits, which can be parameterized by rotation

vectors satisfying d− 1 resonance conditions (so that after a simple linear canonical map one can

assume that the rotation vector is (ω1, 0, 0, . . . , 0)).

A natural question is what happens of the invariant tori corresponding, in absence of pertur-

bations, to rotation vectors satisfying s resonance conditions, with 1 ≤ s ≤ d − 2. If we fix

the rotation vector as (ω,0) ≡ (ω1, . . . , ωr, 0, . . . , 0) and parameterize the invariant torus for

ε = 0 with the action value I = 0 then, after translating the origin in R
d

by (ω,0) and set-

ting I = (A,B) ∈ R
r × R

s,ϕ = (α,β) ∈ T
r × T

s, the Hamiltonian (1.1) becomes

H = ω ·A +
1

2
A · A +

1

2
B ·B + εf(α,β), (1.2)

where (α,A) ∈ T
r×R

r and (β,B) ∈ T
s×R

s are conjugate variables, with r+s = d, and · denotes

the inner product both in R
r and in R

s. Here we impose that ω is a vector in R
r satisfying

|ω · ν| ≥ C0|ν|−τ0 ∀ν ∈ Z
r \ {0}, (1.3)

17/aprile/2009; 13:38 1



2: Degenerate elliptic resonances

with C0 > 0 and τ0 ≥ r− 1, which is called the Diophantine condition; we shall define by Dτ0(C0)

the set of rotation vectors in R
r satisfying (1.3). We also write

f(α,β) =
∑

ν∈Zr

eiν·αfν(β). (1.4)

We shall suppose that f is analytic in a strip around the real axis of the variables α,β, so that

there exist constants F0, F1, κ0 such that |∂q
βfν(β)| ≤ q!F0F

q
1 e

−κ0|ν| for all ν ∈ Z
r

and all β ∈ T
s
.

There are quite a few results on the above problem; we summarize our understanding of the

existing results in Appendix A1. Lower-dimensional tori are in general considered for pertubations

of systems consisting in a collection of rotators and of oscillators. The frequencies of the rotators

are called proper or basic frequencies, while the frequencies of the oscillators are called normal

frequencies. The model we study corresponds to the case in which the normal frequencies vanish

for ε = 0, and become of order ε as an effect of the perturbation. This is the reason why we

speak of degenerate lower-dimensional tori. Such tori will be called elliptic or hyperbolic or mixed

according to the signs of the normal frequencies to order ε, which are positive or negative or of

mixed signs, respectively. The case of frequencies vanishing also to order ε (and possibly to any

fixed order in ε) is of course interesting, and it has not yet been solved in complete generality.

partial results (for the case of only one normal frequency) have been obtained in Refs. [Ch1] and

[Ch2].

The equations of motion for the system (1.2), written in terms of the angle variables alone, are

α̈ = −ε∂αf(α,β), β̈ = −ε∂βf(α,β), (1.5)

so that, once a solution of (1.5) is found, the action variables are immediately obtained by a simple

differentiation: A = α̇− ω, B = β̇.

We look for solutions of (1.5), for ε 6= 0, conjugated to the free solution (α0 + ωt,β0, 0, 0), i.e.

we look for solutions of the form

α(t) = ψ + a(ψ,β0; ε), β(t) = β0 + b(ψ,β0; ε), (1.6)

for some functions a and b, real analytic and 2π-periodic in ψ ∈ T
r, such that the motion in the

variable ψ is governed by the equation ψ̇ = ω. We shall prove the following result.

Theorem 1. Consider the Hamiltonian (1.2), with ω ∈ Dτ0(C0) and f analytic and periodic in

both variables. Suppose β0 to be such that

∂βf0(β0) = 0, (1.7)

and assume that the eigenvalues a1, . . . , as of the matrix ∂2
βf0(β0) are pairwise distinct and strictly

positive, i.e. for some constant a > 0 one has ai, aj − ai > a > 0 for all j > i = 1, . . . , s.

Then there exist a constant ε > 0 and a set E ⊂ (0, ε) such that the following holds.

(i) For all ε ∈ E there are solutions of (1.5) of the form (1.6), where the two functions a(ψ,β0; ε)

and b(ψ,β0; ε) are real analytic and 2π-periodic in the variables ψ ∈ T
r.

(ii) The relative Lebesgue measure of E ∩ (0, ε) with respect to (0, ε) tends to 1 for ε→ 0.

(iii) The functions a,b can be extended to Lipschitz functions of ε,ψ in [0, ε] × T
r.

Remarks. (1) If the equations are linearized around the torus one realizes that the square roots

of the eigenvalues of ε∂2
βf0(β0) are the frequencies controlling the motion near the unperturbed
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torus α = ψ,β = β0. In a linear approximation the negative eigenvalues correspond to exponential

instability of the B coordinates, while the positive ones correspond to oscillatory instability, hence

they are called hyperbolic and elliptic frequencies, respectively; if they are all negative the torus is

hyperbolic and if they are all positive it is elliptic. From the literature one might expect that the

non-resonance condition on the eigenvalues of ∂2
βf0(β0) could be avoided; see Appendix A1.

(2) The case of negative ε was dealt with in Ref. [GG], with techniques close to the ones introduced

here, and it corresponds to the case of hyperbolic tori.

(3) The case of mixed stationarity, i.e. det ∂2
βf0(β0) 6= 0 and eigenvalues of ∂2

βf0(β0) of mixed

signs (with non-degeneracy of the positive ones), can be treated in exactly the same way discussed

in this paper and the above result extends to this case; cf. Theorem 2 in Section 7.

(4) For ε 6∈ E the smooth extension in (iii) does not represent parametric equations of invariant

tori: it just says that their values in the physically interesting set E (which turns out to have

dense complement in [0, ε]) can be smoothly interpolated in ε. Such (non-unique) extensions are

commonly used for interpolation purposes and are called Whitney extensions.

The novelty and the purpose of our work is the development of a method of proof based on the

existence of a formal power series expression for the functions (a,b) and its multiscale analysis

producing a rearrangement of its terms, involving summing many divergent series, which turns it

into an absolutely convergent series.

The paper is organized as follows. In Section 2 we recall the basic formalism, following Ref.

[GG], and in Section 3 we give a simple example of resummation.

In Section 4 we set up terminology and discuss heuristically the ideas governing our resummations,

by explaining why they have to be performed by a multiscale analysis of the series (which we call

Lindstedt series) representing a formal expansion of the quasi-periodic motions in powers of ε.

The singularities are first “probed” down to a scale in which possible resonances between the

proper frequencies, i.e. the components of ω, and the normal frequencies, i.e. the square roots

of the eigenvalues of ε∂2
βf0(β0), are still irrelevant. The analysis of such singularities leads to

what we call non-resonant or high frequency resummations, which can be treated by the method

of Ref. [GG], i.e. of the hyperbolic case, in which no resonances at all were possible between

proper frequencies and normal frequencies (simply because, for the Hamiltonian (1.2) the latter

did not exist). Further probing of the singularities leads to what we call the resonant (or infrared)

resummations: the analysis is more elaborated and it requires new ideas, obtained by combining

the ideas in Ref. [GG] with the ones introduced in Ref. [Ge].

In Section 5 we discuss the non-resonant resummations while the new infrared resummations

are studied in Section 6 where a “fully renormalized series” is obtained, i.e. a resummation of the

series defining the formal expansion of the quasi-periodic solution (1.6) of the equations of motion

(1.5), which we prove to be absolutely convergent. The resummations that we have to perform

are really resummations of divergent series. They concern sums of geometric series of the form∑∞
p=0 z

p, with |z| > 1. In particular among the (infinitely many) cases that we really meet there

is the following rule which we use in an essential way:

∞∑

p=0

2+p = −1. (1.8)

The paper is a self-contained discussion of the construction and of the convergence of the re-

summed series. This includes a self-contained description of the well-known formal series, [JLZ],
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[GG]. Once this is achieved one has to check that the defined functions do actually represent para-

metric equations of invariant tori: for this we follow, in Appendix A5, the analysis of Refs. [GG]

and [Ge].

2. Tree formalism

We look for a formal power series expansion (in ε) of the parametric equations h = (a,b) of the

invariant torus close to the torus α = ψ,β = β0

h(ψ; ε) =

∞∑

k=1

εkh(k)(ψ) =
∑

ν∈Zr

eiν·ψhν(ε) =

∞∑

k=1

εk
∑

ν∈Zr

eiν·ψ h
(k)
ν , (2.1)

where we have not explicitly written the dependence on β0. The power series is easy to derive,

see for instance Ref. [GG]: however its convergence turns out to be substantially harder than the

convergence proof of the Lindstedt series for the maximal KAM tori. The series constructed below

for our problem, which we still call Lindstedt series, is naturally described in terms of trees. The

coefficients h
(k)
ν can be computed as sums of “values” that we attribute to trees whose nodes and

lines carry a few labels, which we call “decorated trees”.

The formalism to define trees, decorations and values has been described many times and used

in the proof of several stability results in Hamiltonian mechanics. Usage of graphical tools based

on trees in the context of KAM theory has been advocated recently in the literature as an inter-

pretation of Ref. [E1]; see for instance Refs. [Ga1], [GG], [BGGM] and [BaG].

r ν=νℓ0
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η′

νv1

v2

v3

v6

v7

v11
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η
γγ′

vv
′

Figure 1. A tree θ with 12 nodes; one has pv0 = 2, pv1 = 2, pv2 = 3, pv3 = 2, pv4 =
2. The length of the lines should be the same but it is drawn of arbitrary size. The
nodes vi, i = 5, . . . , 11 will be called endnodes. The separated line illustrates the
way to think of the label η = (γ′, γ).

A tree θ (see Figure 1) is defined as a partially ordered set of points, connected by oriented lines.

The lines are consistently oriented toward the root, which is the leftmost point r; the line entering

the root is called the root line. If a line ℓ connects two points v1, v2 and is oriented from v2 to

v1, we say that v2 ≺ v1 and we shall write v
′
2

def
= v1 and ℓv2

def
= ℓ; we shall say also that ℓ exits v2

and enters v1. More generally we write v2 ≺ v1 if v1 is on the path of lines connecting v2 to the

root: hence the orientation of the lines is opposite to the partial ordering relation ≺. The points

different from the root will be called the nodes of the tree.

Each line from v to v
′ carries a pair η of component labels η = (γ, γ′) ranging in {1, . . . , d}

(marked in Figure 1 only on some of the lines for clarity of the drawing). The labels γ and
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γ′ should be regarded as associated with v and v
′, respectively; hence with each node v with pv

entering lines ℓ1, . . . , ℓpv
one can associate pv+1 labels γ0, γ1, . . . , γpv

, with γ0 = γℓv
and γj = γ′ℓj

.

Also the root line (from v0 to the root) carries two such labels and the one associated with the

final extreme of the root line will be called the root label.

Fixed any ℓv ∈ θ, we shall say that the subset of θ containing ℓv as well as all nodes w � v and

all lines connecting them is a subtree of θ with root v
′; of course a subtree is a tree.

Given a tree, with each node v we associate a harmonic or mode, as called in Ref. [GG], i.e. a

label νv ∈ Z
r
. We shall denote by V (θ) the set of nodes and by Λ(θ) the set of lines. The number

k = |V (θ)| of nodes in the tree θ, equal to the number |Λ(θ)| of lines, will be called the order of θ.

We call a node with one entering line and 0 harmonic label a trivial node.

With any line ℓ = ℓv we associate (besides the above mentioned pair ηℓ = (γℓ, γ
′
ℓ) of labels

assuming values in {1, . . . , d}) a momentum νℓ ∈ Z
r defined as

νℓ ≡ νℓv =
∑

w∈V (θ)

w�v

νw. (2.2)

We shall consider only trees not containing trivial nodes with the entering line with 0 momentum:

this is an important restriction, as we shall see, which is a consequence of the derivation of the

Lindstedt series, see Ref. [GG] and the comments at the end of this Section.

We call degree P (θ) of a tree the order of the tree minus the number of 0 momentum lines, so

that |V (θ)| − P (θ) is their number.

We call Θν,k,γ the set of trees θ whose root line ℓv0
has momentum ν, root label γ and have

order k, i.e. with |V (θ)| = k nodes, while we call Θo
ν,k,γ the set of trees of degree k, i.e. with

P (θ) = k. One has Θν,k,γ 6= Θo
ν,k,γ .

Each tree θ “decorated” by labels in the described way will have a value which is defined in terms

of a product of several factors.

• With each node v we associate a node factor

Fv =
(∏

j

∂γj

)
fνv(β0), (2.3)

where the labels γj are the pv + 1 labels associated with the extreme v of the pv lines entering the

node v and of the line exiting it, and the derivatives ∂γ , with γ = 1, 2, . . . , r, have to be interpreted

as factors (iνv)γ . Hence Fv is a tensor of rank pv + 1.

• With each line ℓ carrying labels ηℓ = (γℓ, γℓ′) and momentum νℓ we associate a matrix, called

propagator,

Gℓ ≡ δγℓ,γ′
ℓ

1

(ω · νℓ)2
, if νℓ 6= 0,

Gℓ ≡ −ε−1 (∂2
βf0(β0))

−1
γℓ,γ′

ℓ
χ(γℓ, γ

′
ℓ > r), if νℓ = 0,

(2.4)

where χ(γℓ, γ
′
ℓ > r) is 1 if both γℓ and γ′ℓ are strictly greater than r, and 0 otherwise.

Given the definitions (2.3) and (2.4) define a value function Val, which with each tree θ of order

k associates a tree value

Val(θ) =
εk

k!

( ∏

v∈V (θ)

Fv

)( ∏

ℓ∈Λ(θ)

Gℓ

)
, (2.5)

where, by the definitions, all labels γi associated with the nodes appear twice because they appear

also in the propagators: we make in (2.5) the summation convention that repeated γ labels asso-

ciated with nodes and lines are summed over, with the exception of the label γ associated with
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the root (because we do not consider it a node and the corresponding label γ appears only once in

(2.5)). Therefore (2.5) is a number labeled by γ = 1, . . . , d, i.e. Val(θ) is a vector.

Remarks. (1) The trees can be drawn in various ways: we can limit the arbitrariness by demanding

that the length of the segments representing the lines is 1 (unlike the drawings in the above figures)

and that the angles between the lines are irrelevant. The combinatorics being very important,

because it matters in the check of cancellations essential for the analysis, we adopt the convention

that trees are drawn on a plane, have lines of unit length and carry an identifier label, that we call

number label (not shown in the above figures) which distinguishes the lines from each other even

if we ignore the other labels attached to them. Furthermore two trees that can be superposed by

pivoting the lines merging into the same node v into the root, around v itself or around the root,

are considered identical. This is a convention which is useful for checking cancellations; however

it is by no means the only possible one. Others are possible and often very convenient in other

respects [Ga1], [GM1], but in a given work a choice has to be made once and for all. Depriving trees

of harmonic and component labels leaves us therefore kk−1 numbered trees (Cayley’s formula).

(2) A line ℓ carrying 0 momentum is somewhat special. We could visualize the part of the tree

preceding such lines by encircling it into a dotted circle: such a representation has been used in

earlier papers, e.g. in Ref. [GG], calling the subtree θℓ with ℓ as root line a leaf. Here, however,

we shall avoid using a special word for the 0 momentum lines and the subtrees preceding them.

(3) We can think of the propagators as matrices of the form

Gℓ =
(
Gℓ,αα Gℓ,αβ

Gℓ,βα Gℓ,ββ

)
, (2.6)

where Gℓ,αα, Gℓ,αβ , Gℓ,βα and Gℓ,ββ are r × r, r × s, s× r and s× s matrices.

(4) The value of a tree θ defined above has no pole at ε = 0 if Val(θ) 6= 0 because every line with

0 momentum is preceded by at least two nodes, so that the total power of ε to which the value

is proportional is always non-negative and, in fact, it is necessarily positive; we need to take into

account that ∂βf0(β0) ≡ 0 and that our trees contain no trivial nodes with one entering line with

0 momentum. Note that Val(θ) is a monomial in ε of degree P (θ).

(5) In the case of maximal tori and if Val(θ) 6= 0 there are no lines with 0 momentum for systems

described by the Hamiltonians (1.1): indeed s = 0, see also [Ga2]. In this case the number of

nodes, i.e. the tree order, coincides with the power of ε associated with the monomial in ε defined

by the tree value, i.e. with the tree degree. In general, however, the order |V (θ)| of a tree can be

larger than its degree P (θ): |V (θ)| ≥ P (θ) ≥ 1
2 |V (θ)|.

The above definitions uniquely attribute a value to each tree. The following result states the

existence of formal solutions to (1.5) which are conjugated to the unperturbed motion, i.e. of the

form (1.6), with ψ → ψ + ω0t, provided the value β0 is suitably fixed. The proof is an algebraic

check which does not distinguish the possible signs of ε and can be taken from Ref. [GG] where it

is done in the case ε < 0.

Lemma 1. The Fourier transform of the power series solution h = (a,b) of (1.5) of the form (2.1)

is obtained by writing (the definition of Θo
k,ν,γ follows (2.2))

εkh
(k)
ν,γ =

∑

θ∈Θo
k,ν,γ

Val(θ) (2.7)
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for all ν ∈ Z
r, all k ∈ N and γ = 1, . . . , d.

The expression (2.7) is well defined at fixed k and the sum over k gives what we call the formal

power series solution for the equations for the parametric representation (2.1), (1.6) of the invariant

tori.

Note that the formal solubility of the equations (1.5) requires that to each order k one has

∂2
βf0(β0)b

(k)
0 +R

(k)
0

= 0, where R
(k)
0

denotes all the other contributions to order k (which depend

on b
(k′)
0

only with k′ < k). The first term would be represented by a tree with a trivial node with

entering line carrying zero momentum. If we set b
(k)
0 = (∂2

βf0(β0))
−1R

(k)
0

then we exclude the

possibility of such trivial nodes (see comments after (2.2)) and automatically define b
(k)
0

according

to (2.5) with the definition in the second line of (2.4) for propagators of lines with 0 momentum.

3. The simplest resummation

The power series in ε in (2.1) and its Fourier transform defined by the sum over k of (2.7) may be

not convergent as a power series (as far as we know). The problem is difficult because if in (2.7)

we replace Val(θ) with |Val(θ)| the series certainly diverges.

Our aim, as stated in the introduction, is to show that nevertheless a meaning to the series

can be given. We shall show that the tree values can be further decomposed into sums of several

other quantities and that the various contributions to the series can be rearranged by suitably

collecting them into families: the sums of the contributions from each family leave us with a new

series (no longer a power series in ε) which is in fact convergent and its sum solves the problem of

constructing the parametric representations h = (a,b), (2.1), of the invariant tori at least for all

ε ∈ E , with E a set with 0 as a density point (i.e. a Lebesgue point).

For this purpose we need to define and consider more involved trees and more involved definitions

of their values. We begin by remarking that trees may contain trivial nodes, i.e. nodes with 0

harmonic separating two lines with equal momentum ν 6= 0.

One can suppose that no tree contains trivial nodes provided we use for all lines, with momentum

ν 6= 0 and labels γ, γ′ associated with the extremes, the new propagators

g(x; ε)
def
= (x2 −M0)

−1, x
def
= ω · ν, M0

def
= ε

(
0 0
0 ∂2

βf0(β0)

)
. (3.1)

This is a resummation of many divergent series obtained by adding the values of trees obtained

from a tree without trivial nodes by “insertion” of an arbitrary number of trivial nodes on the

branches with momentum ν 6= 0: this requires summing series, one per branch of a tree without

trivial nodes, which are geometric series with ratio given by the d× d matrix z = M0

(ω·ν)2 ; |z| can be

larger than 1 because the s non-zero eigenvalues εaj, j = 1, . . . , s, of M0 are unrelated to x = ω ·ν.1

Therefore replacing
∑∞

p=0 z
p by (1 − z)−1 is not rigorous and needs to be eventually justified.

Certainly we must at least suppose that x2 −M0 can be inverted: otherwise the values of the trees

representing the new series might even be meaningless! (i.e. if some lines will have momentum ν

1 Note that since the tree lines are numbered (i.e. they are regarded as distinct) adding p nodes on a line ℓ changes

the combinatorial factor k!−1 in (2.5) into (k+p)!−1; however the new p lines thus produced can be chosen in
(

k+p

p

)
ways and ordered in p! ways so that we can ignore the extra number labels on ℓ and use as combinatorial factor

(k + p)!−1
(

k+p

p

)
p! = k!−1.
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such that det(x2 −M0) = 0). This happens for a dense set of ε’s and we have to exclude such ε’s

by imposing conditions on the eigenvalues λ
[0]
r+j ≡ εaj , j = 1, . . . , s, i.e. on ε.

For uniformity of notations it is convenient to assume that ε is in an interval (εmin, 4εmin] related

to the largest eigenvalue λ
[0]
d ≡ asε of M0 by

λ
[0]
d ≡ ε as ∈ IC

def
=
(1

4
C2, C2

]
, C

def
= C02

−n0 , n0 ≥ 0, (3.2)

where C0 is the Diophantine constant in (1.3) (fixed throughout the analysis); thus IC is an interval

of size O(C2) (i.e. 3
4C

2). In other words we find it convenient to measure ε in units of C2
0a

−1
s via

an integer n0. We a priori assume, for simplicity, the restrictions asε ≤ C2
0 and ε ≤ 1.

To give a meaning to (x2 −M0)
−1 it would suffice to require |x2 − εaj| 6= 0 for all j and all ν,

thereby excluding “only” a denumerable (dense) set of values of ε, of 0 length; however stronger

conditions will be needed in order to analyze the convergence problems and we begin by imposing

them in a form which will be useful later. Setting for later use λ
[0]
j (ε)

def
= λ

[0]
j , the conditions that

we impose on λ
[0]
j , i.e. on ε, are that for all x = ω · ν 6= 0 and for all independent choices of the

signs + or −

Γ(x)
def
= min

j≥i

{∣∣∣|x| −
√
λ

[0]
j (ε)

∣∣∣ ,
∣∣∣x±

√
λ

[0]
j (ε) ±

√
λ

[0]
i (ε)

∣∣∣
}
≥ 2−(n0−1)/2 C0

|ν|τ1
(3.3)

for τ1 suitably large and n0 suitably larger than n0, see (4.2). This excludes a closed set of values

of ε in the considered interval IC , (3.2): its measure can be estimated without difficulties. Let

τ1 = τ0 + r + 1, (3.4)

be a convenient, although somewhat arbitrary, choice; then the total measure of the excluded set

is

≤ 2−(n0−1)/2C2K, (3.5)

where K is a suitable constant; see Appendix A2. Hence the measure of the complement of the

set En0−1 where (3.3) is verified is a small fraction of order C1/2 of the measure of the interval IC ,

whose size is proportional to C2, in which we let ε vary, at least if n0 is large.

4. Resummations: semantic and heuristic considerations

Replacing the propagators x−2 of the lines by (x2 − M0)
−1 we obtain a representation of the

parametric equations h involving simpler trees (i.e. trees with no trivial nodes). The new repre-

sentation is a series in which each term is well defined if ε is in the large set En0−1 ⊂ IC in which

(3.3) holds. This is quite different from the original Lindstedt series in (2.7) whose terms are well

defined for all ε.

We should also stress that the resummed series is in a sense more natural: the 0 momentum lines

now appear as less anomalous because their propagator is much more closely related to (x2−M0)
−1.

One can say that it is just the latter evaluated at x = 0 with the meaningless entries (i.e. the first

r diagonal entries) replaced by 0. Another way of saying the latter property is that lines ℓ with

0 momentum and labels γℓ, γ
′
ℓ ≤ r are forbidden. One should not be surprised by this fact: it is

the generalization of the corresponding property in the case of maximal tori (r = d) in which this

means that lines with 0 momentum are forbidden. The latter property goes back to Poincaré’s
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9: Degenerate elliptic resonances

theory of the Lindstedt series and is the key to the proof of the KAM theorem and of cancellations

which make the formal Lindstedt series for maximal tori absolutely convergent; see Refs. [E1] and

[Ga2]. However the new series is still only a formal representation because it is by no means clear

that it is absolutely convergent.

The next natural idea is to try to establish convergence by further modifying the propagators,

changing at the same time the trees structure, until one achieves a formal representation whose

convergence will be “easy” to check. Once achieved a formal representation which is convergent

we shall have to check that it really solves the equations for h.

The modification of the trees structure will be performed by steps. At each step, labeled by an

integer n = 0, 1, . . ., the propagators of the lines with non-zero momentum will have been modified

acquiring labels [0], [1], . . . [n − 1], or the label [≥ n], indicating that they are given no longer by

(x2 −M0)
−1 but by a matrix proportional to (x2 −M[≤p])−1, if their label is [p], with p < n, or

(with a different proportionality factor) to (x2 −M[≤n])−1, if their label is [≥ n]; here M[≤p] are

suitable matrices. Here and in the following the symbols [≤ n] and [≥ n] are consistently used.

Hence [≥ n] does not denote the set of scales [p] with p ≥ n, and in fact it is just a different scale;

likewise [≤ n] does not “include” [p] even if p ≤ n. In other words one has to regard the symbols

[≤ n], [n] and [≥ n] as unrelated symbols. This might appear unusual but it turns out to be a good

notation for our purposes.

The proportionality factor depends on x and contains cut-off functions which vanish unless

x2 − M[≤p] has smallest eigenvalue of order O(2−2pC2
0 ); the cut-offs are so devised that if the

propagator does not vanish its denominator has a minimum size proportional to 2−2p and the ratio

between its minimum and maximum values will be bounded above and below by a p-independent

constant. No modification will be made of the propagators of the 0 momentum lines; for uniformity

of notation we shall attach a label [−1] to such lines.

Considering trees with no trivial nodes in which each line carries also an extra scale label

[−1], [0], [1], . . . [n − 1], [≥ n] a new formal representation of h will be obtained by assigning, to

the trees, values defined by the same formula in (2.5), with the propagators Gℓ replaced by the

new propagators, that we denote g
[p]
ℓ if the line ℓ carries the label [p], with p = −1, 0, . . . , n − 1,

and g
[≥n]
ℓ if the line carries the label [≥ n]. When the line ℓ is on scale [p], with p = 0, . . . , n− 1,

or [≥ n] or [−1], then the corresponding propagator will be proportional to (x2 − M[≤p])−1 or

(x2 −M[≤n])−1 or, see (2.4), the block matrix

(
0 0
0 (−ε∂2

βf0(β0))
−1

)
.

The construction will be performed in such a way that the matrices (x2 −M[≤p]) will be defined

by series which will be proved to be convergent; furthermore if we only considered the contributions

to the formal representation of h coming from trees in which no propagator carries the “last label”

[≥ n] then the corresponding series would be convergent.

We express the latter property by saying that the performed resummations regularize the formal

representation of h down to scale [n − 1], or that the propagators singularities are probed down

to scale [n − 1]. The problem of course remains to understand the contributions from the trees

containing lines with label [≥ n]. The construction will be such that their propagators are also

properly defined because the matrices M[≤n] will always be well defined by convergent series (as

we shall see). However for the lines whose label is [≥ n] no useful positive lower bound, not even

n-dependent, can be given on the smallest eigenvalue of the denominators in the corresponding

propagators.

We shall say that the lines with scale [≥ n] probe the singularity all the way down to the

smallest frequencies or all the way down in the infrared scales. Thus in spite of the convergence of
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10: Degenerate elliptic resonances

the contributions to h coming from trees with labels [−1], [0], [1], . . . , [n− 1] the representation of

h remains formal.

Therefore we shall proceed by increasing the value of n trying to take the limit n→ ∞. This is the

procedure followed in the case of the theory of hyperbolic tori in Ref. [GG]. In that case, however,

the propagators denominators (x2 −M[≤n]) had eigenvalues always bounded below proportionally

to x2. Indeed the last s eigenvalues of M[≤n] were negative whereas the first r remained close to

zero within O(εx2) (a non-trivial property, however, due to remarkable cancellations well known

in the KAM theory, [Ga2]).

Here the matrices x2 −M[≤n] will be shown to have the first r eigenvalues differing by a factor

(1 + O(ε2)) and the last s differing by O(ε2) with respect to those of x2 − M0 (which has by

construction r eigenvalues x2 and s eigenvalues x2 − εaj j = 1, . . . , s). Thus the denominators can

become small because either x2 gets close to 0 or because it gets close to εa1, . . . εas. Therefore

the regularization will have to be split in two parts. The first part will concern regularizing the

scales [p] with p such that the eigenvalues of x2 −M[≤p] remain bounded below proportionally to

x2; we shall call this part of the analysis the high frequencies resummation. The other part, which

we shall call the infrared resummation, will concern the regularization of the scales [p], in which x

can be so close to some εaj that the denominators cannot be bounded below proportionally to x2.

We associate with each momentum ν the frequency x = ω · ν and we measure the strength of

this resonance by the integer p if D(x; ε) ≃ C2
02−2p, with

D(x; ε) = min
j

∣∣∣x2 − λ
[0]
j (ε)

∣∣∣ def
=
∣∣∣x2 − λ

[0]
jε(x)(ε)

∣∣∣. (4.1)

Therefore the condition that the resonance strength of the frequency x be bounded below propor-

tionally to |x| is that p is not too large compared to n0 defined in (3.2), so that x2 stays away from

the corresponding eigenvalue λ
[0]
j (ε) by more than a small fraction of the minimum separation δ

between the distinct eigenvalues. For instance we can require D(x; ε) ≥ 2−2(n0+1)C2
0 ≥ δ/4. This

gives p ≤ n0, with

n0 = n0 + n, n
def
= − 1 +

1

2
log2

1

ρ
, ρ =

1

4
a−1

s min{a1,min
j

{aj+1 − aj}}. (4.2)

In fact the requirement could be fulfilled with n one unit larger: the interest of using the above

value of n will emerge later (if s = 1 one interprets ρ = 1
4 ).

We then perform the analysis by defining recursively the matrices M[≤p](x; ε) for p = 0, . . . , n0

with eigenvalues λ
[p]
j (x, ε) verifying for a suitable constant γ > 0

|λ[p]
j (x, ε) − λ

[0]
j (ε)| < γε2, p ≤ n0, (4.3)

so that if the label p of the line with frequency x is p ≤ n0 then one has, if 1
2as2

−2(n+1) − γε ≥ 0,

|x2 − λ
[p]
j (x, ε)| ≥ 1

2
D(x, ε) +

1

2
D(x, ε) − γε2 ≥ 1

2
D(x, ε) ≥ 2−2(n+2)|x|2 (4.4)

where the last step is obvious if |x|2 ≥ 2λ
[0]
d (ε), otherwise it follows from the inequality

D(x; ε) ≥ 2−2(n+1)2−2n0C2
0 ≥ 2−2(n+1)λ

[0]
d (ε) ≥ 2−2(n+1)−1|x|2. (4.5)
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11: Degenerate elliptic resonances

We can say that for p ≤ n0 the strength of the singularity is dominated by the distance |x| to the

origin, i.e. by the “classical” small divisors x−2 provided, of course, the matrices x2 −M[≤p](x; ε)

remain close enough to x2 −M0 (which we shall check). Furthermore the convergence of the sum

of all values of trees with no line label [≥ n0] will be performed exactly along the lines of Ref.

[GG] because the bound (4.4) guarantees that in evaluating such trees one does not probe the

singularities close to the eigenvalues of M0.

The departure from the method in Ref. [GG] occurs when we consider trees in which lines bear

the label [≥ n0]. The problem will again be studied by a multiscale analysis which will have to

be suitably modified to allow probing the new singularities arising from the resonances between

the frequencies x and the
√
λ

[0]
j (ε), j > r. The difficulty is that the propagator g

[≥n0]
ℓ will not be

singular exactly at the frequencies
√
λ

[0]
j (ε) 6= 0 but at the frequencies fixed by the roots of the

eigenvalues λ
[≤n0]
j (x; ε) of the matrices M[≤n0](x; ε). The latter not only are slightly different from

those of M0 but will turn out to depend also on x.

This means that D(x; ε) and even ∆(x; ε) = minj

∣∣x2 − λ
[≤n0]
j (x; ε)

∣∣ no longer provide a good

estimate of the strength of the singularity, because D,∆ vanish at the “wrong places”. In fact we

shall have to perform a multiscale analysis to resolve the infrared singularities, and it will happen

that at each of the new scales with labels [p], with p ≥ n0, the singularities will keep moving.

Suppose to have regularized the series up to scale [n − 1], with n > n0, introducing suitably

matrices M[≤p](x; ε), with p = n0, . . . , n, thus pushing the probe of the singularities down to

scales C02
−n; then to avoid meaningless expressions we shall have to impose on the eigenvalues

of the last propagator, proportional to (x2 − M[≤n](x; ε))−1, a condition like (3.3). Since the

eigenvalues depend on n and x this risks to imply that we have to discard too many ε’s; in the

limit n→ ∞: when, finally, the singularities will have been probed on all scales, or even for large

enough scales, we might be left with an empty set of ε’s rather than with a set of almost full

measure.

Physically the difficulty shows up because of the possibility of resonances between the proper

frequencies of the quasi-periodic motion on the tori and the normal frequencies. It will be studied

and solved in Section 6 below, while in Section 5 we shall discuss the simpler regularization of the

series for h on the high frequency scales.

The spirit informing the analysis is very close to the techniques used in harmonic analysis, in

quantum field theory and in statistical mechanics, known as “renormalization group methods”

(see Refs. [F], [Ga3], [GM1], [Ga4], [BKS] and [Ga5]). The latter methods are also based on a

“multiscale decomposition” of the propagators singularities. We introduced and adopt the above

terminology because we feel that it is suggestive and provides useful intuition at least to the readers

who have some acquaintance with the renormalization group approach and multiscale analysis.

5. Non-resonant resummations

The resummations will be defined via trees with no trivial nodes and with lines bearing further

labels. Moreover the definition of propagator will be changed, hence the values of the trees will be

different from the ones in Section 3: they are constructed recursively.
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ψ0

C2
0/4 C2

0
D C2

0/4 C2
0

χ0

D

χ0

C2
0/42 C2

0/4 C2
0

D

Figure 2. The first graph is ψ0, the second is χ0 and the third is χ0 ≡ ψ1χ0.

Instead of the sharp multiscale decomposition considered in Ref. [GG] here it will be convenient

to work with a smooth one as in Ref. [Ge]. Let ψ(D) be a C∞ non-decreasing compact support

function defined for D ≥ 0, see Figure 2, such that

ψ(D) = 1, for D ≥ C2
0 , ψ(D) = 0, for D ≤ C2

0/4, (5.1)

where C0 is the Diophantine constant in (1.3), and let χ(D) = 1 − ψ(D). Define also ψn(D) =

ψ(22nD) and χn(D) = χ(22nD) for all n ≥ 0. Hence ψ0 = ψ, χ0 = χ and

1 ≡ ψn(∆(x; ε)) + χn(∆(x; ε)), for all n ≥ 0, (5.2)

for all choices of the function ∆(x; ε) ≥ 0: in particular for ∆(x, ε) = D(x) with D(x) defined in

(5.3) below. We set the following notations.

Definition 1. Let n0, n be as in (4.2) and D(x; ε) as in (4.1).

(i) Divide the interval IC ≡ [εmin, 4εmin], where ε varies, see (3.2), into a finite number of small

intervals I of size 1
2εminρ (or smaller), see (4.2), i.e. smaller than a fraction of the minimum

separation between the eigenvalues 0, a1, . . . , as. Define

D(x; I) = min
ε∈I

D(x; ε) = min
ε∈I

min
j

∣∣∣x2 − λ
[0]
j (ε)

∣∣∣ = min
ε∈I

∣∣∣x2 − λ
[0]
j(x)(ε)

∣∣∣. (5.3)

where j(x) is the smallest value of j for which the last equality holds: exceptionally there might be

2 such labels. The j(x) is ε-independent, by construction, for ε ∈ I.

Remarks. (1) Note that, as a consequence of the definition of the intervals I and of D(x; I) as

given by (5.3), one has, for all ε ∈ I,

min
j

∣∣∣x2 − λ
[0]
j (ε)

∣∣∣ ≥ 1

2

∣∣∣x2 − λ
[0]
j(x)(ε)

∣∣∣, (5.4)

(2) If ε is in one of the intervals I and x verifies D(x; I) ≤ C2
02−2n0 then there is only one value of

j for which last equality in (5.3) holds.

(3) We shall fix, from now on, ε in one of the intervals I ⊆ IC . Remark that D(x; I) is piecewise

linear in x2 with slope equal to 1 in absolute value for x in the regions where it will be considered

(see below) and we simplify the notation by setting

D(x)
def
= D(x; I). (5.5)

(4) The number of intervals I ⊂ IC can and will be taken independent of εmin, i.e. of the interval
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13: Degenerate elliptic resonances

IC where ε varies, and equal to a fixed integer of order 6ρ−1.

(5) From now on we only consider trees with no trivial nodes.

A simple way to represent the value of a tree as sum of many terms is to make use of the identity

in (5.2). The propagator g(x; ε) ≡ g[≥0](x; ε)
def
= (x2−M0)

−1 of each line with non-zero momentum

(hence with x 6= 0) is written as

g[≥0](x; ε) = ψ0(D(x)) g[≥0](x; ε) + χ0(D(x)) g[≥0](x; ε)
def
= g[0](x; ε) + g

{
≥1
}
(x; ε), (5.6)

and we note that g[0](x; ε) vanishes if D(x) is smaller than (C0/2)2, see Figure 2.

If we replace each g[≥0](x; ε) with the sum in (5.6) then the value of each tree of order k is split

as a sum of up to 2k terms2 which can be identified by affixing on each line with momentum ν 6= 0

a label [0] or
{
≥ 1
}
. Further splittings of the tree values can be achieved as follows.

Definition 2. For p = 1, . . . , n0, let M[p](x; ε) be matrices with eigenvalues λ
[p]
j (x; ε), p =

1, . . . , n; we set M[0](x; ε) ≡M0 and M[≤n](x; ε) =
∑n

p=0 M[p](x; ε). Define for 0 < n ≤ n0 − 1

g[n](x; ε)
def
=

ψn(D(x))
∏n−1

m=0 χm(D(x))

x2 −M[≤n](x; ε)
,

g

{
≥n
}
(x; ε)

def
=

∏n−1
m=0 χm(D(x))

x2 −M[≤n−1](x; ε)
,

g[≥n](x; ε)
def
=

∏n−1
m=0 χm(D(x))

x2 −M[≤n](x; ε)
,

(5.7)

and g[0](x; ε) = ψ0(D(x)) (x2 −M0)
−1. We call the labels [n], {≥ n}, [≥ n] scale labels.

Remarks. (1) The products
∏n−1

m=0 χm(D(x)) can be simplified to involve only the last factor: we

keep the notation above as it is a notation that naturally reflects the construction. The propagators

g

{
≥n
}

play a subsidiary role and are here for later reference.

(2) The matrices M[p](x; ε) will be defined recursively under the requirement that the functions h

defining the parametric equations of the invariant torus will be expressed in terms of trees whose

lines carry scale labels indicating that their values are computed with the propagators in (5.7).

(3) Note that if we defined M[≤p](x; ε) ≡M0, i.e. M[p] ≡ 0 for p > 0, then (recall that we consider

only trees without trivial nodes) we would naturally decompose (see below for details) the tree

values into sums of many terms keeping obviously each total sum constant by repeatedly using

(5.2), thus meeting the requirement in Remark (2) above. This would be of no interest. Therefore

we shall try to define the matrices M[p](x; ε) so that the sum of the values of new trees (with

no trivial nodes and whose nodes and lines ℓ still carry harmonic and momentum labels as well

as scale labels [−1], [0], . . . , [n− 1], [≥ n]) remain the same provided their values are evaluated by

using the propagators in (5.7) and we shall try to define M[≤p](x; ε), so that there is also control

of the convergence.

(4) In other words we try to obtain a graphical representation of h, involving values of trees which

are easier to study at the price of needing more involved propagators. This is a typical method

employed in KAM theory [GBG], and in other fields.

To define recursively the matrices we introduce the notions of clusters and of self-energy clusters

of a tree whose lines and nodes carry the same labels introduced so far and in addition each line

2 Not necessarily 2k because there might be lines on scale [−1] whose propagator is not decomposed.
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14: Degenerate elliptic resonances

carries a scale label which can be either [−1], if the momentum of the line is zero, or [p], with

p = 0, . . . , n0 − 1, or [≥ n0]. Given a tree θ decorated in this way we give the following definition,

for n ≤ n0.

Definition 3. (Clusters)

(i) A cluster T on scale [n], with 0 ≤ n, is a maximal set of nodes and lines connecting them with

propagators of scales [p], p ≤ n, one of which, at least, of scale exactly [n]. We denote with V (T )

and Λ(T ) the set of nodes and the set of lines, respectively, contained in T . The number of nodes

in T will define the order of T , and it will be denoted with kT .

(ii) The mT ≥ 0 lines entering the cluster T and the possible line coming out of it (unique if

existing at all) are called the external lines of the cluster T .

(iii) Given a cluster T on scale [n], we shall call nT = n its scale.

Remarks. (1) For instance if n = 0 the scale of the lines in the cluster can only be [−1], [0]. Note

that a single node is not a cluster. Also connected subgraphs containing only lines on scales [−1]

are not clusters, because by definition the scale [n] of the cluster has to such thatn ≥ 0.

(2) Here n ≤ n0 − 1. However the definition above is given in such a way that it will extend

unchanged when also scales larger than n0 will be introduced.

(3) The clusters of a tree can be regarded as sets of lines hierarchically ordered by inclusion and

have hierarchically ordered scales.

(4) A cluster T is not a tree (in our sense). However we can uniquely associate a tree with it by

adding the entering and the exiting lines and by imagining that the lower extreme of the exiting

line is the root and that the highest extremes of the entering lines are nodes carrying a harmonic

label equal to the momentum flowing into them; see Figure 3.

Figure 3. Illustration of a cluster and of the content of Remark (4): the continuous
lines are lines of scale lower than the dashed lines on the right which are lines preceded
by an arbitrary subtree; the dashed line on the left ends with a node into which ends
an rbitrary subtree and which is continued by another arbitrary subtree (none of the
mentioned subtrees is drawn): hence the continuous lines form a cluster (whose lines
are surrounded by an ellipse). The cluster itself is depicted in the intermediate figure
(manifestly not a tree). The third drawing shows the tree that can be associated
with the cluster: the formerly dashed lines are reintroduced and bolder to indicate
that they come out of endpoints which have a harmonic label equal to the total
momentum flowing in the formerly dashed lines.

Definition 4. (Self-energy clusters)

(i) We call self-energy cluster of a tree θ any cluster T of scale [n] such that T has only one

entering line ℓ2T and one exiting line ℓ1T , and furthermore
∑

v∈V (T ) νv = 0.

(ii) The order of a self-energy cluster is the number of nodes.

Remark. The essential property of a self-energy cluster is that it has necessarily just one entering

line and one exiting line, and both have equal momentum (because
∑

v∈V (T ) νv = 0). Note that
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15: Degenerate elliptic resonances

both scales of the external lines of a self-energy cluster T are strictly larger than the scale of T as

a cluster, but they can be different from each other by at most one unit. Furthermore the degree

of a self-energy cluster is ≥ 2. Of course no self-energy cluster can be on scale [−1] (by definition).

Definition 5. (Self-energy matrices)

(i) Let ΘR
k,ν,γ be the set of trees of degree k with root line momentum ν and root label γ which

contain neither self-energy clusters nor trivial nodes. Such trees will be called renormalized trees.

(ii) We denote with SR
k,n the set of self-energy clusters of degree k and scale [n] which do not

contain any other self-energy cluster nor any trivial node; we call them renormalized self-energy

clusters on scale n.

(iii) Given a self-energy cluster T ∈ SR
k,n we shall define the self-energy value of T as the matrix 3

VT (ω · ν; ε) =
εk

(k − 1)!

( ∏

ℓ∈Λ(T )

g
[nℓ]
ℓ

)( ∏

v∈V (T )

Fv

)
, (5.8)

where g
[nℓ]
ℓ = g[nℓ](ω · νℓ; ε). Note that, necessarily, nℓ ≤ n. The kT − 1 lines of the self-energy

cluster T will be imagined as distinct and to carry a number label ranging in {1, . . . , kT − 1}.

The recursive definition of the matrices M[n](x; ε), n ≥ 1, will be (if the series converges)

M[n](x; ε) =
( n−1∏

p=0

χp(D(x))
) ∞∑

k=2

∑

T∈SR
k,n−1

VT (x; ε)
def
=
( n−1∏

p=0

χp(D(x))
)
M [n](x; ε), (5.9)

where the self-energy values are evaluated by means of the propagators on scales [p], with p =

0, . . . , n, which makes sense because we have already defined the propagators on scale [0] and the

matrices M[0](x; ε) ≡M0 (cf. Definition 2).

With the above new definitions we have the formal identities

hν,γ =

∞∑

k=1

∑

θ∈ΘR
k,ν,γ

Val(θ), (5.10)

where we have redefined the value of a tree θ ∈ ΘR
k,ν,γ as

Val(θ) =
εk

k!

( ∏

ℓ∈Λ(θ)

g[ηℓ](ω · νℓ; ε)
)( ∏

v∈V (θ)

Fv

)
, (5.11)

with [ηℓ] = [−1], [0], . . . , [n0 − 1], [≥ n0]. Note that (5.10) is not a power series in ε.

The statement in (5.10) requires some thought, but it turns out to be a tautology, see also Ref.

[GG], and Ch. VIII in Ref. [GBG], if one neglects convergence problems which, however, will

occupy us in the rest of this paper. A sketch of the argument is as follows.

Imagine that we have only scales [−1], [0], . . . , [n − 1], [≥ n], i.e. we have performed the scale

decomposition of the propagators up to scale [n− 1] and we have not decomposed the propagators

on scale [≥ n] and that we have checked the statement (5.9) and (5.10) (trivially true for n = 0).

3 This is a matrix because the self-energy cluster inherits the labels γ, γ′ attached to the endnode of the entering
line and to the initial node of the exiting line.
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Given a tree θ ∈ ΘR
k,ν,γ with lines carrying labels [p] with p = 0, . . . , n − 1 or [≥ n] or [−1],

we can split the propagators g[≥n](x; ε) as g[n](x; ε) + g

{
≥n+1

}
(x; ε) as in (5.6) with g[n](x; ε) =

ψn(D(x))g[≥n](x; ε) and g

{
≥n+1

}
(x; ε) = χn(D(x))g[≥n](x; ε). In this way we get new trees which

in general contain self-energy clusters of scale [n]. We can in fact construct infinitely many trees

with self-energy clusters of scale [n] simply by inserting an arbitrary number of them on any line

ℓ with scale {≥ n+ 1}.
The values of the trees obtained by q ≥ 0 such self-energy insertions on a given line of a tree

in ΘR
k,ν,γ can be arranged into a geometric progression: in fact they differ only by a factor equal

to the value of the integer power q in g

{
≥n+1

}
(x; ε)

(
M [n+1](x; ε)g

{
≥n+1

}
(x; ε)

)q+1
if M [n+1](x; ε)

is defined as in (5.9), where the VT (x; ε) are evaluated by using as propagators g[p](x; ε), with

0 ≤ p ≤ n or p = −1, for the lines carrying a scale label [p]. Summation over q will simply

change g

{
≥n+1

}
(x; ε) into g[≥n+1](x; ε) and at the same time one shall have to consider only trees

with no self-energy cluster of scale [n] nor of scale [p] with p < n and with lines carrying scale

labels [−1], . . . , [n] or [≥ n + 1]. In this way we prove (5.10) for all n ≤ n0 − 1 (in particular for

n = n0 − 1). We could continue, but for the reasons outlined in Section 4, we decide to stop the

resummations at this scale.

In other words the above is a generalization of the simple resummation considered in Section

3. The result is still as formal as the Lindstedt series we started with, even assuming convergence

of the series in (5.9). In fact the consequent expression for h cannot even be, if taken literally,

correct because as in Section 3 the denominators in the new expressions could even vanish because

no lower cut-off operates on the lines with scale [≥ n0] as the third of (5.7) shows.

To proceed we must first check that the series (5.9) defining M [n](x; ε) are really convergent.

In spite of the last comment this will be true because in the evaluation of M [n](x; ε) the only

propagators needed have scales [p] with p ≤ n − 1 so that, see the factors ψn(D(x)), χn(D(x)) in

(5.7), their denominators not only do not vanish but have controlled sizes that can be bounded

below proportionally to x2 by (4.4), i.e. simply by a constant times C2
0 |ν|−2τ0 , see (1.3), or by

(ε a1)
−1 for the lines with 0 momentum.

In Ref. [GG] it has been shown by a purely algebraic symmetry argument that, as long as one can

prove convergence of the series in (5.9), the matrices M [n](x; ε) are Hermitian and (M [n](x; ε))T =

M [n](−x; ε). Furthermore we should expect that the eigenvalues of the matrix M[≤n](x; ε) should

be approximately located either near 0 or near εa1, . . . , εas at least within O(ε2); see Figure 4.

0 O(ε2) εa1 εa2 εas

Figure 4. The eigenvalues of M[≤n](0; ε) for n ≤ n0: the first r of them
are below O(ε2), while the remaining s are located near the eigenvalues of
the positive definite matrix ∂2

βf0(β0): εa1, . . . , εas respectively.

The expectation relies on Ref. [GG] (see Eq. (3.25)) where the following “cancellations result” is

derived for n0 large enough (hence for ε small because 2−2n0−2 < εas ≤ 2−2n0C2
0 ). We reproduce

the proof in Appendix A3 below, adapting it to the present notations.

Lemma 2. If n0 is large enough and n ≤ n0 = n0 + n (see (4.2)) then the following properties

hold.
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17: Degenerate elliptic resonances

(i) The matrices M[≤n](x; ε), x = ω · ν, are Hermitian and can be written as

M[≤n](x; ε) =

(
M[≤n]

αα (x; ε) M[≤n]
αβ (x; ε)

M[≤n]
βα (x; ε) M[≤n]

ββ (x; ε)

)
(5.12)

where the labels α run over {1, . . . , r} and β over {r + 1, . . . , ℓ}.
(ii) One has M≤[n](x; ε) = (M[≤n](−x; ε))T , so that the eigenvalues of M[≤n](x; ε) verify the

symmetry property λ
[n]
j (x; ε) = λ

[n]
j (−x, ε), i.e. they are functions of x2. 4

(iii) Let ∂±x be right and left x-derivatives, then

‖M[n](x, ε)‖ ≤ B ε2 e−κ12
n/τ

, ‖∂±x M[≤n](x, ε)‖ ≤ Bε2a−1/2
s , ‖∂±ε M[≤n](x, ε)‖ ≤ B ε,

‖M[n]
αα(x; ε)‖ ≤ B e−κ12

n/τ

min{ε2, ε x2a−1
s },

‖M[n]
αβ(x; ε)‖ ≤ B e−κ12

n/τ

min{ε2, ε 3
2 |x| a−1/2

s }, (5.13)

‖M[n]
ββ(x; ε)‖ ≤ B e−κ12

n/τ

ε2,

for n ≤ n0 and for suitable n0-independent constants B, κ1, τ > 0; one can take τ = τ0.

While κ1 is dimensionless the constants A′, A,B have same dimension (of a frequency square):

this is the purpose of introducing appropriate powers of as.

General properties of matrices and (5.13) imply, see Appendix A4,

A′ < |∂ελ
[n]
j (x; ε)| < A, a

1
2
s |∂±x λ[n]

j (x; ε)| < Aε2, j > r,

A′ < |∂ε(λ
[n]
j (x; ε) − λ

[n]
i (x; ε))|, i 6= j > r,

|λ[n]
j (x; ε) − λ

[n−1]
j (x; ε)| ≤ ε2B e−κ12

n/τ

, j > r,

|λ[n]
j (x; ε)| < A min{ε2, ε x2a−1

s }, j ≤ r,

(5.14)

where A′, A > 0 are n, n0-independent constants, and τ = τ0.

Remarks. (1) The first three bounds on the eigenvalues in (5.14), follow from the first line of (5.13)

by using the self-adjointness of the matrices M[≤n](x; ε); see Appendix A4. The other bounds in

(5.13) imply the last bound in (5.14); see Appendix A4.

(2) The natural domain of definition in x of M[n](x, ε), n > 0, will turn out to be D(x) ≤
2−2(n−1)C2

0 , but we imagine that it is defined for all x by continuing it as a constant from its limit

value. In fact this is not important because, as we shall see, only the values of M[n](x, ε) with

D(x) ≤ 2−2(n−1)C2
0 enter into the analysis. Smoothness means differentiability in ε ∈ IC and a

right and left differentiability in x. The lack of differentiability in x, but the existence of right

and left x derivatives, is due to the fact that the function D(x) admits right and left derivatives:

hence lack of differentiability in x appears as an artifact of the method. This lack of smoothness

(unpleasant but inessential for our purposes) can be eliminated by changing D(x) into a new D̃(x)

which is smooth for x2 between successive λj(ε)’s and, at the same time, it is bounded above and

below proportionally to D(x). But this would make the discussion needlessly notationally involved

4 For instance if r = s = 2 and f(α,β) = f0(β) + f1(β) cosα1 + f2(β) cosα2, to lowest order in x, ε, one has

M
[≤n]
αα (x; ε) = 3ε2x2(2ω4

u)−1[f2
u(β)+|∂βfu(β)|2]δu,v, M

[≤n]
αβ

= iε2x(2ω3
v)−1∂βv [(f2

u(β)+|∂βϕu(β)|2)], andM
[≤n]
ββ

=

ε∂2
βf0(β), u, v = 1, 2.
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18: Degenerate elliptic resonances

and we avoid it.

(3) One should also remark that, although we excluded some values of ε (i.e. we required ε ∈ En0−1,

see (3.3)), here all ε ∈ IC are allowed. The restriction on ε plays no role in the high frequency

resummations: so far its only purpose is to avoid divisions by 0 and to assign a finite value to

contributions to h from trees with propagators on scale [≥ n0] (which could be infinite because of

the lack of an infrared cut-off in their expressions; see the third of (5.7)).

(4) The bounds on the entries of M[n](x; ε) in the second and third lines of (5.13) arise from

cancellations that are checked in Ref. [GG] via a sequence of algebraic identities on the Lindstedt

series coefficients and the real difficulty lies in the proof of convergence. The algebraic mechanism

for the cancellations is briefly recalled in Appendix A3, for completeness.

(5) Loosely speaking (as mentioned in Section 4) the reason why the above result holds with n0-

independent constants, and why its proof can be taken from Ref. [GG], is that if the scales of the

propagators are constrained to be [p] with p < n0 the propagators denominators can be estimated

by 2−2(n+1)−2x2 by (4.4) and by the Remark (1) after Definition 1, or by ε−1a1 as in [GG] for

the lines with 0 momentum. This means that one can proceed as in the hyperbolic tori cases in

which boundedness, from below, proportionally to x2 of the propagators denominators was the

main feature exploited and no restriction on ε had to be required, other than suitable smallness.

The lemma can be proved by imitating the convergence proof of the KAM theorem, see for

instance Ref. [GG]; however in the following Appendix A3 the part of the proof which is not

reducible to a purely algebraic check is repeated, for completeness.

We have therefore constructed a new representation of the formal series for the function h of

the parametric equations for the invariant torus: in it only trees with lines carrying a scale label

[−1], [0], . . . , [n0 − 1] or [≥ n0] and no self-energy clusters are present. The above lemma will be

the starting block of the construction that follows.

6. Renormalization: the infrared resummation

Convergence problems still arise from the propagators g[≥n0](x; ε), which become uncontrollably

large for x = ω ·ν close to the eigenvalues of M0 because the bound (4.4) which allowed control of

the divisors in terms of the classical small divisors (i.e. in terms of |x|) does not hold any more.

Hence we must change strategy.

Definition 6. Given d× d Hermitian matrices M[≤n](x; ε), n = n0, n0 + 1, . . ., with eigenvalues

λ
[n]
j (x; ε), we introduce the following notations.

(i) The sequence of self-energies λ
[n]
j (ε) is defined for n ≥ n0 by

λ
[n]
j (ε)

def
= λ

[n]
j

(√
λ

[n−1]
j (ε), ε

)
, λ

[n0−1]
j (ε)

def
= λ

[0]
j , (6.1)

provided λ
[n]
j (ε) ≥ 0, n = n0, n0 + 1, . . ..

(ii) The propagator divisors are defined for n ≥ n0 by

∆[n](x; ε)
def
=
∣∣∣x2 − λ

[n]
j(x)(ε)

∣∣∣, (6.2)

where j(x) is the label where the minimum of
∣∣∣x2 − λ

[n]
j (ε)

∣∣∣ is reached.

Remarks. (1) The self-energies are defined recursively starting from those of the matrix M0 whose

first r eigenvalues are 0. Hence, as long as one can extend the last of (5.14) and as long as the
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19: Degenerate elliptic resonances

self-energies λ
[n]
j (ε) remain close to the original value λ

[0]
j , as we shall check for ε small enough,

one has λ
[n]
j (ε) = 0 for j = 1, . . . , r and λ

[n]
j (ε) > 0 for j > r.

(2) Under the same conditions and if ∆n](x; ε) ≃ 2−2nC2
0 the label j(x) depends only on M0,

hence it is n-independent, and furthermore it is constant at x fixed, as ε varies in the intervals I

introduced in Definition 1 (because for large n the frequency x is constrained to be close to one of

the λ
[n]
j (ε)).

(3) The name of propagator divisor assigned to ∆[n](x, ε) in (6.2) reflects its later use as a lower

bound on the denominator of a propagator, see Remark (7) to the inductive assumption below.

By repeating the analysis of Section 4 we can represent the function h via sums of values of trees

in which lines can carry scale labels [−1], [0], . . . , [n0 − 1], [n0], [n0 + 1], . . . and which contain no

self-energy clusters and no trivial nodes (i.e. are renormalized trees, see Definition 5 in Section

5). The new propagators will be defined by the same procedure used to eliminate the self-energy

clusters of scales [n] with n ≤ n0 − 1. However we shall now determine the scale of a line in terms

of the recursively defined ∆[n](x; ε) rather than in terms of D(x): the latter becomes too rough to

resolve the separation between the eigenvalues and their variations.

Let Xn0−1(x)
def
=
∏n0−1

m=0 χm(D(x)), Yn(x; ε)
def
=
∏n

m=n0
χm(∆[m](x; ε)) for n ≥ n0 and Yn0−1 ≡

1: the definition of the new propagators will be

g[n0] def
= Xn0−1(x)ψn0

(∆[n0](x; ε)) (x2 −M[≤n0](x; ε))−1,

g[n0+1] def
= Xn0−1(x)χn0

(∆[n0](x; ε))ψn0+1(∆
[n0+1](x; ε)) (x2 −M[≤n0+1](x; ε))−1,

. . .

g[n] def
= Xn0−1(x)Yn−1(x; ε)ψn(∆[n](x; ε)) (x2 −M[≤n](x; ε))−1,

(6.3)

and so on, using indefinitely the identity 1 ≡ ψn(∆[n](x; ε)) + χn(∆[n](x; ε)) to generate the new

propagators.

In this way we obtain a formal representation of h as a sum of tree values in which only renor-

malized trees (i.e. with neither trivial nodes nor self-energy clusters, see Definition 4 in Section

4) and in which each line ℓ carries a scale label [nℓ]. This means that we can formally write h as

in (5.10), with Val(θ) defined according to (5.11), but now the scale label [nℓ] is such that nℓ can

assume all integer values ≥ −1, and no line carries a scale label like [≥ n]: only scale labels like [n]

are possible.

We can summarize the discussion above in the following definition.

Definition 7. Given a sequence M[≤m](x; ε) as in Definition 6, m ≥ 1, let M[n](x; ε) =

M[≤n](x; ε) −M[≤n−1](x; ε) with M[≤0] ≡ M[0] ≡ M0 so that M[≤n](x; ε) =
∑n

m=0 M[m] (x; ε).

Setting ∆[n](x; ε) ≡ D(x) if n ≤ n0, define for all n ≥ 0

g[n](x; ε) =
ψn(∆[n](x; ε))

∏n−1
m≥0 χm(∆[m](x; ε))

x2 −M[≤n](x; ε)
. (6.4)

(for n = 0 this means ψ0(D(x)) (x2−M0)
−1). We say that g

[n]
ℓ = g[n](ω ·νℓ; ε) is a propagator with

scale [n]. The matrices M[m](x; ε) will be defined as in Section 5 for n ≤ n0 and will be defined

recursively also for n > n0 in terms of the self-energy clusters SR
k,n−1 introduced in Definition 4,
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20: Degenerate elliptic resonances

Section 5, setting for n > n0 (see (5.9))

M[n](x; ε) =
( n−1∏

m=0

χm(∆[m](x; ε))
) ∞∑

k=2

∑

T∈SR
k,n−1

VT (x; ε), (6.5)

where the self-energy values VT (x; ε) are evaluated by means of propagators on scales less than [n].

Note that we have already defined (consistently with (6.5))) the matrices M[≤n] with n ≤ n0 and

the propagators on scale [−1], [0], . . . , [n0 − 1] (so that (6.4) defines also g[n0](x; ε)).

Remark. (1) Some propagators may vanish being proportional to a product of cut-off functions. If

a propagator of a line has scale [n] and does not vanish then, see (6.4),

2−2(n+1)C2
0 ≤ ∆[n](x; ε). (6.6)

Note that for n < n0 a similar upper bound holds because of the independence of ∆[n] from n. We

shall see that this happens also for n ≥ n0 because the eigenvalues do not move too much along

the iterative scheme (see Remark (3) to the inductive assumption below).

(2) Our definitions of the matrices M[≤n](x; ε) for n > n0 will be such that given the node

harmonics of a tree the scale [n] that is attributed to a line can only assume up to two consecutive

values unless the propagator (hence the tree value) vanishes, see Remark (3) to the inductive

assumption below.

(3) We may and shall imagine that scale labels are assigned arbitrarily to each line of a given tree

with the constraint that no self energy clusters are generated; however the tree will have a non-zero

value only if the scale labels are such that all propagators do not vanish. This means that only

up to two consecutive scale labels can be assigned to each line if the tree value is not zero. The

“ambiguity” on the scale labels for a line is due to the use of the non-sharp χ and ψ functions of

Figure 2.

We make an inductive assumption on the propagators on the scales [m], 0 ≤ m < n.

Inductive assumption. Let n0 ≡ n0 + n (see (4.2)) and suppose n0 large enough; then

(i) For 0 ≤ m ≤ n− 1 the matrices M[m](x; ε) are defined by convergent series for all ε ∈ IC and,

for all x, they are Hermitian, and M[m](x; ε) = (M[m](−x, ε))T . Furthermore they satisfy the

same relations as (5.13), hence (5.14), with n replaced by m, for all 0 < m < n− 1, with suitably

chosen (new, possibly different) constants κ1, A,A
′, B, τ . One can take τ = 2τ1.

(ii) There exist K > 0 and open sets Eo
m, m = 0, . . . , n, with Eo

m ⊂ IC , such that, defining

recursively λ
[m]
j (ε) in terms of λ

[m−1]
j (ε) for m = n0, . . . , n− 1 by (i) in Definition 6 above, while

setting λ
[m]
j (ε) ≡ λ

[0]
j for m = 0, . . . , n0 − 1, and defining τ1

def
= τ0 + r + 1, see (3.4), one has for

ε 6∈ Eo
m and all independent choices of the signs ±

Γ[m](x; ε) = min
{

min
j

∣∣∣x±
√
λ

[m]
j (ε)

∣∣∣ , min
j≥i

∣∣∣x±
√
λ

[m]
j (ε) ±

√
λ

[m]
i (ε)

∣∣∣
}
≥ 2−

1
2m C0

|ν|τ1
,

|Eo
m| ≤ K2−

1
2mC2,

(6.7)

for all m ≤ n− 1 and all x.

Remarks. Assuming validity of the hypothesis for m < n we note a few of its implications.

(1) So far we have only checked the hypothesis for scales [m] with m ≤ n0, as expressed by Lemma
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21: Degenerate elliptic resonances

2 in Section 5, i.e. for the high frequency propagators. If (i) is proved also for m = n then we can

impose (6.7) immediately by excluding a set Eo
m of ε’s of measure estimated by 2−

1
2 mC2K with

K a constant that can be bounded in terms of A′, A by introducing the constants ρm and ρ′m as

in (A2.1), with λ
[0]
j (ε) replaced by λ

[m]
j (ε), and proceeding as done in Appendix A2 for the case

n ≤ n0. Note that since the self-energies λ
[m]
j (ε) are ≡ λ

[0]
j (ε) for all m = 0, . . . , n0 − 1 one will

have, for such m’s, Eo
m ≡ IC/En0−1, see (3.3). It is very important to keep in mind, in the above

argument, that the self-energies either are 0 (for j ≤ r) or are close within O(ε2) to the positive

eigenvalues of M0, and they are differentiable in ε and to the right and left of each x by (i); see

(5.14).

(2) To exploit the cancellations discussed below (and with more details in Appendix A3.3) we

shall have to consider also trees whose value is zero as they contain lines with propagator which

is vanishing because of the χ, ψ cut-off functions in the definition (6.4). Nevertheleess we shall see

(next remark) also that if a line with a scale [n] has vanishing propagator (i.e. g[n](x; ε) = 0) then

n differs at most by one unit from the integer n′ such that g[n′](x; ε) 6= 0. Thus if we consider

∆[n](x, ε) we can bound it by changing the inequality (6.6) into C2
0 2−2(n+2) < ∆[n](x; ε).

(3) By (5.13) and (5.14), and (I) in Appendix A4, we deduce that λ
[m]
j (x; ε), hence λ

[m]
j (ε), do not

change by more than C B ε2
∑

n≥n0
e−κ12

n/(2τ1)

, with respect to λ
[0]
j (ε), if ε < ε1 (and m ≥ n0).

And for n ≥ n0 the quantities ∆[n](x) and ∆[n+1](x) differ by a quantity bounded by ε2 e−κ12
n/τ

which is extremely small compared to C2
02−2n so that, using also the characteristic functions in

(6.4), we deduce the property in Remark (2) following Definition 7 essentially for the same reasons

why the corresponding property held in the cases n < n0 (where ∆[n](x) is n–independent).

(4) Hence if ε is small enough the self-energies, i.e. λ
[m]
j (ε), have distance bounded above by 2asε

and below by 1
2εmin

{
a1,minj{aj+1 − a1}

}
= 2ρ εas with ρ defined in (4.2), if ε is small enough,

say ε < ε2.

(5) Therefore by Remark (4) we see that the distance of |x|2 from the closest value λ
[m]
j (ε) is smaller

than one fourth, up to corrections O(ε2), the distance between the distinct values of λ
[m]
j (ε), if m

is large enough compared to n0, i.e. if 2C2
02−2m < ρεas (or m−n0 ≥ n as implied by the definition

(4.2) of n). This means that j(x) is m, ε-independent and it coincides with the label minimizing∣∣x2 − |λ[m]
j (x; ε)|

∣∣ for all m ≥ n0 and all ε ∈ I.

(6) λ
[n0−1]
j (ε) ≡ λ

[0]
j are x-independent and, by their definition, the same remains true for all

λ
[m]
j (ε). The self-energy λ

[m]
j (ε) will be thought of as a reference position for the j-th eigenvalue

on scale [m], m ≤ n− 1.

(7) As noted in Remark (5) the quantity
∣∣x2−λ[n]

j(x)(x; ε)
∣∣ is the smallest denominator appearing in

the value of the propagator of a line with momentum ν if g[n](x; ε) 6= 0 (here x = ω ·ν). The key to

the analysis is the check that the quantities ∆[n](x; ε) can be used to bound below the denominators

of the non-vanishing propagators of scale [n]. If λ
[n]
j(x)(x; ε) < 0 one has x2 − λ

[n]
j(x)(x; ε) ≥ x2, so

that the assertion is trivially satisfied: therefore the really interesting case is when λ
[n]
j(x)(x; ε) ≥ 0

(which includes the cases j(x) > r). If x has scale [n] with n ≥ n0 one has

∣∣∣x2 − λ
[n]
j(x)(x; ε)

∣∣∣ ≥
∣∣∣x2 − λ

[n]
j(x)(ε)

∣∣∣−
∣∣∣λ[n]

j(x)(ε) − λ
[n]
j(x)(x; ε)

∣∣∣

≥ 1

2

∣∣∣x2 − λ
[n]
j(x)(ε)

∣∣∣+ 2−(n+3)C0 −
∣∣∣λ[n]

j(x)

(√
λ

[n−1]
j(x) (ε), ε

)
− λ

[n]
j(x)(x; ε)

∣∣∣

≥ 1

2

∣∣∣x2 − λ
[n]
j(x)(ε)

∣∣∣ ⇒ ‖x2 −M[n](x, ε)‖ ≥ 1

2

∣∣x2 − λ
[n]
j(x)(ε)

∣∣,

(6.8)
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having used the lower cut-off ψn(∆[n](x; ε)) in the propagator (see (6.3)) to obtain the first two

terms in the second line (and added a further factor 2−1 in order to extend the result also to the

propagators considered in Remark (2)), while the upper cut-off χn−1(∆
[n−1](x; ε)) has been used

to obtain positivity of the difference between the second and third terms in the second line, after

applying (5.14), for n ≥ n0, to get

max
x

|∂±x λ[n]
j(x)(x; ε)| ≤ B̂ ε2, j(x) > r, |λ[n]

j(x)(x; ε)| ≤ B̂ ε |x|2 ≤ εC2
0 2−2n, j(x) ≤ r, (6.9)

for some B̂, so that the last term in the second line of (6.8) can be bounded above proportionally

to ε2−nC0. Hence the first inequality in the last line of (6.8) follows if ε small enough, say

ε ≤ ε3 for some ε3, fixed independently of n. The latter constraint can be achieved simply by

taking n0 large enough, see (3.2). The last implication follows from (6.9) if j(x) ≤ r because

λ
[n]
j(x)(ε) = 0. Otherwise if j(x) > r and |x|,

√
λ

[n]
j(x)(ε),

√
λ

[n]
j(x)(x, ε) ∈ [ 12

√
ε a1, 2

√
as ε] one has

(|x| +
√
λ

[n]
j(x)(x, ε))/(|x| +

√
λ

[n]
j(x)(ε)) ≥ 2−2

√
a1/as, as long as ε < ε2 (see Remark (4) above):

implying again (6.8). Hence ∆[n](x; ε) can be effectively used to estimate the size of the non-

vanishing propagators which is, therefore, closely related to the scale of the corresponding lines.

(8) The Diophantine condition (3.3) and (6.7) will play from now on a key role. We begin by

remarking that if the inductive hypothesis is proved all lines will eventually acquire a well defined

scale label: in fact fixed x one cannot have ∆[n](x, ε) ≤ 2−2nC2
0 for all n because this implies5

||x| −
√
λ

[n]
j(x)(ε)| < 2−nC0 , which soon or later becomes incompatible with the first of (6.7). This

explains why there is no trace left of the propagators g[≥n](x, ε).

To estimate the corrections to the self-energy as n increases it is clear that we must estimate the

size of M[n](x; ε). For this purpose we need the following result.

Lemma 3. There is ε small and constants κ1, A,A
′, B such that if ε < ε and the inductive

hypothesis is assumed for 0 ≤ m ≤ n− 1 then the matrix M[n](x; ε) can be bounded by (5.13) and

the inductive hypothesis holds for m = n.

Hence the hypothesis holds for all n since we have already checked it for n = 0, . . . , n0 (Lemma

2). The new constants κ1, A,A
′, B will be different from the ones determined in Lemma 2. They

will be n-independent, a property checked by a word by word repetition of the corresponding

argument in Appendix A3.

Proof. For n ≤ n0 the bound (5.13) is covered by Lemma 2. So we can assume n ≥ n0 + 1.

Suppose first ε ∈ ∩n−1
m=n0−1Em, with Em = IC \ Eo

m, so that the Diophantine property (6.7) holds

for all m ≤ n− 1. Consider a self-energy cluster T in ∪∞
k=2SR

k,n−1. If the entering and exiting lines

(with propagators of scale [≥ n]) have momenta ν we begin by showing that

∑

v∈V (T )

|νv| > 2(n−6)/(2τ1). (6.10)

Indeed the cluster contains at least one line ℓ = ℓv with propagator which we can suppose to be

not vanishing and which has scale [n − 1]. We can write νℓ = ν0
ℓ + σℓν, where σℓ = 0, 1 and we

set ω · ν = x, ν0
ℓ =

∑
w∈V (T )

w�v

νw, and finally xℓ = ω · νℓ.

5 As |a2 − b2| < c2 implies |a− b| < c for a, b, c > 0.
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Since the line ℓ is not on scale [n− 2] (as it is on scale [n− 1]) it follows from (6.3) that

∣∣|xℓ| −
√
λ

[n−2]
j(xℓ)

(ε)
∣∣ ≤ 2−(n−2)C0, (6.11)

Therefore if (6.10) does not hold and if σℓ = 0, by the first part of the Diophantine conditions

(6.7), one finds
∣∣|xℓ| −

√
λ

[m]
i (ε)

∣∣ > C02
−m/22−(n−6)/2 for all m ≤ n − 1 and for all 1 ≤ i ≤ d,

which would be in contradiction with (6.11).

If instead σℓ = 1 we shall use the second part of the Diophantine conditions (6.7) and get a

contradiction. Remark that x can be assumed to be on scale [q] with q ≥ n because of the cut-off

functions in (6.5) so that one has
∣∣|x| −

√
λ

[p]
j(x)(ε)

∣∣ ≤ C02
−p for p ≤ n − 1. Hence if xℓ satisfies

(6.11) we get, by assuming that (6.10) does not hold,

23−nC0 ≥
∣∣∣|xℓ| −

√
λ

[n−2]
j(xℓ)

(ε)
∣∣∣+
∣∣∣|x| −

√
λ

[n−2]
j(x) (ε)

∣∣∣ (6.12)

≥
∣∣∣xℓ − x+ ηℓ

√
λ

[n−2]
j(xℓ)

(ε) + η
√
λ

[n−2]
j(x) (ε)

∣∣∣

≥ C0

2(n−2)/2|νℓ − ν|τ1
=

C0

2(n−2)/2|ν0
ℓ |τ1

≥ 24−nC0,

for some η, ηℓ = ±1, which again leads to a contradiction, so that (6.10) holds also in such a case.

Every node factor contributes to M[n] a factor fνv
bounded by F0e

−κ0|νv|; there are ≤ (4d2)kk!

self-energy clusters, 4k scales (for each line there are only two scales for which the propagator is

not zero, and one has to allow also a scale different by one unit from that which corresponds to

have a nonvanishing propagator, see Remark (3) after the inductive assumption), and Nm(T ) lines

of scale m = −1, 0, 1, . . . , n in each self-energy cluster T contributing to M [n](x; ε) and not to the

M [m](x; ε), with m < n. Thus the bound on the graphs contributing to M [n](x; ε) and with no

lines of scale [−1] is

G0

∞∑

k=2

εkGk
1e

− 1
2κ0

∑
v∈V (T )

|νv|
e−G22

n/(2τ1)
n∏

m=0

22mNm(T ), (6.13)

for suitable constants G0, G1, G2, explicitly computable by the above remarks. The estimate of

the number Nm(T ) is given in Appendix A3 (cf. in particular Section A3.4), and gives Nm(T ) ≤
Em

∑
v∈V (T ) |νv|, with Em = 2(6−m)/(2τ1) and τ1 in (3.4), which shows convergence of the series

in (6.13) if ε is small enough, say ε < ε. The renormalized trees may contain lines of scales [−1]

Considering also the graphs with lines of scale [−1] makes the estimates worse by a factor ε−
1
2 k

because the number of lines with scale [−1] cannot exceed 1
2k and somewhat increases the constant

Gj : their propagators are bounded below by a constant times ε; however their number cannot be

larger than 1
2k in trees of order k (see Remark (5) in Section 2). Therefore they may reduce the

factor εk normally present in the value of a graph with k nodes to ε
1
2k; hence this will not affect

the convergence of the series other than by putting a more severe constant on the maximum value

of ε. For k < 4 the exponent of ε can be replaced by 2, see Remark after Definition 4.

We can and shall assume that ε does not exceed min{ε1, ε2, ε3}, with ε1, ε2 and ε3 introduced

earlier (see Remarks (3), (4), (7) after the inductive hypothesis). The rest of the argument repeats

the analysis in Appendix A3 with minor notational changes: we only hint at the details in Appendix

A3.4.
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Under the considered hypotheses the matrices M[n](x; ε) are well defined, by the above discussion

on convergence of the defining series on the set ∩n−1
m=n0−1Em. The symmetry in item (i) is due to

algebraic identities valid for the Lindstedt series. They are detailed in Ref. [GG], Appendix A5,

for ε < 0: being of algebraic nature the argument does not depend on the sign of ε and it holds

unchanged in the present case.

The second and third lines of inequalities in (5.13) embody the cancellations. We need to check

the cancellations, to make sure for instance that the structure of the matrix M[n](x; ε) preserves

the eigenvalues, and the Whitney smoothness: a danger being that the first r eigenvalues become

“detached” from 0, i.e. no longer can be bounded by εx2, see (5.14). For instance a bound like

O(ε2) would not be enough as it would imply that the self-energies λ
[n]
j (ε) may become different

from zero for j ≤ r.

Since the function M[n](x; ε) is defined on the complement of a dense open set differentiability in

the sense of Whitney can be proved (as usual) by computing a formal derivative and then showing

that it is continuous and that it can also be used as a bound in interpolations.6

The computation of the formal derivatives proceeds as the computation of the actual derivatives

done in the proof of Lemma 2 (in Appendix A3). One proves formal right and left continuous

differentiability of the matrices M[n](x; ε) on the closed set ∩n−1
m=n0−1Em simply by differentiating

term by term the value of each cluster contributing to M[n](x; ε). This involves differentiating

matrices like (x2 −M[≤p](x; ε))−1, i.e. the matrices M[p](x; ε) with p < n, which are differentiable

by the inductive assumption, or it involves differentiating the cut-off functions ψp, χp and the

locations λ
[p]
j (ε) with j > r (because λ

[p]
j (ε) ≡ 0 for j ≤ r) which appear in the form ∆[p](x, ε) in

the arguments of the cut-off functions. All such quantities are differentiable in ε and right and left

differentiable in x by the inductive assumption; furthermore all terms arising from differentiation

either of M[p](x; ε) or λ
[p]
j (ε), with p < n, appear multiplied by some power of ε, so that the

inductive assumption is found to hold also for p = n (for a similar discussion see Ref. [Ge]).

Note that ∆[n](x; ε) depend on j(x) but as ε varies within the interval I, see (ii) in definition 1,

j(x) is not only ε-independent but it is also constant in x for x varying in small intervals near the

eigenvalues of M0 and, therefore, in intervals widely spaced because n ≥ n0: this is due to the cut-

off functions which force x to be close to a single eigenvalue if the propagator of the corresponding

line is different from 0. Hence for n ≥ n0 we do not have to differentiate the function j(x) (neither

with respect to x nor with respect to ε from which it does not depend); for n < n0 the function

j(x) is constant to the right and to the left of every point.

The n-independence of the constants A′, A,B appearing in the inductive hypothesis is proved

word by word as the corresponding argument in Appendix A3; the constant κ1 has been estimated

above (see G2 in (6.13)) and is n-independent.

The interpolation bound, see footnote 6, necessary for defining the Withney derivatives, holds

because in comparing two contributions to M[n](x; ε) with different x or different ε the difficulty

might only come from the comparison of (x2
ℓ −M[≤p](xℓ, ε))

−1 evaluated at two different points

and for one line ℓ at a time: this can be done algebraically by using the resolvent identity

(
x2

ℓ −M[≤p](xℓ, ε)
)−1

−
(
x′

2
ℓ −M[≤p](x′ℓ, ε

′)
)−1

=
(
x2

ℓ −M[≤p](xℓ, ε)
)−1

· (6.14)

6 More precisely in its simplest form Whitney’s theorem states that if F (x) is a function defined on a closed set C of
the interval [0, 1] and if there is a continuous function F ′(x) defined on C and if for some γ > 0 and all x, y ∈ C one
has |F (y) − F ′(x)(y − x)| < γ|x− y| (we call this an interpolation bound) then there is a continously differentiable

function F (x) extending F to [0, 1] and with derivative F
′
(x), with max |F

′
(x)| < γ, extending F ′(x).
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·
(
x′

2
ℓ − x2

ℓ + M[≤p](x′ℓ, ε
′) −M[≤p](xℓ, ε)

)(
x′

2
ℓ −M[≤p](x′ℓ, ε

′)
)−1

,

which involves only denominators evaluated at x, ε’s which are in the set where they are controlled

by the (6.7) and therefore can be estimated in the same way as the formal derivatives. The Withney

extension is therefore possible keeping control of the bounds for all ε’s (small as above) and x. The

dependence on x may involve the functions D(x) (for p ≤ n0 − 1) so that the differentiability in x

will be possible only to the right and to the left of each point (this involves a natural generalization

of Whitney’s theorem).

The cancellations analysis (i.e. the proof of the second and third inequalities in (5.13)) is inductive

and has been performed several times in the literature, see Refs. [Ga2] and [GG]. In Appendix A3

we have repeated it following the version in Ref. [GM1] with some minor modifications. The same

proof applies to the present case (being a purely algebraic check).

The inequalities (5.13) imply the (5.14) and therefore we get differentiability of the matrices

M[≤n](x; ε) and of the self-energies. This allows us to impose validity of (6.7) by excluding a few

more values of ε by Remark (1) to the inductive hypothesis.

Therefore we conclude that M[n](x; ε) is defined and verifies (5.13) (with suitably chosen con-

stants κ1, A
′, A,B) in the same domain ε < ε, where the matrix M[≤p](x; ε) is already defined

for p ≤ n − 1. Of course M[n] will be relevant for our analysis only on the set ∩n
m=n0−1Em and

the extension outside such set is only useful to simplify the analysis as it allows us to use freely

interpolations formulae, mainly to check (6.7). The matrix M[≤n−1](x; ε) verifies the inductive

assumption although it has physical meaning only for ε ∈ ∩∞
m=n0−1En, where En is the domain in

which (6.7) holds for m ≤ n.

Having checked that the series defining the M[≤n](x; ε), hence the self-energies, converge and

verify the bounds in the inductive hypothesis we still have to check that the fully renormalized

series for h, which has thus been shown to make sense term by term, converges and that its sum is

actually a function h satisfying the equations for the parametric representation of invariant tori.

To study convergence we can take again advantage of the method, already used in the proof

of Lemmas 2 and 3 above to estimate the number of lines on scale n in a self-energy cluster

containing no self-energy clusters. Indeed also for renormalized trees one can prove a bound like

Nm(θ) ≤ Em

∑
v∈V (θ) |νv| for the number Nm(θ) of lines on scales m contained in Λ(θ) with Em

fast decreasing with m: Em
def
= 2(6−m)/(2τ1) (see Appendix A3). Hence convergence in the region

E ∈ ∩∞
n=n0−1En follows because if we only sum values of trees without self-energy clusters then we

can use the above bound on Nm(θ).

The set E0
n, complement of En in IC , has measure estimated by C22−n/2K for ε ∈ [(1

2C)2, C2] =

IC . Since C = 2−n0C0 and n ≥ n0 − 1 > n0 this is a very small fraction of the interval IC and the

smaller the closer is IC to 0. This means that the set of ε’s for which the whole construction can be

performed has 0 as a density point. Note that the resummation just defined is a real resummation

of our series only for ε ∈ ∩∞
n=n0−1En, and there it gives a well defined function.

The check that the functions h(ψ) defined by the convergent renormalized series evaluated at

ψ = ωt do actually solve the equations of motion can be performed by repeating the corresponding

analysis in Ref. [Ge]. The equation that h = (a,b) has to solve is h = ε g (∂αf(ψ + a,β0 +

b), ∂βf(ψ+a,β0+b)) where g is the pseudo-differential operator (ω·ν)−2. The proof is of algebraic

nature and ultimately follows from the fact that the series we are considering is a resummation of

Lindstedt’s series which is a formal solution of the problem. This explains why the various algebraic
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identities necessary for the check actually hold and the proof proceeds exactly as in Section 8 of

Ref. [Ge]: we reproduce the argument and the chain of identities in Appendix A5. Therefore the

proof of Theorem 1 in Section 1 is complete.

7. Concluding remarks

The analysis can be immediately extended to the case in which the matrix ∂2
βf0(β0) has some

non-degenerate positive eigenvalues and some additional negative ones. The negative eigenvalues

give no problems and they can be treated as in the case of Ref. [GG] in which all eigenvalues are

negative. The negative eigenvalues do not give rise to new small divisors, unlike the positive ones;

in more physical language the proper time scales (i.e. real proper frequencies) of the tori cannot

resonate with the time scales of hyperbolic type (i.e. imaginary) introduced by the perturbation.

Hence the following generalization of Theorem 1 holds.

Theorem 2. If the matrix ∂2
βf0(β0) is not singular and has pairwise distinct eigenvalues the

conclusions (i), (ii) and (iii) of Theorem 1 in Section 1 follow also in this case.

The present work has developed a combinatorial approach to the proof that the frequencies of

elliptic type possibly introduced by the perturbation do not resonate with the proper frequencies

of the tori at least if ε is not too special in a small interval [0, ε]. i.e. if it is in a set E ⊂ [0, ε] of

large measure near 0: Nevertheless the complement of E is an open dense set in [0, ε]. The results

hold for the Hamiltonian (1.2) and the special resonances (ω,0) considered: they can be extended

to the most general resonances of Hamiltonians like (1.2) with a general quadratic form for the

kinetic part (i.e. with 1
2I · I replaced by 1

2 I ·QI with Q a non-degenerate d× d matrix).

The case of ∂2
βf0(β0) with degenerate eigenvalues seems quite different from the one treated here.

Degeneracy will be removed to order O(ε2) under generic conditions. However O(ε2) is also the

order of variation of the self-energies and one has to find a way to perform the resummations even

between scale n0 and scale 2n0, which is the scale at which the singularities of the propagator are

split apart and one shall be able to proceed in the same way as we did in the case of non-degenerate

eigenvalues.

The Lipschitz regularity in ε in Theorems 1 and 2 can be replaced by Ck regularity for any k by

exploiting the comments in Remark (2) to Lemma 2 and Remark (2) in Appendix A3.2.

Unfortunately there seems to be no example known in which one can check that the power

series studied here are divergent as power series in ε. Note that the (infinitely many) divergent

series that have arisen in this paper are obtained by first splitting the coefficient of order k in the

Lindstedt power series and then collecting contributions from the different orders in ε: the latter

form divergent series for which we have assigned a summation rule. Therefore we have not proved

divergence of the Lindstedt series as power series in ε: in this sense (unlikely) convergence of the

Lindstedt series has not been ruled out (yet). Nor there is any uniqueness result on the value of the

renormalized series. The latter depends on quite a few arbitrary choices (even in the hyperbolic

cases); for instance the cut-off shapes in Figure 2 are quite arbitrary and in principle the allowed

ε’s will change with the choice.

Furthermore, although we have not really checked all necessary details, it seems to us that our

method also shows that, given a value ε0 for which the renormalized series converges, one can find a

complex domain of ε which is open, reaches the real axis with a vertical cusp at ε0 and extends to an
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open region including a segment (−η, 0) on the negative real axis. In this domain the renormalized

series should converge taking on the real axis real values parameterizing an hyperbolic torus with

the same rotation vector. However since there are no uniqueness proofs we cannot guarantee that

each such extension does not correspond to a different torus (close within any power of ε to any

other torus of the same type as ε → 0)). This would signal a “giant bifurcation” that one would

like to exclude; in Ref. [GG] an attempt was made to show uniqueness by estimating the size

of the Lindstedt series coefficients aiming at applying the theory of Borel transforms. However

we could not prove good enough bounds. We obtained k!α growth with a too large α (given our

estimated size of the domain of analyticity in ε) to apply uniqueness results from the theory of

Borel summations.

Appendix A1. A brief review of earlier results

The system which is usually studied in literature when the problem of persistence of lower-

dimensional elliptic tori is studied, is of the form

H = ω(ξ) · A +

s∑

k=1

Ωk(ξ)
(
q2k + p2

k

)
+ P (α,A,q,p), (A1.1)

where (α,A,p,q) ∈ T
r × R

r × R
s × R

s. The function P is analytic in its arguments, and ξ is

a parameter in R
r
; the function P is a perturbation: this means that a rescaling of the actions

could allow us to introduce a small parameter ε in front of the function P . The frequencies of the

harmonic oscillators are called normal frequencies; the case Ωk(ξ) = Ωk = constant (that is with

the normal frequencies independent of ξ) is a particular case, and it is usually referred to as the

“constant frequency case”. Existence of invariant tori for the system (A1.1) was originally proved

by Mel’nikov [Me1], [Me2], new proofs were produced by Kuksin [Ku1], Eliasson [E1], and Pöschel

[P1]. The case s = 1 is easier, and it was earlier solved by Moser [Mo]. Later proofs were given by

Rüssmann, see for instance Ref. [R]. See also the very recent Ref. [LW].

For P = 0 the dimension of the tori is r < d and the variables (q,p) move around stable

equilibrium points, hence such tori are called elliptic lower-dimensional tori.

The conditions under which the quoted results are proved are, besides the usual Diophantine

condition (1.3) on ω, two non-resonance conditions involving one and two normal frequencies (the

so called first and second Mel’nikov conditions, originally introduced in Ref. [Me1]); in particular

one has to impose that the normal frequencies are non-degenerate (i.e. they have to be all different

from each other).

Recently proofs of existence of elliptic lower-dimensional tori were given by requesting only the

first Mel’nikov conditions: this allows treating degenerate frequencies. The first result in this

direction is due to Bourgain [Bo3], where the ideas introduced in Refs. [CrW] and [Bo1] to

prove existence of periodic and quasi-periodic solutions in nearly integrable Hamiltonian partial

differential equations were adapted to construct lower-dimensional tori in the finite-dimensional

Hamiltonian systems (A1.1) corresponding to the case of constant normal frequencies. New proofs,

extending the results also to the case of non-constant normal frequencies, are due to Xu and You

[Y], [XY].

An extension of the results of existence of periodic and quasi-periodic solutions describing lower-

dimensional invariant tori for infinite-dimensional PDE systems has been provided in a series of

papers, which include Refs. [Ku1], [Ku2], [Wa], [CrW], [KP], [P2], [Bo1], [Bo2], [Bo4], [BKS],
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[GM2] and [GMP].

On the other hand the problem (1.2) has not been widely studied in literature. It corresponds

to a degenerate case because in absence of perturbations the lower-dimensional tori are neither

elliptic nor hyperbolic: it is the perturbation itself which determines if the tori, when continuing

to exist, become elliptic or hyperbolic (or of mixed type or parabolic).

(i) The case of hyperbolic tori is easier, and it was the first to be studied, by Treshchëv [T].

Recently the problem was reconsidered in Ref. [GG], where the analyticity domain of the invariant

tori was studied in more detail. In the case of elliptic tori the problem was considered in Refs.

[ChW] and [WC], where Treshchëv’s approach to the study of the case of hyperbolic tori, involving

a preliminary change of coordinates, is used to cast the Hamiltonian in a form which is suitable

for applying Pöschel’s results on elliptic tori: in particular this imposes the same conditions as

in Ref. [P1] on the normal frequencies which appear after the canonical change of coordinates is

performed.

(ii) The existence problem has been also considered in Ref. [JLZ], where elliptic and hyperbolic

tori were studied simultaneously, again by imposing some non-degeneracy conditions on normal

frequencies. Ref. [JLZ] does not investigate resummations of Lindstedt’s series; it is based on a

rapid convergence method, close in spirit to the original proofs of the KAM theorem: a concise

existence proof of lower-dimensional tori is achieved in both the elliptic and hyperbolic cases. We

do not know whether the tori whose existence is proved in this alternative way coincide with the

ones constructed here: this is due to the lack of analyticity at e = 0 and the consequent lack of

a uniqueness proof, see the last comment in Section 7. In our opinion the problem of the identity

of the tori that we have studied here and in Ref. [GG] with those previously studied in Refs. [T],

[JLZ] an open and important problem on the subject.

We stress that in all quoted papers, except Ref. [JLZ] and [T], the problem is considered with ε

(i.e. the size of the perturbation) fixed and the study deals with estimates of the measure of the

rotation vectors ω for which there exist invariant tori. We suppose, instead, that ω is fixed, hence

we study the dependence on ε of the lower-dimensional invariant tori and, in particular, the set of

values of ε for which the tori survive.

Our techniques extend those in Refs. [GG] and [Ge], and are based on the method introduced

in Refs. [E2] and [Ga2]. With respect to Ref. [Ge], where existence of quasi-periodic solutions is

proved for the generalized Riccati equation considered in Ref. [Ba], the main difficulty is due to

the presence of several normal frequencies. It is not surprising that this generates extra technical

difficulties: as already noted, it is well known that the case s = 1 is easier; see Refs. [Mo] and

[Ch2]. An advantage of the present method is that it is fully constructive and gives a very detailed

knowledge of the solution.

Appendix A2. Excluded values of ε

Define

ρn0−1
def
=

√
ε

as
min

{
min
i>r

|∂ε

√
λ

[0]
i (ε)|, min

i6=j
i,j>r

|∂ε

√
λ

[0]
j (ε) − ∂ε

√
λ

[0]
i (ε)|

}
,

ρ′n0−1
def
=

1√
εas

max
j

{√
λ

[0]
j (ε)

}
,

(A2.1)

and note that ρn0−1 is bounded from below proportionally to ρ, as defined in (4.2), and ρ′n0−1 = 1.
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Then (3.3) excludes, for each ν, an interval in ε whose measure is bounded (using
√
asε ≤ C; see

(3.2)) by

2−(n0−1)/2C C0K0|ν|−τ1 , (A2.2)

where the constant K0 can be estimated by K0 = s a−1
s ρ−1

n0−1.

The Diophantine condition on ω implies that if (3.3) is invalid then |ν| cannot be too small

2
√
εasρ′n0−1 + 2−(n0−1)/2C0|ν|−τ1 ≥ |x| ≥ C0|ν|−τ0. (A2.3)

Therefore
√
εasρ′n0−1 ≥ 1

4C0|ν|−τ0 if n0 ≥ 3, hence in this case we only have to consider the

values of ν with |ν| ≥ (C0/(4
√
εasρ′n0−1))

1/τ0 . Since C/2 <
√
εas ≤ C = 2−n0C0, we get

the bound (3.5) with τ1 = τ + r + 1 and K = K0 C0 (4C
√
ρ′n0−1 C

−1
0 )(τ1−r−1)/τ0

∑
ν 6=0

1
|ν|r+1 =

4K0

√
ρ′n0−1

∑
ν 6=0

1
|ν|r+1 . Note that a condition like τ1 > τ + r is sufficient to obtain both

summability over ν and a measure (of the excluded set) relatively small with respect to that of

IC . If n0 < 3, hence n0 < 3, the same conclusion trivially holds possibly increasing the value of K

by a factor 4.

Appendix A3. Resummations: convergence and smoothness

To prove Lemma 2, we first show that the series defining M [n](x; ε) for 0 ≤ n ≤ n0 converge

and then we check smoothness and the bounds. This is done for completeness as the argument

is almost a word by word repetition of the analysis in Ref. [GG], with a few slight changes of

notations necessary to adapt it to our present notations and scope. To study convergence of the

series defining M [n](x, ε), n ≤ n0, we remark that we have to consider only trees in which all

propagators have scales [p] with p ≤ n0. Therefore the propagators which do not vanish will be

such that their denominators satisfy D(x) > 2−2(n+1)|x|2, see (4.4), so that they are effectively

estimated from below by |x|2 times a constant. Note that the case n = 0 is obvious (and it is

treated in Section 3).

A3.1. Convergence. We suppose that the eigenvalues of M[≤p](x; ε), n = 0, . . . , n− 1, differ from

the corresponding ones of M[≤0](x; ε) ≡ M0 so that |λ[p]
j (x, ε) − λ

[0]
j | < γε2 for some γ > 0, and

that ε is small enough so that γε2 < 1
2εas2

−2n−2 and, therefore (see (4.4)), if a line with frequency

x has scale [p], p < n, then |x2 − λ
[p]
j (x, ε)| > 2−2(n+2)x2.

We shall use that if a the propagator of a line is on a scale [n] then one has D(x) ≤ 2−2(n−2)C2
0 ,

even though we could allow also a bound D(x) ≤ 2−2(n−1)C2
0 . The reason for this is again for later

use in bounds necessary to establish the needed cancellations as commented in Section A3.2.

Consider a renormalized self-energy cluster T ∈ SR
k,n−1, and define Λm(T ) = {ℓ ∈ Λ(T ) : nℓ =

m}, for m ≤ n− 1, and P(T ) the set of lines (path) connecting the external lines of T .

If ν is the momentum flowing in the line entering T then the momentum flowing in a line ℓ ∈ Λ(T )

of scale [p], p ≤ n− 1, will be ν0
ℓ + σℓν, σℓ = 0, 1, where ν0

ℓ is the momentum that would flow on

ℓ if ν = 0. The corresponding frequency will be x′ℓ = x0
ℓ + σℓx, with obvious notations.

First of all we shall prove the bound

∑

v∈V (T )

|νv| ≥ 2(n−n−5)/τ0 . (A3.1)
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for T ∈ SR
k,n−1. If there is a line ℓ ∈ Λn−1(T ) which does not belong to P(T ) then xℓ = x0

ℓ , so

that (A3.1) follows from the Diophantine condition on ω. If all lines in Λn−1(T ) belong to P(T )

consider the one among them, say ℓ, which is closest to ℓ2T , i.e. the entering line of T . Then call

T1 the connected set of nodes and lines between7 ℓ and ℓ2T . If T1 is a single node v then νv 6= 0,

otherwise v would be a trivial node; if T1 is not a single node then by construction all the lines of

T1 have scales strictly smaller than n, hence xℓ 6= x otherwise T1 would be a self-energy cluster. In

both cases one has |xℓ−x| = |x0
ℓ | > C0|

∑
v∈V (T1) νv|−τ0 . On the other hand both D(x) and D(xℓ)

must be ≤ (C02
−(n−2)+1)2 hence, by (4.4) |x|, |xℓ| ≤ C02

−n+n+3, so that |x − xℓ| ≤ C02
−n+n+4,

and (A3.1) follows also in such a case.

The next task will be to show that the number Nm(T ) of lines on scale [m], with m ≤ n − 1,

contained in a cluster T is bounded by Nm(T ) ≤ max{Em

∑
v∈V (T ) |νv| − 1, 0}, with Em =

E 2−m/τ0 for a suitably chosen constant E; as it will emerge from the proof one can take E =

2 2(n+4)/τ0 .

Before considering clusters we adapt to our context the classical bound (Siegel-Bryuno-Pöshel;

see also Ref. [Ga2] and references quoted therein), stating that, if Nm(θ) denotes the number

of lines on scales [m], then by induction on the number of nodes of θ one shows: Nm(θ) ≤
max{Em

∑
v∈V (θ) |νv|−1, 0}. Indeed if θ contains only one node v0 and the frequency x = ω ·νv0

of the root line has scale [m] one has

2−m+1C0 ≥
√
D(x) ≥ 2−(n+1)|x| ≥ 2−(n+1)C0|νv0

|−τ0 ⇒ |νv0
| > 2(m−n−2)/τ0 , (A3.2)

hence Em|νv0
| − 1 ≥ 2 and the bound holds in this simple case.

If θ has k nodes and the root line does not have scale [m] the inductive assumption, if it is

assumed for the cases of k′ < k nodes, gives the bound for k-nodes trees.

If the root line has scale [m] then on each path of tree lines leading to the root we select the line

among the ones on scales [m′] with m′ ≥ m closest to the root (if any is found on the path) and

we call the selected lines ℓ1, . . . , ℓq. If q 6= 1 either the bound follows just as in the case of k = 1

(when q = 0) or from the inductive hypothesis (when q ≥ 2).

The case q = 1 and [nℓ1 ] = [−1] (i.e. νℓ1 = 0) can be treated as the case q = 0. If q = 1

and νℓ1 6= 0, by construction all lines between the root line ℓ and ℓ1, see footnote 7, have scales

[m′], with m′ < m, so that such lines, together with the nodes they connect, form a cluster T .

The frequencies xℓ and xℓ1 must be different because the tree θ contains no self-energy clusters.

On the other hand
√
D(xℓ),

√
D(xℓ1) ≤ 2−m+1C0, hence |xℓ|, |xℓ1 | ≤ 2−m+n+3C0 by (4.4), and

C0|νℓ −νℓ1 |−τ0 ≤ |xℓ −xℓ1 | ≤ 2−m+n+4C0, so that we get
∑

v∈V (T ) |νv| ≥ (2−m+n+4)−1/τ0 , which

gives Nm(θ) ≤ 1 + Em

∑
v∈V (θ) |νv| − Em

∑
v∈V (T ) |νv| − 1 ≤ Em

∑
v∈V (θ) |νv| − 1, so that the

bound is completely proved.

Remark. The above discussion exploits the property that the tree θ that we consider cannot,

by definition of renormalized tree, contain self-energy clusters, and follows Ref. [GG] which was

based on the possibility of bounding the denominators proportionally to x2 (in that case the

proportionality factor was 1): a property also valid here for n ≤ n0.

For the bound on Nm(T ) we consider a subset G0 of the lines of a tree θ between two lines

ℓout and ℓin. Set G = G0 ∪ ℓin ∪ ℓout. Let [pin], [pout] be the scales of the lines ℓout and ℓin,

7 The lines between two lines ℓ1 and ℓ2 with ℓ2 < ℓ1 are all the lines which precede ℓ1 but which do not precede ℓ2
nor coincide with it.
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respectively, and suppose that pin, pout ≥ m, while all lines in G0 (if any) have scales [p] with

p ≤ n− 1. Note that in general G0 is not even a cluster unless pin, pout ≥ n. Then we can prove

that Nm(G0) ≤ max{Em

∑
v∈V (G0)

|νv| − 1, 0}, where V (G0) is the set of nodes preceding ℓout

and following ℓin, and Em is defined above. If G0 has zero lines then the harmonic ν0 of the (only)

node in V (G0) is large, |ν0| ≥ 2(m−n−2)/τ0 (by the Diophantine property) and the statement is

true. Hence we proceed inductively on the number of lines in G0.

If no line of G0 on the path P(G) connecting the external lines of G has scale [m] then the lines

in G0 on scale [m] (if any) belong to trees with root on P(G), and the statement follows from the

bound on trees.

Suppose that ℓ ∈ P(G) is a line on scale [m], then call G1 and G2 the disjoint subsets of G such

that G1 ∪ G2 ∪ ℓ = G. Then G1 ∪ ℓ and G2 ∪ ℓ have the same structure of G itself but each has

less lines: and again the inductive assumption yields the result.

Therefore, as a particular case, by choosing G0 = T , with T ∈ SR
k,n−1, the bound for Nm(G)

implies the bound on Nm(T ) we are looking for.

The above analysis is taken from Ref. [Ge] and differs from Ref. [GG] because here the scales

depend on ε and it is not clear how to define a “strong Diophantine condition”, which would allow

a one-to-one correspondence between line scales and line momenta.

The bound on the contribution of a single self-energy cluster T ∈ SR
k,n−1 is then

ε
1
2k

k!
Gk

0C
−2k
0 F 2ke−

1
2κ0

∑
v
|νv|
( m0∏

m=0

2(m+3)2Nm(T )
)
· (A3.3)

·
(
e
− 1

2κ0

∑
v∈V (T )

|νv|
∞∏

m=m0+1

2
2(m+3)2−m/τ0E

∑
v∈V (T )

|νv|
)

≤ ε
1
2kGk

k!
e
− 1

2κ0

∑
v∈V (T )

|νv|
,

with F an upper bound on the constants F0, F1 bounding the Fourier transform of the perturbation

(see (1.4)), while m0 is defined so that log 2
∑

m>m0
2(m+3)2−m/τ0E ≤ 1

2κ0 and G0, G are suitable

constants. We have used that the number of lines with scale [−1] can be at most 1
2k and their

propagators are bounded below proportionally to (εa1)
−1, so that we can treat separately the case

m = −1 paying the price that εk has to be replaced by Gk
0ε

1
2k.

The number of trees can be bounded by 4kk!, and the sum over the scale labels involves at

most 2 possible values per line because of the upper and lower cut-offs present in the propagators

definition. The sum over the harmonics can be estimated by making use of part of the exponential

factor in (A3.3) (say 1
4κ0) while the other 1

4κ0 will be used as a factor bounded by e−
1
4κ02

(n−n−5)/τ0
,

by (A3.1).

Hence we get convergence at exponential rate 2−1 for ε < ε1 (and ε1 is an explicitly computable

constant) and the matrix M [n](x; ε) is defined by a convergent series and it is bounded by

‖M [n](x; ε)‖ < Bε2e−
1
4κ02

(n−n−4)/τ0
, (A3.4)

for a suitable B which can be read from (A3.3), i.e. we get the first of the first line in (5.13) with

the constant B replaced by B, τ = τ0, and κ1 = 1
4κ0e

−(n+4)/τ0 . The ε2 factor is due to the parallel

remark that, in any self-energy cluster whose value contributes to M[n](x; ε), k is certainly ≥ 2

(see Remark to Definition 4 in Section 5).

Therefore if ε is small enough (that is smaller than a constant independent of n ≤ n0)

‖M[≤n](x; ε) −M0‖ ≤ Bε2
∞∑

n=1

e−
1
4κ02(n−n−4)/τ0 def

= B′ε2, (A3.5)
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so that the eigenvalues of M[≤n](x; ε) will be shifted with respect to the corresponding eigenvalues

of M0 by γε2 at most, with γ
def
= B′C, see (I) in Appendix A4.

Hence if we define γ as B′C and ε is chosen small enough, say ε < ε2, so that γε2 < 1
2εas2

−2n−2

(as it must be in order that the above argument be consistent, see the beginning of the current

Section) we obtain the validity of the assumed inductive hypothesis for all n ≤ n0 and of the first

inequality in the first line of (5.13) where B can be chosen equal to B above.

The symmetries in items (i) and (ii) are an algebraic consequence of the form of the Lindstedt

series: hence they are a necessary consequence of the proved convergence, see Ref. [GG].

A3.2. Smoothness. The function M [n](x; ε) which we have just shown to be well defined for all

ε small enough will be smooth in ε, x. We assume inductively that this is the case for M [p](x; ε),

0 ≤ p < n − 1, and that the bounds in the first line of (5.13) hold for such p’s (the case p = 0 is

obvious as M[0](x; ε) ≡M0).

Each derivative with respect to x or, respectively, to ε will replace the value of a self-energy

cluster with k nodes by a sum of k terms which can be bounded by a bound like (A3.3).

In fact, given a self-energy cluster T , the right derivative ∂+
x may fall on a denominator of one of

the k−1 cluster lines. If its frequency is x+x0 with scale label [m], derivation yields, up to a sign,

a product of two matrices ((x0 + x)2 −M[≤m](x0 + x; ε))−1 times 2 (x0 + x)− ∂±x M[≤m](x0 + x; ε)

with an appropriate order of multiplication. The term 2 (x+ x0) ((x0 + x)2 −M[≤m](x0 + x; ε))−2

can be bounded proportionally to (C−2
0 22(m−1))3/2 ≤ (C−2

0 22(m−1))2, while the remaining term

can be studied by making use of the inductive assumption ‖∂xM[≤m](x0 + x; ε)‖ ≤ Bε2a
−1/2
s and

it leads to the same bound found for the first term, i.e. (C−2
0 22(m−1))2, multiplied by Bε2.8

If the derivative falls on either a ψp or a χp function, we can use that such derivative can be

bounded proportionally to C−1
0 2p and

∑m−1
p=0 2p = 2m, to obtain again the same bound as the first

case.

Hence the final bound has the form B1 + ε2Bb with B1, b suitable constants, provided ε is small

enough, say ε < ε3. The value of the constants B1, b do not depend on the inductively assumed

value for B: in particular B1 can be obtained (see Remark (2) below for a smarter bound) by

replacing 2(m+3) in the two factors in the l.h.s. of (A3.3) by 22(m+3) and by inserting a factor k

times a constant (to keep track of all the constant factors arising from differentiation). Therefore

if B = 2B1 the estimate on ∂+
x M[≤n](x; ε) follows if ε is small enough, say ε < ε4. The same can

be said about the left derivative ∂−x .

The right and left differentiability of M[n](x; ε) with respect to x is due to the dependence of

M[n](x; ε) on the function D(x): the latter has a discontinuous derivative at a finite number of

points (roughly at midpoints between the eigenvalues λ
[0]
j of M0).

9 Note that the denominators

in the self-energy values defining M [n](x; ε) cannot vanish, and actually stay well away from 0,

permitting the above bounds, because of the lower cut-off ψ0(D(x)) appearing in the definition of

the propagators g[0](x; ε)(x; ε); see (5.6) and (5.7).

The same argument holds for ∂ε: however the bound will be only Bε instead of Bε2 because

the derivative with respect to ε might decrease by one unit the degree of the self-energy values

8 Since the matrix M [m](x0 + x; ε) is generated by self-energy clusters clusters of degree at least 2.
9 One could avoid having only left and right differentiability by using a regularized version of the function D(x) as
discussed in Remark (2) after Lemma 2 in Section 5.
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involved. Thus the first line of (5.13) is completely proved. Of course for each of the three terms

we get a different constant B, but for simplicity we use for them all the largest, still calling it B.

Remark. (1) We could also prove existence of higher x, ε-derivatives of M[n](x; ε) and of its

eigenvalues λ
[n]
j (x, ε) for j > r via the above argument.

(2) The more derivatives we try to estimate with the above method the smaller would become the

set of allowed values of ε. This however is avoidable. Instead of imagining to include the bound

C−2
0 22m arising above as a consequence of the “extra” D(x + x0) or of the other derivatives into

the factors 2m+3 associated with the divisors in (A3.3) one could simply further bound this by

C−2
0 22n and use part of the factor e−

1
4κ02

(n−n−4)/τ0
(say replacing 1

4κ0 with 1
8κ0): this eventually

leads to a bound on the s-th right-derivative with respect to x of a value of a self-energy cluster

proportional to 2nse−
1
8κ02(n−n−4)/τ0

but with an s-independent estimate of the radius of convergence

(as the constant G in (A3.3) remains the same). This is sufficient to get the existence of the s-th

derivatives without any further restriction on ε: and a similar argument holds for the ε-derivatives.

A3.3. Cancellations. Only the bound in the fourth line of (5.13) follows from those in the first

line. The bounds in the second and third lines express remarkable properties of Lindstedt series

and are essentially algebraic properties: they are the “same” cancellations which occur in KAM

theory, see Refs. [Ga2], [GM1], and are based on the remark that if T is a self-energy cluster the

entering and exiting lines have the same momentum ν: hence the sum of the harmonics of the

nodes of T vanishes
∑

v∈V (T ) νv = 0.

We start by dealing with the trivial cases. Consider first self-energy clusters T such that∑

v∈V (T )

|νv| ≥ (C0/2
6|x|)1/τ0 . (A3.6)

For such a self-energy cluster T one can use part (say 1/8) of the exponential decay of the node

factors to obtain a bound e
−

κ0
8

∑
v∈V (T )

|νv| ≤ e−b1|x|
−1/2τ1 ≤ b2x

2, with b1 and b2 two suitable

positive constants, while a factor ε2 simply follows from the fact that any self-energy cluster has

at least two nodes.

So we can assume that (A3.6) does not hold. If ν is the momentum flowing in the entering line

then the momentum flowing in a line ℓ ∈ Λ(T ) of scale [p], p ≤ n, if the scale of the cluster is [n], will

be ν0
ℓ +σℓν, σℓ = 0, 1, where ν0

ℓ is the momentum that would flow on ℓ if ν = 0. The corresponding

frequency will be xℓ = x0
ℓ + σℓx, with obvious notations. Also self-energy clusters containing lines

on scale [−1] along the path connecting the external lines can be dealt with in the same way.

Indeed in such a case one has
∏

v∈V (T ) e
κ0
8 |νv ≤ e−

κ0
8 |ν|, with e−

κ0
8 |ν| ≤ b′1|ν|−2τ ≤ b′2x

2, for

suitable constants b′1 and b′2.

Also self-energy clusters containing either lines with momentum −ν or lines with momentum ν

outside the path connecting the two external lines (such a situation is possible as more than one

scale can be associated with each line) can be easily controlled by applying the same argument.

The case in which there are lines with momentum ν along the path connecting the external lines

can be discussed as follows. Let us consider the internal line ℓ of the self-energy cluster T with

momentum ν which is the closest to the exiting line ℓ1T . Then there must be at least one line ℓ′

between ℓ and ℓ1T (that is preceding ℓ1T and not preceding ℓ) on the same scale as ℓ (otherwise

there would be a self-energy cluster internal to T ), and of course νℓ′ 6= ν by construction. This

means that
∑

v∈V (T ) |νv| ≥ |νℓ − νℓ′ | is bounded from below proportionannly to 2n/2τ1 (by the

second Diophantine conditions in (6.7)), hence
∏

v∈V (T ) e
κ0
8 |νv ≤ b′′1C

2
02−2n ≤ b′′2x

2, for suitable

constants b′′1 and b′′2 .
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For all the other cases we shall need the cancellation mechanisms that we are going to describe.

Consider first the case in which T does not contain any line on scale [−1] nor with momentum

±ν. Then, if the entering and exiting lines are imagined attached to the internal nodes of T in

all possible ways (i.e. in k2 ways if T contains k nodes) keeping all their labels unaltered then

one obtains a family FT of self-energy clusters. If instead T contains at least one or more lines

on scale [−1] and they are all outside the path between its external lines (so that we can not

apply the argument given above) call T1 the connected subset of T containing no line on scale [−1]

and containing the extrema of the external lines of T . Hence
∑

v∈V (T1) = 0: then we attach the

entering and exiting lines to the nodes of T1 in all possible ways. Again we call FT the family so

obtained Note that each tree in such a family still has a line on scale [−1] along the path connecting

its external lines.

The contribution of each self-energy cluster of FT to each of the entries of the matrix M[n](x; ε)

with labels i, j ≤ r (the αα entries in the notations of Lemma 2) and with labels i ≤ r, j > r (the

αβ entries) has the form Mi,j;v,w(x, T ) νv,i νw,j or, respectively, M ′
i,j;v(x, T ) νv,i, with

Mi,j;v,w(x, T ) = Mi,j(T ) + xM
(1)
i,j (T ) + x2M

(2)
i,j,v,w(x, T ), i, j ≤ r,

M ′
i,j;v(x, T ) = M ′

i,j(T ) + xM
′(1)
i,j,v(x, T ), i ≤ r, r < j,

(A3.7)

so that after performing the sum over the self-energy clusters of FT , i.e. after performing the sums∑
v,w∈V (T ) or, respectively,

∑
v∈V (T ) (with T1 replacing T in the second case considered above),

the first two terms in the first line and the first term in the second line do not contribute because∑
v
νv = 0. However one has to show that the matrices M and M ′ in the r.h.s. of (A3.7) satisfy

appropriate bounds once the factors x determining the order of zero at x = 0 are extracted. From

the convergence one expects that the bounds should still be proportional to ε2 while the derivatives

∂±x or ∂ε should satisfy bounds proportional to ε2 or to ε respectively.

The (A3.7) are proved by means of interpolations, see [GM1], between the contributions of

the self-energy clusters in the family FT . When we collect together the values of the self-energy

clusters in FT then the arguments of some of the propagators can fall outside the supports of the

respective cut-off function (because the lines are shifted but their scale labels are kept fixed so that

scales of the propagators of the self-energy clusters T ′ ∈ FT are the ones inherited by T while the

momentum flowing in them may change).

This generates trees and clusters for which we made no estimates (because they are just 0).

However when interpolating we may end up computing values of trees, with scale assignments

which would give a value 0, at intermediate frequencies where the values no longer vanish. In

estimating such interpolated values we can proceed as in the cases already treated, but it will

not be necessarily true that a line of frequency x and scale [n] will satisfy 2−2(n+1)C2
0 < D(x).

Nevertheless a slightly weaker version of this inequality has to hold in which the the l.h.s. is divided

by 4 (cf. also Remark (3) after the inductive assumption in Section 6), and the estimates will not

only be possible but they can be regarded as already obtained because, as the reader can check,

we have been careful in discussing the bounds obtained so far under such weaker condition. This

also clarifies why we have defined n in (4.2) one unit larger than what appeared there as necessary

so that the estimate (4.4) is apparently worse than it should.

In some cases, however, a serious problem seems to arise when actually attempting to derive

bounds: namely the bounds on the matrices which appear as coefficients in (A3.7) can really be

checked as just outlined by the above hints, and without affecting the values of ε for which one has

convergence, only if x verifies the condition of being so small that the variations of the momenta
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flowing in the inner lines of T , when the entering or exiting lines are moved and re-attached to all

nodes of T , remain so small that the quantities D(xℓ) corresponding to the lines ℓ in the cluster T

stay essentially unchanged.

In certain cases shifting the entering or exiting lines to the nodes of the self-energy cluster T

may considerably change the scales of the lines ℓ in T , but this is the case in which (A3.6) holds.

And precisely in such a case the cancellations are not needed to prove the bound, because we have

checked that the value of each self-energy cluster contributing to M [n] individually already verifies

that bound that we want to prove.

If (A3.6) does not hold, then two cases are possible: either |x| is close to λ
[p]
j for some j > r or

larger, and no cancellation occurs, or |x| is < C02
−n. In the latter case the inequality opposite

to (A3.6) implies that for ℓ ∈ Λ(T ) one has |x0
ℓ | ≥ 4|x|, hence 2|x0

ℓ | ≥ |xℓ| ≥ 1
2 |x0

ℓ |, so that the

scales can change by at most one unit by shifting the external lines of T . Then the quantities

D(xℓ) do not change much for all lines ℓ ∈ Λ(T ), and we shall have the cancellation through the

mentioned mechanism. Therefore the contribution of M[p](x; ε) to M[≤n](x; ε) can be bounded

in both cases proportionally to e−
1
4κ02

(n−n−4)/τ0
times min{ε2, ε |x|2} for the entries αα or times

min{ε2, ε 3
2 |x|} for the αβ entries: either by the cancellation (second case) or by the general bound

O(ε2) on matrix elements (first case), because x2 is of order O(ε).

Finally we note that in the estimates of the M ’s in (A3.7) we have to sum over the scale labels

and this gives a factor per line larger than the one arising in the bound (A3.3) (which was 2); in

fact we have to consider also trees with vanishing value: but the scales of the divisors associated

with their lines can change at most by one unit with respect to the scale, hence we can have at

most 4 scale labels per line.

Remark. We stress once more that the above analysis holds if ε is small enough, say ε < ε1 with ε1
determined by collecting all the (three) restrictions imposed by requiring ε to be “small enough”,

derived above and ε1 is independent of n0 (otherwise it would be uninteresting). The reason is that

as long as we do not deal with x’s which are too close to the eigenvalues of M0, so that the key

inequality (4.4) holds, we do not really see the difference between the hyperbolic and the elliptic

cases: and in the hyperbolic cases there is no need for a lower cut-off at scale ∼ n0 where resonances

between the proper frequencies (which are of order ε) and the elliptic normal frequencies become

possible (as ε ≃ C2
02−2n0).

A3.4. Resonant resummations. Concerning the proof of Lemma 6 we only need to add a few

comments. The bounds on Nm(θ) and Nm(T ) can be discussed exactly as for the scales [n] with

n ≤ n0, with the only difference that now one has to use also the second part of the Diophantine

conditions (6.7), as already done in the argument leading to (6.12); in particular the role of the

exponent τ0 is now played by 2τ1 (because of the Diophantine conditions in (6.7) which replaces

(1.3) in the discussion), while in the analogues of (A3.1) and the following bounds no n appear,

as the propagator divisors are bounded directly in terms of the corresponding scales, and not in

terms of the frequencies.

Also the argument given above about the cancellations extends easily to the scales [n], with

n ≥ n0. The only difference is that in (A3.6) the exponent 1/τ0 has to be replaced with 1/(2τ1),

in such a way that for any line ℓ ∈ Λ(T ) one has ||x0
ℓ | −

√
|λ[nℓ−1]

j (ε)|| ≥ 4|x|, hence the chain of

inequalities

2

∣∣∣∣|x0
ℓ | −

√
|λ[nℓ−1]

j (ε)|
∣∣∣∣ ≥

∣∣∣∣|xℓ| −
√
|λ[nℓ−1]

j (ε)|
∣∣∣∣ ≥

1

2

∣∣∣∣|x0
ℓ | −

√
|λ[nℓ−1]

j (ε)|
∣∣∣∣ , (A3.8)
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follows, and again by shifting the external lines of T the scales of the internal lines can change at

most by one unit, when (A3.6) is not satisfied

Appendix A4. Matrix properties

(I) Let M0 be a d×d Hermitian matrix with eigenvalues λ1 < . . . < λp with multiplicities n1, . . . , np

and eigenspaces Π1, . . . ,Πp on which we fix orthonormal bases ej,k, j = 1, . . . , p, k = 1, . . . , nj. Let

M1 be Hermitian and consider the matrix M = M0+εM1. There exists a constant C such that, for

ε small enough, there will be nj eigenvalues of M (not necessarily all distinct) which are analytic

in ε and one has |λj,k(ε) − λj,k′ (ε)| ≤ Cε for k, k′ = 1, . . . , nj.

Hint. If nj = 1 this follows immediately form the formula λj(ε) = Tr
(

1
2πi

∮
γj

zdz
z−M

)
, where γj is a

circle around λj(0) of ε-independent radius smaller than half the minimum separation δ between

the λj for ε small enough (so that C1ε
1
d < δ for a suitable C1)

10.

Otherwise it follows form similar formulae for the projection operator Ej on Πj and for EjMEj :

Ej =
1

2πi

∮

γj

dz

z −M
, EjMEj =

1

2πi

∮

γj

Ej
z dz

z −M
Ej , (A4.1)

which, for ε small, can be expanded into a convergent power series in ε (as done explicitly in a

similar context in (A4.3) below) because of the ε-independence of the radii of γj . One can also

construct an orthonormal basis on Πj with vectors of the form vj,k = ej,k +
∑∞

q≥1 ε
qe

(q)
j,k (simply

applying the Hilbert-Schmidt orthonormalization to the vectors Ejej,k, k = 1, . . . , nj). One then

remarks that the matrix EjMEj has nj eigenvalues and that it has the form λj + εM̃(ε).

So the problem is reduced to the case in which M0 is the identity perturbed by an analytic

matrix. Either M̃(ε) is proportional to the identity and there is nothing more to do, or it is not:

hence there will be an order in ε at which the degeneracy is removed and repeating the argument

we reduce the problem to a similar one for matrices of dimension lower than nj : and so on until

we find a matrix (possibly one dimensional) proportional to the identity to all orders.

In our analysis we need the following corollary.

(II) Let M0 be Hermitian with r degenerate eigenvalues equal to 0 and s = d−r simple eigenvalues

εaj, j = 1, . . . , s.

(i) The matrix M0 + ε2M1 with M1 Hermitian and differentiable in ε with bounded derivative will

have s non-degenerate eigenvalues εaj + O(ε2), j = 1, . . . , s, and r eigenvalues λ1(ε), . . . , λr(ε),

all analytic in ε, with the property that for all k = 1, . . . , r one has |λk(ε)| < C ε2, if ε is small

enough and C is a suitable constant.

(ii) If M1 depends on a parameter x and is differentiable also in x with bounded derivative then

|∂xλj(x; ε)| ≤ Cε2, |∂ελj(x; ε)| ≤ C, j > r,

|λj(x; ε) − λj(x
′; ε)| ≤ Cε2|x− x′|1/r, j ≤ r,

(A4.2)

10 Because the characteristic polynomials P (λ), P0(λ) are related by P (λ) = P0(λ)+εQ(λ, ε) with Q of lower degree.
Therefore there is L such that if |λ| > L then for all |ε| < 1 (say) it is P (λ) 6= 0. Furthermore if all roots of P differ

by at least y from those of P0 one has |P (λ)| ≥ yd − εCd where Cd = max|Λ|≤L,|ε|≤1 |Q(λ, ε). Hence y ≤ Cεd−1
.
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if ε is small enough and C is a suitable constant.

The second relation in (A4.2) is not used in this paper and is given only for completeness.

Hint. We apply the previous lemma to the matrices ε−1M0 and εM1 and we get (i). To get

(A4.2) we note that the x-derivative of M0 + ε2M1 is ε2∂xM1 and the first of (A4.2) follows. To

obtain the second of (A4.2) we have to compare the eigenvalues of M0 + ε2M1(x; ε) with those of

M0 + ε2M1(x; ε) + ε2O(|x − x′|). By the above expression for the projection on the plane of the

first r eigenvalues this is reduced to the problem of comparing two r × r matrices of order ε2 and

differing by O(|x− x′|). The power 1/r arises from the estimate that the considered projection of

the matrix M1 (which is only differentiable in x) has r eigenvalues close to 0 within C1|x− x′|1/r,

for some C1 > 0 (by (I) above), and ε is small enough. Hence we get the second of (A4.2).

A third property that we need is the following one.

(III) If M0 is as in (II) and M1 is Hermitian and has the form

(
ε2x2N ε2xP
ε2xP ∗ ε2Q

)
, with N,Q two

r× r and r× s matrices and P a r× s matrix then the first r eigenvalues of M0 +M1 are bounded

by |λj(x, ε)| < Cε2x2, for j = 1, . . . , r.

Hint. This is obtained by using (A4.1) which gives the projection over the plane of the r eigenvalues

within O(ε2) of 0 as integral over a circle of radius 1
2a1ε

E =
1

2πi

∮

γ

dz

z −M0

∞∑

k=0

(M1
1

z −M0
)k, (A4.3)

and one sees that (M1
1

z−M0
)k has for all k ≥ 1 the same form of M1, with ε2 replaced by ε2k, so

that the sum of the series is the matrix

(
1 0
0 0

)
corresponding to the k = 0 term (it is a d × d

block matrix with the first r × r block 1 and the other blocks 0) plus a matrix of the same form

of M1. Likewise the basis vh = Eeh, h = 1, . . . , r consists of vectors of the form eh +

(
ε2x2uh

ε2xu′
h

)
,

so that one checks that the matrix (vh, (M0 +M1)vh′) is a r × r matrix which is proportional to

ε2x2 (i.e. it has the form ε2x2M2(x, ε), with M2 bounded for ε small and for |x| < 1) and which,

by construction, has the same eigenvalues as the first r eigenvalues of the matrix M0 +M1.

For the above properties see also [RS] and [Ka].

Appendix A5. Algebraic identities for the renormalized expansion

We show that the function h defined through the renormalized expansion solves the equations

of motion (1.5) for all ε ∈ E . This is essentially a repetition of Ref. [Ge]. We shall check that

h = εg∂ϕf(ψ + a,β0 + b), where ϕ = (α,β) and g is the pseudo-differential operator with kernel

g(ω · ν) = (ω · ν)−2. We can write h =
∑
ν∈Zr eiν·ψhν , hν =

∑∞
n=0 hn,ν (only two terms in this

series are different from 0 for each ν), with hn,ν =
∑∞

k=1

∑
θ∈ΘR

k,ν
(n) Val(θ), where ΘR

k,ν(n) is the

set of trees in ΘR
k,ν such that the root line has scale n. With respect to the previous sections we

have dropped the component label γ ∈ {1, . . . , d} in the definition of the set of trees, for notational

convenience.
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Note that, for all x 6= 0 and for all p ≥ 0 one has

1 =
∞∑

n=p

ψn(∆[n](x, ε))
n−1∏

q=p

χq(∆
[q](x, ε)), (A5.1)

where the term with n = p has to be interpreted as ψp(∆
[p](x; ε)). The latter identity is checked

as follows. One has 1 = ψp(∆
[p](x; ε)) + χp(∆

[p](x; ε)) (because ψ + χ ≡ 1); therefore 1 =

ψp(∆
[p](x; ε)) + χp(∆

[p](x; ε))(ψp+1(∆
[p+1](x; ε)) + χp+1(∆

[p+1](x; ε))) (again because ψ + χ ≡ 1)

and so on; since, fixed x, χn(∆[n](x; ε)) ≡ 0 for n large enough (by Remark (8) to the inductive

hypothesis, i.e. by (6.7)), then (A5.1) follows.

Set Ψn(x; ε) = ψn(∆[n](x; ε))
∏n−1

p=0 χp(∆
[p](x; ε)) for n ≥ 1, Ψ0(x; ε) = ψ0(∆

[0](x; ε)): by using

(A5.1) one can write, in Fourier space and evaluating the functions of ϕ at ϕ = (ψ + a,β0 + b),

g(ω · ν)
[
ε∂ϕf(ϕ)

]
ν

= g(ω · ν)
∞∑

n=0

Ψn(ω · ν; ε)
[
ε∂ϕf(ϕ)

]
ν

= g(ω · ν)

∞∑

n=0

Ψn(ω · ν; ε)(g[n](ω · ν; ε))−1g[n](ω · ν; ε)
[
ε∂ϕf(ϕ)

]
ν

= g(ω · ν)

∞∑

n=0

(
(ω · ν)2 −M[≤n](ω · ν; ε)

)
g[n](ω · ν; ε)

[
ε∂ϕf(ϕ)

]
ν

= g(ω · ν)

∞∑

n=0

(
(ω · ν)2 −M[≤n](ω · ν; ε)

) ∞∑

k=1

∑

θ∈Θ
R

k,ν(n)

Val(θ),

(A5.2)

where Θ
R
k,ν(n) differs from ΘR

k,ν(n) as it contains also trees which can have one renormalized self-

energy cluster T with exiting line ℓ0, if ℓ0 denotes the root line of θ; for such trees the line entering

T will be on a scale p ≥ 0, while the renormalized self-energy cluster T will have a scale nT = q,

with q + 1 ≤ min{n, p}.

∑

p

ν

ν1

νp

Figure 5. Here each of the lines exiting the bullets represents hνi , i = 1, . . . , p
with h defined by the resummed series. Developing each h in a resummed tree
series one realizes that the picture almost reconstructs h itself. However the trees
obtained in this way may have internal lines of momentum ν, which together
with the line ℓ0 would form a self energy cluster. This is taken into account by

extending the domain of the summation from ΘR
k,ν (n) to Θ

R
k,ν (n).

The graphical representation in Figure 5 makes the last step in (A5.2) clear: (ε∂ϕf(ψ+ a,β0 +

b)ν), with h = (a,b) well defined and small by the analysis in Section 6, can be developed in

Taylor series in h and then each h can be expressed as a tree sum with no self energy clusters

which can be graphically represented as in the figure.

Remark. Note that in both (A5.1) and (A5.2) only a finite number of addends in
∑

n is different

from zero, as the analysis of Section 6 shows, so that the two series are well defined. The same

observation applies to the following formulae, where appear series which, in fact, are finite sums.
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By explicitly separating in (A5.2) the trees containing such self-energy clusters from the others,

g(ω · ν)
[
ε∂ϕf(ϕ)

]
ν

= g(ω · ν)

∞∑

n=0

(
(ω · ν)2 −M[≤n](ω · ν; ε)

) ∞∑

k=1

∑

θ∈ΘR
k,ν

(n)

Val(θ)

+ g(ω · ν)

∞∑

n=1

(
(ω · ν)2 −M[≤n](ω · ν; ε)

)
g[n](ω · ν; ε) (A5.3)

∞∑

p=n

n−1∑

q=0

M [q](ω · ν; ε)

∞∑

k=1

∑

θ∈ΘR
k,ν

(p)

Val(θ)

+ g(ω · ν)

∞∑

n=2

(
(ω · ν)2 −M[≤n](ω · ν; ε)

)
g[n](ω · ν; ε)

n−1∑

p=1

p−1∑

q=0

M [q](ω · ν; ε)

∞∑

k=1

∑

θ∈ΘR
k,ν

(p)

Val(θ),

which, by the definitions of h, can be written as

g(ω · ν)
[
ε∂ϕf(ϕ)

]
ν

= g(ω · ν)
[ ∞∑

n=0

(
(ω · ν)2 −M[≤n](ω · ν; ε)

)
hn,ν (A5.4)

+
∞∑

n=1

Ψn(ω · ν; ε)
∞∑

p=n

n−1∑

q=0

M [q](ω · ν; ε)hp,ν +
∞∑

n=2

Ψn(ω · ν; ε)
n−1∑

p=1

p−1∑

q=0

M [q](ω · ν; ε)hp,ν

]
.

The terms in the second line of (A5.4) can be written as

∞∑

p=1

( p−1∑

q=0

p∑

n=q+1

M [q](ω · ν; ε)Ψn(ω · ν; ε) +

p−1∑

q=0

∞∑

n=p+1

M [q](ω · ν; ε)Ψn(ω · ν)
)
hp,ν

=

∞∑

p=1

p−1∑

q=0

M [q](ω · ν; ε)

∞∑

n=q+1

Ψn(ω · ν; ε)hp,ν

(A5.5)

and, by changing p→ n and n→ s, we obtain

∞∑

n=1

( n−1∑

q=0

M [q](ω · ν; ε)χ0(∆
[0](ω · ν; ε)) . . . χq(∆

[q](ω · ν; ε)) ·

·
∞∑

s=q+1

χq+1(∆
[q+1](ω · ν; ε)) . . . ψs(∆

[s](ω · ν; ε))
)
hn,ν

=

∞∑

n=1

n−1∑

q=0

M [q](ω · ν; ε)χ0(∆
[0](ω · ν; ε)) . . . χq(∆

[q](ω · ν; ε))hn,ν ,

(A5.6)

where the identity (A5.1) has been used in the last line (with the correct interpretation of the term

with s = j + 1 explained after (A5.1)). By the definition of the matrices M[≤n](x; ε) one has

n−1∑

q=0

M [q](ω · ν; ε)χ0(∆
[0](x; ε)) . . . χq(∆

[q](x; ε)) = M[≤n](x; ε), (A5.7)
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so that, by inserting (A5.6) in (A5.3), after having used (A5.7), we obtain

g(ω · ν)
[
ε∂ϕf(ϕ)

]
ν

= g(ω · ν)

∞∑

n=0

[ (
(ω · ν)2 −M[≤n](ω · ν; ε)

)
+ M[≤n](ω · ν; ε)

]
hn,ν

= g(ω · ν)

∞∑

n=0

(ω · ν)2hn,ν =

∞∑

n=0

hn,ν = hν , (A5.8)

so that the assertion is proved.

Remark. Note that at each step only absolutely converging series have been dealt with, so that

the above analysis is rigorous and not only formal.
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