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1. Introduction

In this paper we present a simple proof of the KAM theorem1 by studying directly the conver-
gence of the formal series (Lindstedt series, [L]) which expresses the quasiperiodic solution of the
equations of motion. Our aim is to show that the methods of quantum field theory represent a
very profitable approach to the problem, since they permit to single out in a very natural way the
source of problems, and provide simultaneously the necessary tools how to solve them.

Albeit the methods we are going to describe can be applied in order to prove the (analytic)
KAM theorem in the most general case, [GM], here we want to insist on the methods rather than
on the result, so that it will be convenient to restrict ourselves in a particular case, in which no
strictly unavoidable technical intricacy appears: in this way we will be able to present a rather
elementary proof. The extension to the general case does not requires conceptually anything new,
but of course everything is notationally more involved.

Let us consider the model obtained by perturbing through an action–independent function a
system of rotators (Thirring model, [T]). The hamiltonian function is then

1

2
J−1 ~A · ~A + εf(~α) , (1.1)

where J is the (non singular) matrix of the moments of inertia, ~α = (α1, . . . , αl) ∈ Tl are the

angles describing the positions of the rotators, ~A = (A1, . . . , Al) ∈ Rl are the conjugated actions,
and we suppose that minj=1,...,l Jj ≡ J0 > 0, if Jj ’s are the eigenvalues of J . The interaction
potential f is an even trigonometric polynomial of degree N

f(~α) =
∑

|~ν|≤N

f~ν cos~ν · ~α , f~ν = f−~ν , (1.2)

and without loss of generality we can suppose f~0 = 0.
Our proof takes full advantage from the similarity between the Lindstedt series and the per-

turbative series in euclidean quantum field theory. Such similarity can be pursued to exhibith
explicitly a quantum field theory model in which the one–point Schwinger function coincides with

1 From Kolmogorov, [K], Arnol′d, [A], and Moser, [M].
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the Lindstedt series for the model (1.1), see [G2]. In §2, we shall show that a proof of the KAM
theorem can be performed within the usual framework of the renormalization group approach to
quantum field theory, (we refer to [BG] for a rewiew of the results of this approach).

We conclude this introductory section by giving a formal statement of the result.

1.1. Theorem. Given the hamiltonian model (1.1), with interaction potential (1.2), and fixed
a “rotation vector” ~ω0 satyisfying the diophantine property C0|~ω0 · ~ν| ≥ |~ν|−τ , ~0 6= ~ν ∈ Zl with

diophantine constants C0, τ > 0, there exist two functions ~H(~ω0t; ε), ~h(~ω0t; ε) analytic in ~ψ ≡ ~ω0t

with Re~ψ ∈ Tl, and |Im~ψ j | < ξ, and analytic in ε for |ε| < ε0, where

ε0 = bJ−1
0 C2

0

[

max
0<|~ν|≤N

f~ν

]

N2+lecNeξN , (1.3)

for some positive constant b depending only on N and l, such that the functions

~A(t) = ~A0 + ~H(~ω0t; ε) ,

~α(t) = ~ω0t+ ~h(~ω0t; ε) ,
(1.4)

where ~A0 = J~ω0, describe an invariant torus which is run quasi–periodically with angular velocity
~ω0.

The twistless property, i.e. the uniformity of the convergence radius of the perturbative series
on the twist rate T = maxi=1,...,l Jj , is due to the form of the interaction, and can be obtained also
via the classical proof, as a careful analysis of the latter could show.

2. Proof of the theorem

Calling ~H(k) and ~h(k) the k-th order coefficients of the Taylor expansion in powers of ε of the
functions ~H and ~h in (1.4), and writing the equations of motion as

d ~A

dt
= −ε∂~αf(~α, ~A) ,

d~α

dt
= J ~A ,

we get immediately recursion relations for ~H(k),~h(k); if ~ψ = ~ω0t, one has for k = 1

(~ω0 · ∂~ψ ) ~H(1) = −∂~ψ f , ~ω0 · ∂~ψ
~h(1) = J ~H(1) ,

and for k > 1

(~ω0 · ∂~ψ )2 ~h(k) =
∑

(k−1)

∗
(−∂~α)

∑

p≥0

1

p!

p
∏

s=1

(

~h(ks) · ∂~α

)

f(~ω0t) , (2.1)

and ~H(k) can be trivially expressed in terms of ~h(k) by ~ω0 · ∂~ψ
~h(k) = J ~H(k). In (2.1) the sum

∑∗
(k−1) denotes summation over the integers ks ≥ 1 with

∑p
s=1 ks = k− 1, and the derivatives are

supposed to apply to the functions f(~α), and then evaluated in ~α = ~ω0t. If p = 0 the corresponding
product is meant as 1. The formal solubility of the above equations follows easily by induction: in
fact, if (1) ~h(k) is odd in ~ψ , and (2) ~H(k) is even in ~ψ and with vanishing average, for 1 ≤ k < k0,

then from the parity of the interaction the same holds for ~h(k0) and ~H(k0), so that (2.1) can be
solved.

It can be convenient to write the above recursive formulae in the Fourier space. We easily find,
for k = 1 and ~ν 6= ~0,

~h
(1)
~ν =

−i~ν Jf~ν( ~A0)

(i~ω0 · ~ν)2
,

and, for k > 1 and ~ν 6= ~0,

(i~ω0 · ~ν)
2 ~h

(k)
~ν =

∑

(k−1)

∗
(−i~ν0)

∑

p≥0

1

p!

p
∏

s=1

(

i~ν0 · ~h
(ks)
~νs

)

f~ν0 ,
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where
∑∗

(k−1) denotes summation over the integers ks ≥ 1 with:
∑p

s=1 ks = k − 1, and over the

integers ~ν0, ~ν1, . . ., ~νp, with: ~ν0 +
∑p

s=1 ~νs = ~ν. Moreover ~H
(k)
~ν = J−1~h

(k)
~ν (i~ω0 · ~ν) so that from

now on we study simply ~h
(k)
~ν . The ~0-th Fourier components ~h

(k)
~0

and ~H
(k)
~0

are identically vanishing
for any k ≥ 1, by the previously remarked parity properties.

It is possible to write ~h
(k)
~ν as sum of contributions each of which can be graphically represented as

a Feynman graph with no loops, i.e. a tree graph (or simply tree), which we call ϑ: it will consist of
a family of k lines (branches or lines) arranged to connect a partially ordered set of points (vertices

or nodes), with the higher vertices to the right. The branches are naturally ordered as well; all of
them have two vertices at their extremes (possibly one of them is a top vertex), except the lowest
or first branch which has only one vertex, the first vertex v0 of the graph. The other extreme r of
the first branch will be called the root of the graph and will not be regarded as a vertex; we shall
call the first branch also root branch.

Each branch carries an arrow pointing from the vertex to the right v to the vertex to the left
v′ (i.e. directed toward the root): we say that the branch exits from v and enters v′. Note that
there is a correspondence 1–to–1 between vertices and branches, if we associate to each vertex v
the branch λv exiting from it. Note also that the direction of the arrows is opposite to the ordering
of the vertices. A possible graph is represented in Fig. 2.1.

Let us define the order of a graph as the number of vertices of the graph. We introduce also
the notion of numbered trees: they are obtained by imagining to have a deposit of k branches
numbered from 1 to k and depositing them on the branches of a topological graph with order k.

A group G of transformations acts on the graphs, generated by the following operations: fix a
node v ∈ ϑ and permute the subgraphs emerging from it. The graphs will be regarded as identical
if superposable by the action of a transformation of the group G, in such a way that all the numbers
associated to the lines match. The number of numbered graphs of order k is bounded by k!22k.

root v0

v1

v2

v3

v5

v6

v7

v11

v10

v4 v8

v9

Fig.2.1. A graph ϑ with order k = 12.

One associates to each line λ a momentum ~νλ, a label jλ ∈ {1, . . . , l}, and a propagator gλ =
[i~ω · ~νλ]

−2and to each vertex v there corresponds a label ~νv (mode label), such that 0 < |~νv| ≤ N ,
and a vertex factor

Ev = f~νv
(−J−1~νv)jλv

mv
∏

q=1

(i~νv)jλq
δ(~νλv

− ~νv −

mv
∑

q=1

~νλq
) , (2.2)

where the product and the sum are over all the mv lines entering v, and the δ is the Kronecker’s
delta assuring the momentum conservation, (i.e. it imposes that the momentum coming out from
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a vertex v is given by the sum of the momenta flowing in it plus the “momentum emitted” by the
vertex itself, namely the mode ~νv).

Let us call Tk the collection of labeled graphs, i.e. of decorated numbered graphs, of order k,
where the decoration is given by a set of labels associated to the lines λ’s, (~νλ, jλ), and to the
vertices v’s, (~νv, Ev). The value of a graph ϑ is given by

X(ϑ) =
∏

v∈ϑ

gλv
Ev , (2.3)

and the k-th order coefficient of hj~ν can be written as h
(k)
j~ν =

∑∗
ϑ∈Tk

1
k!X(ϑ), where the sum is over

all the labeled graphs in Tk, and the ∗ recalls that the graph labels have to be consistent, (i.e. the
momentum conservation has to be satisfied), and the first branch λ has to have ~νλ = ~ν and jλ = j.

The representation of the Lindstedt series in terms of graphs was introduced in [E1] and the
analogy with the formal Feynman graphs expansion in field theory was pointed out in [FT].

One of the main difficulties of proving the convergence of
∑∞

k=1 h
(k)
j~ν is that one can easily exhibit

graph values of order O((k!)β) for some suitable positive constant β, if k is the perturbative order,
so that in order to prove that the Lindstedt series converges one has to show that there is a
sharp compensation between these “huge” graph values. The first proof of the convergence of
the Lindstedt series was provided by Eliasson, [E1], in the general analytic case; his work, quite
difficult to read, has not enjoyed a wide circulation and understanding, (the only printed works
being [E2] and [E3], and the fundamental paper [E1] being only an internal report of the University
of Stockholm). Eliasson did not perform explicit cancellations on individual terms of the series,
but he showed that they must occur because of the symplectic nature of the problem. A very clean
proof of the convergence of the model (1.1) was given in [G1] (with the additional condition of the
strong diophantine property, see §3), showing explicitly some approximate cancellations between
terms of the Lindstedt series; as the present work has the same purposes of [G1], and it should be
considered an improvement of it, we discuss the main differences at the end, when the reader can
appreciate them.2

Like in the renormalization group approach to the analysis of the perturbation expansions of
renormalizable quantum field theory, [BG], it can be convenient to introduce a multiscale decom-
position of the propagators in the following way. Let us define

χn(x) = θ(|x| − 2n−1) − θ(|x| − 2n) , n ≤ 0 , χ1(x) = θ(|x| − 1) , (2.4)

where θ(x) is the Heaviside function. Such functions realize a sharp partition of unity so that we
can decompose the propagator

gλ =
1

[~ω · ~νλ]2
=

1
∑

n=−∞

χn(~ω · ~νλ)

[~ω · ~νλ]2
≡

1
∑

n=−∞

g
(n)
λ , (2.5)

where g
(n)
λ is the “propagator at scale n”. If n ≤ 0, g

(n)
λ is a compact support function different

from 0 for 2n−1 ≤ |~ω ·~νλ| ≤ 2n, while g
(1)
λ has support for 1 ≤ |~ω ·~νλ|. Then one associates to each

line λ an extra label nλ (scale label). We associate to the lines of the labeled graphs Tk also the

scale label nλ and the value of a graph ϑ is now given by X(ϑ) =
∏

v∈ϑ g
(nλv )
λv

Ev.
Looking at the scale labels we identify the connected clusters T of vertices which are linked by

a continuous path of lines with the same scale label nT or a higher one and which are maximal: we
shall say that “the cluster T has scale nT ”. Therefore an inclusion relation is established between
the clusters, in such a way that the innermost clusters are the clusters with highest scale, and
so on. Let us denote by K(T ) the order of the cluster T , i.e. number of vertices contained in T .
Then, given a graph ϑ, let T be the maximal cluster contained in no other clusters, (i.e. the cluster
containing all the graph), and T0 the collection of lines and vertices contained inside T but not in
any subcluster T ′ ⊂ T . We can write the graph value X(ϑ) recursively as

X(ϑ) ≡ X(T ) =
∏

λ∈T0

g
(nT )
λ

∏

T ′⊂T

X(T ′)
∏

v∈T0

Ev , (2.6)

2 In [CF] a sligth generalization of the model (1.1) is studied, with techniques remarkably close to [G1].
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where T ′ ⊂ T means that the cluster T ′ is a maximal cluster inside T .

2.1. Definition. Among the clusters we consider the ones with the property that there is only one
incoming line, carrying the same momentum of the outgoing line, and we define them resonances.
If V is one such cluster we denote by λV the incoming line: we call nλV

the resonance-scale (which
is different from the scale nV of the resonance V as a cluster) and λV a resonant line.

Given a resonance V with incoming momentum ~ν, we write X(V ) = V(~ω ·~νλV
) in order to show

explicitly the dependence on the (sole) momentum of the external lines of the resonance. Note
that, if V is a resonance,

∑

w∈V ~νw = 0 for the momentum conservation (see (2.2))

root

n1

n2

n0

n3

n4 n6

n5

v1

v2

Fig.2.2 A graph with scale labels associated to the lines and a cluster structure.

Given a graph ϑ, let us define Nn(ϑ) the number of lines in ϑ with scale n ≤ 0. Then, as we
can deduce from (2.3), the graph value X(ϑ) admits the bound

Ck
∏

n≤0

2−2nNn(ϑ) , (2.7)

where C = 22J−1
m C2

0N
2[max~ν f~ν ], and Nn(ϑ) verifies the bound (Siegel-Bryuno’s lemma, [S,B])

Nn(ϑ) ≤
4k

E2−nτ−1
+

∑

T,nT =n

[−1 +mT (ϑ)] , (2.8)
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where mT (ϑ) is the number of resonances V inside the cluster T of ϑ, with resonance-scale nλV
=

nT , and E can be chosen E = 2−3τ−1

N−1. The proof of the above bound is in the Appendix.
Then, if there were no resonances, we would obtain a convergent bound. The resonances are

then the really dangerous contributions and we have to deal with them. Note that our definition of
resonances is different from the one in [E1] or in [CF] in which the resonances are simply subgraphs
among two lines carring the same momentum: in this way the well known problem in quantum field
theory of the overlapping divergences appear and one has to eliminate it by distinguishing between
resonances really “dangerous” or not. The introduction of clusters “automatically” leads to isolate
the dangerous contributions in the perturbative expansion and the problem of the overlapping
divergences never appear (the multiscale decomposition was in fact created in field theory just
to solve this problem). We stress moreover that the Siegel-Bryuno’s bound is the only point in
the proof in which the diophantine condition has a role; from now on, i.e. in the study of the
resonances, the diophantine condition will never be used.

Proceeding as in quantum field theory we introduce a localization operator. If X(T ) is the value
of a cluster T , the action of the localization operator L on T is defined as follows. If T is not a
resonance, LX(T ) = 0, while, if T is a resonance, T = V , we set

LX(V ) ≡ LV(~ω · ~νλV
) = V(0) + (~ω · ~νλV

)V̇(0) , (2.9)

where V̇(0) denotes the first derivative of V(~ω · ~νλV
) with respect to its argument, computed in

~ω · ~νλV
= 0. Then we split each cluster value as X(T ) = LX(T ) + RX(T ), with R = 11 − L.

2.2. Lemma. The sum over graphs containing resonances on which L applies is vanishing.

2.3 Proof of Lemma 2.2. We consider all the graphs we obtain by detaching from each resonance
the subgraph with first vertex w2, if w2 is the vertex from which the incoming line of the resonance
(resonant line) exits, then reattaching it to all the vertices w ∈ V . We call this set of contributions
resonance family. If ~ω ·~νλV

= 0, no propagator changes, and the only effect of our operation is that
one of the factors appearing in the product

∏

w∈V Ew changes by taking successively the values

(i~νw)jλv
, w ∈ V . In this way we build a quantity proportional to

∑

w∈V (i~νw)jλw
= ~0. If we sum

also on an overall change of sign of the ~νw’s, and we take into account the parity of the propagator
and (2.2), we obtain a second order zero.

It is convenient to write the effect of R on a resonance V as

RV(~ω · ~ν) = (~ω · ~ν)2
∫ 1

0

dt tV̈(t~ω · ~ν) , (2.10)

where V̈ denotes the second derivative. As there are resonances enclosed in other resonances the
above formula can suggest that there are propagators derived up to ≈ k times, if k is the order of
the graph.

However this is not the case as the propagators are derived at most two times. Let be n the
resonance-scale of the maximal resonance V , and let us write RX(V ) as

R
(

∏

λ∈V0

g
(nV )
λ

∏

T ′∈V

RX(T ′)
∏

v∈V0

Ev

)

, (2.11)

where, for any resonance Ṽ ⊆ V , RX(Ṽ ) can be written either as in (2.10), or as a difference
RX(Ṽ ) = X(Ṽ ) − LX(Ṽ ), in according to which expression turns out to be more convenient to
deal with.

Then the first step is to write the action of R on the maximal cluster as in (2.10), leaving the
other terms RX(T ′) written as differences when T ′ are resonances: so (2.11) can be expressed by
the Leibniz’s rule as a sum of terms, and the derivatives of R apply either on some propagator

g
(nV )
λ or on some RX(T ′). In the end there can be either no derivative, or one derivative, or

two derivatives applied on each RV(T ′). When T ′ is not a resonance, R = 1, and trivially,
∂pRX(T ′) ≡ ∂pX(T ′), for 0 ≤ p ≤ 2.

When T ′ is a resonance, T ′ = V ′, if only one derivative acts on RX(V ′) = RV(~ω · ~ν), then

we write ∂RV(~ω · ~ν) = ∂V(~ω · ~ν) − V̇(0) = (~ω · ~ν)
∫ 1

0
dtV̈(t~ω · ~ν), while, if two derivatives act on
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ϑ1 ϑ2

root rootv1 v1

v2 v2

v3

v3

Fig.2.3. The simplest resonance family.

RX(V ′), then we write ∂2RV(~ω · ~ν) = V̈(~ω · ~ν). Then two derivatives act on each resonance V ′ in
any case (i.e. also if it is enclosed in another resonance), and the procedure can be iterated, since
the resonances V ′ can be dealt with as the resonance V . Let us consider the effect of a derivative on
a propagator ġ

(n)
λ = −2[~ω ·~νλ]

−3χn(~ω ·~νλ) + [~ω ·~νλ]
−2χ̇n(~ω ·~νλ), (where, as usual, the dot denotes

derivative with respect to the argument). We write then the resonances as sum of two kinds of
terms: the terms of the first kind contain no factors χ̇n, while in the other ones derivatives of χ̇n
appear. In the latter contributions the action of R produces a gain factor 2nλV

−n′

2nλV
−n′′

, where
n′ and n′′ are the scales of two lines λ′ and λ′′, possibly coinciding, contained in some clusters T ′

and T ′′ inside V .
The terms in which there is at least a factor χ̇n could be sources of troubles, as

χ̇n(x) = δ(|x| − 2n−1) − δ(|x| − 2n) .

Hovewer this is not the case. In fact, let us consider the sum of all the graphs obtained replacing
the resonance V we are considering with any other resonance with the same scale nλV

and with
any choice of the scale labels nλ of the lines λ inside the resonance with the only condition that
nλ ≤ nV and with any choice of the labels L or R. If we sum all the contributions coming from
all these resonances in which the χn function of a particular line is derived, the deltas cancel each
other except the one coming from the case in which the line we are considering has frequency
nV = nλV

+ 1, but in this case 2nλV
−nV = 2.

In conclusion: (1) no more than two derivatives can ever act on any propagators; (2) a gain
22(nλV

−nV ) is obtained for any resonance V ; (3) the total number of terms generated by the
derivation is bounded by k2.

Therefore (2.7) can be replaced with

Ck0
∏

n≤0

2−2nNn(ϑ)
∏

V ∈ϑ

22(nλV
−nV ) ≤ Ck0 exp

[

− k(8E−1 log 2)
0

∑

n=−∞

n2n/τ
]

,

where C0 = e2C, as k2 ≤ e2k, the last product in the left hand side is over the resonances in
ϑ,

∏

V ∈ϑ 22nλV

∏

n

∏

T,nT =n 2−2nmT = 1 and
∏

V ∈ϑ 2−2nV
∏

n

∏

T,nT =n 22n < 1 as it immediately

follows from the definitions. Since the sum over the graphs is bounded by 22kN2k2klk(2N + 1)k,
this completes the proof of Theorem 1.1.

3. Conclusive comments

Finally we discuss the differences of our work with respect to [G1], where the gain factor 22(nλV
−nV )

was obtained by summing over all the resonances and using the maximum principle (in the form
of the Schwarz’s lemma) for analytic functions. Then one has to prove that the resonances are
analytic as function of the scalar product of ~ω times the momentum flowing in the resonance, and
this property, of course, is not true if the resonances are defined like in our paper. This is the reason
why in [G1] the resonances were defined with the further condition that number of lines inside each
resonance V was bounded by N−12−(nλV

+3)/τ and one assumed moreover that ~ω0 obeyed to the
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strong diophantine property min0≥p≥n |C0|~ω · ~ν| − 2−p| > 2−(n+1), for 0 < |~ν| ≤ (2n+3)−τ
−1

; this
assumption was eliminated in [GG] performing a particular partition of the unity depending on
~ω0.

With our method we have to prove simply that the resonances are twice differentiable, and this
allows us to give a simpler definition by requiring that the resonances are the clusters having only
one incoming line (see Definition 2.1). The deep reason of this simplification is that there is an
overcompensation, i.e. there are more cancellations than it would be necessary in order to make
the series convergent.

We think that our method, very close to quantum field theory, should be useful to clarify some
open problems in the KAM theory.

Aknowledgements. We thank G. Gallavotti for having introduced us to KAM theory and quan-
tum field theory, and for many enlightening discussions.
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Appendix. Resonant Siegel-Bryuno’s bound.

We prove by induction on the graph order that, if N∗
n(ϑ) is defined as the number of non resonant

lines in ϑ carring a scale label ≤ n, then N∗
n(ϑ) ≤ 2M(ϑ)2(n+2)/τ − 1, if Nn(ϑ) 6= 0.

Let ϑ be a graph of order k. If ϑ has the root line with scale > n then calling ϑ1, ϑ2, . . . , ϑm
the subgraphs of ϑ emerging from the first vertex of ϑ and with M(ϑj) > 2−(n+2)/τ lines, it is
N∗
n(ϑ) = N∗

n(ϑ1) + . . . + N∗
n(ϑm) and the statement is inductively implied from its validity for

k′ < k provided it is true that N∗
n(ϑ) = 0 if M(ϑ) < 2−(n+2)/τ , which is is certainly the case.

In the other case, (i.e. if the root branch has scale label ≤ n), it is N∗
n(ϑ) ≤ 1 +

∑m
i=1N

∗
n(ϑi),

and if m = 0 the statement is trivial, or if m ≥ 2 the statement is again inductively implied by its
validity for k′ < k.

If m = 1 we once more have a trivial case unless it is M(ϑ1) > M(ϑ) − 2−12−(n+2)/τ . But in
the latter case, it turns out that the root line of ϑ1 is either a resonant line or it has scale > n.

Accepting the last statement we have: N∗
n(ϑ) = 1+N∗

n(ϑ1) = 1+N∗
n(ϑ′1)+ . . .+N∗

n(ϑ′m′), with
ϑ′j ’s being the m′ subgraphs emerging from the first vertex of ϑ′1 with M(ϑ′j) > 2−(n+2)/τ : this is
so because the root line of ϑ1 will not contribute its unit to N∗

n(ϑ1). Going once more through the
analysis the only non trivial case is if m′ = 1 and in that case N∗

n(ϑ′1) = N∗
n(ϑ′′1)+ . . .+N

∗
n(ϑ′′m′′),

etc., until we reach either a trivial case or a graph ϑ̃ such that M(ϑ̃) < M(ϑ) − 2−12−n/τ .
It remains to check that, if M(ϑ1) > M(ϑ) − 2−12−(n+2)/τ , then the root line of ϑ1 has scale

> n, unless it is entering a resonance.
Suppose that the root line of ϑ1 has scale ≤ n and is not entering a resonance. Note that

|~ω · ~νλv0
| ≤ 2n+1, |~ω · ~νλv1

| ≤ 2n+1, if v0 and v1 are the first vertices of ϑ and ϑ1 respectively.

Hence δ ≡ |(~ω · (~νλv0
− ~νλv1

)| ≤ 2 2n+1 and the diophantine assumption implies that |~νλv0
−

~νλv1
| > (2n+2)−1/τ , or ~νλv0

= ~νλv1
. The latter case being discarded as we are not considering

the resonances,3 it follows that M(ϑ) −M(ϑ1) < 2−1 2−(n+2)/τ is inconsistent: it would in fact
imply that ~νλv0

− ~νλv1
is a sum of k − k1 vertex modes such that |~νλv0

− ~νλv1
| < 2−12−(n+2)/τ ,

hence δ > 2n+3 which is contradictory with the above opposite inequality.

Analogously, we can prove that, if Nn(ϑ) > 0, then the number pn(ϑ) of clusters of scale n
verifies the bound pn(ϑ) ≤ 2M(ϑ)2(n+2)/τ ) − 1. In fact this is true for a graph ϑ such that
M(ϑ) ≤ 2(n+2)/τ . Otherwise, if the first graph vertex v0 is not in a cluster of scale n, it is
pn(ϑ) = p(ϑ1) + . . .+ pn(ϑm), with the above notation, and the statement follows by induction. If
v0 is in a cluster on scale n we call ϑ̃1, . . . , ϑ̃m the subdiagrams emerging from the cluster containing
v0 and such that M(ϑj) > 2−(n+2)/τ , j = 1, . . . ,m: it will be pn(ϑ) = 1 + p(ϑ̃1) + . . . + pn(ϑ̃m).
Again we can assume m = 1, the other cases being trivial. But in such a case there will be only
one branch entering the cluster T on scale n containing v0 and it will have a momentum of scale
n′ ≤ n−1. Therefore the cluster T must contain vertices such that at least

∑

v∈T |~νv| > 2−(n+2)/τ

vertices, (otherwise, if λ is a line on scale n contained in T , and ~ν0
λ is the sum of the mode

labels corresponding to the vertices following v0 but inside T , we would have |~ω · ~νλ| ≤ 2n+1 and,
simultaneously, |~ω · ~νλ| ≥ 2n+3 − 2n−1 > 2n+2, which would lead to a contradiction). This means
that M(ϑ1) ≤M(ϑ) − 2−(n+2)/τ .

From the above proven results, (2.8) follows, if we note that
∑

T,nT =n 1 = pn(ϑ).

3 Note that M(ϑ)−M(ϑ1) < 2−12−(n+2)/τ implies that |~ω ·λ| ≥ 21+(n+2)/τ for all the lines λ preceding the root

line and not contained in ϑ1, so that the set composed by such lines, if ~νλv0
= ~νλv1

, is a resonance on scale n′ > n.
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