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1. Introductionsec.1

p.1.1 1.1. A general overview of the state of the art. The study of one-dimensional non-relativistic interacting

Fermi systems has attracted a vaste interest over the years, among physicists and mathematicians. The

mathematical interest is motivated by the possibility, due to the low dimensionality, to obtain some rigorous

non trivial results about such systems (conversely up to now this is almost impossible in higher dimensions).

The physical motivations arise from the fact that such systems can modelize some real materials, like organic

anysotropic compounds. A new wind of interest among physicists was generated in the ’90 by the Anderson

theory of high Tc superconductivity [A], which relies on the assumption that the physics of two-dimensional

interacting Fermi systems is somehow similar to the physics of one-dimensional ones.

As far as rigorous results are concerned, they can be distinguished mainly into two classes: results obtained

by exact solutions and results obtained by the study of the Schrödinger equation. An excellent rewiev of

exact solutions is in [Ma1]: we can recall the classical exact solutions of the Luttinger model, [ML], of the

Hubbard model, [LW], and of the spin chains (which can be seen as interacting Fermi systems by performing

a Schwinger-Dyson transformation) like the XY model, [LSM], the XXY model, [YY], and the XYZ model,

[B]. Such solutions are really nonperturbative, as they hold also for large coupling and are based mainly on

(rigorous) bosonization, Bethe Ansatz or transfer matrix method. However a limitation of such solutions is

that they can not be extended to other models, even to very similar ones, as they are crucially dependent

on the fine details of the models. Moreover – with the remarkable exception of the Luttinger model – the

exact solutions provide a detailed information of the Hamiltonian spectrum, but it is generally not possible

to derive from them the correlations (in terms of which the physical observables are expressed).

In a completely different framework other rigorous results about one-dimensional Fermi systems in an

external field can be derived by the analysis of the one-dimensional single particle Schrödinger equation (see

for instance [T] or [PF] for reviews). We can mention [K] for the periodic potential, [FS] and [AM] for the

stochastic potential and [DS], [MP] and [E1] for the quasi-periodic potential. From such results about the

spectrum of the Schrödinger equation one can obtain in principle the asymptotic behaviour of the correlation

functions for a system of fermions in an external field; this is however nontrivial in general (one has to use

some properties of the wave functions in the complex plane) and, as far as we know, it has been done only

in the case of random potentials in [AG] and in [BM1] in the case of periodic potentials.

It is very difficult to resume the large number of works in the physics literature about one-dimensional

Fermi systems (we can refer to the classical [So] or to the more recent [V], [SCP], [MCD]). Many results

are found by third order multiplicative Renormalization Group, [So], but it is not clear the relevance of

the higher order terms and the validity of the third order approximation. Moreover such methods can be

applied only to models with linear dispersion relations (so not really fundamental ones) and only if there is

no lattice and if the volume is infinite. Such limitations are particularly annoying as they make difficult a

detailed comparison with numerical simulations. Other results are found by the “bosonization” techniques,

in which the ultraviolet problem is not treated in a consistent way so that an extra parameter – not present

in the original model – appears in the expressions found for the correlations, see [LP]; this means that

such expressions can be in any case only approximately true. While it is likely that many of the physical

conclusions are valid, the lack of distinction between rigorous results and results not really proved at a

mathematical level makes generally very difficult the dialogue between theoretical physicists, mathematical

physicists and mathematicians working more or less on the same problems.

We mention finally the approach based on conformal quantum field theory, see for instance [FK]. This

approach is quite powerful as it can provide the critical indices, but it can be generally applied only to

models for which the exact solutions are possible.

p.1.2 1.2. More recent results. In this work we shall review what is known at a rigorous level about the correlation

functions of many (generally not soluble) models of interacting one-dimensional Fermi systems, with emphasis
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about the new results obtained starting from the ’90. A main novelty (with respect to the framework briefly

described in §1.1) was the application (started from [BG1] and [FT]) to solid state models of the techniques

based on the rigorous implementation of Wilsonian Renormalization Group, [W], developed in the context

of constructive Quantum Field Theory (see [BG2], [Br], [GK2] and [R] for reviews): this was a quite natural

development, as field theory methods were applied to solid state physics since many years (see for instance

[AGD]). Such techniques allow in principle to express the correlation functions of a quantum field theory

describing Fermi systems as convergent series (even if they are generally non-analytic in the perturbative

parameters). One of the first realization of this was the theory of the Gross-Neveu model (a system of

relativistic one-dimensional fermions) developed in [GK1], [FMRT1] and [Le]. The application of such

techniques to one-dimensional non-relativistic Fermi systems was originally discussed in [BG1], [BeGM],

[GS], [BGPS], [BM1], [BM2], [BM3], [BGM1], [BGM2], [M1], [M2], [M3], [BeM] and [GeM], and it will be

the main content of the present review. The result is that the correlation functions of many not soluble

models can be written as convergent series, in the weak coupling regime, and such expressions provide all

the informations one is interested in.

p.1.3 1.3. Contents. Aim of this paper is from one side to review in a systematic way results spreaded out

in a number of works and from the other to provide the technical tools necessary to read the original

papers. The physical observables are expressed in terms of Schwinger functions, which in turn are expressed

by functional integrals defined in terms of Grassman variables; in §4 we resume some properties of the

fermionic functional integrals which will be used to define a constructive algorithm for the computation of

the Schwinger functions. The Renormalization group ideas are implemented by writing each integration as

product of many integrations “on different scales” and the integration of a scale leads to a new effective

interaction; the technical tools for defining the expansions (trees, clusters, Feynman diagrams, and so on)

are defined in §5. This leads to a sequence of effective interactions whose expansion converges provided that

the previous scale interaction is small, due to cancellations based on the Fermi statistics, see §6.

In §8 for fixing ideas we consider a particular model, and we define an anomalous expansion for the

Schwinger function of it: as a paradigmatic model we choose the Holstein-Hubbard model for spinless fermions,

as it contains essentially all the possible difficulties encountered for spinless fermions; it describes in fact

fermions subject to a quasi-periodic potential and interacting through a short range two body potential.

We start by defining an expansion for the effective potential. The presence of a quasi-periodic potential

has the effect that the expansion is afflicted by a small divisor problem, so that a comparison for the series

appearing in classical mechanics is natural. The theory has an anomalous dimension and the bare parameters

are modified by critical indices. The flow of the running coupling constants is controlled using some hidden

symmetry of this model, see §10. In particular one exploits remarkable cancellations in the “beta function”,

proved by a non-perturbative argument based on the exact solution of the Luttinger model, see §16; in

other words we extract from the exact solution of the Luttinger model informations for not exactly solvable

models, using the fact that they are “close” in a renormalization group sense. An expansion for the two-

point Schwinger function is defined in §11, while an expansion for the density-density correlation function

is defined in §13. In order to compute the asymptotic behaviour of the density-density response function

one has to prove an approximate Ward identity, see §15. In §12 we collect the results about the Schwinger

functions for a number of spinless models, discussing briefly how the above scheme has to be adapted for each

of them. Such models are on a lattice or on the continuum, they interact with aperiodic or quasi-periodic

external potential, and include a two-body short range interaction. Our results are limited to the case of

small external and two body potential, with the exception of the case of large external quasi-periodic field

(considered in absence of the two-body interaction) in which the phenomenon of Anderson localization is

found. The XY Z Heisenberg spin chain is incuded in the class of models we can treat, as it can be written as

a interacting fermionic model with an anomalous potential and the spin-spin correlation function is related

to the density-density response function, see §13.

We then consider the presence of the spin: the number of running coupling constants increases, see §17
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and it turns out that only if the two-body interation is repulsive the running coupling costants remain small.

This is due to cancellations in the beta function based on the solution of the Mattis model, the analogue of

the Luttinger model with spinning fermions. In the repulsive case the behaviour of the Schwinger function

is similar to the one in the spinless case. In the attractive case only mean field approximations are possible

at the moment (with the remarkable exception of the Hubbard model, which was solved in [LW]). If the

fermions are on the lattice even the mean field theory is not trivial: we show, see §19, that a mean field

theory foresees the formation of collective excitations called density waves for any rational fermionic density,

but there are no results for an irration density (in the weak coupling region). We discuss also a mean field

theory for a two chain system exchanging Cooper pairs, in which a version of the BCS equation for Luttinger

liquids is found. Finally we discuss some results for finite temperature bidimensional fermions, see [DR1]

and [DR2].

The reader willing to go immediately to the main results before reading the technical parts can read

directly §12, §17 and §19.

2. One-dimensional interacting Fermi systemssec.2

p.2.1 2.1. Free systems. Let ψ±
x,σ be fermionic creation or annihilation operators defined in the standard fermion

Fock space, [NO]. If σ = ±1/2 we say that the fermions are spinning (so such operators can describe real

electrons), while if σ = 0 we say that the fermions are spinless. Despite the fact that spinless fermions have

no physical meaning, they are widely studied in the literature; one can say (tautologically) that they are

easier to study. Furthermore the results for spinless systems can be used to understanding phenomena in

which the spin does not play any rôle.

The physical systems one aims to modelize are crystals so anysotropic that they can be approximatively

described by one-dimensional systems: the conduction electrons are supposed to be confined on a segment

and they interact with each other, with the periodic or quasi-periodic background potential generated by

the ions of the crystal, with phonons, with stochastic impurities and so on (for physical motivations see [S],

[BJ], [SCP] and [V]).

There are two main classes of models describing one-dimensional fermion systems. The first class are

the lattice models and are such that x is an integer, say between −[L/2] and [(L − 1)/2]: we shall write

x ∈ Λ in such a case, if Λ = {x ∈ Z : −[L/2] ≤ x ≤ [(L − 1)/2]}. One describes in this way fermions

on a chain with length L and step a = 1, thinking that the electrons are localized on atomic sites and

they can hop to neighbouring sites. Considering only the possibility of hopping between nearest neighbour

sites (i.e. neglecting the interaction of the electrons with themselves and with the environment) the hopping

Hamiltonian (by setting S = 0 if the fermions are spinless and S = 1/2 if they are spinning) is given by

H0 = T0 − µ0N0 ,

T0 =
1

2S + 1

∑

σ=±S

∑

x∈Λ

[

1

2

(

−ψ+
x,σψ

−
x+1,σ − ψ+

x,σψ
−
x−1,σ + 2ψ+

x,σψ
−
x,σ

)

]

,

N0 =
1

2S + 1

∑

σ=±S

∑

x∈Λ

[

ψ+
x,σψ

−
x,σ

]

.

(2.1)1.2

In the above formulae µ0 is the chemical potential and it is fixed by the density (we shall work in the grand

canonical ensemble). The Hamiltonian (2.1) is also called the tight binding Hamiltonian.

Another class of models are the continuum models, in which the fermions are on the continuum and in

such a case x assumes values on the segment [−L/2, L/2]. One imagines in this case that the positive charge

of the ions is spreaded out in the metal (jellium). Then the corresponding Hamiltonian, again by neglecting
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any form of interaction, is given simply by the kinetic energy operator

H0 = T0 − µ0N0 ,

T0 =
1

2S + 1

∑

σ=±S

∫ L/2

−L/2
dxψ+

x,σ

1

2m
∂2
xψ

−
x,σ ,

N0 =
1

2S + 1

∑

σ=±S

∫ L/2

−L/2
dxψ+

x,σψ
−
x,σ .

(2.2)1.3

As in (2.2) µ0 denotes the chemical potential.

p.2.2 2.2. Interaction with the lattice. We assume, as it is usual, that the Hamiltonian describing the interacting

fermions is obtained by adding to the free Hamiltonian H0 some other terms, according to the kind of

interaction one wants to describe. In this way we get more realistic models with respect the ones considered

in §2.1.

The conduction electrons interact through electric forces with the lattice of ions; in first approximation

this interaction can be described in terms of a pseudopotential, which is assumed a regular periodic function

which takes into account the lattice periodicity. In the continuum models one then adds to the Hamiltonian

H0 a term

uP = u

∫ L/2

−L/2
dxϕ(x)ψ+

x,σψ
−
x,σ , (2.3)1.6a

with ϕ periodic with period T , i.e. ϕ(x) = ϕ(x + T ), and regular in its argument (what we mean exactly

by “regular” will become clear later when we shall discuss in detail the model). It is well known that the

presence of such a periodic potential leads to the formation of energy bands.

In lattice models the presence of the ion lattice is already described by the fact that one has x ∈ Λ; however

to describe energy bands one can still add to the Hamiltonian H0 a term

uP = u
∑

x∈Λ

ϕ(x)ψ+
x,σψ

−
x,σ , (2.4)1.6b

with ϕ(x) = ϕ(x + T ) for some integer T > 1.

For a long time solid state systems were considered as either crystalline (i.e. lattice periodic) or amorphous.

The lattice periodicity was then described in terms of interactions with periodic pseudopotentials like (2.3)

and (2.4). However in recent times several solid state systems with a quasi-periodic structure have been

discovered (see for istance [AxG]). In some cases such materials have a basic structure and a periodic

modulation superimposed on it, such that the periodicity of the modulation is incommensurate with the

periodicity of the basic structure. Another possibility is that of structures composed by two periodic lattice

subsystems, with mutually incommensurate periods.

In order to study the electronic properties of quasi-periodic systems, in case of lattice systems one can

add to the Hamiltonian H0 a term like (2.4), but in which one has ϕ(x) = ϕ(x + T ) with an irrational T ,

so that T is incommensurate with the period of the lattice (which is 1 in the units we have chosen); in the

case of continuum systems one can write (2.3) with ϕ(x) a quasi-periodic function, i.e. a function with two

incommensurate intrinsic periods.

The lattice can be not exactly periodic or quasi-periodic, for the unavoidable presence of impurities: their

presence can be modellized by the introduction of an additional term in the Hamiltonian describing the

interaction with a white noise (for istance). Of course such possibilities are not incompatible, i.e. one can

consider together both a stochastic and a periodic interaction.

p.2.3 2.3. Interaction between the electrons. The conduction electrons interact with each other: taking into account

such interactions is essential for the understanding of many properties (superconductivity, magnetism, Mott
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transition and so on). We can assume that the interaction between the fermions is given by a two-body

potential. The interaction is assumed to have short range, as the Coulombian interaction should be screened

in the metals. Then one can add to the Hamiltonian H0 (or H0 + uP ), in the case of lattice systems, a term

of the form

λV = λ
1

(2S + 1)2

∑

σ,σ′=±S

∑

x,y∈Λ

v(x− y)ψ+
x,σψ

+
y,σ′ψ

−
y,σ′ψ

+
x,σ , (2.5)1.7

with

|v(x − y)| ≤ v0e
−κ|x−y| , (2.6)1.8

for some positive constants κ and v0. In some special cases, e.g. in the so called Hubbard model, v(x− y) =

δ|x−y|,1.
In the continuum case one has

λV = λ

∫ L/2

−L/2
dx

∫ L/2

−L/2
dy v(x− y)

1

(2S + 1)2

∑

σ,σ′=±S
ψ+
x,σψ

+
y,σ′ψ

−
y,σ′ψ

+
x,σ , (2.7)1.9

where v can be assumed to be a smooth function satisfying (2.6).

p.2.4 2.4. Interaction with the phonons. It is also important to consider the interaction with phonons, which are

the quantized oscillations of the ion positions, i.e. of the lattice. One has to add to the Hamiltonian a term

of the form

HB +
∑

x∈Λ

φx

(

ψ+
x,σψ

−
x,σ −

1

2

)

, (2.8)1.9a

with

HB = − 1

σ2
0

∑

x∈Λ

∂2

∂φ2
x

+
∑

x∈Λ

(

φ2
x + b2(φx − φx+1)

2
)

, (2.9)1.9b

where φx is a boson quantum field, corresponding to a discretized vibrating string with linear density σ2
0 ,

optical frequency ω and maximum wave propagation speed c, so that b = cω−1. One could take into account

also acustic phonons.

p.2.5 2.5. Spin-Hamiltonians. Another class of models very related to the ones we are considering are the spin-

Hamiltonians, like the Heisenberg Hamiltonians, where there is a 1/2-spin on each site of a lattice and the

interaction is between nearest neighbours.

In dimension d = 1 a very general model is the XY Z model (which contains as limiting cases the XY

model, the XXZ model and others) which is described by the Hamiltonian

H =

L−1
∑

x=1

[

J1S
1
xS

1
x+1 + J2S

2
xS

2
x+1 + J3S

3
xS

3
x+1 + hS3

x

]

+ U1
L , (2.10)1.12

where Sjx = 2σjx, if σ1
x, σ

2
x and σ3

x are the Pauli matrices,

σ1
x =

(

0 1
1 0

)

, σ2
x =

(

0 i
−i 0

)

, σ3
x =

(

1 0
0 −1

)

, (2.11)1.13

while U1
L is a boundary interaction term. The Hamiltonian (2.10) can be written, [LSM], as a fermion

interacting spinless Hamiltonian. In fact, it is easy to check that, if σ±
x = (σ1

x ± iσ2
x)/2, the operators

a±x ≡
[

x−1
∏

y=1

(−σ3
y)

]

σ±
x (2.12)1.14
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are a set of anticommuting operators and that we can write

σ−
x = e

−iπ
∑x−1

y=1
a+

y a
−
y a−x , σ+

x = a+
x e

iπ
∑x−1

y=1
a+

y a
−
y , σ3

x = 2a+
x a

−
x − 1 . (2.13)1.15

Hence, if we normalize the interaction so that J1 + J2 = 2 and we introduce the anysotropy

u =
J1 − J2

J1 + J2
, (2.14)1.15a

we get

H =
L−1
∑

x=1

{

−1

2
[a+
x a

−
x+1 + a+

x+1a
−
x ] − u

2
[a+
x a

+
x+1 + a−x+1a

−
x ]−

−J3

(

a+
x a

−
x − 1

2

)(

a+
x+1a

−
x+1 −

1

2

)}

− h

L
∑

x=1

(

a+
x a

−
x − 1

2

)

+ U2
L ,

(2.15)1.16

where U2
L is the boundary term in the new variables. We choose it so that the fermionic Hamiltonian (2.15)

conicides with the Hamiltonian of a fermion system on the lattice with periodic boundary conditions, that

is we put U2
L equal to the term in the first sum in the r.h.s. of (2.15) with x = L and a±L+1 = a±1 (in [LMS]

this choice for the XY chain is called “c-cyclic”). Then the XY Z model can be considered as a fermionic

model of the class we are discussing.

The XY Z Hamiltonian has a sort of anomalous potential of the form (generalizing it to the case of spinning

fermions)

ξB = ξ
∑

x∈Λ

(

ψ+
x,σψ

+
x,−σ + ψ−

x,−σψ
−
x,σ

)

. (2.16)1.17

Such a potential appears in mean field BCS theory in which the superconductivity phenomenon is ap-

proximately described in terms of an anomalous potential like (2.16). We shall consider the case of two

one-dimensional interacting fermionic systems coupled by a Cooper interaction and we shall see that, in the

analogous of the Bardeen approximation, one is led to consider an interacting fermion system with a term

like (2.16)

p.2.6 2.6. General interacting systems. So in the following we can consider Hamiltonians which, in the most

general case, could be of the form

H = H0 + uP + λV + ξB +HB . (2.17)1.20

Usually not all the possible interacting terms are considered together as the corresponding analysis would

be very intricated. So we shall begin by considering a particular case, both for propedeutical and physical

reasons: the analysis will be easier to perform (and still not so easy!) and in describing physical situations

not all the interacting terms are expected to be at the same level at the same time.

p.2.7 2.7. Other Hamiltonian models. There are many other one-dimensional interacting fermionic models. One

is the Luttinger model, [L] and [ML], which will play an important rôle in our analysis; there are many

extensions of this model to spinning fermions, called the Mattis model, the g-ological model, the Luther-

Emery model and so on. All such models are not true “fondamental” ones, in the sense that they are

considered approximations, in some physical situations, of the models with Hamiltonians listed above; so

we shall not discuss them here. We shall see that our methods make us to introduce such models in a

natural way and to give a rigorous meaning to the intuition that such models are “close” to the one we are

considering.

There are also many relativistic model, like the Thirring model or the Yukawa2 model, which are closely

related to the models with the Hamiltonians listed above, in some particular limit.
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3. Schwinger functions and physical observablessec.3

p.3.1 3.1. Definition. Fix β > 0. Setting x = (x, x0), with x ∈ Λ and x0 ∈ [−β/2, β/2), define ψεx,σ =

ex0Hψεx,σe
−x0H .

If {t1, . . . , ts} is a collection of time variables ti ∈ (−β/2, β/2), we shall denote by {π(1), . . . , π(s)} the

permutation of {1, . . . , s} of parity pπ such that tπ(1) > . . . > tπ(s).

At temperature T = β−1 the finite-temperature imaginary-time correlation functions, or Schwinger func-

tions, are defined by

SL,β(x1, ε1, σ1; ...;xn, εn, σn) = (−1)pπ
Tre−βHψεπ(1)

xπ(1),σπ(1)
. . . ψ

επ(s)
xπ(s),σπ(s)

Tre−βH
. (3.1)3.1

In the spinless case we shall write simply SL,β(x1, ε1; ...;xn, εn).

In the limit β → ∞ the functions (3.1) define the zero temperature Schwinger functions: they describe

the properties of the ground state of the system with Hamiltonian H given by (2.17) in the grancanonical

ensemble with chemical potential µ0.

p.3.2 3.2. Physical relevance. Most of the physical properties can be derived, at least in principle, by the knowledge

of the Schwinger functions.

For istance by the two-point Schwinger function one can get information on the spectrum. If we consider

the Fourier transform of the two-point Schwinger function, from the imaginary poles in k0 one can compute

the spectral gap; if ik0,α,−ik0,β, with k0,α, k0,β > 0, are such poles then it is well known that ∆̄ = minα(kα)+

minβ(kβ), [BGL].

Another important quantity is the occupation number, defined as the average number of particle with

“momentum” k. The momentum is the quantum number which allows us to classify the states of a “free”

Hamiltonian, so the definition of occupation number depends on what we consider the free Hamiltonian. In

a system with Hamiltonian H0 (see (2.1) or (2.2)), the states are obtained considering Slater determinants

of plane-waves, so that the occupation number is just given by

nk ≡ Ŝ(k; 0−) , (3.2)3.2

if Ŝ(k, t) is the Fourier transform of the two-point Schwinger function with respect the only space variable

(in such a case the Schwinger function is translationally invariant). On the other hand, if the Hamiltonian

is H0 +uP , with P given by (2.3) or (2.4), in the periodic case, the good quantum number is the crystalline

momentum indicizing the Bloch waves, so that the good definition for the occupation number can be still

written in the form (3.2), provided the “Fourier transform” has to be done with respect to the Bloch waves

(instead of plane waves).

Other important physical quantities are the response functions; they measure the response of a physical

observable to an infinitesimal external perturbation. For istance the density-density response measures the

response of the system density to a perturbation proportional to the density of particles; it can be computed

from the density-density correlation function (in terms of which the dielectric constant can be written, [Ma]),

given, in the spinless case, by

SL,β(x,+;x,−;0,+;0,−)− SL,β(x,+;0,−)SL,β(x,+;0,−) . (3.3)3.3

The magnetic response function measures the response of the spin to a magnetic perturbation, and the

current-current response function measures the response of the current to an electric field.

p.3.3 3.3. Schwiger functions for free systems. Finally let us consider explicitly the Schwinger functions for free

systems in which H = H0. Suppose for instance H0 to be given by (2.1).
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The model described by H0 is of course exactly solvable and all the Schwinger functions can be computed;

they are obtained by the anticommutative Wick rule (for more details see §4 later) from the two-point

Schwinger function.

The latter is given, if the fermions are on a lattice, by

SL,β0 (x,−;y,+) ≡ g(x − y) =
1

Lβ

∑

k0∈Dβ

∑

k∈DL

eik·(x−y)

−ik0 + E(k)
, (3.4)1.4

where E(k) = 1 − cos k − µ0, with |k| ≤ 2π, is the dispersion relation, with the convection that x = (x, x0),

y = (y, y0), k = (k, k0), denoting by · the scalar product in R
2
, and defining

DL ≡ {k = 2πn/L, n ∈ Z, −[L/2] ≤ n ≤ [(L − 1)/2]} ,
Dβ ≡ {k0 = 2(n+ 1/2)π/β, n ∈ Z, −M ≤ n ≤M − 1} ,

(3.5)1.3a

where M is a suitable cut-off to be removed at the end (see below).

If the fermions are on the continuum the dispersion relation becomes E(k) = (k2/2m) − µ0 and the

two-point Schwinger function is still given by (3.4), with the new definition of E(k) and with DL defined as

DL ≡ {k = 2πn/L, n ∈ Z, −N ≤ n ≤ N − 1} , (3.6)1.3b

with N a suitable cut-off (to be removed as M). Of course at the end we will be interested in removing the

cut-offs M and N : we work with M and N finite, so that we are able to interpret the Schwinger functions

as integrals on finite-dimensional Grassman algebras (see next section), and we find results which will be

uniform in M and N , so that we can take the limits M → ∞ and N → ∞.

We can see that g(x − y) is the Fourier transform of a function singular for k0 = 0, k = pF , where pF is

the Fermi momentum, defined by the condition E(pF ) = 0. In general, when adding to H0 the interaction

between particles, there is no reason for the Fourier transform of the Schwinger function to be singular for

k = pF ; it could be singular at some interaction-dependent value. In order to take into account this fact it

is useful to write

µ0 = µ+ ν , (3.7)1.6

where ν is a counterterm which will be eventually suitably chosen in order to fix the position of the singularity

at some interaction-indipendent point.

The Schwinger functions (3.1) can be expressed as functional integrals. In next section we shall review

the basic concepts which allows us to introduce a functional integral representation in a fermionic theory,

then in §5 and in §6 we shall discuss the notion of effective potential, hence in §7 we shall come back to the

problem of studying the Schwinger functions.

4. Fermionic functional integralssec.4

p.4.1 4.1. Grassman integrals and truncated expectations. The Schwinger functions we shall be interested in

are written as Grassman integrals (see the classical [Be] or any modern textbook like [NO]; see also §7).

One introduces a finite dimensional Grassman algebra, which is a set of anticommuting Grassman variables

ψ ≡ {ψ+
α , ψ

−
α }, with α an index belonging to some finite set A. This means that

ψσα, ψ
σ′

α′ + ψσα, ψ
σ′

α′ = 0 , ∀α, α′ ∈ A , ∀σ, σ′ = ± ; (4.1)4.1

in particular (ψσα)2 = 0 ∀α ∈ A and ∀σ = ±.
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Note that here and henceforth we use the same symbols to denote both the fermionic fields and the

Grassman variables: this can be a little misleading, but it is the convention usually followed in quantum

field theory, so we shall adopt it. Note also that confusion should not be made between the label σ = ± in

(4.1) and the spin label σ used in the previous sections.

Let us introduce another set of Grassman variables {dψ+
α , dψ

−
α }, a ∈ A, anticommuting with ψ+

α , ψ
−
α , and

an operation (Grassman integration) defined by

∫

ψσαdψσα = 1 ,

∫

dψσα = 0 , a ∈ A , σ = ±1 . (4.2)4.2

If F (ψ) is any analytic function of the ψ+
α , ψ

−
α , α ∈ A, the operation

∫

∏

α∈A
dψ+

α dψ−
α F (ψ) (4.3)4.3

is simply defined by iteratively applying (4.2) and taking into account the anticommutation rules (4.1). It

is easy to check that for all a ∈ A and C ∈ C

∫

dψ+
α dψ

−
α e

−ψ+
αCψ

−
α ψ−

αψ
+
α

∫

dψ+
α dψ

−
α e−ψ

+
αCψ

−
α

= C−1 ; (4.4)4.4

in fact e−ψ
+
αCψ

−
α = 1 − ψ+

αCψ
−
α and by (4.2)

∫

dψ+
α dψ−

α e
−ψ+

αCψ
−
α = C , (4.5)4.5

while
∫

dψ+
α dψ

−
α e

−ψ+
αCψ

−
α ψ−

αψ
+
α = 1 . (4.6)4.6

In the following we shall need also more complicate expressions involving more than a pair of Grassman

variables, like
∫

dψ+
α dψ−

α dψ+
β dψ−

β e
−
∑β

ij=α
ψ+

i
Mijψ

−
j ψ−

α′ψ
+
β′

∫

dψ+
α dψ−

β dψ+
β dψ−

β e
−
∑

β

ij=α
ψ+

i
Mijψ

−
j

= [M−1]α′β′ , (4.7)4.7

with M ∈ GL(2,C), for α 6= β ∈ A and α′, β′ ∈ {α, β}. Again (4.7) can be easily verified by using (4.2) and

the anticommutation rules (4.1), which allow us to write

∫

dψ+
α dψ−

β dψ+
β dψ−

β e
−
∑

β

ij=α
ψ+

i
Mijψ

−
j = M11M22 −M12M21 ≡ detM (4.8)4.8

and
∫

dψ+
α dψ−

α dψ+
β dψ−

β e
−
∑

β

ij=α
ψ+

i Mijψ
−
j ψ−

α′ψ
+
β′ = M ′

α′β′ , (4.9)4.9

if M ′
α′β′ is the minor complementary to the entry Mα′β′ (i.e. M ′

αα = Mββ, M
′
ββ = Mαα, M ′

αβ = −Mβα and

M ′
βα = −Mαβ).

The above formulae (4.4) and (4.7) closely remind us the Gaussian integrals: note however that there is

no need that C or M are real or positive defined (but of course they have to be invertible).

Pursuing further the analogy with Gaussian integrals, we can consider a “measure” (a similar expression

is found replacing g with a matrix, see (4.26) below)

P (dψ) =
∏

α∈A
dψ+

α dψ−
α gαe

−
∑

α∈A
ψ+

α g
−1
α ψ−

α ; (4.10)4.10



12 renormalization group for one-dimensional fermions

by construction one has
∫

P (dψ) = 1 ,

∫

P (dψ)ψ−
α ψ

+
β = δα,βgα . (4.11)4.11

In general P (dψ) will be called a Gaussian fermionic integration measure (or Grassman integration measure

or, as we shall do in the following, integration tout court) with covariance g: for any analytic function F

defined on the Grassman algebra we can write

∫

P (dψ)F (ψ) = E(F ) . (4.12)4.12

However note that P (dψ) is not at all a real measure, as it does not satisfy the necessary positivity conditions,

so that the terminology is only formal and the use of the symbol E (which stands for expectation value) is

meant only by analogy.

Given p functions X1, . . . , Xp defined on the Grassman algebra and p positive integer numbers n1, . . . , np,

the truncated expectation is defined as

ET (X1, . . . , Xp;n1, . . . , np) =
∂n1+...+np

∂λn1
1 . . . ∂λ

np
p

log

∫

P (dψ) eλ1X1(ψ)+...+λpXp(ψ)

∣

∣

∣

∣

λ=0

, (4.13)4.13

where λ = {λ1, . . . , λp}. It is easy to check that ET is a linear operation, that is, formally,

ET (c1X1 + . . .+ cpXp;n) =
∑

n1+...+np=n

n!

n1! . . . np!
cn1
1 . . . cnp

p ET (X1, . . . , Xp;n1, . . . , np) , (4.14)4.14

so that the following relations immediately follow:

(1) ET (X ; 1) = E(X) ,

(2) ET (X ; 0) = 0 ,

(3) ET (X, . . . ,X ;n1, . . . , np) = ET (X ;n1 + . . .+ np) .

(4.15)4.15

Moreover one has

ET (X1, . . . , X1, . . . , Xp, . . . , Xp; 1, . . . , 1, . . . , 1, . . . , 1) = ET (X1, . . . , Xp;n1, . . . , np) , (4.16)4.15a

where, for any j = 1, . . . , p, in the l.h.s. the function Xj is repeated nj times and 1 is repeated n1 + . . .+np
times.

We define also

ET (X1, . . . , Xp) ≡ ET (X1, . . . , Xp; 1, . . . , 1) . (4.17)4.15b

By (4.16) we see that all truncated expecations can be expressed in terms of (4.17); it is easy to see that

(4.17) is vanishing if Xj = 0 for at least one j; see Appendix A3.

The truncated expectation appears naturally considering the integration of an exponential; in fact as a

particular case of (4.13) one has

ET (X ;n) =
∂n

∂λn
log

∫

P (dψ) eλX(ψ)

∣

∣

∣

∣

λ=0

, (4.18)4.16

so that

log

∫

P (dψ) eX(ψ) =
∞
∑

n=0

1

n!

∂n

∂λn
log

∫

P (dψ) eλX(ψ)

∣

∣

∣

∣

∣

λ=0

=

∞
∑

n=0

1

n!
ET (X ;n) .

(4.19)4.17
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The following properties, immediate consequence of (4.2) and very similar to the properties of Gaussian

integrations, follow; see also Appendix A3.

(1) Wick rule. Given two sets of labels {α1, . . . , αn} and {β1 . . . , βm} in A, one has

∫

P (dψ)ψ−
α1
...ψ−

αn
ψ+
β1
, . . . , ψ+

βm
= δn,m

∑

π

(−1)pπ

n
∏

i=1

δαi,βπ(j)
gαi , (4.20)4.18

where the sum is over all the permutations π = {π(1), . . . , π(n)} of the indices {1, . . . , n} with parity pπ
with respect to the fundamental permutation.

(2) Addition principle. Given two integrations P (dψ1) and P (dψ2), with covariance g1 and g2 respectively,

then, for any function F which can be written as sum over monomials of Grassman variables, i.e. F = F (ψ),

with ψ = ψ1 + ψ2, one has
∫

P (dψ1)

∫

P (dψ2)F (ψ1 + ψ2) =

∫

P (dψ)F (ψ) , (4.21)4.19

where P (dψ) has covariance g ≡ g1 + g2. It is sufficient to prove it for F (ψ) = ψ−ψ+, then one uses the

anticommutation rules (4.1). One has

∫

P (dψ1)

∫

P (dψ2)
(

ψ−
1 + ψ−

2

) (

ψ+
1 + ψ+

2

)

=

∫

P (dψ1)ψ
−
1 ψ

+
1

∫

P (dψ2) +

∫

P (dψ1)

∫

P (dψ2)ψ
−
2 ψ

+
2 = g1 + g2 .

(4.22)4.20

where (4.11) has been used.

(3) Invariance of exponentials. From the definition of truncated expectations, it follows that, if φ is an

“external field”, i.e. a not integrated field, then

∫

P (dψ) eX(ψ+φ) = exp

[ ∞
∑

n=0

1

n!
ET (X(· + φ);n)

]

≡ eX
′(φ) , (4.23)4.21

which is a main technical point: (4.23) says that integrating an exponential one still gets an exponential,

whose argument is expressed by the sum of truncated expectations.

(4) Change of integration. If Pg(dψ) denotes the integration with covariance g, then, for any analytic function

F (ψ), one has
1

Nν

∫

Pg(dψ) e−νψ
+ψ−

F (ψ) =

∫

Pg̃(dψ)F (ψ) , g̃−1 = g−1 + ν , (4.24)4.22

where

Nν =
g−1 + ν

g−1
= 1 + gν =

∫

Pg(dψ) e−νψ
+ψ−

. (4.25)4.23

The proof is very easy from the definitions. More generally one has that, if M is an invertible 2 × 2 matrix

and PM (dψ) is given by

PM (dψ) =

∫

dψ+
α dψ−

β dψ+
β dψ−

β detM e
−
∑

β

ij=α
ψ+

i
M−1

ij
ψ−

j , (4.26)4.24

then, for σ ∈ C,

1

Nσ

∫

PM (dψ) e−σψ
+
1 ψ

−
2 −σψ+

2 ψ
−
1 F (ψ) =

∫

PM̃ (dψ)F (ψ) , M̃−1 = M−1 + σσ1
x , (4.27)4.25
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where σ1
x is the Pauli matrix (see (2.11)) and

Nσ = det
(

11 + σS1
xM

)

=
det
(

M−1 + σS1
x

)

detM−1
=

∫

PM (dψ) e−σψ
+
1 ψ

−
2 −σψ+

2 ψ
−
1 . (4.28)4.26

Moreover if PM (dψ) is the integration measure defined by (4.26), one has

1

NN

∫

PM (dψ) e
−
∑

β

i,j=α
ψ+

i
N−1

ij
ψ−

j F (ψ) =

∫

PM̃ (dψ)F (ψ) , (4.29)4.26a

where

M̃−1 = M−1 +N−1 (4.30)4.26b

and

NN = det
(

11 +N−1M
)

=
det
(

M−1 +N−1
)

detM−1
=

∫

PM (dψ) e
−
∑

β

i,j=α
ψ+

αN
−1
ij
ψ−

β . (4.31)4.26c

p.4.2 4.2. Truncated expectations and Feynman diagrams. For concreteness we consider a system which is a

perturbation of that described by the Hamiltonian H0 given by (2.1).

We introduce a finite set of Grassman variables {ψ̂±
k }, one for each k ∈ DL,β, DL,β ≡ DL × Dβ , with DL

and Dβ defined in (3.5). Let be

P (dψ) =
(

∏

k∈DL,β

(Lβĝ(k)) ψ̂+
k ψ̂

−
k

)

exp
[

−
∑

k∈DL,β

(Lβĝ(k))
−1
ψ̂+

k ψ̂
−
k

]

, (4.32)4.27

with

ĝ(k) =
1

−ik0 + E(k)
=

1

−ik0 + cos pF − cos k
, (4.33)4.28

where (see (3.4))

E(k) = 1 − µ0 − cos k ≡ cos pF − cos k . (4.34)4.28a

So we are in the situation of §4.1 with the set of indices A = DL,β.
We introduce the Grassman fields ψ±

x defined by

ψ±
x =

1

Lβ

∑

k∈DL,β

ψ̂±
k e

±ik·x , (4.35)4.29

where k = (k, k0) and k · x = k0x0 + kx, and such that

∫

P (dψ)ψ−
x ψ

+
y =

1

Lβ

∑

k∈DL,β

e−ik·(x−y)ĝ(k) ≡ g(x− y) , (4.36)4.30

Of course the properties for the Grassman variables seen in §4.1 extend trivially to the Grassman fields.

In order to compute the truncated expectations there are two possible main ways.

One is the representation in terms of the ordinary connected Feynman diagrams defined in the following

way. For a given set of indices P , define

ψ̃(P ) =
∏

f∈P
ψ
σ(f)
x(f) , (4.37)4.31

with σ(f) ∈ {±} and x(f) = (x(f), x0(f)) ∈ Λ × [−β, β], and call |P | the number of elements in P . Then,

given s sets of indices P1, . . . , Ps, consider

ET
(

ψ̃(P1), . . . , ψ̃(Ps)
)

, (4.38)4.32
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for s ≥ 1 (recall (4.17)).

First of all note that, by writing

Pj = P+
j ∪ P+

j ,

P±
j = {f ∈ Pj : σ(f) = ±} , (4.39)4.32a

for each j = 1, . . . , s, one must have
s
∑

j=1

|P+
j | =

s
∑

j=1

|P−
j | , (4.40)4.32b

because the truncated expectations can be written in terms of simple expectations (see Appendix A3) and

the Wick rule (4.20) holds.

For any x = x(f) and σ = σ(f), we can represent each field ψσx as an oriented half-line emerging from a

point x and carrying an arrow, pointing towards the point if σ = − and opposite to the point if σ = +. We

can enclose the points x(f) belonging to the set Pj , for some j = 1, . . . , s, in a box: in this way we obtain s

disjoint boxes.

Then given n sets P1, . . . , Ps, we associate to them a set of graphs Γ, called Feynman diagrams, obtained

by joining pairwise the half-lines with consistent orientation (i.e. a half-line representing a field ψ− with a

half-line representing a field ψ+ and vice versa) in such a way that the boxes are all connected; see Fig. 1.

A line obtained by joining two half-lines will be denoted by ℓ and, if ℓ is a line contained in a diagram Γ, we

shall write ℓ ∈ Γ: the two half-lines are said to be contracted or to form a contraction.

To each line ℓ obtained joining the half-line representing ψ−
x(i) with the half-line representing ψ+

x(j) we

associate a propagator gℓ ≡ g(x(i)) − x(j)); as the line ℓ uniquely determines the points i and j, we shall

write also x(i) − x(j) = xℓ.

Fig. 1. A Feynman diagram Γ obtained by joining all the half-lines with consistent

orientation emerging from the boxes encosing the sets P1,...,Ps. The diagram Γ belongs

to the set G0 in (4.42).

Then to each diagram Γ there corresponds a number, which will be called the value of the graph, given by

the product of the propagators of the lines ℓ ∈ Γ (possibly up to a sign):

Val(Γ) = (−1)π
∏

ℓ∈Γ

gℓ , (4.41)4.33
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where π is a parity which depends on the way the lines are contracted between themselves. Then, if we

denote by G0 the set of all Feynman diagrams which can be obtained by following the given prescription,

one has

ET
(

ψ̃(P1), . . . , ψ̃(Ps)
)

=
∑

Γ∈G0

Val(Γ) . (4.42)4.33b

As a consequence we see that all the sets P1, . . . , Ps have to be not empty if s > 1, while one can have P1 = ∅
if s = 1.

There is another possible (more compact) representation of the truncated expectations. Consider (4.38)

and set f = (j, i) for f ∈ Pj , with i = 1, . . . , |Pj |, and n = |P1| + . . .+ |Ps|.
It is well known (see Appendix A3) that, up to a sign, if s > 1,

ET
(

ψ̃(P1), . . . , ψ̃(Ps)
)

=
∑

T

(

∏

ℓ∈T
gℓ

)

∫

dPT (t) detGT (t) , (4.43)4.34

where

(1) T is a set of lines forming an anchored tree between the clusters of points P1, . . . , Ps, i.e. T is a set of

lines which becomes a tree (see Appendix A1 for a formal definition of tree) if one identifies all the points

in the same cluster,

(2) t is a set of parameters

t = {tj,j′ ∈ [0, 1], 1 ≤ j, j′ ≤ s} , (4.44)4.35

(3) dPT (t) is a suitable (normalized) probability measure with support on a set of t such that tj,j′ = uj ·uj′ ,
for some family of vectors uj ∈ R

s
of unit norm, and

(4) GT (t) is a (n− s+ 1) × (n− s+ 1) matrix, whose elements are given by

[

GT (t)
]

(j,i),(j′,i′)
= tj,j′g(x(j, i) − x(j′, i′)) , (4.45)4.36

where 1 ≤ j, j′ ≤ s and 1 ≤ i ≤ |Pj |, 1 ≤ i′ ≤ |Pj′ |, such that the lines ℓ = x(j, i)− x(j′, i′) do not belong to

T .

If s = 1, the sum over T is empty, but we can still use the above equation, by interpreting the r.h.s. as

{

1 , if P1 is empty ,
detG(1) , otherwise ,

(4.46)4.37

where 1 is obtained from (4.44) by setting tj,j′ = 1 ∀j, j′.
Note that, while in the first representation ET was written as a sum over Feynman diagrams, in this second

representation it is written as a sum over trees connecting the boxes. Fixing a tree T and expanding the

determinant detGT (t), one gets all the possible graphs which can be obtained by contracting the half-lines

not belonging to T , i.e. one gets the Feynman diagrams and the representation (4.42) follows.

Of course the number of addends in the first representation (4.42) is much larger than in the second one,

i.e. (4.43), where a large quantity of Feynman diagrams are grouped together.

It is important to stress the difference of the two representations of the truncated expectations, more

precisely the difference between the number of addends appearing in the two representations. In the first

one (4.42) a truncated expectation is written in terms of Feynman diagrams and the number of them can

quite high: for istance, if |Pi| = 4 in (4.36), they are O(s!2) (see Appendix A1), so while using such a

representation it is difficult to verify the convergence of the perturbative series. In the other representation

(4.43) we do not sum over the Feynman diagrams, but over the anchored trees (see Fig. 2), whose number

is only O(s!) (see Appendix A1). Of course there can be really a gain in expressing (4.38) by using (4.43)

instead of (4.42) only if each summand of the two expressions admits the same bound, for instance a Cn

bound for some constant C.
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If the propagators are bounded by some constant C0, |gℓ| ≤ C0, then one has |Val(Γ)| ≤ CL0 , where L is the

number of lines in Γ (see (4.41)); as the number of Feynman diagrams in G0 is bounded by O(s!2) then we

obtain a bound s!2Cn from (4.42), for some constant C. On the other hand it is a remarkable inequality that

the determinant in (4.43) can be still bounded by a constant to the power n (Gram-Hadamard inequality; see

Appendix A3), so that a bound s!Cn can be obtained for (4.38) by using the representation (4.43) instead of

(4.42). Of course if one develops the determinant in (4.43) one obtains the expansion in Feynman diagrams

(4.42): the dramatic improvement of the bound is due to the fact that one exploits cancellations among the

Feynman diagrams (due to the Fermi statistics), which are lost if bounding each addend in (4.42) by its

absolute value. More precisely one has
∣

∣

∣

∣

∣

∑

T

(

∏

ℓ∈T
gℓ

)

∫

dPT (t) detGT (t)

∣

∣

∣

∣

∣

≤
∑

T

(

∏

ℓ∈T
|gℓ|
)

Cn−s+1
1

≤
∑

T

Cs−1
0 Cn−s+1

1 ≤ s! (Cmax{C0, C1})n .

(4.47)4.34bis

where C1 is a constant (proportional to C0) such that | detGT (t)| ≤ Cn−s+1
1 and s!Cn takes into account

the number of anchored trees which one has to sum over in (4.43); see Appendix A3.

Fig. 2. A term contributing to the truncated expectation (4.38) according to the

expansion (4.43). The lines connecting the sets P1,...,Ps form the anchored tree T . The

other lines are left uncontracted, as the determinant in (4.47) takes into account all the

possible ways to contract them.

We shall see that, as anticipated above, this will allow us to pass from a factorial s!2 to a factorial s! in

the estimates , and that this will be enough in order to obtain convergence as a factor 1/s! arises from the

perturbative expansion (see (5.22) and the comments around (5.40)); see the end of §5.4.

5. The multiscale decomposition and power countingsec.5

p.5.1 5.1. Tree expansion. It is possible to write the functional integral introduced in §4 as sum over trees following

two possible routes. [Note that the trees involved in the construction below have not to be confused with

the (anchored) trees introduced in the previous section: they are called both trees because, as graphs, they

have the same structure.]
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The first route consists in looking at the Feynman diagrams and to realize that it is convenient to associate

to each of them a set of boxes, called clusters, establishing a hierarchical order between the sizes of the

momenta of the lines of the propagators. The reason for doing this is the following one: if the momenta

of the lines in some box are larger than the momenta of the lines outside the box, one has a possibly

“dangerous” contribution, while this is not the case in the opposite situation: it is natural that such two

different contributions have to be treated in a different way. This argument will become clearer below and

in §7. Note that such reasoning was followed by Bogolubov, Hepp and Zimmermann (see [B], [H] and [Z]).

We shall see that the set of clusters associated to any graph can be very conveniently represented in terms

of trees.

The other way for introducing trees follows the ideas of Wilson on the Renormalization Group, see [W];

one wants to implement the idea that, integrating the “irrelevant” degress of freedom of a theory, one

gets an “effective theory” much simpler than the preceeding one and such that all the important physical

informations are encoded in it. We will follow this route.

For concreteness we consider the discrete case, in which the free Hamiltonian is given by (2.1) (anyway

the following discussion can be easily adapted to the continuum case). So, if we denote by k = (k, k0)

the momentum (see (3.5)), we have that k is defined modulo 2π. Let ‖ · ‖T denote the distance on the

one-dimensional torus T ≡ R/2πZ, i.e.

‖k‖T = min
n∈Z

|k − 2πn| . (5.1)5.0

Fix pF = 2πnF /L, with nF ∈ N, such that 1 − cos pF = µ0.

We introduce a smooth C∞ function χ(k′) such that, if

|k′| =
√

k2
0 + v0‖k′‖2

T
, v0 =

dE

dk

∣

∣

∣

∣

k=pF

= sin pF , (5.2)5.1

with E(k) defined in (4.34), then

χ(k′) =

{

1 , if |k′| ≤ t0 = a0/γ ,
0 , if |k′| ≥ a0 ,

(5.3)5.2

where a0 = min{pF /2, π − pF /2} and γ > 1; see Fig. 3.

0 t0 a0 |k′|

1

χ(k′)

Fig. 3. The function χ(k′).

We can write in (4.33)

ĝ(k) = ĝ(u.v.)(k) + ĝ(i.r.)(k) ,

ĝ(u.v.)(k) ≡ 1 − χ(k0, k + pF ) − χ(k0, k − pF )

−ik0 + cos pF − cos k
,

ĝ(i.r.)(k) ≡ χ(k0, k + pF ) + χ(k0, k − pF )

−ik0 + cos pF − cos k
.

(5.4)5.3
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We introduce, for any k ∈ DL,β, two Grassman variables, ψ
(u.v.)
k and ψ

(i.r.)
k , with propagators, respectively,

ĝ(u.v.)(k) and ĝ(i.r.)(k); given a potential V(ψ), by the addition principle, we can write

∫

P (dψ) eV(ψ) =

∫

P (dψ(i.r.))

∫

P (dψ(u.v.)) eV(ψ(u.v.)+ψ(i.r.)) , (5.5)5.4

and, by using the invariance of exponentials property, we have

∫

P (dψ(u.v.)) eV(ψ(u.v.)+ψ(i.r.)) = exp

[ ∞
∑

n=0

1

n!
ETu.v.

(

V(· + ψ(i.r.);n
)

]

≡ eV
(0)(ψ(i.r.)) . (5.6)5.5

We shall see better later why it can be of interest to consider an expression like (5.5).

It is convenient to represent the expansion for

V(0)(ψ(i.r.)) =

∞
∑

n=0

1

n!
ETu.v.(V(· + ψ(i.r.));n) (5.7)5.6

as in Fig. 4.

V(0) = + + + + . . .

Fig. 4. Graphic representation of the expansion (5.7). We can associate some labels

to the points: a label h=0 to the leftmost point, a label h=1 to the middle point and a

label h=2 to all the rightmost points (endpoints).

One can say that we have “integrated out the high energy degrees of freedom”, obtaining an “effective”

theory describing fermions with momenta close to the Fermi surface. As g(i.r.)(k) is singular in two different

points (k = ±pF , at k0 = 0), it is natural to write

ĝ(i.r.)(k) =
χ(k0, k + pF )

−ik0 + cos pF − cos k
+

χ(k0, k − pF )

−ik0 + cos pF − cos k
≡
∑

ω±1

ĝ(i.r.)
ω (k) (5.8)5.7

and correspondingly we write
∫

P (dψ(i.r.)) =
∏

ω=±1

∫

P (dψ(i.r.)
ω ) ; (5.9)5.8

the fields ψ
(i.r.)±
ω are called quasi-particle Grassman fields: the label ω is sometimes called the branch label.

Moreover we decompose each propagator ĝ
(i.r.)
ω (k) as an infinite sum of propagators

ĝ(i.r.)
ω (k) =

0
∑

h=−∞

fh(k + ωpF , k0)

−ik0 + cos pF − cos k
≡

0
∑

h=−∞
ĝ(h)
ω (k) , (5.10)5.9

where

fh(k
′) ≡ χ(γ−hk′) − χ(γ−h+1k′) (5.11)5.10
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0 t0γ
h−1 t0γ

h+1 |k′|

1

fh(k
′)

Fig. 5. The function fh(k′).

is such that fh(k
′) = 0 both for |k′| ≤ t0γ

h−1 and |k′| ≥ t0γ
h+1, while fh(k

′) = 1 for |k′| = t0γ
h; see Fig. 5.

Note that in fact the series in (5.10) is a finite sum, if L, β are finite (that is only a finite number of terms

can be really different from zero). In fact if L and β are fixed, one has |k0| ≥ 2π/β: so that fh(k
′) = 0 for

any h < hβ , with

hβ = min
{

h : t0γ
h+1 > π/β

}

; (5.12)5.10a

note that hβ = O(log β).

Therefore, as far as β remains finite, one has a natural infrared cut-off hβ: of course we are interested in

bounds uniform in such a cut-off, i.e. we want to consider the possibility of removing such a cut-off.

Using again the addition principle and the invariance of exponential property, calling ψ
(≤−1)
ω and ψ

(0)
ω the

Grassman fields with propagators ĝ
(≤−1)
ω (k), if

ĝ(≤−1)
ω (k) ≡

−1
∑

h=−∞
ĝ(h)
ω (k) , (5.13)5.11

and ĝ
(0)
ω (k), respectively, and writing

∫

P (dψ(h)) =
∏

ω=±1

∫

P (dψ(h)
ω ) , (5.14)5.12

we obtain
∫

P (dψ) eV
(0)(ψ) =

∫

P (dψ(≤−1))

∫

P (dψ(0)) eV
(0)(ψ(≤−1)+ψ(0))

≡
∫

P (dψ(≤−1)) eV
(−1)(ψ(≤−1)) ,

(5.15)5.13

where

V(−1)(ψ(≤−1)) =

∞
∑

n=0

1

n!
ET0
(

V(0)(· + ψ(≤−1));n
)

=

∞
∑

n=0

1

n!
ET0

( ∞
∑

n′=0

1

n′!
ETu.v.(V ;n′);n

)

.

(5.16)5.14

A graphical representation of (5.16) is in Fig. 6, where the circles represent V(0).

Writing the circles as in the second line of Fig. 6 we get immediately Fig. 7.

So V(−1) is represented by a graph consisting in a set of lines and points arranged on the plane (x, y) in

the following way. A line enters a point v0 and s ≥ 1 lines connect v0 to other s points v1, . . . , vs: for each

point vj , with j = 1, . . . , s, there are s′j ≥ 1 exiting lines leading to s′j points vj1, . . . , vjs′
j
, which we call

endpoints. The endpoints (with the lines entering them) represent a graphic representation of V , while the

subgraphs consisting of a point vj (with the line entering it) and of all the lines and points following vj are
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V(0) =

V(−1) =

= + + + . . .

+ + + . . .

Fig. 6. Graphic representation of the expansion (5.16). The first line represents V(−1)

in terms of V(0), while the second line defines a unique graph representations for all the

contributions to V(0) (and it is the same as in Fig. 4).

V(−1) = + +

+ + + + . . .

Fig. 7. Graphic representation of V(−1) in terms of V : each term representing V(0) in

the first line of Fig. 6 is expanded by using the second line of Fig. 6. One should imagine

that the leftmost node lays on a vertical line h=−1, the nodes immediately following it

on a vertical line h=0, the endpoints on a vertical line h=2, while all the other nodes on

a vertical line h=1, as it will be in Fig. 8 below.

graphic representations of V(0): note that the circles are in fact expanded into such subgraphs. In conclusion

one obtains a graph with a tree structure (see Appendix A1 for an introduction to tree graphs).

In order to have an aesthetically goodlooking picture we can draw all the points vj , j = 1, . . . , s, on the

same vertical line r1 and all the points vjj′ , j = 1, . . . , s and j′ = 1, . . . , s′j , on the same vertical line r2.

By introducing a coordinate system (x, y) we can denote by x = 1 and x = 2 the two lines r1 and r2,

respectively; the point v0 is on the line x = 0, while the root is on the line x = −1.

Now we can iterate further the above procedure, by integrating all the fields ψ(u.v.), ψ(0), ψ(−1), . . . , ψ(h+1),

so obtaining a contribution to V(h), which is defined as

eV
(h)(ψ(≤h)) =

∫

P (dψ(h+1)) . . .

∫

P (dψ(0))

∫

P (dψ(u.v.)) eV (ψ(≤h)+ψ(h+1)+...+ψ(u.v.)) ; (5.17)5.15
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the function V(h)(ψ(≤h)) is the effective potential on scale h.

We can introduce also a scale label h = 1 to denote the ultraviolet scale, ψ(1) = ψ(u.v.), so that ψ(≤1) ≡ ψ

and V(1)(ψ(≤1)) = V(ψ).

By using iteratively the invariance of exponential property we see that V(h) can be expressed in terms of

V(h+1) as

V(h)(ψ(≤h)) =
∞
∑

n=0

1

n!
ETh+1

(

V(h+1)(· + ψ(≤h));n
)

, (5.18)5.15a

where V(h+1) in turn can be expressed in tersms of V(h+2) as (5.18) with h replaced with h+ 1, and so on

until V(h) is expressed in terms of V(1) ≡ V .

At each step of the iterative procedure a circle representing V(h′), for some h < h′ < 1, is transformed

into a point v on a vertical line x = h′ + 1 (we use the coordinate system introduced above) with sv ≥ 1

exiting lines leading to sv circles representing V(h′+1) and so on. At the end only points are left (i.e. no

circles remain): the ones on the line x = 2 are called endpoints.

By resuming the above discussion, we see that we can introduce a graph representation of V(h) in terms

of labeled trees.

We refer to Appendix A1 for a sistematic discussion on trees: here we confine ourselves to the basic notions,

in order to make selfconsistent the following analysis.

On the plane (x, y) one draws the vertical lines x = h, h+ 1, . . . , 0, 1, 2 and one considers all the possible

planar graphs obtained as follows, [GN].

One draws an orizontal line (a branch or a line) starting from a point r on the line x = h, the root, and

leading to a point v0 with coordinate x = hv0 > h, the first nontrivial vertex. Such a point is the branching

point of sv0 ≥ 2 lines (also branches or lines) forming a angles ϑj ∈ (−π/2, π/2), j = 1, . . . , sv0 , with the

x-axis and ending into points each of which is located on some vertical line x = hv0 + 1, hv0 + 2, . . . (and

it becomes another branching point). One proceeds in such a way until n points on the line x = 2 are

reached, the endpoints. All the branching points between the root and the endpoints will be called the

nontrivial vertices. The trivial vertices will be the points located at the intersections of the lines connecting

two nontrivial vertices with the vertical lines. The integer n denoting the number of endpoints will be called

the order of the tree. We associate to the endpoints a number 1 to n, ordered up to down. See Fig. 8.

r v0

v

1

2

3

n

h h+ 1 hv 1 2

Fig. 8. A tree appearing in the graphic representation of V(h). Such a tree is obtained

by iterating the graph representations of the previous Figs. All the endpoints are on the

verticale line corresponding to the line h=2.
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If the tree has only one line connecting the root to a vertex on the line x = 2, we say that the tree is trivial

and we shall write τ = τ0. Note that in such a case the root has scale h = 1.

The graph so obtained is a tree graph: it consists of a set of lines connecting a partially ordered set of

points (the vertices). The partial ordering of the vertices will be denoted by the symbol �: if v ≺ w are

two vertices, then hv < hw. Of course the lines are ordered as well: note that there is a correspondence

one-to-one between vertices and lines, as a line uniquely identifies the vertex which it enters.

Note that to each vertex v an integer hv is associated by construction: it is called the scale label. In

particular we can associate the scale label h to r. We can associate with the unlabeled trees also some other

labels: the values of such labels will depend on the particular problem we are studying.

Therefore we shall consider also the labeled trees (to be called simply trees in the following): we shall

denote by the same symbol τ the labeled trees (in the following we shall deal only with labeled trees) and

by Th,n the set of all labeled trees with n endpoints (i.e. of order n) and with a scale label h associated to

the root.

It is then easy to see that the number of unlabeled trees with n endpoints is bounded by 4n; see Appendix

A1.

If we include also the endpoints into the set of vertices, we have that the vertices can be either trivial

vertices or nontrivial vertices (which include also the endpoints). We shall denote by V (τ) the set of vertices

of a tree τ and by Vf(τ) the set of vertices in V (τ) which are endpoints. By construction hv = 2 for any

v ∈ Vf(τ), while h < hv < 2 for any v ∈ V (τ) \ Vf(τ).

To each endpoint there corresponds one of the contributions to the interaction part of the Hamiltonian.

With respect to the Hamiltonian (2.17), it is more convenient to consider a Hamiltonian containing some

extra term having the same form of the terms defining the free Hamiltonian H0 times some parameter:

physically this is interpreted by saying that the interaction changes the “free” values of the parameters,

i.e. the values of the parameters of the Hamiltonian describing the free system. By using the decomposition

in (2.1) and (2.2) for H0, we shall consider Hamiltonians of the form

H = H0 + V ≡ H0 + αV1 + νV2 + uV3 + λV4 + ξV5 ,

V1 = T0 ,

V2 = N0 ,

V3 = P ,

V4 = V ,

V5 = B .

(5.19)5.16

Then with each endpoint v of scale hv = 2 we associate one of the five contributions to V : so we can associate

to v a label i ≡ iv ∈ {1, . . . , 5} uniquely identifying the contribution Vi to V in (5.19): we shall say that the

endpoint is

(1) of type α if i = 1,

(2) of type ν if i = 2,

(3) of type u if i = 3,

(4) of type λ if i = 4,

(5) of type ξ if i = 5.

We can also introduce a label rv for v ∈ Vf(τ) such that rv = α if iv = 1 and so on.

If n is the number of endpoints, n = |Vf(τ)|, we shall write n = n1 + . . .+ n5, where ni is the number of

endpoints v ∈ Vf(τ) with iv = i.

Moreover with such an endpoint v we associate also a set {xv} of space-time points, which are the integra-

tion variables corresponding to the particular interaction contribution Vi: in particular {xv} contains one

point for any i 6= 4 and two points for i = 4.

Given a vertex v, which is not an endpoint, {xv} will denote the family of all space-time points associated

with the endpoints following v, i.e. with the endpoints w ∈ Vf(τ) such that v ≺ w.
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We introduce a field label f to distinguish the fields appearing in the terms associated with the endpoints:

the set of field labels associated with the endpoint v will be called Iv. Then x(f), σ(f) and ω(f) will denote

the space-time point, the σ index and the ω index, respectively, of the field with label f . For instance, for

v ∈ Vf(τ) with iv = 4, then {xv} = {x,y} and Iv = {f1, f2}, if x(f1) = x and x(f2) = y. We shall write

also x(Iv) = {x(f) : f ∈ Iv}.
Analogously, if v is not an endpoint, we shall call Iv the set of field labels associated with the end points

following the vertex v.

p.5.2 5.2. Clusters. It is clear that, if h ≤ 0, the effective potential (if Ẽh are normalization factors for any h ≤ 2)

can be written in the following way:

V(h)(ψ(≤h)) + LβẼh+1 =
∞
∑

n=1

∑

τ∈Th,n

V(h)(τ, ψ(≤h)) , (5.20)5.17

where V(h)(τ, ψ(≤h)) is defined iteratively as follows.

If τ is the trivial tree τ0, then h = 1 and V(1)(τ0, ψ
(≤1)) is given by one of the contributions to V(ψ), listed

in (5.19).

If τ is not trivial and v0 is the first vertex of τ and τ1, . . . , τs (with s = sv0) are the subtrees of τ with root

v0, then

V(h)(τ, ψ(≤h)) =
1

s!
ETh+1

(

V(h+1)(τ1, ψ
(≤h+1)), . . . ,V(h+1)(τs, ψ

(≤h+1))
)

. (5.21)5.18

In general for each v ∈ V (τ) we denote by sv the number of lines exiting from v (sv = 0 if v ∈ Vf(τ)), so

that, by iterating (5.21), one obtains

V(h)(τ, ψ(≤h)) =





∏

v∈V (τ)

1

sv!





ETh+1

(

ETh+2

(

ETh+3 . . . ET−2

(

ET−1

(

ET0
(

V(τ0, ψ
(≤1)), . . .

)

, . . .
)

, . . .
)

, . . .
)

, . . .
)

,

(5.22)5.18a

where τ0 is the trivial tree. The truncated expectations in (5.21) are meant to be computed starting from

the endpoints towards the root.

The epression above can look a little intricated at first sight: the better way to understand it is to expecially

work out some examples (for instance for low values of h like h = 0,−1,−2, . . .) and try to generalize them

to any value of h ≤ 0.

Once a vertex v is reached, one has to consider an expression of the kind

1

sv!
EThv

(

ψ̃(≤hv)(Pv1), . . . ψ̃
(≤hv)(Pvsv

)
)

, (5.23)5.18c

where sv is the number of lines exiting from v and Pvj , with j = 1, . . . , sv, is a set of indices such that

ψ̃(≤hv)(Pvj ) =
∏

f∈Pvj

ψ
(≤hv)σ(f)
x(f),ω(f) , j = 1, . . . , sv , (5.24)5.18d

is a product of |Pvj | fields on scale ≤ hv. This can be proven by induction on the scale hv; see Appendix A6.

Therefore the effect of the truncated expectation EThv
is to contract the fields on scale hv appearing in the

products (5.24) in all the possible ways.

If one uses the expansion (4.42) one obtains a sum over all the possible Feynman diagrams which can

be obtained by contracting the half-lines emerging from the sets Pv1 , . . . , Pvsv
. This means that, when the

vertex v is reached moving along the tree τ , we construct a “diagram” formed by lines ℓ on scales hℓ ≥ hv.
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To any vertex w ≻ v there corresponds a subdiagram Γw such that all the lines on scale hw form a connected

set if all the subdiagrams Γwj , j = 1, . . . , wsw , corresponding to the vertices immediately following w, are

thought as contracted into points (this simply follows from the very definition of truncated expectation). We

call Pv the set of labels corresponding to the fields associated to the external lines of Γv and set nev = |Pv|.
Then in (5.23) we have

Pv =

sv
⋃

j=1

Qvj , (5.25)5.18m

if Qvj is the collection of the labels of the fields associated to the external fields of Γvj which are not

contracted on scale hv (so that they become external fields of Γv). All such fields in turn either will be

contracted on some scale h′ < hv or will be the fields on scale ≤ h whose product contributes to the effective

potential V(h)(ψ(≤h)).

We define cluster on scale h a set of endpoints which are contracted by lines on scale h′ ≥ h such that

there is at least one line on scale h. By extension we can consider also the endpoints as (trivial) clusters on

scale h = 2.

An example of Feynman diagram, with the tree and the cluster structure associated to it, is given in Fig.

9.

i = 4

i = 4

i = 4

⇐=τ = Γ =

=

Fig. 9. An example of Feynman graph Γ with its clusters. The cluster structure

uniquely identifies a tree τ . All the endpoints are supposed to be of type λ (i.e. iv=4

∀v∈Vf(τ); the graph elements corresponding to the endpoints are as will be shown in

Fig. 11 below. It is customary to draw the graph elements representing λV by not

explicitly drawing the ondulated line (representing the two-body potential), so that the

two coordinates x and y appear as the were superimposed to each other.

We stress once more that we can choose between two possible expansions: either we really expand each

truncated expectation into a sum over Feynman diagrams, as in (4.42), or, we use (4.43), so that we obtain

a cluster structure in which one specifies the half-lines emerging from all clusters, but not the way in which

the contractions are formed.

In the following we first use the expansion of the truncated expectations into Feynman diagrams, so ob-

taining bounds for each Feynman diagram: as they are based only on dimensional arguments, such bounds

are called dimensional bounds. Then we shall show that, if one adopt the expansion (4.43) for the truncated

expecation, then one obtains bounds for classes of Feynman diagrams: as they use the Gram-Hadamard
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inequality for determinants, such bounds are sometimes called determinat bounds. Note that also the dimen-

sional bounds are based on the cluster structure underlying the Feynman diagrams, simply no use is made

of the Gram-Hadamard inequality for grouping together classes of diagrams, and on each Feynman diagram

a bound is given.

The tree structure underlying (5.22) provides an arrangement of endpoints into a hierarchy of clusters

contained into each other. With each vertex v we can associate the cluster Gv formed by the endpoints

following v. Then by construction, there will be an inclusion relation by clusters such that Gv ⊃ Gw if

v ≺ w.

So, given a tree, we can represent it as a set of clusters and vice versa; see Fig. 10, where only the clusters

associated to nontrivial vertices are drawn.

1

2

3

4

5

⇐⇒
1 2 3 4 5

Fig. 10. A tree of order 5 and the corresponding clusters. Only the clusters corre-

sponding to the nontrivial vertices are explicitly taken in consideration.

As we said above, given a cluster Gv, if all the maximal subclusters Gv1 , . . . , Gvsv
contained inside Gv are

thought as points, then the set of points so obtained is connected: so it is possible to single out a set of

sv − 1 lines connecting them. Such a set will be called an anchored tree: it realizes a minimal connection

between the maximal subclusters of Gv.

For each cluster Gv the set Pv determines the external lines of any diagram Γv which can be obtained by

contracting the fields corresponding to the labels f ∈ Pw, with v � w; by extension we shall say that such

external lines are the external lines of the cluster Gv.

Each truncated expectation like (5.23) sees the clusters Pv1 , . . . , Pvsv
as points: by this we mean that its

action is independet on the internal structures of the subclusters Gv1 , . . . , Gvsv
and depends only on the

external lines of such clusters.

The crucial property is that, once a structure of clusters has been fixed, there will be a lot of diagrams

compatible with it: to have a diagram instead of another will depend on the way the lines external to the

clusters are contracted between themselves (see also the discussion at the end of §4.2).

Note that for each trivial vertex in τ the truncated expectation acts a simple expectation (see (1) of (4.15).

Moreover if on one hand the truncated expecation requires the subclusters Gv1 , . . . , Gvsv
to be connected, on

the other hand it does not forbid the external lines of the same cluster to be contracted between themselves

(selfcontractions).

The final expression for the effective potential obtained through (5.22) is called the nonrenormalized expan-

sion for reasons which will become clear later (once a “renormalized expansion” will have been introduced).

As we shall see the procedure described here will be too näıve to produce a meaningful description of the
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physics underlying the model we are studying: a more careful analysis will be necessary in order to correctly

describe the model.

As said just at the beginning of §5.1, even without using the Gram-Hadamard inequality, the introduction

of the clusters turns out to be a useful device in order to identify which propagators in a (class of) Feynman

diagram are really dangerous. Given a Feynman diagram Γ, suppose to consider a (connected) subdiagram

Γ′ formed by some points and by the lines connecting them: we shall see later (see §5.4) that bad estimates

can arise from such a subdiagram only if the number of external lines (i.e. of lines emerging from the the

vertices internal to Γ′ but not belonging to Γ′) is equal to 2 or 4, for the class of models we are considering. A

more careful analysis would show that such a contribution can really give problems only if all lines internal to

Γ′ have a momentum of size larger than the size of the momenta of the external lines. So if the subdiagram

is a cluster such a property of the subdiagrams is automatically taken into account and, in terms of clusters,

we can say that only clusters with 2 or 4 external lines can be source of problems: such an argument will be

given a more rigorous formulation in §5.4 below.

p.5.3 5.3. Values of Feynman diagrams. Suppose (for simplicity and for concreteness) that each endpoint is of type

λ: then the Feynman diagrams with p external lines are all the possible diagrams obtained by connecting

all the clusters and leaving p uncontracted lines.

Expanding the truncated expectation in (5.21) by using the Feynman diagram expansion (see Fig. 1), one

obtains a representation of V(h)(τ, ψ(≤h)) as sum over Feynman diagrams of quantities which are given by

the product of fields times suitable coefficients called the values of the Feynman diagrams.

As we said before, for the moment we are supposing that all the truncated expecations are written in terms

of Feynman diagrams: then we shall obtain some bounds on the values of the Feynman diagrams. A final

bound on the kernels of the effective potentials can be obtained simply bu multiplyng the bound holding for

a generic Feynman diagram times the number of Feynman diagrams.

In §6 we shall prove that the same dimensional arguments can still be performed by directly studying

(5.22) and making use also of the expansion (4.43) for the truncated expectations. The final expression for

the effective potential will be called the nonrenormalized expansion for reasons which will become clear later

(once a “renormalized expansion” will have been introduced). As we shall see the procedure described here

will be too näıve to produce a meaningful description of the physics underlying the model we are studying:

a more careful analysis will be necessary in order to correctly describe the model.

Now let us come back to the bounds on Feynman diagrams. The value to be assigned to any Feynman

diagram is obtained in the following way (for istance in momentum space).

Given a line ℓ of a Feynman diagram, there will be a cluster Gv on scale hv such that ℓ is contained in Gv
but it is outside any other cluster internal to Gv; moreover the momentum of the propagator corresponding

to such a line will be of the form k = k′ + ωpF , for some values of k′ of size γhv (otherwise, by the support

properties of the χ functions, the value of the corresponding diagram is vanishing) and of ω = ±1. Then

with the line ℓ the following labels will be associated: kℓ = k, ωℓ = ω and hℓ = hv.

One associates with each contracted line ℓ the propagator

gℓ ≡ g(hℓ)
ωℓ

(x − y) =
1

Lβ

∑

k∈DL,β

e−ikℓ·(x−y)ĝ(hℓ)
ωℓ

(kℓ) , (5.26)5.19a

where x and y are the points connected by the line ℓ: here again for concretensess purposes we are supposing

that the model described with free Hamiltonian H0 given by (2.1) is considered.

Each line has a momentum according to the usual momentum conservation rules, the independent momenta

are integrated and with the lines which are non contracted the external fields ψ(≤h) are associated, if h is

the scale of the root of the tree. Then the coefficient by which the product of external fields is multiplied is

the value of the Feynman diagram.

Note that Feynman diagrams associated with a set of clusters naturally appear: we have seen that if one

looks at standard Feynman diagrams, one is naturally led to introduce clusters to identify the subgraphs
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responsible of divergences (which are the subdiagrams such that their internal lines momenta are larger than

the momenta of their external lines).

p.5.4 5.4. Power counting. It is quite easy to estimate the above Feynman diagrams. First note that each

propagator g
(h)
ω (x) is finite and, for any integer N , it is bounded by

∣

∣

∣g(h)
ω (x)

∣

∣

∣ ≤ γh
CN

1 + (γh |x|)N
, (5.27)5.20

as it is easy to derive by using (5.10), see Appendix A4. We perform the estimates in the coordinate space;

at this level the estimates could be performed also in the momentum space and no conceptual difference

would arise, but we shall see that in the nonperturbative estimates it is convenient to work in the coordinate

space.

Note that, given a Feynman diagram Γ, there is a tree which can be associated to it, uniquely determined

by the cluster strucure of Γ: let us call it τ .

Then, as all the clusters have to be connected, by the very definition of the truncated expectation (see

§4.2), the integrations, up to a constant Cn, produce a factor

∏

v/∈Vf (τ)

γ−2hv(sv−1) , (5.28)5.21

if sv is the number of subtrees coming out from v and v /∈ Vf(τ) stands for v ∈ V (τ) \ Vf(τ); see Appendix

A4.

Moreover, for any cluster Gv, v /∈ Vf(τ), by using (5.27) we get, up to a constant Cn, a factor

γhvn
0
v , (5.29)5.22

if n0
v is the number of propagators internal to a cluster Gv but not to any smaller one.

So the bound for the value of a generic Feynman diagram Γ is given by

∫

dx(Iv0 ) |Val(Γ)| ≤ Cn
∏

v/∈Vf (τ)

γhv(n0
v−2(sv−1)) , (5.30)5.23

where τ is the tree associated to Γ, Iv0 = {1, . . . , n + n4} (if n is the number of endpoints and n4 is the

number of endpoints v with iv = 4) and

∫

dx(Iv0 ) =
∏

f∈Iv0

∑

x(f)∈Λ

∫ β/2

−β/2
dx0(f). (5.31)5.23a

For simplicity we shall consider only the case in which for v ∈ Vf(τ) one has either iv = 4 or iv = 2, see

(5.19). Let m4,v be the number of endpoints contained in the cluster v to which is associated a label i = 4

and let m2,v be the the number of endpoints contained in the cluster Gv to which is associated a label i = 2.

Moreover let nev be the number of fields external to the cluster Gv.

Then the following relations can be easily checked to hold, if v′ is the vertex preceeding v on the tree:

∑

v/∈Vf (τ)

(hv − h) (sv − 1) =
∑

v/∈Vf (τ)

(hv − hv′) (m4,v +m2,v − 1) (5.32)5.24

and
∑

v/∈Vf (τ)

(hv − h)n0
v =

∑

v/∈Vf (τ)

(hv − hv′)

(

2m4,v +m2,v −
nev
2

)

. (5.33)5.25
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Note that hv − hv′ = 1 by construction.

Inserting the above two equalities into (5.30), one gets

∫

dx(Iv0 ) |Val(Γ)| ≤ Cnγ−h(n
e
v0
/2−2+m2,v0)

∏

v/∈Vf (τ)

γ−(hv−hv′)(ne
v/2−2)γ−(hv−hv′ )m2,v , (5.34)5.26

where v0 is the node immediately following the root.

Note that in (8.41) it is more convenient to redecompose

hm2,v0 +
∑

v∈V (τ)

(hv − hv′)m2,v =
∑

v∈Vf (τ)

hv′m2,v , (5.35)8.26c

where, for an endpoint v, one has

m2,v =

{

1 , v is of type ν ,
0 , otherwise .

(5.36)8.26d

The identity (5.35) can be easily verified analogously to (5.32) and (5.33). In this way we obtain a factor

γ−hv′ for each endpoint v with iv = 2 (see (5.19)). As all endpoints are on scale h = 2, this means that we

have a factor γ−1 for each endpoint of type ν: we prefer to maintain the writing hv′ for reasons that will

become clear in the following (when the renormalization procedure will have been introduced).

Given a cluster Gv we denote by Pv the sets of of labels f such that x(f) is an endpoint contained in Gv,

so that nev = |Pv|, and ψ
(≤h)σf

x(f),ω(f) is the field associated to a line external to Gv. By defining

D(Pv) =
nev
2

− 2 , (5.37)5.26a

we can rewrite the bound (5.34) as

∫

dx(Iv0 ) |Val(Γ)| ≤ Cnγ−hD(Pv0)





∏

v/∈Vf (τ)

γ−(hv−hv′ )D(Pv)









∏

v∈Vf (τ)

γ−hv′m2,v



 . (5.38)5.26b

The above estimate is of course finite (contrary to the power counting of the all theory for propagators which

are singular), but the problems come out if one wants to perform the sum over the scales of a tree. If nev ≥ 6,

then (nev/2 − 2) ≥ 1 and so, by using that hv − hv′ > 0,

∑

τ∈Th,n

∑

{Pv}





∏

v/∈Vf (τ)

γ−(hv−hv′ )(ne
v/2−2)



 ≤
∑

τ∈Th,n

∑

{Pv}





∏

v∈Vf (τ)

γ−(hv−hv′ )



 ≤ Cn , (5.39)5.27

for some (different) constant C, as it is proven in Appendix A6.1.

Note that (5.37) could suggest that each time we have an endpoint v ∈ Vf(τ) of type ν, we gain an extra

unit contributing to D(Pw) for all w � v, so that one could think that no problems arise for nev = 4 when

m2,v ≥ 1 and for nev = 2 when m2,v ≥ 2. Nevertheless this is not true as all such gains are payed by an extra

bad factor γ−hn2 in front of the product in (5.37).

Then we identify immediately the following problem. If nev ≤ 4 the above sum cannot be performed; then

the clusters with 2 or 4 external lines have to be renormalized. At this level this simply means that there

is something to do if one wants to obtain something of meaningful: one will have to consider a different

expansion.

The above problem manifests itself at a perturbative level, as the effect of the bounds for single diagrams,

if the sum over the trees is performed. However there is also a nonperturbative problem; even if nev ≥ 6, we

cannot conclude from such bounds that the theory has a meaning. The reason is the following one.
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As we see from (5.22) we have a factor 1/sv! for each vertex v ∈ V (τ). If we expand the truncated

expectation EThv
in terms of Feynman diagrams we obtain O(sv!

2) terms (see Appendix A1). Then the

overall combinatorial factor is proportional to

∏

v∈V (τ)

sv!
2

sv!
=

∏

v∈V (τ)

sv! , (5.40)5.27a

where n is the number of endpoints in τ . This means that for any vertex there are too many diagrams and

the factor 1/sv! arising from the expansion into product of truncated expecations (5.22) is not enough to try

to compensate the number of Feynman diagrams. So the sum over n cannot be performed.

We shall consider a particular model for introducing all the Renormalization Group formalism, rather than

developing it in abstracto. By following [M1] we choose the Holstein-Hubbard model in which, with respect

to the adiabatic Holstein model, there is also a quartic term in the interaction, so that we dispose in such

a way of a model which presents most of the interesting features of one-dimensional fermionic systems: by

simply putting λ = 0 (i.e. by neglecting the two-body interaction), we recover the adiabatic Holstein model.

The problem arising by the bound (5.40) is then solved through the use of the Gram-Hadamard inequality

which allow us to obtain sv! terms for each v ∈ V (τ) instead of sv!
2 terms. The technical details are deferred

to next section and to Appendix A3.

After treating the Holstein-Hubbard model we shall show (see §12 below) how similar methods can produce

many results in a number of fermionic models.

p.5.5 5.5. Comparison with Wilson’s method. In the previous sections we have seen how to define a sequence

of effective potentials V(0),V(−1), . . . ,V(h) integrating the fields ψ(1), ψ(0), . . . , ψ(h+1). It is interesting to

remark the similarity of this approch with the Renormalization Group of Wilson, [W]. Calling ψ(≥Λ) and

ψ(≤Λ) fields with momentum k = (k, k0) with |k′| bigger or lower than some prefixed scale Λ, in the approach

of Wilson, one computes (see for istance [MCD])

∫

P (dψ(≥Λ)) eV(ψ) ≡ eV
(Λ)(ψ(≤Λ)) . (5.41)5.19

Comparing V(Λ) and V(Λ+dΛ), for |dΛ| ≪ 1, one gets in the limit dΛ → 0, some differential equation for the

running coupling constants which will be introduced in §8 below. One can see that this is what we do in

the limit γ → 1 and considering a sharp partition of unity through ϑ-functions instead of the χ-functions

introduced through (5.3). The reason why we do not do this will become clear in the following: essentially it

is that one has to perform derivatives and the derivative of a ϑ-function is a δ-function, so that this causes

some spurious technical difficulties. We think that it is possible to extend our formalism closer to Wilson’s

original formulation, but there is essentially no simplification in doing this; therefore we will not discuss

further such a point here.

6. Nonperturbative estimates for the nonrenormalized expansionsec.6

p.6.1 6.1. Kernels of the effective potentials. By the analysis of the previous section we have that V(h)(ψ(≤h)),

the effective potential on scale h, can be written as

V(h)(ψ(≤h)) =

∞
∑

n=1

∑

τ∈Th,n

V(h)(τ, ψ(≤h)) ,

V(h)(τ, ψ(≤h)) =

∫

dx(Iv0 )
∑

Pv0⊂Iv0

ψ̃(≤h)(Pv0 )W(h) (τ, Pv0 ,x(Iv0 )) ,

(6.1)6.1
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where Th,n is the set of labelled trees of order n contributing to V(h)(ψ(≤h)) and

∫

dx(Iv0 ) =
∏

f∈Iv0

∑

x(f)∈Λ

∫ β/2

−β/2
dx0(f) , (6.2)6.2

with Iv0 = {1, . . . , n+n4}, if n is the number of endpoints and n2 is the number of endpoints v with iv = 4.

By using (5.21) and (6.1) we obtain for the kernel W(h) (τ, Pv0 ,xv0) the following recursive relation:

W(h) (τ, Pv0 ,x(Iv0)) =
∑

Pv1 ,...,Pvsv0





sv0
∏

j=1

W(h+1)
(

τj , Pvj ,x(Ivj )
)





1

sv0 !
ETh+1

(

ψ̃(h+1)(Pv1 \Qv1), . . . ψ̃(h+1)(Pvsv0
\Qvsv0

)
)

,

(6.3)6.3

where

Qvj = Pv0 ∩ Pvj , j = 1, . . . , sv0 . (6.4)6.3a

Then (6.3) can be iterated leading to

W(h) (τ, Pv0 ,x(Iv0 ))

=
∑

{Pv}v∈V (τ)





∏

v/∈Vf (τ)

EThv

(

ψ̃(hv)(Pv1 \Qv1), . . . ψ̃(h+1)(Pvsv
\Qvsv

)
)









∏

v∈Vf (τ)

rv



 ,
(6.5)6.4

where sv is the number of lines exiting from the vertex v (whose value is fixed by the tree τ), while rv is the

constant appearing in (5.19) associated to the endpoint v (rv = λ if v is of type λ and so on; see (5.19)).

The sum
∑

{Pv}v∈V (τ)

(6.6)6.5

in (6.5) is over all the possible choices of the sets Pv corresponding to the vertices of τ , except Pv0 which is

fixed. The sets Qv are uniquely determined by the sets {Pv} by taking into account that for any v ∈ V (τ)

one has

Qv ⊂ Pv , Pv =

sv
⋃

j=1

Qvj , (6.7)6.6

so that for any v ∈ V (τ) and for any vj immediately following v one has

Qvj = Pv ∩ Pvj , j = 1, . . . , sv , (6.8)6.6a

which extends (6.4) to any vertex in V (τ).

Then we can write (6.1) as

V(h)(ψ(≤h)) =

∞
∑

n=1

∑

τ∈Th,n

V(h)(τ, ψ(≤h)) ,

V(h)(τ, ψ(≤h)) =
∑

Pv0⊂Iv0

∫

dx(Pv0 ) ψ̃
(≤h)(Pv0 )W(h) (τ, Pv0 ,x(Pv0 )) ,

(6.9)6.7

where

W(h) (τ, Pv0 ,x(Pv0 )) =

∫

dx(Iv0 \ Pv0)W(h) (τ, Pv0 ,x(Iv0 )) . (6.10)6.8
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The kernel W(h) (τ, Pv0 ,x(Pv0 )) depends only on the variables

x(Pv0 ) = {x(f)}f∈Pv0
, (6.11)6.9

and, as we are going to prove, they satisfy the bound

∫

dx(Pv0 )
∣

∣

∣W(h) (τ, Pv0 ,x(Pv0 ))
∣

∣

∣ ≤ βLγ−hD(Pv0)
∑

{Pv}





∏

v/∈Vf (τ)

γ−(hv−hv′)D(Pv)



 (Cε)
n
, (6.12)6.10

where ε = max{|α|, |ν|, |u|, |λ|, |ξ|}, C is a suitable constant depending on N (through the bound (5.27)

holding for the propagators) and D(Pv) is defined in (5.37).

The sums over the sets {Pv} in (6.14) and over τ ∈ Th,n in order to recover the complete kernels of the

effective potential require D(Pv) > 0. However this is not true when nev ≤ 4: it will become possible only

after that the renormalization procedure has been applied (so that D(Pv) will be modified into D(Pv) + zv,

with zv such that D(Pv) + zv > 0).

p.6.2 6.2. Proof of (6.12). First note that (6.12) involves the integrations of all the endpoints. For all the

endpoints V ∈ Vf(τ) with iv = 4 we can use the potential v(x− y) δ(x0 − y0) in order to integrate one of the

two variables {x,y}: so we are left with n integrations.

Recall that, by (4.47),

∣

∣

∣ET
(

ψ̃(P1), . . . , ψ̃(Ps)
)∣

∣

∣ ≤
∑

T

(

∏

ℓ∈T
|gℓ|
)

Cn−s+1
1 , (6.13)6.11

if n = |P1| + . . .+ |Ps| and C1 is a constant proportional to the bound C0 on the propagator E(ψ−
x,σψ

+
y,σ′).

If E = Eh one has C0 = CNγ
h, see (5.27).

Then, by introducing (4.43) into (6.5) and using (6.13), we can bound

∣

∣

∣EThv

(

ψ̃(hv)(Pv1 \Qv1), . . . ψ̃(h+1)(Pvsv
\Qvsv

)
)∣

∣

∣

≤
∑

T

(

∏

ℓ∈T
gℓ

)

(CCN )

∑

sv

j=1
|Pvj

|−|Pv| γ
hv

(
∑

sv

j=1
|Pvj

|−|Pv|
)

,
(6.14)6.12

as also the propagators gℓ, ℓ ∈ T , are on scale hv and we used that the number of lines internal to Gv which

are contracted on scale hv is given by
sv
∑

j=1

|Pvj | − |Pv| . (6.15)6.12a

Then for each anchored tree T contributing to the sum we can use the sv − 1 propagators gℓ, with ℓ ∈ T ,

in order to perform sv − 1 integrations: this gives a factor

γ−2hv(sv−1) , (6.16)6.13

as it can be easily proved by using the compact support properties of the propagators (compare with (5.28));

see Appendix A4.

As the number of integration variables is n (see the initial comments of this section) and

∑

v/∈Vf (τ)

(sv − 1) = |Vf(τ)| − 1 = n− 1 , (6.17)6.14



7. schwinger functions as grassman integrals 33

we see that, at the end, all the integrations can be performed, up to one, corresponding to a single endpoint

of the tree: such an integration gives the factor (βL) in (6.12).

Moreover we have
∏

v∈Vf (τ)

|rv| ≤ εn , (6.18)6.15

by the definition of ε after (6.12) and by the fact that |Vf(τ)| ≤ n.

Noting that
sv
∑

j=1

|Pvj | − |Pv| = n0
v , (6.19)6.17

where n0
v is defined after (5.29), then we obtain, for the left hand side of (6.12), a bound

βL





∏

v/∈Vf (τ)

γhv(n0
v−2(sv−1))



 (Cε)
n
, (6.20)6.18

for some constant C, depending on N , so that, by using the relations (5.32) and (5.33) and the definition

(5.37), then (6.12) immediately follows (simply reason as in §5.4 about the Feynman diagrams).

7. Schwinger functions as Grassman integralssec.7

p.7.1 7.1. Perturbation theory and euclidean formalism. The Schwinger functions have been introduced in §3.1.

The standard perturbation theory allows us to express them in terms of Feynman graphs.

By using the representation

e−tH = lim
n→∞

[

e−tH0/n

(

1 − tV
n

)]n

, (7.1)7.1

where H0 is defined in (2.1) in the discrete case and in (2.2) in the continuum case, while (for instance, see

(2.17) and (5.19))

V = uP + λV + νH0 , (7.2)7.2

one finds for the numerator of (3.1) the following representation.

By introducing p1 + . . .+ ps+1 variables t′j such that one has t′j ≥ t′j+1 for any 1 ≤ j < p1 + . . .+ ps+1 and

the values t′p1 , . . . , t
′
p1+...+ps

are fixed to be t1, . . . , ts, respectively, we define t = {t′j} and set

V(t) = eH0tVe−tH0 . (7.3)7.3

Then the numerator of (3.1) becomes

∑

±
∫

dtTr e−βH0V(t1) . . .V(t′p1−1)ψ
ε1
x1,σ1

V(t′p1+1) . . . ψ
εs
xs,σs

. . .V(t′p1+...+ps+1
) , (7.4)7.4

where the sum is over the integers p1 + . . .+ps+1, the integral is over all the variables t′j , with the constraints

described above, and the sign ± is + if the number of the V factors is even and − otherwise.

By taking into account that each term contributing to V in (7.2) is an integral on space variables and that

H0 is quadratic in the field operators, the terms in (7.4) can be expressed as integrals of sums of products

of propagators

g(x− y) =

{

Tr e−βH0ψ−
x ψ

+
y /Tr e−βH0 , if x0 > y0 ,

−Tr e−βH0ψ+
y ψ

−
x /Tr e−βH0 , if x0 ≤ y0 ,

(7.5)7.5
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x1

x2

λ

x

ν

x

u

x

x

(a)

(b)

Fig. 11. The graph elements for the model described by the Hamiltonian with in-

teraction given by (7.2). Note that the ondulated lines appearing in two of the graph

elements of the form (a) have a different meaning: for the graph element associated

to endpoints of type λ it represents the potential v(x−y)δ(x0−y0), while for the graph

element associated to endpoints of type λ it represents the potential ϕ(x)δ(x0).

Then each term can be graphically represented in terms of Feynman diagrams, which are obtained by

contracting in all the possible ways the graph elements represented in Fig. 11.

One has s elements of the last forms (b) in Fig.11 and n elements of one of the remaining forms (a). The

lines are then contracted as described in §4.2.

It is a remarkable result, [AGD], that all the non-connected graphs cancel exactly the denominator of (3.1),

which of course can be dealt with as the numerator and gives a formula analogous to (7.4), with the only

difference that only V factors appear and only graph elements of the form (a) in Fig. 11.

This explains why only connected graphs have to be considered.

The Schwinger functions can be expresses also in terms of fermionic functional integrations introduced in

§4. The expansion (7.4) in terms of fermionic fields can be shown, [BG2], to be equivalent to the expansion

in terms of Grassman variables given by

S(x1, ε1, σ1, . . . ,xs, εs, σs)

=
∂n

∂φε1x1 . . . ∂φ
εs
xs

log

∫

P (dψ) exp

[

V(ψ) +
∑

x∈Λ

∫ β/2

−β/2
dx0

(

φ+
x ψ

−
x,σ + ψ+

x φ
−
x,σ

)

]

,
(7.6)7.6

where the derivatives are meant as (formal) functional derivatives. The equivalence is formally an identity:

it is enough to interpret the propagator (7.5) as an expectation value of the product of two Grassman fields

(see (4.36)).

Therefore one finds for the Schwinger functions a graphical expression analogous to that of the effective

potentials: the only difference is that the interaction is slightly changed by allowing an interaction with

a fictitious “external field”. Without considering the multiscale decomposition of the propagators and the

renormalization effects the relation between the effective potential (obtained by integrating all the scales)

and the Schwinger functions would be easily to derive (see for instance [BG]; see also §11 later): however the

multiscale decomposition and the renormalization, mostly the change introduced into the “free measure”,

makes such a relation not so obvious and the explicit representation of the Schwinger functions in terms of

truncated expectations becomes a little involved: this will be carried out later in §11, by starting from (7.6).



7. schwinger functions as grassman integrals 35

For instance, in the case of the two-point Schwinger functions, one has to compute

S(x,−, σ,y,+, σ′) ≡ S(x,y) =

∫

P (dψ) eV(ψ)ψ+
x,σψ

−
y,σ′

∫

P (dψ) eV(ψ)

=
∂n

∂φ+
x ∂φ

−
y

log

∫

P (dψ) exp

[

V(ψ) +
∑

x∈Λ

∫ β/2

−β/2
dx0

(

φ+
x ψ

−
x,σ + ψ+

x φ
−
x,σ

)

]

,

(7.7)7.7

where the interaction V(ψ) is as above. We note since now that the second expression in (7.7) - as well as

(7.6) in the general case of any s-point Schwinger functions - is more convenient for practical purposes as it

allows to follow the same strategy adopted for the effective potentials (simply with a different “interaction

Hamiltonian”) consisting in integrating the scales in a hyerarchical way.

p.7.2 7.2. Feynman graphs and origin of divergences. The expansion given above for the effective potentials and

the one hinted for the Schwinger functions (which, as anticipated, will be carried out in detail in §11) are

finite sums with finite coefficients if L, β are finite; however in general there is no hope that the above series

are still convergent in the limits L, β → ∞. The reasons are a lot and quite easy to understand. If λ = 0 (in

the limit L, β → ∞) the Fourier transform of the Schwinger function is singular at k0 = 0, |k| = pF ; even in

the most favorable case, in which the interacting Schwinger function has the same kind of singularity of the

free one (such systems are generally called Fermi liquids), there is no reason for which the singularity of the

free and the interacting Schwinger functions have to be located at the same point, i.e. k0 = 0, |k| = pF , but

in general will be in some other point k0 = 0, |k| = pF +O(λ).

This phenomenon is quite general (there is the remarkable exception of the Luttinger model in which,

as we shall see, the singularity is λ-independent, due the the relativistic invariance of the model) and not

limited to the case d = 1. By the way in more than one dimension the situation is even more complicated

as, in absence of rotation invariance, the singularity is shifted by an angle-dependent quantity, see [FTS1].

It is quite clear that this produces problems in a näıve expansion for the correlation function. Assume that

the interacting Schwinger function is simply

1

−ik0 + cos k − µ− ν(λ)
, (7.8)4.40

which has the same nature of singularity as in the λ = 0 case, but at the point cos−1(µ+ν(λ)); an expansion

in powers of λ needs a preliminary expansion

[

1

−ik0 + cos k − µ

] ∞
∑

n=0

(

ν(λ)

−ik0 + cos k − µ

)n

, (7.9)4.41

which of course has no meaning for k close to pF . This is one of the reasons for which we expect that the

expansion in terms of Feynman diagrams cannot be well defined and why it is not the right expansion to

consider. It is also very easy to isolate some of the diagrams reflecting the above shift of the singularity; for

instance the diagram represented in Fig. 12.

Note that the divergences occur when the momenta of the propagators of the lines in the boxes are larger

than the momenta of the lines external to the boxes; in fact in the other case the small momentum of the

external lines is compensated by the momentum of the lines internal to the boxes, and no accumulation of

propagators with small momenta is present.

Then by the above simple example we learn that we have to divide the integration domains for each Feyn-

man diagram to single out the true dangerous contributions; in other words we have to factorize the product

of propagators for each Feynman diagram according to the relative size of the momenta of the propagators

associated to the lines. Such a “factorization” is essential in a consistent theory of renormalization; if one
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. . . . . .

Fig. 12. A chain of clusters with two external lines. As said in Fig. 9, the graph

elements with four external lines are drawn by not expicitly representing the two-body

potential as an ondulated line, but simply gluing together the two points x and y.

does not do it, one finds well known problems like the overlapping divergences problem, [R], or the renor-

malon problem, [R], due to the fact that one “subtracts too much”. We have seen in the §5 that diagrams

including the above factorization are naturally generated in a Wilsonian Renormalization Group framework:

mathematically the key notion is that of clusters.

The one explained above is the simpler source of problem in the expansion. A more serious one is the

change of the exponent of the singularity (anomalous dimension), leading to logarithmic divergencies; for

instance one can think to the function x−(1+ε) and its expansion x−1
∑∞

n=0[ε log x]n/n!: each addend has

a O(log |x|n) behaviour. Even more serious is the change of the nature of the singularity, for istance in

the case in which there is a gap generation, so that for instance the Fourier transform of the Schwinger

function is not singular at all: this is what is believed to happen in superconductivity or in d = 1 when

there is the formation of charge or spin density wave. From such considerations it is clear the necessity of

different expansions, which will be described in the next section. From a mathematical point of view it is

remarkable that one is attempting at constructing perturbatively, by a suitable expansion in the perturbative

parameters, quantities which are not analytic in such parameters (so that a power expansion fails).

8. The Holstein-Hubbard model: a paradigmatic examplesec.8

p.8.1 8.1. The model. To fix ideas we study a system of interacting fermions on a lattice subject to a quasi-periodic

potential, following the analysis in [M1]. In the physical literature such systems are studied in connection

with the so called quasi-crystals, see for instance [VMG] and [CS]. Such a case contains all the relevant

features (anomalous dimension, dynamical Bogolubov transformations, small divisors problem); we shall see

that the results for all the models listed in §13 can be obtained through suitable changes and adaptations of

the arguments we explain here in details.

The Hamiltonian of the Holstein-Hubbard model is given by

H = H0 + uP + λV + νN0 , (8.1)8.1

where H0 and N0 are given by (2.1), P by (2.3) and V by (2.5), with S = 0 and with ϕ(x) a periodic function

with period incommensurate with the lattice step (which is assumed to be 1, see §2.1).

As there is no dependence on the spin we can write simply ψ±
k,σ as ψ±

k in (8.1), so that the Hamiltonian
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becomes

H =
∑

x∈Λ

[

1

2

(

−ψ+
x ψ

−
x+1 − ψ+

x ψ
−
x−1 + 2ψ+

x ψ
−
x

)

]

− µ0

∑

x∈Λ

ψ+
x ψ

−
x + u

∑

x∈Λ

ϕ(x)ψ+
x ψ

−
x

+ λ
∑

x,y∈Λ

v(x − y)ψ+
x ψ

+
y ψ

−
y ψ

−
x + ν0

∑

x∈Λ

ψ+
x ψ

−
x .

(8.2)8.1a

Let us fix pF = m̄p, with m̄ ∈ N and p = π/T , if T is the period of the potential ϕ (i.e. ϕ(x+ T ) = ϕ(x)

for any x; see (2.4)). Suppose also the function ϕ to be analytic (in a strip around the real axis).

In the following we assume also the functions ϕ in (2.4) and v in (2.5) to be even in their arguments: this

is not essential, but parity considerations simplify a few aspects of the following analysis.

By the definition of p we can write ϕ(x) = ϕ̄(2px) with ϕ̄ is a 2π-periodic function and p/π is an irrational

number; moreover the Fourier transform of ϕ̄ is exponentially decreasing (i.e. ϕ̄ is supposed to be analytic

in a strip around the real axis). In order to perform a rigorous analysis one cannot assume that p/π is a

generic irrational number, but it has to belong to a class of numbers called Diophantine characterized by

the following arithmetic properties: there exist two constants C0 and τ such that, for any integers k, n,

|2np+ 2kπ| ≥ C0|n|−τ ∀(n, k) ∈ Z
2 \ {(0, 0)} ; (8.3)8.2

the Diophantine vectors (p, π) are of full measure for τ > 1, [Sch]. Note that we can write (8.3) as

‖2np‖
T
≥ C0|n|−τ ∀n ∈ Z \ {0} ; (8.4)8.2a

which is satisfied by a full measure set of p’s in the real axis.

We can apply the iterative procedure seen in §5.1 by introducing the quasi-particle fields ψ
(h)±
ω ; after

integrating the ultraviolet scale and denoting

v̂(k) = δk0,0
∑

x∈Λ

v(x) e−ikx ,

ϕ̂m =
∑

x∈Λ

ϕ(x) e−2impx ,
(8.5)8.3

where, by the analyticity assumption,

|ϕ̂m| ≤ F0e
−κ|m| ∀m ∈ Z , (8.6)8.3a

for suitable positive constants F0, κ, we obtain

V(0)(ψ(≤0)) = λ
1

(Lβ)4

∑

k1,...,k4∈DL,β

ψ
(≤0)+
k1

ψ
(≤0)−
k2

ψ
(≤0)+
k3

ψ
(≤0)−
k4

v̂(k1 − k2) δ(k1 + k3 − k2 − k4)

+
1

(Lβ)4

∑

k1,...,k4∈DL,β

ψ
(≤0)+
k1

ψ
(≤0)−
k2

ψ
(≤0)+
k3

ψ
(≤0)−
k4

W (k1, . . . ,k4) δ(k1 + k3 − k2 − k4)

+
1

Lβ

∑

k∈DL,β

(ν + F (k))ψ
(≤0)+
k ψ

(≤0)−
k

+ u

∞
∑

m=1

ϕ̂m
1

Lβ

∑

k∈DL,β

(

ψ
(≤0)+
k ψ

(≤0)−
k+2mp + ψ

(≤0)+
k ψ

(≤0)−
k−2mp

)

+
∞
∑

n=2

∞
∑

m=1

1

(Lβ)n

∑

k1,...,kn∈DL,β

ψ
(≤0)σ1

k1
. . . ψ

(≤0)σn

kn
Ŵ (0)
n,m(k1, . . . ,kn) δ

(

n
∑

i=1

σiki + 2mp
)

,

(8.7)8.3b
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where σi = ±, |F (k)| ≤ C|λ|, |W (k1, . . . ,k4)| ≤ C|λ|2 and the kernels Ŵ
(0)
n,m ≡ Ŵ

(0)
n,m(k1, . . . ,kn) satisfy the

conditions:

(1) Ŵ
(0)
n,m = Ŵ

(0)
n,−m, if ϕ and v are even functions;

(2) |Ŵ (0)
n,m| ≤ Cnεmax(2,n/2−1) if ε = max{|λ|, |u|, |ν|}; moreover p = (p, 0) and the delta-function δ(k) =

Lβδk0,0δk,0 is defined modulo 2π in k.

Such conditions are easily verified: it is enough to express V(0) in terms of Feynman diagrams by using

the rules given in §3 and to check that the parity properties of the interaction imply the condition (1), while

the condition (2) follows from the fact that in order to have a cluster on scale h = 0 with n external lines

one needs at least N ≥ 2 points such that N ≥ 2 + (n− 3)/2.

p.8.2 8.2. Effective potentials. We decompose the fields and their propagators as in §5.1. For each field ψ
(≤h)σ
k,ω

we write

k = k′ + ωpF , (8.8)8.3c

where pF = (pF , 0), so that k′ = (k′, k0) measures the distance from the Fermi surface (if the field is on

scale h then |k′| ≈ γh; see (5.2) for notations).

Then by integrating iteratively the fields as shown in §5.1, one obtains the effective potentials V(h), which

can be written as V(0) in (8.7). More precisely one can write

V(h)(ψ(≤h)) =

∞
∑

n=1

∞
∑

m=1

1

(Lβ)n

∑

k1,...,kn∈DL,β

ψ
(≤h)σ1

k1
. . . ψ

(≤h)σn

kn
Ŵ (h)
n,m(k1, . . . ,kn) δ

(

n
∑

i=1

σiki + 2mp
)

. (8.9)8.3d

We shall call Ŵ
(h)
n,m(k1, . . . ,kn) the value of the cluster with external lines ψ

(≤h)σ1

k1
, . . . , ψ

(≤h)σn

kn
.

If h is not the scale of the root then the cluster is a subcluster of a bigger cluster and some of its external

lines ℓ can be contracted on scales hℓ < h.

The power counting argument of the previous section tells us that we have to renormalize all the clusters

with two and four external lines. More precisely the bound (6.13) and the definition (5.37) show that we

need at least a gain γ2(hv−hv′) when |Pv| = 2 and a gain γhv−hv′ when |Pv| = 4.

However in this case there are infinite many kinds of clusters with two and four external lines (depending

on the value of m) and renormalizing all of them would be clearly a problem.

So we shall try to improve the power counting: this is a typical phenomenon arising in many fermionic

systems studied by RG methods (also in d = 2 one has to improve the power counting with a similar trick).

The idea in this case is the following one.

Lemma 1. Assume that in
∞
∑

n=1

∞
∑

m=1

1

(Lβ)n

∑

k1,...,kn∈DL,β

ψ
(≤0)σ1

k1
. . . ψ

(≤0)σn

kn
Ŵ (0)
n,m(k1, . . . ,kn) δ

(

n
∑

i=1

σiki + 2mp
)

(8.10)8.3e

one has
n
∑

i=1

σiωipF + 2mp mod 2π 6= 0 . (8.11)8.4

Then the contribution (8.9) to V(h) is vanishing unless one has

|m| ≥ C1

[

γ−h/τ

n1/τ

]

− m̄n , (8.12)8.5

if C1 is a suitable positive constant.

Proof. Consider a contribution to V(h) as in (8.9), arising from a cluster with n external lines (on scale ≤ h):

by the momentum conservation one has
n
∑

i=1

σiki + 2mp = 0 , (8.13)8.5a
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so that
n
∑

i=1

σik
′
i = −

(

n
∑

i=1

σiωipF + 2mp

)

. (8.14)8.5b

Using the compact support property of the propagators corresponding to the Grassman fields ψ
(≤h)σi

k′
i
+ωipF ,ωi

(see (5.2) and (5.11)) and the Diophantine condition (8.4), we can bound

na0γ
h ≥

∥

∥

∥

n
∑

i=1

σik
′
i

∥

∥

∥

T
≥
∥

∥

∥

n
∑

i=1

σiωipF + 2mp
∥

∥

∥

T
≥ C0 (nm̄+ |m|)−τ , (8.15)8.6

from which (8.12) follows with C1 = (C0/a0)
1/τ .

Using a terminology coming from Classical Mechanics (introduced by Eliasson, [E2]), the clusters with two

or four external lines for which the above condition (8.11) is not verified are called resonances or resonant

clusters.

Let us denote by Nv the integer number such that, if ki = k′
i + ωipF are the momenta of the nev lines

entering or exiting the cluster Gv, one has

ne
v
∑

i=1

σiki =

ne
v
∑

i=1

σi (k
′
i + ωipF ) = 2Nvp . (8.16)8.7

We can define inductively

Nv =

{

Nv1 + . . .+Nvsv
, if v ∈ V (τ) \ Vf(τ) and w′ = v ∀w ∈ {v1, . . . , vsv} ,

mv , if v ∈ Vf(τ) .
(8.17)8.7a

The above equation (8.12) says that, up to the case of resonances, in order to have a cluster with scale hv
one needs Nv to be greater than γ−hv′/τ , a big number if hv is very negative: but it is clear that the larger

Nv the smaller the value associated with the cluster. This is obvious if the cluster contains only endpoints,

as |ϕ̂n| ≤ F0e
−κ|n|. The general case will be discussed below.

p.8.3 8.3. Renormalization. The above lemma says that the clusters such that (8.11) is not satisfied, i.e.

n
∑

i=1

σiωipF + 2mp mod 2π = 0 , (8.18)8.8

are in some sense special as Nv can be small without limit and in such cases there is no power counting

improvement exploiting the fact that Nv has to be large and the exponential decay of the factors |ϕ̂n|. Note

that (8.18) can be a source of problem only in a few particular cases, depending on Gv and Nv, as only the

clusters with two and four external lines have to be renormalized in order to improve the power counting.

As we said we call such contributions resonances. In Classical Mechanics the resonances have only two

external lines, ([G1]; see also [GM1]): if λ = 0 the model is technically similar to the perturbative series for

invariant tori.

The renormalization operator R = 11−L is a linear operator defined in the following way. [The definitions

below should have to be slightly modified for L, β finite, anyway we prefer to ignore such a technical aspect

in order not to overwhelm the notations; see [BeM] for a technically more satisfactory discussion.]

• If n > 4 then

L







1

(Lβ)n

∑

k′
1,...,k

′
n∈DL,β

(

n
∏

i=1

ψ
(≤h)σi

k′
i+ωipF ,ωi

)

Ŵ (h)
n,m (k′

1 + ω1pF , . . . ,k
′
n + ωnpF ) δ

(

n
∑

i=1

σi(k
′
i + ωipF ) + 2mp

)

}

= 0 .

(8.19)8.9
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• If n = 4 then

L







1

(Lβ)4

∑

k′
1,...,k

′
4∈DL,β

(

4
∏

i=1

ψ
(≤h)σi

k′
i
+ωipF ,ωi

)

Ŵ
(h)
4,m (k′

1 + ω1pF , . . . ,k
′
4 + ω4pF ) δ

(

4
∑

i=1

σi(k
′
i + ωipF ) + 2mp

)

}

= δ(σ1ω1+σ2ω2+σ3ω3+σ4ω4)pF +2mp,0
1

(Lβ)4

∑

k′
1,...,k

′
4∈DL,β

(

4
∏

i=1

ψ
(≤h)σi

k′
i
+ωipF ,ωi

)

Ŵ
(h)
4,m (ω1pF , . . . , ω4pF ) δ

(

4
∑

i=1

σik
′
i

)

.

(8.20)8.10

• If n = 2 then

L







1

(Lβ)2

∑

k′
1,k

′
2∈DL,β

(

2
∏

i=1

ψ
(≤0)σi

k′
i
+ωipF ,ωi

)

Ŵ
(h)
2,m (k′

1 + ω1pF ,k
′
2 + ω2pF ) δ

(

2
∑

i=1

σi(k
′
i + ωipF ) + 2mp

)

}

= δ(ω1−ω2)pF ,0
1

(Lβ)

∑

k′
1,k

′
2∈DL,β

(

2
∏

i=1

ψ
(≤h)σi

k′
i
+ωipF ,ωi

)

(8.21)8.11

[

W
(h)
2,m (ω1pF , ω2pF ) + ω1E(k′ + ω1pF )∂kŴ

(h)
2,m (ω1pF , ω2pF ) + k0∂k0W

(h)
2,m (ω1pF , ω2pF )

]

,

+ δ(ω1+ω2)pF ,0
1

(Lβ)

∑

k′
1,k

′
2∈DL,β

(

2
∏

i=1

ψ
(≤h)σi

k′
i
+ωipF ,ωi

)

Ŵ
(h)
2,m (ω1pF , ω2pF ) ,

where

E(k′ + ωpF ) = cos pF − cos k = v0ω sink′ + (1 − cos k′) cos pF , v0 = sin pF , (8.22)8.12

the delta function is always defined modulo 2π in k and and the symbols ∂k, ∂k0 denote discrete derivatives;

see Appendix A2.

Note that the action of the localization operator is nontrivial (i.e. different from zero) only for the resonant

clusters, i.e. for the clusters with two or four external lines such that

n
∑

i=1

σiωipF + 2mp = −
n
∑

i=1

σik
′
i = 0 mod 2π , n = 2, 4 . (8.23)8.12a

By setting

LV(h)(ψ(≤h)) =

∞
∑

n=2

∞
∑

m=1

1

(Lβ)n

∑

k1,...,kn∈DL,β

ψ
(≤h)σ1

k1
. . . ψ

(≤h)σn

kn

LŴ (0)
n,m(k1, . . . ,kn) δ

(

n
∑

i=1

σiki + 2mp
)

,

(8.24)8.12b
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we can write (8.19), (8.20) and (8.21) as

LŴ (h)
2,m (k′

1 + ω1pF ,k
′
2 + ω2pF ) = δ(ω1−ω2)pF ,0

[

Ŵ
(h)
2,m (ω1pF , ω2pF )

+ ω1E(k′ + ω1pF )∂kŴ
(h)
2,m (ω1pF , ω2pF ) + k0∂k0Ŵ

(h)
2,m (ω1pF , ω2pF )

]

+ δ(ω1+ω2)pF ,0 Ŵ
(h)
2,m (ω1pF , ω2pF ) ,

LŴ (h)
4,m (k′

1 + ω1pF , . . . ,k
′
4 + ω4pF ) = δ(σ1ω1+σ2ω2+σ3ω3+σ4ω4)pF +2mp,0Ŵ

(h)
4,m (ω1pF , . . . , ω4pF ) ,

LW (h)
n,m (k′

1 + ω1pF , . . . ,k
′
n + ωnpF ) = 0 , n ≥ 6 .

(8.25)8.12c

Note that the r.h.s of (8.20) and (8.21) are vanishing unless (8.18) is verified. The localization operator L
is aimed to characterize the resonances, i.e. the terms such that

∑n
i=1 σik

′
i = 0, with n = 2, 4 (see (8.23)).

One can wonder why, for n = 2, we localize the term with ω1 = ω2 at the second order while for the term

with ω1 = −ω2 only a first order localization is performed: the reason is that the marginal (according to

a näıve power counting) terms of the form k0ψ
+
k,ωψ

−
k,−ω are indeed irrelevant; as we shall see such terms

contain a factor σhγ
−h and this will improve the power counting, see below.

We can write then LV(h) in the following more compact way:

LV(h)(ψ) = γhnhF
(≤h)
ν + γhshF

(≤h)
σ + zhF

(≤h)
ζ + ahF

(≤h)
α + lhF

(≤h)
λ , (8.26)8.12d

where

F (≤h)
ν =

∑

ω=±1

1

(Lβ)

∑

k′∈DL,β

ψ
(≤h)+
k′+ωpF ,ω

ψ
(≤h)−
k′+ωpF ,ω

,

F (≤h)
σ =

∑

ω=±1

1

(Lβ)

∑

k′∈DL,β

ψ
(≤h)+
k′+ωpF ,ω

ψ
(≤h)−
k′−ωpF ,−ω ,

F (≤h)
α =

∑

ω=±1

1

(Lβ)

∑

k′∈DL,β

E(k′ + ωpF )ψ
(≤h)+
k′+ωpF ,ω

ψ
(≤h)−
k′+ωpF ,ω

,

F
(≤h)
ζ =

∑

ω=±1

1

(Lβ)

∑

k′∈DL,β

(−ik0)ψ
(≤h)+
k′+ωpF ,ω

ψ
(≤h)−
k′+ωpF ,ω

,

F
(≤h)
λ =

1

(Lβ)4

∑

k′
1,...,k

′
4∈DL,β

ψ
(≤h)+
k′

1+pF ,1
ψ

(≤h)+
k′

1−pF ,−1ψ
(≤0)−
k′

3+pF ,1
ψ

(≤0)−
k′

4−pF ,−1 δ
(

4
∑

i=1

σiki
)

,

(8.27)8.13

and, for h = 0,


















n0 = ν +O(λ2) ,
s0 = uϕ̂m̄ +O(uλ2) ,
a0 = O(λ2) ,
z0 = O(λ2) ,
l0 = λ (v̂(0) − v̂(2pF )) +O(λ2) .

(8.28)8.14

We call nh, sh, ah, zh, lh the running coupling constants. As a matter of fact we shall see that the renor-

malization performed until now will be not enough in order to solve all problems, so that we shall be forced

to introduce other running coupling constants and modify the ones defined in (8.23). So the “final” running

coupling constants will not be exactly the ones defined so far: this is the reason why we denote them by

latin characters, while the final ones will be denoted by greek characters; see (8.64) below.

Let us recall that Vf(τ) denotes the vertices of τ which are endpoints (see §5.1). We can define V ∗
f (τ) ⊂

Vf(τ) the subset of endpoints which no running coupling constants are associated with. Such endpoints will
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be all endpoints on scale h = 2 associated with the (nonlocalized) contributions to uP , i.e. v ∈ V ∗
f (τ) if

hv = 2 and Nv = mv 6= 0.

p.8.4 8.4. Renormalized trees. The iterative integration is done then in the following way.
∫

P (dψ) eV(ψ) =

∫

P (dψ(u.v.))

∫

P (dψ(i.r.)) eV (ψ(u.v.)+ψ(i.r.))

=

∫

P (dψ(i.r.)) eV
(0)ψ(i.r.))

=

∫

P (dψ(<0))

∫

P (dψ(0)) eLV
(0)(ψ(≤0))+RV (0)(ψ(≤0))

=

∫

P (dψ(<−1))

∫

P (dψ(−1)) eLV
(−1)(ψ(≤−1))+RV (0)(ψ(≤−1)) and so on.

(8.29)8.15

Of course one can represent this operations in terms of a new kind of trees, which will be called renormalized

trees, and which can be obtained in the following way.

One writes V(0) as in Fig. 13: there can be endpoint on scale h < 2, representing contributions arising

from LV(1).

LV(0) =

=
L L L L

+ + + + . . .

RV(0) =
R R R R

+ + + + . . .

0Fig. 13. Splitting of the effective potential V(0) as sum of two contributions: the

renormalized part RV(0) and the localized part LV(0).

Then one writes V(−1) as in Fig. 6, by using the representation in Fig. 13 for V(0), so obtaining the

expansion given in Fig. 14 for LV(−1). The same expansion holds also for RV(−1), the only difference being

that an R operator is associated also to the first node (compare LV(0) and RV(0) in Fig. 13).

In conclusion the renormalized trees are given by the same trees as in the previous sections, with the

following differences. See Fig. 15.

(1) With each vertex v /∈ Vf(τ) an R operation is associated, up to the first vertex v0 which can have

associated either an R operation or an L operation.

(2) There are endpoints v with scale hv (before each endpoint was at scale hv = 2). If hv < 2 with the

endpoint v a contribution LV (h) is associated, while if hv = 2 either a contribution LV (0) or a contribution

RV (0) are associated with v. If v is an endpoint and hv ≤ −1 than hv = hv′ + 1 is v′ is the nontrivial vertex

immediately preceding v. The running coupling constants corresponding to the endpoint v will be denoted

by rv: one has rv = νh if h = hv′ and the contribution F
(≤h)
ν to LV(h)(ψ) is considered, and so on.

Of course we can write a Feynman diagram expansion, in which each cluster value is written as W (h) =

(11−L)W (h)+LW (h) (see (8.23)). We shall see that the bound for (11−L)W (h) has an extra factor γzv(hv−hv′ )
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LV(−1) =
L L R L R

+ +

L
R

R
L

R
R
R

L
R

R+ + +

L
R

L
R

L
R

+ + + + . . .

Fig. 14 Graphic representation of the localized effective potential V(−1).

r v0

v

h h+ 1 hv 1 2

Fig. 15. A renormalized tree appearing in the graphic representation of RV(h) or LV(h).

for each v ∈ V (τ), with respect to the bound forW (h), for a suitable integer zv. It will turn out to be zv = 1, 2

for the clusters on which R acts: such a factor is just what we need in order to perform the sum over the

trees, as it converts the exponent in (5.34) from nev/2+m2,v−2 to nev/2+m2,v−2+zv. Therefore, by taking

into account the analysis performed in §5.3 and the value of zv, the factor n2
v/2 + m2,v − 2 + zv becomes

positive.

In order to understand how the gain factor γzv(hv−hv′) arises, we can consider explicitly an example.

Consider a resonant cluster with two external fields: if k1 and k2 are the momenta associated to the

external lines of the cluster, one has k1 = k2 = k′ + ωpF , so that we can set W
(h)
2,0 (k1,k2) ≡ Ξ(h)(k′).

We know from the previous analysis that for such a cluster a second order renormalization is required
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if ω1 = ω2, while a first order renormalization is enough if ω1 = −ω2: this should produce a gain factor

γz(hv−hv′ ) where z = 1, 2, respectively.

For simplicity we explicitly consider now the case of clusters with only two external lines with ω1 = −ω2:

so a first order renormalization is enough in order to obtain a “first order gain” γhv−hv′ . This means that, as

far as the following heuristic discussion is concerned, we suppose that all the involved clusters on which the

action of the renormalization operator is nontrivial are clusters with two external lines and with ω1 = −ω2,

i.e. such that

L







1

(Lβ)2

∑

k′
1,k

′
2∈DL,β

(

2
∏

i=1

ψ
(≤0)σi

k′
i
+ωipF ,ωi

)

Ŵ
(h)
2,m (k′

1 + ω1pF ,k
′
2 + ω2pF ) δ

(

2
∑

i=1

σi(k
′
i + ωipF ) + 2mp

)

}

= δ(ω1+ω2)pF ,0
1

(Lβ)

∑

k′
1,k

′
2∈DL,β

(

2
∏

i=1

ψ
(≤h)σi

k′
i
+ωipF ,ωi

)

Ŵ
(h)
2,m (ω1pF , ω2pF ) .

(8.30)8.15a

Then, as the argument is a simply dimensional one, one can easily convince himself that, when needed, a

second order normalization produces a “second order gain”.

Of course, as we said, the clusters with two external lines and with ω1 = ω2 have to be renormalized

twice according to the prescription given in the previous section: anyway the following discussion can be

performed for a second order renormalization without any relevant change but from a notational point of

view, so that, in order to not make uselessly cumbersome the analysis, we suppose to deal only with a first

order renormalization.

Write for a the first order renormalization of the resonant cluster we are considering

Ξ(h)(k′) = Ξ(h)(0) + k′ ·
∫ 1

0

dt∂k′Ξ(h)(tk′) , (8.31)8.16

with ∂k′ = (∂k′ , ∂k0): by (8.30) the first term in the right hand side of (8.31) would take into account the

localized contribution to the effective potential, while the second term would represent the renormalized

contribution.

Recall that Ŵ (h) is the integral of a product of propagators gℓ with scales ≥ hv the derivative in (8.31)

produces an extra dimensional factor γ−hv , while the “zero” k′ produces an extra factor γhv′ (by the compact

support of the propagator).

There is a technical point that should be stressed. Of course it is possible that there are many clusters

inside each other to be renormalized. Suppose that Gv1 , . . . , Gvm are clusters to be renormalized, with

v1 ≺ v2 ≺ . . . ≺ vm: so Gvm ⊂ . . . ⊂ Gv1 . Start by renormalizing Gv1 , i.e. the most external one: then

a derivative can be applied on all the propagators corresponding to the lines inside Gv1 . In particular it

can be applied to the propagator of a line inside Gvm . Next we renormalize v2: again the derivative can be

applied on all the propagators corresponding to the lines inside Gv2 . And so on: after m renormalization

steps all the clusters Gv1 , . . . , Gvm have been renormalized, but among all the contributions which have been

obtained, also terms like ∂mk′gℓ, with ℓ ∈ Gvm , have been obtained: this, in addition to the rigth dimensional

factor, contributes to the bound with a factor O(m!α), α ≥ 1 (one would have α = 1 if the support function

was analytic, and it is even worse for the choise done in §5.1). Therefore the graph value in general can be

only bounded O(n!α).

There are several ways to solve this problem. In the case of exponential (analytic) cut-off function [BGPS]

or Gevray class function (nonanalytic and with compact support, but with Fourier transform bounded by

e−(κn)1/s

), [R], one can still bound these extra O(m!α) terms; see for instance [BGPS] and [DR1].
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Another way to see that there is no problem is to show simply that all the propagators are at most

derived twice (see [BM1]), essentially by exploiting the (simple) idea that once a gain has been obtained

corresponding to some resonance there is no need more to renormalize it (a fact already used in [GS]): to be

more precise, the argument is the following. Note since now that in such a way no assumptions on the cut-off

function are necessary, except the smoothness one (and in fact one can weaken also such a hypothesis, see

[BGGM]).

The argument is very simple is we consider a first order renormalization, as the one we are discussing here,

and it can be trivially extended. Consider the cluster Gv1 and assume that the derivative is applied just on

a propagator inside Gvn and outside Gvn+1 , for some 1 < n < m; in this way we get a factor γ
(hv′

1
−hvn)

,

which we can rewrite as

γ
(hv′

1
−hvn )

= γ
(hv′

1
−hv1 )

γ
(hv2−hv′

2
)
. . . γ

(hv′
n
−hvn)

, (8.32)8.17

so that each cluster has the factor γhv−hv′ and there is no need of other normalization; and in fact all the

other renormalizations are vanishing as

∂k′RΞ(h)(k′) = ∂k′Ξ(h)(k′) , (8.33)8.18

which means that there are no renormalizations acting on the clusters encluded between Gv1 and Gvn .

The above analysis is performed in Fourier space and skips the problem of implementing the Gram-

Hadamard inequality in order to control the number of terms arising from the perturbative expansion. On

the other hand, as we shall see better in Appendix A3, the Gram-Hadamard inequality is applied in the

coordinate space. The renormalization procedure gives rise to factors k′ (see (8.31)) which, in the coordinate

space, correspond to derivatives of fields, hence to derivatives of propagators once such lines are contracted.

This creates a series of intricacies and technical problems, for the discussion and solution of which we refer

to the original papers: see [BGPS], [M1] and [BeM].

p.8.5 8.5. Renormalized bounds. Proceding as in §6 we get for the renormalized expansion

∫

dx(Pv0 )
∣

∣

∣W(h) (τ, Pv0 ,x(Pv0 ))
∣

∣

∣ ≤ Cnγ−h[D(Pv0 )+zv0(Nv0 ,Pv0)]





∏

v/∈Vf (τ)

γ−[D(Pv)+zv(Nv,Pv)](hv−hv′ )









∏

v∈Vf (τ)\V ∗
f

(τ)

|rv|









∏

v∈Vf (τ)

γ−hv′m2,v









∏

v∈V ∗
f

(τ)

|ϕ̂mv |



 ,

(8.34)8.19

where V ∗
f (τ) is the set of endpoints such that no running coupling constant is associated to them (see the

end of §8.3), and m2,v is defined in (5.36), while

(1) zv(Nv, Pv) = 1 if Gv has four external lines (|Pv| = 4) and it is a resonance, i.e.
∑4

i=1 σiωipF+2Nvp = 0,

(2) zv(Nv, Pv) = 2 if Gv has two external lines (|Pv| = 2) and it is a resonance, i.e. (ω1−ω2)pF +2Nvp = 0,

such that ω1 = ω2,

(3) zv(Nv, Pv) = 1 if Gv has two external lines (|Pv| = 2 and it is a resonance, i.e. (ω1 −ω2)pF +2Nvp = 0,

such that ω1 = −ω2.

Note that now the endpoints v can have also a scale hv < 2, so that we cannot set γ−hv′ = γ−1 in the last

line of (8.34).

The bound (8.34) is obtained by using the Gram-Hadamard inequality like in §6: the presence of the

renormalization makes a little involved the construction, as also derived fields have to be considered in the

space-time coordinates (in which the inequality can be applied). However the bounds (8.34) obtained for
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the renormalized expansion is not yet sufficient for proving nondiverging bounds when the sum over trees is

performed for a number of reasons.

(1) The factor D(Pv) + zv(Nv, Pv) can be still equal to −1 or 0, in correspondence of non-resonant clusters

with two and four external lines; we have to extract from

∏

v∈V ∗
f

(τ)

|ϕ̂mv | (8.35)8.20

some good factor by using the lemma in §8.2.

(2) Also for resonances with two external lines such that ω1 = −ω2, by definition of R, one can have

D(Pv) + zv(Nv, Pv) = 0, as zv(Nv, Pv) = 1 in such a case.

(3) There are two relevant running coupling costants, namely γhnh and γhsh. We deduce from the above

discussion that it is necessary to put a factor γh in front of them (i.e. to assume that they are decreasing at

least as γh) to have a renormalizable power counting: in fact each endpoint v with m2,v = 2 carries a factor

γ−hv′ , which we choose to delete by putting a factor γhv′ in front of the corresponding running coupling

constant themselves: of course such an operation is meaningful only if after one can prove that nh and sh
remain bounded. While there is a counterterm ν in the Hamiltonian (8.1) which can be fixed (hopefully) in

order that this can be really done, this is not the case for sh. We shall see in the next section that, while

nh is related to the shift of the singularity of the interacting two-point Schwinger function, sh is due to the

effect of the opening of a gap in the spectrum; because of such a term the propagator becomes essentially

“of the form” kfh/(k
2 + σ2

h), for some constant σh, so that its expansion in terms of σh gives an expression

“of the form”
1

k

∞
∑

n=0

(

−σ
2
h

k2

)n

, (8.36)8.21

which would be convergent only if σh ≃ γhsh, with sh bounded, since k ≃ γh. It is clear that by a Bogolubov

transformation (see [ADG]) we can put the gap term in the fermionic integration: however, see below, as

the true gap is not of order O(u), but of order O(u1−λ+...), many Bogolubov transformations are necessary,

one for each scale, as the gap itself has a nontrivial flow.

(4) Finally zh, αh are not bounded uniformly in h. In fact one can write the flow to second order as

lh−1 = lh ,

ah−1 = ah + β1λ
2
h ,

zh−1 = zh + β1λ
2
h ,

(8.37)8.22

where β1 is a constant, so that one obtains ah = zh = O(λ2h).

We shall see that the arising logarithmic divergence is due to the “infinite” wave function renormalization:

if u = 0 the large distance behaviour of the two-point Schwinger function is not |x|−1, but |x|−(1+λ2+...); see

§10, §12 and §13.

The above considerations show the necessity of a new, anomalous expansion.

p.8.6 8.6. Anomalous integration. The integration is performed iteratively: at each step h ≤ 0 the Grassman

integration measure is changed by using the results in §2.1 and the fields are rescaled by a suitable factor.

The change of the integration measure can be interpreted as a shift of some terms contributing to the effective

potential into the integration measure.

Practically one proceeds by introducing a sequence of constants Zh, with h ≤ 0, and Z0 = 1, in the

following way.
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Define

Ch(k
′)−1 =

h
∑

j=hβ

fj(k
′) , (8.38)8.23a

where hβ is given by (5.12).

Once that the fields ψ(0), . . . , ψ(h+1) have been integrated we have

∫

PZh
(dψ(≤h)) e−V(h)(

√
Zhψ

(≤h)) , (8.39)8.24

where, up to a constant,

PZh
(dψ(≤h)) =





∏

k∈DL,β

∏

ω=±1

dψ
(≤h)+
k′+ωpF ,ω

dψ
(≤h)−
k′+ωpF ,ω





exp
{

− 1

Lβ

∑

k′∈DL,β

∑

ω=±1

Ch(k
′)Zh

[(

− ik0 + (1 − cos k′) cos pF + ωv0 sink′
)

ψ
(≤0)+
k′+ωpF ,ω

ψ
(≤0)−
k′+ωpF ,ω

+ σh(k
′)ψ(≤0)+

k′+ωpF ,ω
ψ

(≤0)−
k′−ωpF ,−ω

]}

,

(8.40)8.25

where σh(k
′) is defined iteratively (see (8.43) below).

As before it is convenient to split V(h) as sum of two summands LV(h) + RV(h), with R = 11 − L and L,

the localization operator, is the operator defined in the previous section.

We write, if Nh is a constant

∫

PZh
(dψ(≤h)) e−V(h)(

√
Zhψ

(≤h)) =
1

Nh

∫

P̃Zh−1
(dψ(≤h)) e−Ṽ(h)(

√
Zhψ

≤h) , (8.41)8.26

where

P̃Zh−1
(dψ(≤h)) =





∏

k∈DL,β

∏

ω=±1

dψ
(≤h)+
k′+ωpF ,ω

dψ
(≤h)−
k′+ωpF ,ω





exp
{

− 1

Lβ

∑

k′∈DL,β

∑

ω=±1

Ch(k
′)Zh−1(k

′)
[(

− ik0 + (1 − cos k′) cos pF + ωv0 sink′
)

ψ
(≤0)+
k′+ωpF ,ω

ψ
(≤0)−
k′+ωpF ,ω

+ σh−1(k
′)ψ(≤0)+

k′+ωpF ,ω
ψ

(≤0)−
k′−ωpF ,−ω

]}

,

(8.42)8.27

with
Zh−1(k

′) = Zh
(

1 + C−1
h (k′)zh

)

,

Zh−1 = Zh (1 + zh) ,

Zh−1(k
′)σh−1(k

′) =

{

Zh
(

σh(k
′) + C−1

h (k′)sh
)

, if h < 0 ,

C−1
0 (k′)s0 , if h = 0 ,

Ṽ(h) = LṼ(h) + (11 − L)V(h) ,

LṼ(h)(ψ) = γhnhF
(≤h)
ν + (ah − zh)F

(≤h)
α + lhF

(≤h)
λ .

(8.43)8.28

Note that the functions Zh(k
′) and σh(k

′) are defined iteratively for h ≤ 0 by (8.43) itself (for a better

understanding of the integration procedure one can work out explicitly the first scales h = 0,−1, . . .). In

particular one has

σh(k
′) =

0
∑

h′=h

C−1
h′ (k′)sh′ , (8.44)8.28a



48 renormalization group for one-dimensional fermions

so that, if k′ is such that C−1
h (k′) 6= 0 (i.e. |k′| ≤ t0γ

h+1), one has

σh(k
′) = C−1

h (k′)sh +
0
∑

h′=h+1

sj , (8.45)8.28b

as C−1
h′ (k′) = 1 for h′ ≥ h+ 1 for such k′. Therefore σh(k

′) is a smooth function on T × R. We define

σh =

0
∑

h′=1

sh′ . (8.46)8.28c

The right hand side of (8.41) can be written as

1

Nh

∫

PZh−1
(dψ(≤h−1))

∫

P̃Zh−1
(dψ(h)) e−Ṽ(h)(

√
Zhψ

(≤h)) , (8.47)8.29

where PZh−1
(dψ(≤h−1)) is given by (8.42) with

(1) Zh−1(k
′) replaced by Zh−1,

(2) Ch(k
′) replaced with Ch−1(k

′),
(3) ψ(≤h) replaced with ψ(≤h−1),

while P̃Zh−1
(dψ(h)) is given by (8.42) with

(1) Zh−1(k
′) replaced by Zh−1,

(2) Ch(k
′) replaced with f̃−1

h (k′), if

f̃h(k
′) = Zh−1

(

C−1
h (k′)

Zh−1(k′)
−
C−1
h−1(k

′)

Zh−1

)

, (8.48)8.30

(3) ψ(≤h) replaced with ψ(h).

This can be esily proven by using the addition principle and the change of integration for fermionic

integrations discussed in §4.

Note also that f̃h(k
′) is a compact support function, with support of width O(γh) and far O(γh) from the

“singularity”, i.e. from pF .

The Grassman integration P̃Zh−1
(dψ(h)) has propagator given by

g(h)(x − y)

Zh−1
=

∑

ω,ω′=±1

e−i(ωx−ω
′y)pF

g
(h)
ω,ω′(x − y)

Zh−1
, (8.49)8.31

with
g
(h)
ω,ω′(x − y)

Zh−1
=

∫

P̃Zh−1
(dψ(h))ψ(h)−

x,ω ψ
(h)+
y,ω′ (8.50)8.32

such that

g
(h)
ω,ω′(x − y) =

1

Lβ

∑

k′∈DL,β

e−ik
′·(x−y)f̃h(k

′)[T−1
h (k′)]ω,ω′ , (8.51)8.32a

where the 2 × 2 matrix Th(k
′) has elements







[Th(k
′)]1,1 = (−ik0 + (1 − cos k′) cos pF + v0 sin k′) ,

[Th(k
′)]1,2 = [Th(k

′)]2,1 = σh−1(k
′) ,

[Th(k
′)]2,2 = (−ik0 + (1 − cos k′) cos pF − v0 sin k′) ,

(8.52)8.33
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which is well defined on the support of f̃h(k
′), so that, if we set

Ah(k
′) = detTh(k

′) = [−ik0 + (1 − cos k′) cos pF ]2 − (v0 sink′)2 − [σh−1(k
′)]2 , (8.53)8.34

then

T−1
h (k′) =

1

Ah(k′)

(

[τh(k
′)]1,1 [τh(k

′)]1,2
[τh(k

′)]2,1 [τh(k
′)]2,2

)

, (8.54)8.35

with






[τh(k
′)]1,1 = [−ik0 + (1 − cos k′) cos pF − v0 sink′] ,

[τh(k
′)]1,2 = [τh(k

′)]2,1 = −σh−1(k
′) ,

[τh(k
′)]2,2 = [−ik0 + (1 − cos k′) cos pF + v0 sink′] .

(8.55)8.36

Note there exist two positive constants c1, c2 such that

c1σh ≤ σh(k
′) ≤ c2σh , σh ≡

0
∑

h′=h

sh′ , (8.56)8.37

where the definition (8.46) has been used.

The large distance behaviour of the propagator (8.48) is given by the following lemma (which can be proven

by reasoning as for proving (5.27) in Appendix A4).

Lemma 2. The propagator g
(h)
ω,ω′(x − y) in (8.51) can be bounded as follows. For ω = ω′ one has

g(h)
ω,ω(x − y) = g

(h)
0;ω(x − y) + C

(h)
1,ω(x − y) + C

(h)
2,ω(x − y) , (8.57)8.38

where

g
(h)
0;ω(x − y) =

1

Lβ

∑

k∈DL,β

e−ik·(x−y) f̃h(k
′)

−ik0 + ωv0k′
, (8.58)8.39

C
(1)
1,ω(x − y) is independent on σh(k

′) and C
(h)
1,ω and C

(h)
2,ω are such that, for any integer N > 1 and for

|x− y| ≤ L/2, |x0 − y0| ≤ β/2, one has

∣

∣

∣
C

(h)
1,ω(x − y)

∣

∣

∣
≤ γ2hCN

1 + (γh(x − y))N
,

∣

∣

∣
C

(h)
2,ω(x − y)

∣

∣

∣
≤
( |σh|
γh

)2
γhCN

1 + (γh(x − y))N
, (8.59)8.40

for a suitable constant CN . For ω = −ω′ one has

∣

∣

∣g
(h)
ω,−ω(x − y)

∣

∣

∣ ≤ |σh|
γh

γhCN
1 + (γh(x − y))N

, (8.60)8.41

where CN can be chosen the same constant as in (8.59).

Note that g
(h)
0;ω(x−y) coincides with the propagator “at scale γh” of the Luttinger model, [L] (this remark

will be crucial for studying the Renormalization Group flow): it admits the bound

∣

∣

∣g
(h)
0;ω(x − y)

∣

∣

∣ ≤ γhCN
1 + (γh(x − y))N

, (8.61)8.41a

so that we see that, we respect to g
(h)
0;ω, the propagtaors C

(h)
1,ω, C

(h)
2,ω and g

(h)
ω,−ω have some extra good factors,

which are, respectively, γh, (|σh|/γh)2 and |σh|/γh.
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We rescale the fields by rewriting (8.47) as

1

Nh

∫

PZh−1
(dψ(≤h−1))

∫

P̃Zh−1
(dψ(h)) e−V̂(h)(

√
Zh−1ψ

(≤h)) , (8.62)8.42

so that

LV̂(h)(ψ) = γhνhF
(≤h)
ν + δhF

(≤h)
α + λhF

(≤h)
λ , (8.63)8.43

where, by definition,

νh =
Zh
Zh−1

nh ,

δh =
Zh
Zh−1

(ah − zh) ,

λh =

(

Zh
Zh−1

)2

lh .

(8.64)8.44

We call the set ~vh = (νh, δh, λh) the running coupling constants. They will be the true running coupling

constants of the model and replace the ones defined through (8.28).

We perform the integration

∫

P̃Zh−1
(dψ(h)) e−V̂(h)(

√
Zh−1ψ

(≤h)) = e−V(h−1)(
√
Zh−1ψ

(≤h−1))+Ẽh , (8.65)8.45

where Ẽh is a suitable constant and

LV(h−1)(ψ(≤h−1)) = γh−1nh−1F
(≤h−1)
ν + sh−1F

(≤h−1)
σ

+ ah−1F
(≤h−1)
α + zh−1F

(≤h−1)
ζ + lh−1F

(≤h−1)
λ .

(8.66)8.46

Note that the above procedure allows us to write the running coupling constants ~vh in terms of ~vh′ ,

h′ ≥ h+ 1,

~vh = ~β (~vh+1, . . . , ~v0) ; (8.67)8.47

the function ~β(~vh+1, . . . , ~v0) is called the beta function.

Recall that, if no renormalization is performed, the effective potential V(h)(ψ) is a sum of terms of the

form

1

(Lβ)n

∑

k′
1,...,k

′
n∈DL,β

(

n
∏

i=1

ψ
(≤h)σi

k′
i
+ωipF ,ωi

)

Ŵ (h)
n,m(k1, . . . ,kn) δ

(

n
∑

i=1

σi(k
′
i + ωipF ) + 2mp

)

; (8.68)8.48a

see (8.8). The renormalization procedure described above produced a new sequence of (renormalized) ef-

fective potentials which are the form (8.68) with the fields ψ(≤h) replaced with
√
Zhψ

(≤h) and the kernels

Ŵ
(h)
n,m(k1, . . . ,kn) computed with the new rules: we shall call them the renormalized values of the clusters.

The effective potentials can be written as

V(h)(
√

Zhψ
(≤h)) =

∞
∑

n=1

∑

τ∈Th,n

V(h)(τ,
√

Zhψ
(≤h)) ,

V(h)(τ,
√

Zhψ
(≤h)) =

∫

dx(Iv0 )
∑

Pv0⊂Iv0

√

Zh
|Pv0 |

ψ̃(≤h)(Pv0 )W(h) (τ, Pv0 ,x(Iv0 )) .

(8.69)8.48b

Here the kernels

W(h) (τ, Pv0 ,x(Pv0)) =

∫

dx(Iv0 \ Pv0)W(h) (τ, Pv0 ,x(Iv0 )) (8.70)8.48c
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are the functions of which the renormalized values Ŵ
(h)
n,m(k1, . . . , kkn) mentioned above represent the Fourier

transforms.

Define

h∗ = inf{h ≥ hβ : a0γ
h+1 ≥ 2|σh|} . (8.71)8.48

We shall prove in the following that the running coupling constants σh remain bounded from below (uniformly

in β): as γh+1 can be arbitrarily small for β → ∞ and h small enough, the definition (8.71) of h∗ makes

sense.

By the previous lemma one immediately gets the following result.

Lemma 3. For h > h∗ and for any integer N > 1, it is possible to find a constant CN such that

∣

∣

∣g
(h)
ω,ω′(x − y)

∣

∣

∣ ≤ CNγ
h

1 + (γh|x − y|)N , (8.72)8.49

for |x− y| ≤ L/2 and |x0 − y0| ≤ β/2.

We shall see that, using the above lemmata and assuming that the running coupling constants are bounded

(assumption which will be checked to hold a posteriori), the integrations P̃Zh−1
(dψ(≤h)) are well defined for

0 ≥ h > h∗.
The integration of the scale from h∗ to hβ can be performed “in a single step” as

∫

PZh∗ (dψ(≤h∗))e−Vh∗
(
√
Zh∗ψ(≤h∗)

=
1

Nh∗

∫

P̃Zh∗−1
(dψ(≤h∗))e−Ṽh∗

(
√
Zh∗ψ(≤h∗)) , (8.73)8.50

where the integration measure P̃Zh∗−1
(dψ(≤h∗)) is defined by the propagator

∫

P̃Zh∗−1
(dψ(≤h∗))], ψ−(≤h∗)

x ψ+(≤h∗)
y ≡ g(≤h∗)(x − y)

Zh∗−1
. (8.74)8.51

The integration in the r.h.s. in (8.73) is well defined, as it follows from the following bound.

Lemma 4. Assume that h∗ is finite uniformly in L, β, so that |σh∗−1|/γh
∗ ≥ κ̄, for a suitable constant κ̄.

Then for any integer N it is possible to find a constant CN such that one has

∣

∣

∣g
(≤h∗)
ω,ω′ (x − y)

∣

∣

∣ ≤ CNγ
h∗

1 + (γh∗ |x − y|)N , (8.75)8.52

for |x− y| ≤ L/2 and |x0 − y0| ≤ β/2.

Comparing the previous lemmata, we see that the propagator of the integration of all the scale between

h∗ and hβ has the same bound as the propagator of the integration of a single scale greater than h∗: this

will be used to perform the integration of the scales ≤ h∗ altogether.

In fact γh
∗

is a momentum scale and, roughly speaking, for momenta larger than γh
∗

the theory is

“essentially” a massless theory (up to corrections O(σhγ
−h)), while for momenta smaller than γh

∗

, it is a

“massive” theory with mass O(γh
∗

).

By the lemma in §8.2 we see that it is possible to have quartic or bilinear contribution to V(h), if |h| is

large enough, such that (8.18) with n = 2, 4 is not satisfied only with an extremely large Nv ≡ m, namely

|m| ≥ Cγ−h/τ , for some constant C. In order to show that such terms are irrelevant, we shall have to use

the fact that |ϕ̂m| ≤ Ce−κ|m|, for some constants C and κ; see below.

p.8.7 8.7. Bounds for the renormalized expansion. We want to prove the following result.

Theorem 1. Let h > h∗, with h∗ defined by (8.71). If, for some constants c1, one has

sup
h′>h

|~vh′ | ≡ εh sup
h′>h

∣

∣

∣

Zh′

Zh′−1

∣

∣

∣
≤ ec1ε

2
h , sup

h′>h

∣

∣

∣

σh′

σh′−1

∣

∣

∣
≤ ec1εh , (8.76)8.100
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and if there exists a constant ε̄ (depending on c1) such that εh ≤ ε̄, then, for a suitable constant c0, inde-

pendent of c1, as well as of u, L and β, one has

∑

τ∈Th,n

[|nh(τ)| + |zh(τ)| + |ah(τ)| + |lh(τ)|] ≤ (c0εh)
n , (8.77)8.101

∑

τ∈Th,n

|sh(τ)| ≤ |σh|(c0εh)n , (8.78)8.102

∑

τ∈Th,n

|Ẽh+1(τ)| ≤ γ2h(c0εh)
n , (8.79)8.103

and, setting D(Pv) = (nev/2) − 2 + zv(Nv, Pv) + z̃v(Nv, Pv)/2, with z̃v = 1 if |Pv| = 2 and ω1 = −ω2 and 0

otherwise
∑

τ∈Th,n

∫

dx(Pv0 )
∣

∣

∣RW(h) (τ, Pv0 ,x(Pv0 ))
∣

∣

∣ ≤ Lβγ−D(Pv0)h(c0εh)
n , (8.80)8.104

where (8.80) corresponds to trees such that a R operation is associated to the first vertex, (8.77) and (8.78)

correspond to trees such that a L operation is associated to the first vertex, and (8.79) represents a constant

(i.e. field-independent) contribution to the effective potential.

Let us recall the discussion in §8.5 and let us consider first the case of a cluster Gv with two external lines

such that Ŵ
(h)
2,m(k′

1 +ω1pF ,k
′
2 +ω2pF ) has ω1 = −ω2. Contributions to the effective potential corresponding

to such clusters will be generated by at least a nondiagonal propagator.

Therefore, if for some term contributing to the effective potential on scale h, there is a nondiagonal

propagator on scale h′, then one has an extra term |σh′γ−h
′ | with respect to the bound holding in absence of

nondiagonal propagators (compare (8.60) with (8.61)). If Gv is a cluster containing the line corresponding

to such a propagator one has h′ ≥ hv: the scale h′ will be the scale of the minimal cluster containing the

line such that the nondiagonal propagator is associated with it.

We shall prove in the following that
∣

∣

∣

∣

σh
σh−1

∣

∣

∣

∣

≤ ecε , (8.81)8.52a

for some constant c, so that
∣

∣

∣

∣

σhv

σh∗

∣

∣

∣

∣

≤ ecε(hv−h∗) . (8.82)8.52b

Then one has

|σhvγ
−hv | ≤

∣

∣

∣

∣

σhv

σh∗

∣

∣

∣

∣

∣

∣

∣

∣

σh∗

γhv

∣

∣

∣

∣

≤ γ(h−hv)(1−O(ε)) ≤ γ(h−hv)/2 , (8.83)8.53

as |σh∗ | ≤ Cγh∗ ≤ Cγh (for a suitable constant C), by (8.71).

Let us consider vertices v1, v2, .., vm ordered so that v1 ≺ v2 ≺ . . . ≺ vm, with vi−1 = v′i for i = 2, . . . ,m

and v′1 is the root. Suppose that Gv1 is a cluster containing a nondiagonal propagator on scale h′ = hv.

Then one has
∣

∣σhv1
γ−hv1

∣

∣ ≤
m
∏

i=1

γ
(hvi

−hv′
i
)/2

. (8.84)8.54

This means that we can associate a factor γ(hv′−hv)/2 to each cluster containing a cluster Gv with two

external lines such that ω1 = −ω2. Note also that as the values of such cluster Gv is marginal in a näıve

power counting analysis (and zv = 1), the corresponding gain factor is enough to ensure the convergence, as

far the value of Gv is concerned.
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It remains to improve the power counting of the nonresonant clusters with two or four external lines

(i.e. with |Pv| = 2 or |Pv| = 4) which are such that

∑

f∈Pv

σ(f)ω(f)pF + 2Nvp 6= 0 . (8.85)8.56

We have a bound analogous to (8.34) namely, if ρv ∈ {δhv , νhv , λhv}
∫

dx(Pv0 )
∣

∣

∣W(h) (τ, Pv0 ,x(Pv0 ))
∣

∣

∣ ≤ Cnγ−h[D(Pv0 )+zv0(Nv0 ,Pv0+z̃v0(Nv0 ,Pv0/2)]





∏

v/∈Vf (τ)

γ−[D(Pv)+zv(Nv,Pv)+z̃v(Nv,Pv)/2](hv−hv′ )









∏

v∈Vf (τ)

|ρv|









∏

v∈V ∗
f

(τ)

|ϕ̂mv |



 ,

(8.86)8.54e

and we can write in (8.86)

∏

v/∈Vf (τ)

γ−[D(Pv)+zv(Nv,Pv)](hv−hv′)

≤
∏

v/∈Vf (τ)

γ−|Pv|/6





∏

v∈V4(τ)

γhv−hv′









∏

v∈V2′ (τ)

γhv−hv′









∏

v∈V2(τ)

γ2(hv−hv′ )



 ,

(8.87)8.55

where the following notations have been used.

(1) V4(τ) is the set of vertices v ∈ V (τ) with Gv nonresonant and |Pv| = 4.

(2) V2′ (τ) is the set of vertices v ∈ V (τ) with Gv nonresonant, |Pv| = 2 and a derivative acting on one of

the external lines.

(3) V2(τ) is the set of vertices v ∈ V (τ) with Gv nonresonant, |Pv| = 2 and no derivative acting on the

external lines.

With any vertex v ∈ Vnt(τ) we associate a depth label Dv defined inductively as follows. If v is an endpoint

then Dv = 1, otherwise

Dv = 1 + max
w∈Vnt(τ)

{Dw : w ≻ v} . (8.88)8.57

Note that Dv ≤ −hv′ + 2, if v′ is the nontrivial vertex immediately preceeding v.

We call BD the set of v ∈ V ∗
f (τ) such that the nontrivial vertex immediately preceeding v has depth D.

Now consider the factors γhv−hv′ in (8.90) corresponding to the vertices v ∈ V4(τ) ∪ V2′(τ) ∪ V2(τ).

For any pair v1, v2 of nontrivial vertices such that v′2 = v1 we can consider all the trivial vertices following

v1 and preceeding v2 together with v2 and write







∏

v1≺w�v2
w∈V4(τ)∪V

2′
(τ)

γhw−hw′













∏

v1≺w�v2
w∈V2(τ)

γ2(hw−hw′)






≤ γ−hv1 , (8.89)8.57a

so that we can bound (8.87) by

∏

v/∈Vf (τ)

γ−[D(Pv)+zv(Nv,Pv)+z̃v(Nv,Pv)/2](hv−hv′ )

≤
∏

v/∈Vf (τ)

γ−|Pv|/12





∏

v∈V4(τ)∪V2′(τ)∪V2(τ)

γ−2hv′



 ,

(8.90)8.58
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simply using (8.89) for any path of trivial vertices between two nontrivial vertices: it is obvious that tin this

way we exhaust all the vertices in V (τ).

One can prove inductively that

∏

v∈V ∗
f

(τ)

|ϕ̂mv | ≤





∏

v∈V ∗
f

(τ)

e−κ|mv|/2









∏

v∈V ∗
f

(τ)

e−κ|Nv|/2Dv+1



 ; (8.91)8.59

see Appendix A6 for a proof.

Using that Dv ≤ −hv′ + 2 and defining the indicator function χ as

χ(property) =

{

1 , if property holds ,
0 , otherwise .

(8.92)8.59a

one has
∏

v /∈Vf (τ)

χ∗
(

|Nv| ≥ C1

(

γ−hv′/τ |Pv|−1/τ − m̄|Pv|
)

)





∏

v/∈Vf (τ)

|ϕ̂mv |





≤ Cn





∏

v/∈Vf (τ)

e−κ|mv|/2









∏

v∈V4(τ)∪V2′(τ)∪V2(τ)

e−κC2γ
−h

v′/τ/2−h
v′+3



 ,

(8.93)8.60

where the star on χ means that the constraint represented by the indicator function is used only for the the

vertices v ∈ V4(τ) ∪ V2′ (τ) ∪ V2(τ), for which |Pv| ≤ 4. At the end we obtain

∑

{mv}v∈V ∗
f

(τ)

∫

dx(Pv0 )
∣

∣

∣W(h) (τ, Pv0 ,x(Pv0))
∣

∣

∣ ≤ Cnεnγ−h[D(Pv0)+zv0+z̃v0/2]
∑

{Pv}





∏

v/∈Vf (τ)

γ−|Pv|/12









∏

v∈V4(τ)∪V2′ (τ)

γ−hv′ e−κC2γ
−hv/τ/2−hv+3









∏

v∈V2(τ)

γ−2hv′ e−κC2γ
−hv/τ/2−hv+3



 .

(8.94)8.61

Choosing γ so that γ1/τ/2 > 1 and using that, if n is the number of endpoints, the number of nontrivial

vertices is bounded by 2n (see Appendix A1), we have that, for α = 4, 2′, 2, there exists a constant C such

that
∏

v∈Vα(τ)

γ−hve−
κC2γ−hv/τ

2−hv+3 ≤ Cn . (8.95)8.62

By a standard calculation (see Appendix A6)

∑

τ∈Th,n

∑

{Pv}





∏

v/∈Vf (τ)

γ−|Pv|/8



 ≤ Cn , (8.96)8.63

for some constant C.

Formula (8.93) is the analogue of Bryuno lemma for the problem we are considering: it ensures that the

small denominator problem arising in the series, for the incommensurability of the potential ϕx, can be

controlled by taking into account the Diophantine condition. The same rôle is played by the original Bryuno

lemma in the proof of the convergence of the Lindstedt series (see [G] and [GM] for a discussion). Note

however that while the Lindstedt series in classical mechanics have no loops, here there are loops and one

has to use the Grahm-Hadamard inquality.
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The formal proof can be found in Appendix A6. The idea is quite simple. We can associate with each

cluster Gv with four or two external lines an exponential factor e−κ|Nv|/2−hv+3

, which is indeed quite small

if |hv| is large. It is due to the analiticity of the incommensurate potential ϕx. But |Nv| has to be very large

because of the Diophantine condition, as noted in the lemma in §8.2, and the resulting factor compensates

the “bad” factors γ−hv or γ−2hv due to the power counting. The relevant or marginal terms in (8.21) and

(8.20) are the analogue of the resonances in KAM theory.

9. Relationship between lattice and continuum modelssec.9

p.9.1 9.1. Continuum models. By the Renormalization group methods we have described in the preceding sections

one can treat equally systems of fermions on the continuum or on a lattice; we applied such methods to

fermions on a lattice but this was done only for fixing ideas. This feature of such methods should be not

undervalued; if from one hand it is ”physically reasonable” that, as far as the low energy properties are

concerned and for weak interactions, the qualitative behaviour for fermions on a lattice or on the continuum

is the same, it is also true on the other hand that the methods commonly used are very sensitive to the

fact that the fermions are on a lattice or on the continuum. For instance the continuous Renormalization

group of [S] can be used only in the continuum case (with linearized dispersion relation), and so also the

bosonization techniques. All the attempts by these techniques to study models defined on a lattice, like

Hubbard-models or spin chains, have to approximate the lattice with a continuum, see for istance [Af])). On

the other hand the exact solutions based on the Bethe ansatz, like the one of the Hubbard model by [LW]

or the solution of the XYZ chain, are based on the presence of a lattice.

Let us consider the simplest interacting fermionic model on the continuum, with Hamiltonian

H = H0 + λV + νN0, (9.1)9.1

with H0, N0 given by (2.2) and V given by (2.7). Following the scheme in §8 we decompose the Grassman

variables in the sum of a ultraviolet part and an infrared one. Suppose that we can prove that after the

ultraviolet integration one get V(0) similar to (8.7) with u = 0 and the sums over x replaced by integrals. It is

clear that, as far as the integration of ψ(i.r.) is considered the presence of the lattice or of the continuum plays

essentially no role. In fact the differences in the expansion for the infrared part of the effective potential due

the fact that the fermions are on the lattice or on the continuum are only that in one case the δ-functions of

the conservation of momenta are defined modulo 2π and in other case not; this can lead a difference in the

beta function. However this difference is present only on trees containing RV(0) and such terms are O(γηh)

for some 0 < η < 1. Moreover the integrations over k are in one case for |k| ≤ π and in the other case k ∈ R;

however the presence of the cut-off compact support functions makes the integrals in both case extending

over the same interval.

p.9.2 9.2. The ultraviolet problem. What is really different is the ultraviolet integration, and this is related to the

fact that the behaviour of the Schwinger functions for small distances or large momenta is very different in

lattice or continuum models.

The analysis of the ultraviolet part of the model (9.1) was done in [BGPS] using a tree analysis similar to

the one (with R = 1) discussed above. One decomposes the ultraviolet part of the propagator

g(u.v.)(x − y) =

∞
∑

h=0

C(h)(x − y), (9.2)9.2

with

C(h)(x − y) = γ
h
2 C̄h

(

γh(x0 − y0), γ
h
2 (x− y)

)

, (9.3)9.3
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such that

|C̄h(x0, x)| ≤
CN

1 + |x|N . (9.4)9.4

Then V(0)(ψ(i.r.)) is written as a sum over trees τ ∈ Tn,0 which is bounded, if |ν| ≤ C|λ|, by

Cn |λ|n
∑

τ∈Tn,0

∏

v∈τ
γ(hv−hv′ )Dv/4 , (9.5)9.5

with

Dv = |Pv| + 2n4
v + 4n2

v − 6 , (9.6)9.6

and |Pv| is the number of external fields of the cluster v while n4
v, n

2
v are the number of λ or ν vertices inside

the cluster Gv.

We have seen that the sum over trees can be done of Dv > 0; this is what happens in this case except in

a finite number of cases, namely

(1) |Pv| = 2, n4
v = 2, n2

v = 0;

(2) |Pv| = 2, n4
v = 1, n2

v = 0.

However an explicit analysis of the above cases shows that the bounds can be improved and Dv > 0 also

in that cases, see [BGPS]. Note that the ultraviolet part of the theory is a superrenormalizable theory, while

the infrared part is a renormalizable one.

p.9.3 9.3. The Luttinger model and the ultraviolet problem. A similar result holds for the ultraviolet part of the

Luttinger model, see [GS]. The analysis is more difficult, for the weaker decay properties of the ultraviolet

propagator of the Luttinger model, and it is inspired by a proof for the ultraviolet Yukawa2 model in [Le].

We do not present here the details of the proof (also because we did not even give the exact definition the

Hamiltonian of the Luttinger model), and, as elsewhere in this paper, we defer to the original paper, [GS]:

here we confine ourselves to outline the idea of the proof.

By analyzing carefully the structure of the clusters of the Feynman diagrams, as done for the infrared

problem, one can easily identify the contributions which are responsible for bad dimensional bounds as the

clusters with two and four external lines (the scaling properties of the propagator are exactly the same both

in the ultraviolet and in the infrared region). However, by using the connectedness properties of the Feynman

diagrams and the non-locality of the interaction, one can easily realize that not all clusters present the same

problems: to say better the dimensional bounds can be improved for a suitable subclass of clusters with two

and four external lines. As far as the remaining ones are concerned, one can then use the symmetry properties

of the propagator of the Luttinger model (it is an odd function), to show that there are cancellations such

that the dominant terms (which would lead to divergences when summing all scales) are in fact vanishing.

The real difficulty arises when trying to take care of the cancellations without bounding separately the

single Feynman diagrams (for which the above argument simply applies), but directly working with the

truncated expectations in order to use the Garm-Hadamard inequality to obtain summability. Then one

has to disentagle the classes of graphs lumped together in the definition of truncated expecation in order

to still keep the good ultraviolet bound valid for them, but not too much to loose the good combinatorial

behaviour of the estimates: with respect to [Le] the decomposition of the graphs has to be carried out to a

much deeper extent.

10. Hidden symmetries and flow equationssec.10

In the preceding sections we have defined an expansion for the effective potential which is convergent if

the running coupling constants are small, see Theorem 1 and (8.76). An easy consequence of its proof is

that, if σk = 0 for any k than the running coupling constants ~vh are analytic as a function of ~vk, k > h, and

so it is the effective potential.
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Before considering the problem of proving that the running coupling constants verify (8.76) if the pertur-

bative parameters λ, u are small enough, we mention that the value of ε̄ obtained collecting patiently all

the numerical constants obtained in the bounds is, in adimensional units, very small and ”unrealistic”. It

is likely that the value of ε̄ could be greatly improved, using perhaps computer assisted proof techniques.

Again the analogy with classical mechanics is helpful: in the classical estimate of the convergence radius of

KAM tori (whose perturbative expansion, as we have seen, is so similar to the perturbative series of quan-

tum field theory, except for the presence of loops) one gets a really unappliable bounds for the convergence

radius, which can however be largely improved till a realistic value using computer assisted proofs. So it is

reasonable to assume that one can improve largely the estimate on ε̄. However from the exact solutions we

can see that one cannot enlarge λ indefinitely; for istance if u = 0 and v(x− y) = δ|x−y|,1 the model reduces

to the XXZ spin chain for which it is known, see [MW], that the spectrum has a gap for λ ≤ −1, so there

is no hope that our series converges for any values of λ. The same holds for the Luttinger model, in which

the solution in [ML] is valid only for λ ≥ −v̂(0)/4π. Note also that ε̄ depends in a critical way by pF and it

is vanishing if pF = 0, π.

The validity of (8.76) is a non trivial property and it is essentially due to the fact that the Holstein-

Hubbard model is ”close” in a Renormalization group sense to an exactly solvable model, the Luttinger model,

verifying many important symmetries (Lorentz invariance, gauge invariance, etc) which are not verified by

the Holstein-Hubbard Hamiltonian (we are speaking here of this model only for fixing the ideas but the same

considerations holds for a class of models, see §13, if the fermions are spinless). One can say that symmetries

are “hidden”. This kind of ideas are very old; they date back to Tomonaga, which discovered that d = 1

non relativistic fermions can be ”approximated” by two types of fermions with linear dispersion relation,

and this leads Luttinger to propose his model [L]. This idea was so successfull that from the ’70 the study

of d = 1 metals is done directly in terms of this fermions with linear dispersion relation, see [S] and [V]. The

new point in the approach we are discussing is that we can really check the validity of this approximation

in a quantitative way, obtaining rigorous estimates on the size of the corrections. In fact, while the validity

of such approximation is usually giustified using qualitative arguments coming from Renormalization Group

(for istance saying that many models are in the same “class of universality” than the Luttinger model, that

thay differ for “irrelevant terms” from the Luttinger model and so on), in the approach we are discussing it

is possible to give to such arguments a rigorous meaning and they can be substantiated by rigorous bouds.

To implement the above considerations we consider the integration (with an ultraviolet cut-off, as there is

no h = 1):

P(l)(dψ
(≤0)) =

∏

k′

∏

ω=±1

dψ̂
(≤0)+
k′,ω dψ̂

(≤0)−
k′,ω

NL(k′)
·

· exp

{

− 1

Lβ

∑

ω=±1

∑

k′

C0(k
′)
(

− ik0 + ωv0k
′)ψ̂(≤0)+

k′,ω ψ̂
(≤0)−
k′,ω

}

,

(10.1)6.1a

where C−1
0 =

∑0
k=hβ

fk. We can perform the integration

∫

P(l)(dψ
(≤0))e−λVλ(ψ(≤0)) (10.2)6.1aa

with

Vλ =

∫

dxψ+,≤0
x,1 ψ+,≤0

x,−1 ψ
−,≤0
x,−1 ψ

−,≤0
x,1 (10.3)6.x

We can integrate (10.2) using a procedure similar to the one discussed in the previos sections but:

1)σh = 0 for any h, as the propagator is diagonal in the ω-indices

2)νh = 0 as the propagator is an odd function as a function of x.

This means, see §5, that there are only two running coupling constant in this theory, namely δh, λh. We

will call the theory defined by the integration (10.1) infrared Luttinger model; note that, contrary to the true
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Luttinger model (obtained from (10.1) replacing C−1
0 with 1 and Wick ordering Vλ), the infrared Luttinger

model is not exactly solvable.

Returning to the beta function of the Hubbard-Holstein model (8.1), the flow equations for the running

coupling constants ~vh are given by

νh−1 = γνh +Ghν (~vh, . . . , ~v0)

λh−1 = λh +Ghλ(~vh, . . . , ~v0)

δh−1 = δh +Ghδ (~vh, . . . , ~v0)

σh−1 = σh +Ghσ(~vh, . . . , ~v0)

Zh−1

Zh
= 1 +Ghz (~vh, . . . , ~v0)

Let us call µh = (λh, δh) the running coupling constants appearing in the Renormalization Group analysis

of the infrared Luttinger model. We want to write the β
(h)
i functions in a Luttinger model part plus a

”correction”.

We know from Lemma 2 that we can write each propagator g
(k)
ω,ω′ as a term indipendent from σk, given

by δω,ω′ [g
(k)
0,ω +C

(k)
1,ω] plus a term δω,−ω′g

(k)
ω,−ω + δω,ω′C

(k)
2,ω; this second addend verifies the same bound of the

first one times |σk|
γk . We can write then, if i = ν, σ, µ, z

Ghi (µh, νh, σh; . . . ;µ0, ν0, σ0) = G1,h
i (µh, νh; . . . ;µ0, ν0) +G2,h

i (µh, νh, σh; . . . ;µ0, ν0, σ0) (10.4)xz

where the first addend is σ independent, and by symmetry reasons

G1,h
σ (µh, νh; . . . ;µ0, ν0) = 0

Morever

|G2,h
σ (µh, νh, σh; . . . ;µ0, ν0, σ0)| ≤ C|λhσh| (10.5)ca14

and for i = ν, µ

|G2,h
i (µh, νh, σh; . . . ;µ0, ν0, σ0)| ≤ C|σh|γ−h|λh|2 (10.6)lll

as a consequence of the bounds (8.59),(8.60) of the propagator δω′,−ωg
(k)
ω,ω′ + δω,ω′C

(k)
2,ω and of the short

memory property, see below. As in the infrared Luttinger model there is no a running coupling constant νh
it is convenient to write, if i = µ, ν

G1,h
i (µh, νh; . . . ;µ0, ν0) = Ḡ1,h

i (µh; . . . ;µ0) + Ĝ1,h
i (µh, νh; . . . ;µ0, ν0) (10.7)ca13

where the first term in the r.h.s. of (10.7) is obtained putting νk = 0, k ≥ h in the l.h.s. Finally we write

Ḡ1,h
i (µh; . . . ;µ0) = Ḡ1,h,l

i (µh; . . . ;µ0) + Ḡ1,h,nl
i (µh; . . . ;µ0) (10.8)ca14a

where Ḡ1,h,l
i (µh; . . . ;µ0) involves only propagators g

(k)
0,ω(x;y) and it coincides with beta function of the

infrared Luttinger model. It is easy to see, from the oddness of g
(h)
0,ω(x;y) that

Ḡ1,h
ν (µh; . . . ;µ0) = 0 (10.9)ccc

On the other hand

|Ḡ1,h,nl
µ (µh; . . . ;µ0)| ≤ Cγηh|λh|2 . (10.10)cccc
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In fact each contribution to Ḡ1,h,nL
i has a propagator C

(k)
1,ω replacing a g

(k)
0,ω in the analogous contribution to

G1,h,l
i ; one gains then, with respect to the bounds for G1,h,l

i , a factor γk for some k ≥ h (see Lemma 2 in §8).

One then uses an immediate consequence of (8.87), saying that any contribution to the effective potential

associated to a tree with a vertex at scale k is bounded by Cnεnhγ
η(h−k), for some η < 1; this property is

often called short memory, as the exponential factor decreases the contribution from trees contributing to

the effective potential with scale h and involving integration of fields with scale k very far from k ≫ h.

Let us assume that

Ḡ1,h,l
µ (µh, . . . , µh) = 0 (10.11)beta

which means that the infrared Luttinger model Beta function with equal arguments is vanishing. Of course

one can check this statement at the first perturbative orders but to really prove (10.11) one needs a non-

perturbative argument, see the end of §11. Assuming (10.11), one can check inductively that the running

coupling constants remain small, if the counterterm ν is chosen properly. We do not this, see [BGPS], [M1]

and [BeM], but we simply give some idea of the proof.

The first step is to choose ν in a proper way so that νh is bounded. We have seen in §7 that the interaction

moves the singularity, so producing divergences if the counterterm is not chosen properly. The RG flow

equation is given by

νh−1 = γνh + β(h)
ν (10.12)it

with, by (10.9), |β(h)
ν | ≤ Cλ2

h[γ
ηh + σhγ

−h]. By solving (10.12) by iteration

νh = γ−h+1[ν0 +

0
∑

k=h+1

γk−2βkν ] (10.13)xxxu

and fixing ν0 = −∑0
k=h∗+1 γ

k−2βkν (note that also the r.h.s. of this equation depends on ν0, and that ν0 is

a function of ν) it is possible to show that that

|νh| ≤ λ2
hC[γηh + |σh|γ−h] (10.14)jj

By (10.14) we see that the bound for Ĝ
(1,h)
i , which by definition is given by trees with at least an ν-end-point

by (10.7), has at least an extra γηh or |σh|γ−h with respect to the bound for Ḡ
(1,h)
i , i.e.

∣

∣

∣Ĝ
1,h
i (µh, νh; . . . ;µ0, ν0)

∣

∣

∣ ≤ C|σh|γ−h |λh|2 , (10.15)jjjjj

By an explicit lowest order computation,

σh−1

σh
= 1 + λh[−β1 + β̂(h)

σ ]

Zh−1

Zh
= 1 + λ2

h[β2 + β̂(h)
z ]

with β1, β2 positive non vanishing constants and |β̂(h)
σ |, |β̂(h)

z | ≤ C|λh|. From such equations immediately

follow that

γβ1c1λh ≤ |σh−1|
|σ0|

≤ γc2β1|λ|h γ−c3β2λ
2h ≤ Zh−1 ≤ γ−c4β2λ

2h (10.16)ca6

and an immediate consequence of them is an estimate for h∗.
We now consider the flow for µh; we want to prove that

|λh−1 − λ| < C|λ|3/2 |δh−1| ≤ C|λ|3/2 . (10.17)llll
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Assume inductively that, for any h < k ≤ 0

|µk−1 − µk| ≤ |λ| 32
[

γηk +
|σk|
γk

]

. (10.18)bo

We can write

Ḡ1,h
µ (µh, µh+1, . . . , µ0) = Ḡ1,h

µ (µh, . . . , µh) +

0
∑

k=h+1

Dh,k , (10.19)10.18

where

Dh,k = Ḡ1,h
µ (µh . . . , µh, µk, µk+1, ..µ0) − Ḡ1,h

µ (µh, . . . , µh, µh, µk+1, . . . , µ0) (10.20)10.19

and Ḡ1,h
µ (µh, . . . , µh) is estimated by (10.10) and (10.11).

From the short memory property it follows

|Dh,k| ≤ C|λ|γ−2η(k−h)|µk − µh| (10.21)b03

From (10.6), (10.7), (10.10), (10.15), (10.18) and (10.21) it follows

|µh−1 − µh| ≤ C|λ| 52
0
∑

k=h+1

γ−2η(k−h)
k
∑

k′=h+1

[γηk
′

+
|σk′ |
γk′

] + 2Cλ2 |σh|
γh

+ 2Cλ2γηh

which immediately implies (10.18) with k = h.

11. Vanishing of the Luttinger model Beta functionsec.11

We have seen in §10 that an essential argument to study the flow of the running coupling constants is

(10.11), stating that the beta function of the Luttinger model is vanishing. We have in fact seen in §10 that,

given (10.11), the flow of the running coupling constants remains bounded; this is a remarkable properties of

spinless fermions. In order to prove (10.11) one has to use some a nonperturbative argument; one possibility

would be to use some Ward identity. Another possibility [BG1], which is the one discussed here, is to use the

exact solution of the Luttinger model [ML] and the fact that all the Schwinger functions of such model can

be explicitely computed. The idea of using the exact solution is really in the spirit of the renormalization

group approach; one shows that a model is in the “universality class” of some special model which is exactly

solvable, and takes all the possible advantage from such exact solution (see for istance [A1], in particular

for the idea of “continuation”). On the other hand it is likely that one is able to prove (10.11) also directly

by Ward identities without using exact solutions; this is done (with no pretense of rigor) in the context of

moltiplicative Renormalization group in [MD].

Again we refer to the original papers, especially [BGPS], [GS] abd [BM1], for the proofs, and we give here

only some ideas. The strategy is very simple. The Hamiltonian of the Luttinger model is given by

H = H0 + V,

H0 =
∑

ω=±1

∫ L

0

dxψ+
ω,x (iω∂x − pF )ψ+

ω,x,

V = λ

∫ L

0

dxddy v(x− y)ψ+
1,xψ

−
1,xψ

+
−1,yψ

−
−1,y + a

∫ L

0

dx
(

ψ+
1,xψ

−
1,x + ψ+

−1,xψ
−
−1,x

)

+ b

∫ L

0

dx,

(11.1)L

where |v(x−y)| ≤ e−p0|x−y| is a short range potential and a, b have to be computed introducing an ultraviolet

cut-off in (11.1) (which otherwise does not have a well defined meaning) and by imposing the the Schwinger
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functions of the model are well defined uniformly in the cut-off, see [BGM]; this correspond to a Wick order

in the interaction. Finally pF = 2π
L (nF + 1

2 ) with nF a positive integer.

By the exact solution of [ML] it is possible to compute all the β = ∞ finite L Schwinger functions for this

model, see [BeGM].

We stress that the Schwinger functions can be really computed in a rigorous way only (up to now) for the

model with Hamiltonian (11.1). In literature the name of “Luttinger model” is improperly used for many

other models with sligthly different Hamiltonians; for istance the Thirring model, [Th], in which v(x− y) is

replaced by δ(x− y) and the theory is defined with an ultraviolet cut-off which selects momenta |k| ≤ 1; for

such models, as far as we know, there exists no exact solution.

One can study the Luttinger model (11.1) by Renormalization group methods. We have already discussed

the Renormalization Group analysis of the infrared Luttinger model defined by (10.1),(10.2). In order to

study the model (11.1) we can write as in §5 ψ = ψ(u.v.) +ψ(i.r.), and ψ(i.r.) has exactly the same propagator

as the field with integration P(l) given by (10.1); in other words, if P̃(l)(dψ) is the Grassman integration of

the Luttinger model (11.1)

P̃(l)(dψ) = P(l)(dψ
(i.r.))P(l)(dψ

(u.v.))

where P(l)(dψ
≤0) is given by (10.1). It is possible to prove, see [GS], that if V is the Luttinger model

interaction in (11.1), then

∫

P(l)(dψ
(u.v.))eV (ψ(u.v.)+ψ(i.r.)) = eλ0Vλ(ψ(i.r.))+Ṽ (ψ(i.r.))

where, if ψ(i.r.) ≡ ψ(≤0), Vλ(ψ
≤0) is given by (10.2), λ0 is an analytic function of λ and Ṽ (ψ≤0) is similar to

(8.6) and such that

LṼ (ψ≤0) = 0

This means that the only difference between the infrared Luttinger model (10.1) or the Luttinger model

is by irrelevant terms; then the two models have the same beta function up to terms O(γηh) for the short

memory property.

Let us call µL,βh the running coupling constants of the Luttinger model, and set limβ→∞ µL,βh = µLh and

limL→∞ µLh = µh. Note also that if pF = 2π
L (2nF + 1

2 ) than the analogue of (5.10) is a finite sum with

starting from hL,β; moreover limβ→∞ hL,β = hL = O(logL−1).

One can prove the following result.

Lemma 5. There exists an ε̃ such that, for |λ| ≤ ε̃ and for any h, µh is analytic as a function of λ and

|µh − µ0| ≤ C|λ|3/2 . (11.2)ss

Proof. Let us resume the proof of the above lemma referring for detailed proofs to the original papers. Let us

prove first that if |λ| ≤ ε̃ than |µh| ≤ 2ε̃ for any h. Suppose that this is not true; then there exists h0 > −∞
such that |µk| ≤ 2ε̃ for k > h0 but

|µh0 | > 2ε̃ (11.3)con

We will show that this gives a contradiction. Let us fix L0γ
h0 = 1/n, if n is some fixed real number. By

the analogue of Theorem 1 in §8 for the Luttinger model we can say that the running coupling constants at

scale h are analytic in µk, k > h if h ≥ h0 and 2ε̃ ≤ ε̄. In general h0 6= hL0.

As we know from the exact solution Schwinger functions of the Luttinger model, we want to use this

knowledge for showing that (11.3) is not possible. Let us consider the Luttinger model in a volume L0 and

eWL0(φ) =

∫

P̃(l)(dψ)eV (ψ+φ) (11.4)bobo
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and we compute the above integral in a single step i.e. without performing a multiscale decomposition

analysis. It holds that

WL0(φ) =
∑

ω

∫

dxdyW2,L0 (x − y)φ+
ω,xφ

−
ω,y+

∑

ω

∫

dx1dx2dx3dx4W4,L0(x1,x2,x3,x4)φ
+
ω,x1

φ+
−ω,x2

φ−−ω,x3
φ−ω,x4

+O(φ6)

If ŜT2,L0,ω
(k), ŜT4,L0,ω

(k1, . . . ,k4) are the Fourier transforms of the truncated two and four point Luttinger

model Schwinger functions (i.e. Schwinger functions expressed by connected Feynman diagrams) in a volume

L0 then

ŜT2,L0,ω(k) =
1

−ik0 + ωk + Ŵ2,irr,L0(k)
(11.5)mmm

ŜT4,L0,ω(k1, . . . ,k4) = ŜT2,L0,ω(k1)Ŝ
T
2,L0,−ω(k2)Ŝ

T
2,L0,−ω(k3)Ŝ

T
2,L0,ω(k4)Ŵ4,irr,L0(k1, . . . ,k4)

where Ŵ2,irr,L0 , Ŵ4,irr,L0 are the irreducible parts of Ŵ2,L0 , Ŵ4,L0 , i.e. they are given by Feynman graphs

which cannot be disconnected by cutting a single line, see for istance [AGD]. The above relations can be

proved using the analyticity in λ of the r.h.s. and the l.h.s. of (11.5) for |λ| ≤ εL0 , with εL0 → 0 for L0 → ∞,

developing (11.5) in series of λ and showing the equality of the coefficients. It is straightforward then to

express Ŵ2,irr,L0 , Ŵ4,irr,L0 as functions of of ŜT2,L0,ω
, ŜT4,L0,ω

. Moreover it holds that

Ŵ4,irr,L((0,
π

ñL
), ..., (0,

π

ñL
)) = WhL

4,L((0,
π

ñL
), ..., (0,

π

ñL
)) (11.6)mm

with ñ > 1, and similar expressions hold for Ŵ2,irr,L and their derivatives. The r.h.s. of (11.6) is obtained

from (11.4) integrating scale by scale from 1 to hL the fermionic integration like in §5, and noting that

g(k)(k), k ≥ hL, is vanishing when computed at k = (0, π/ñL) so that all the not irriducible contributions

are vanishing.

At the end, as from §8 the running coupling constants are expressed in terms of W h
4,L(k1, ..,k4), W

h
2,L(k)

computed at the Fermi surface (or, more exactly, at the admissible momenta closest to pF ), we can express

the running coupling constants ZL0

hL0
, δL0

hL0
, λL0

hL0
in terms of ŜT2,L0,ω

, ŜT4,L0,ω
or their derivatives with momenta

at the Fermi surface; for istance

ñL0

π

1

Z̃L0

hL0
(1 + δ̃L0

hL0
)

= ST2,L0,ω(π/ñL0) (11.7)manm

The running coupling constants Z̃L0

hL0
, δ̃L0

hL0
, λ̃L0

hL0
appearing in (11.7) are not exactly the running coupling

constants ZL0

hL0
, δL0

hL0
, λL0

hL0
; the last ones are related to the Fourier transform of the effective potential com-

puted at π/L0 while the others are related to the Fourier transform of the effective potential computed at

π/ñL0; however it is easy to show that |µLhL
− µ̃LhL

| ≤ Cε2hL
. (11.7) is valid for |λ| ≤ εL0 ; however the r.h.s is

analytic in λ by looking at the explicit expression which is obtained from the exact solution and the l.h.s. by

Theorem 1 as 2ε̃ ≤ ε̄, so one extends its validity to a domain L0-independent by using analytic continuation.

At the end by using the explicit expression of the Luttinger model Schwinger functions one finds, see [BM1]

|λL0

hL0
− λ| ≤ Cλ2 |δL0

hL0
| ≤ Cλ2 (11.8)xcx

On the other hand one can prove that, for εh0 ≤ ε̄, the difference between µL0

h0
and µh0 is such that, see

[BM1],

|µL0

h0
− µh0 | ≤ Cε

3/2
h0+1

γ−h0

L0
(11.9)xcx1
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On the other hand it is clear, by the convergence of the beta function, that |µL0

h0
− µL0

hL0
| ≤ Cnε

3/2
h0+1.

Let be |µ0| ≤ ε̃; we can write from (11.8),(11.9)

|µh0 − µ0| = |µh0 − µL0

h0
| + |µL0

h0
− µL0

hL0
| + |µL0

hL0
− µ0| ≤ Cnε

3/2
h0+1 + Cλ2 ≤ ε̃

8
(11.10)2223

in contradiction with (11.3); we have proved then that if |λ| ≤ ε̃ than |µh| ≤ 2ε̃ for any h. This means

that the running coupling constants remain inside the analyticity radius of the beta function, so that µh is

analytic as a function of λ and (11.2) follows from (11.10).

In order to prove (10.11) note that

µh = µ0 +

r
∑

n=2

c(h)
n µn0 +O(µr+1

0 ) . (11.11)c

The flow equation is given by:

µh−1 = µh + βLh (µh, . . . , µh) +
∑

k

(µh − µk)D
h,k (11.12)c1

Assume by contradiction that there exists a br 6= 0 such that

βLh (µh, . . . , µh) = br(µh)
r +O(µr+1

h )

Insering (11.11) into (11.12) one gets

c(h−1)
r = c(h)

r + br +O(γηh)

implying that c
(h)
r is a diverging sequence, in contradiction with (11.12).

12. The two-point Schwinger functionssec.12

p.12.1 12.1. The expansion. In naive perturbation theory (not convergent) an expansion for the correlation

functions follows immediately from the expansion for the effective potential; for istance the two Schwinger

function is given by

S(k) = g(k) + g(k)V2(k)g(k)

where V2 is the effective potential with two external fields. In a perturbation theory based on the Renormal-

ization group like the one discussed in the preceding sections the relationship between the effective potential

and the correlation functions is not so immediate. In fact V (h) has external lines with a smaller scale than

the scale of the lines contracted to form the kernels of V (h); contracting the external lines of V (h) with fields

representing the external fields one gets a contribution to the Schwinger functions, but there are many other

terms contributing to the Schwinger functions that cannot be obtained in this way (the contributions in

which the propagators connecting the external fields have no the smallest scale among all the propagators).

We will see that new expansions are necessary for the Schwinger functions and the response functions; new

critical indices which were not present in the theory of the effective potential will appear.

We start by the two-point Schwinger function which is given by the following functional integral, if φ±x , φ
±
y

are Grassman variables:

S(x;y) =
∂2

∂φ+
x ∂φ

−
y

S(φ)|φ+=φ−=0
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with

eS(φ) =

∫

P (dψ)eV (ψ)+
∫

dx[ψ+
x
φ−
x

+φ+
x
ψ−

x
]

We proceeed as in the expansion of the effective potential integrating the fields ψ(1), . . . ψ(h+1) so obtaining

eS(φ) = e−LβEh+S(≥h+1)(φ)

∫

PZh
(dψ(≤h))

e
−V(h)(

√
Zhψ

(≤h))+B(h)(
√
Zhψ

(≤h),φ)+
∫

dx[ψ+
x,ωQ

(h+1)

ω,ω′ (x)φ−

x,ω′+φ
+
x,ωQ

(h+1)

ω,ω′ (x)ψ−

x,ω′ ] , (12.1)12.1

where PZh
(dψ(≤h)) and V(h) are given by (8.43), while S(≥h+1)(φ) denotes the sum over all the terms

dependent on φ but independent of the ψ field, and B(h)(ψ(≤h), φ) can be written as

[φ+
ω ∗G(h)

ω,ω′ ∗ ∂

∂ψ+
ω′

V(h)(
√

Zhψ)] +
∂

∂ψ−
ω
V(h)(

√

Zhψ) ∗G(h)
ω,ω′ ∗ φ−ω )]+

[φ+
ω ∗G(h)

ω,ω′ ∗ ∂2

∂ψ+
ω′∂ψ

−
ω′′

V(h)(
√

Zhψ) ∗G(h)
ω′′,ω′′′ ∗ φ−ω ] + W̄

(h)
R (12.2)bb

where

G
(h)
ω,ω′ =

∑

k≥h+1

1

Zk
g
(k)
ω,ω′′ ∗Q(k)

ω′′,ω′ (12.3)5.a

and W̄
(h)
R contains terms of higher order in φ. The above formula can be proved by induction, with Q

(2)
ω,ω′ = 0.

Now we write in (12.2)

∂

∂ψ+
ω′

V(h)(
√

Zhψ) =
∂

∂ψ+
ω′

LV(h)(
√

Zhψ) +
∂

∂ψ+
ω′

RV(h)(
√

Zhψ)

and the same decomposition is done for ∂
∂ψ−

ω
V(h)(

√
Zhψ), but not on the terms in the second line of (12.2)

(the reason of this choice will be clear at the end). Note that one have to avoid that a derivative generated

by the renormalization procedure is applied on the propagator G(h) (if this happens one do not get a gain

factor γhv−hv′ ), and this can be ensured by choosing as a a localization point the coordinate of the field

contracted in G(h).

In the integration of the effective potential one has to put part of the relevant part of the effective potential

in the free integration; the same has to be done in the expansion for the two point Schwinger function for

B(h)(ψ(≤h), φ), changing Qh. We define

Q
(h)
ω,ω′ = Q

(h+1)
ω,ω′ + zhZh[∂t + ε(i∂x))]G

(h)
ω,ω′ + shZhG

(h)
ω,−ω′ (12.4)5.b

We can write the integral in the r.h.s. of (12.1) as

e−Lβth
∫

PZ̃h−1
(dψ≤h)

e
−Ṽ(h)(

√
Zhψ

(≤h))+B̃(h)(
√
Zhψ

(≤h),φ)+
∫

dx[ψ+
x,ωQ

(h)

ω,ω′ (x)φ−

x,ω′+φ
+
x,ωQ

(h−1)

ω,ω′ (x)ψ−

x,ω′ ] , (12.5)5.4a

where B̃(h) is equal to B(h) with ∂
∂ψ+

ω′

V(h)(
√
Zhψ) replaced by ∂

∂ψ+

ω′

Ṽ(h)(
√
Zhψ) where LṼ (h) = LV (h) −

shFσ − zh(Fα + Fζ). Now we rescale the fields

e−Lβth
∫

PZ̃h−1
(dψ≤h)
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e
−V̂(h)(

√
Zh−1ψ

(≤h))+B̂(h)(
√
Zh−1ψ

(≤h),φ)+
∫

dx[ψ+
x,ωQ

(h)

ω,ω′ (x)φ−

x,ω′+φ
+
x,ωQ

(h−1)

ω,ω′ (x)ψ−

x,ω′ ] , (12.6)5.4b

where B̂(h)(
√

Zh−1ψ
(≤h), φ) = B̃(h)(

√
Zhψ

(≤h), φ), we integrate with respect to ψ(h) and the procedure can

be iterated.

At the end, after taking the functional derivatives with respect to φ+
x , φ

−
x we get an expansion in terms of

a new class of trees τ ∈ Tn,h,k, which are similar to the trees of the effective potential, see Fig. 8, with the

following modifications.

(1) There are n+ 2 end-points and to two of them, called vx, vy, are associated the following function

∫

dxψ+
x,ωQ

(h)
ω,ω′(x)φ−x,ω′ +

∫

dxG
(h)
ω,ω′ ∗ ∂

∂ψ+
ω′

V̂(h)(
√

Zh−1ψ)φ−x,ω′

or
∫

dyφ+
y,ω′Q

(h)
ω′,ω(y)ψ−

y,ω +

∫

dyφ+
ω,ξ ∗G

(h)
ω,ω′ ∗ ∂

∂ψ−
ω′

V̂(h)(
√

Zh−1ψ)]

(2) Let be vxy the first vertex whose cluster contains both vx and vy; its scale is said h̄ and no R-operation

is defined on the vertices on the line from vxy to the root (this follows from the fact that we have made no

decomposition in relevant and irrelevant part in the terms in the second line of (12.2)).

(3)There are no external lines in the root of the tree. The scale of the root is k̄.

r v0

vxy

vx

vy

k̄ h̄ 1 2

Fig. 16. A tree appearing in the graphic representation of the two-point Schwinger

function (see (12.8) below). The two endpoints vx and vy are connected both to the

vertex vxy on scale h̄.

In order to perform the bounds we need some informations on G(h) given by (12.3); it is easy to show that

|g̃(k) ∗Q(k)| ≤ γk
CN

1 + (γk|x − y|)N

This simply follows from the fact that the Fourier transform of Qk is bounded by a constant. In fact by

(12.3) and (12.4) we obtain

Q
(h)
ω,ω′ = Qh+1

ω,ω′ + zhZh[∂t + ε(i∂x))]
∑

k≥h+1

1

Zk
gkω,ω′′ ∗Q(k)

ω′′,ω′ + shZh
∑

k≥h+1

1

Zk
gkω,ω′′ ∗Q(k)

ω′′,−ω′ (12.7)5.c
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which can be solved by iteration. In bounding the convolution g̃(k) ∗Qk we have to evaluate Q̂(k)(k) only on

the support of f̃ (k)(k). Considering the Fourier transform of (12.7) one obtains that only one term survive

in the sum in (12.7)

Q̂
(h)
ω,ω′(k) = 1 + zhZh

∑

ω′′

(−ik0 + ωk)
1

Zh+1
g
(h+1)
ω,ω′′ (k)Q̂

(h+1)
ω′′,ω′ (k) + shZh

1

Zh+1

∑

ω′′

g
(h+1)
ω,ω′′ (k)Qh+1

ω′′,−ω′

and by induction one can deduce that |Q̂(h)
ω,ω′(k)| ≤ 1 +O(εh). Then one easily obtain the bound

|G(h)(x, υ)| ≤ γh

Zh

CN
1 + (γ(h)|x − y|)N

After deriving with respect to φ+
x , φ−y we obtain

S(x;y) =
∑

ω,ω′

e−ipF (ωx−ω′y)
1
∑

h̄=h∗

g̃
(h̄)
ω,ω′(x;y) +

1
∑

h̄=h∗

h̄−1
∑

k̄=h∗

∞
∑

n=1

∑

τ∈T h,k
n

S̄h̄,k̄,τ ;ω,ω′(x;y) (12.8)onco

where S̄h̄,k̄,τ ;ω,ω′(x;y) is obtained by the expansion described above after taking the functional derivative.

Calling

S̄(h̄)(x;y) =

h̄−1
∑

k̄=h∗

∞
∑

n=1

∑

τ∈T h,k
n

S̄h̄,k̄,τ ;ω,ω′(x;y)

we obtain

|S̄(h̄)
ω,ω(x;y)| ≤ γh̄

Zh̄

CN

1 + (γh̄|x− y|)N (12.9)c1km

and

|S̄(h̄)
ω,−ω(x;y)| ≤ |σh̄|

γh̄Zh̄

CN

1 + (γh̄|x − y|)N . (12.10)c2km

The proof of (12.9),(12.10) is obtained by a modification of the arguments used to bound the effective

potential. In fact, as far as the bounds are corncerned, the vertices vx and vy are like two ν vertices with

an external line (the φ line) and an extra γ−h̄/
√

Zh̄ factor for each one; moreover no integration over the

coordinate is associated to such vertices. Another important difference is that no R is applied on all the

vertices between vxy and the root; the clusters assiciated to such vertices can be at most marginal (by

definition to the cluster vxy are external at least the two φ fields, so that if h 6= k all the clusters between

vxy and v0 have at most four external lines). To renormalize them we can multiply by γh̄−k̄γk̄−h̄; the factor

γk̄−h̄ is enough to renormalize all the clusters between vxy and v0.

It is then natural to compare the bounds for S̄h,k,τ ;ω,ω(x;y) and the bounds for a contribution to the

effective potential with two external lines; with respect to the bound for the effective potential with two

external lines (wich gives dimensionally a factor γk̄) there is a γ2h̄ more for the fact that there are two

integrations less (one integration kills the factor Lβ); moreover there is an extra factor γ−2h̄

Zh̄
γh̄−k̄ by the

preceding considerations. Collecting together such factors with a decay factor

CN

1 + (γh̄|x − y|)N , (12.11)12.11

which one can extract from the tree connecting vx with vy one gets (12.9); moreover (12.10) is obtained

taking into account that there is at least a σ vertex.
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A similar expansion can be obtained also for the four point Schwinger functions, simply deriving with

respect to four φ-fields; however such expansion is not suitable for the computation of the response functions

and onother one is necessary, see §14.

13. Two-point Schwinger functions for spinless fermionssec.13

In this section we show how the Renormalization group analysis described above can be used to obtain

properties for many systems of spinless fermions in one dimension. For fixing the ideas we have considered

till now the model with Hamiltonian (8.1). The reason is that the properties of the other models described

in this section can be easily deduced from the discussion of the model (8.1), which is in a sense the most

general case, if the fermions are spinless.

p.13.1 13.1. Free fermions. Let us resume quickly the properties of the two-point Schwinger function for a system

of free fermions in the continuum, with Hamiltonian H = H0 given by (2.2). The eigenstates of H0 can be

easily constructed by the solutions of the Schrödinger equation

− 1

2m

∂2

dx2
ψ(x) = Eψ(x) , (13.1)1.30a

The n-point Schwinger function can be written using the Wick rule in terms of the two-point Schwinger

function

g(x− y) =

∫

dk

(2π)2
eik(x−y)

−ik0 + k2

2m − µ
(13.2)mkm

with
∫

dk
(2π)2 ≡

∫∞
−∞

dk0
2π

∫∞
−∞

dk
2π . It can be written as

g(x;y) = −R(x− y) + ϑ(x0 − y0)e
(x0−y0)p2F /2me−m(x−y)2/2(x0−y0)

√

m

2π(x0 − y0)
,

where

R(x − y) =
1

π

∫ pF

0

dk cos k(x− y)e−
x0−y0

2m (k2−p2F )

is a smooth function such that

lim
x0−y0→0

R(x − y) =
1

π

sin pF (x− y)

x− y

For large |x−y| the free Schwinger function decays as the inverse of |x−y| times an oscillating factor. Note

also that the function is singular for x = y.

Similar results can be found for H = H0 in the discrete case (2.2); the large distance asymptotic behaviour

of the two-point Schwinger function is the same (but only if pF 6= 0, π), but the function is finite for x = y

(but the time derivative is singular at x0 = y0).

p.13.2 13.2. Non interacting fermions in a periodic potential. Let us consider a system of fermions in the continuous

case subject to a periodic potential, with Hamiltonian H = H0 + uP , with P given by (2.3); we fix T = 1

for semplicity.

Also this model is exactly solvable, the eigenstates of H being expressed in terms of the solutions of the

Schrödinger equation

[− 1

2m

∂2

dx2
+ uϕ(x)]ψ(x) = Eψ(x) (13.3)aa

The theory of the solutions of such equations is rather well developed, see [T]. By making a linear combination

with suitable coeffficients of two independent solutions of (13.3) one obtains solutions φ(k, x, u), called
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Floquet solutions, such that φ(k, x + 1, u) = eikaφ(k, x, u). If k is real they are called Bloch waves: they

are indiced by the real number k, the crystalline momentum, and they verify (13.3) with E = ε(k, u) which

is a continuous function except for k = nπ, n integer where it is generically discontinuous. The values

∆n = ε((nπ/a)+, u) − ε((nπ/a)−, u) are called gaps; sometimes ∆n = 0 and in this case one speaks of

closed gaps. The theory of Bloch waves can be without difficulty adapted to the case of the finite difference

Schrödinger equation.

The two-point Schwinger function is given by

S0(x,y) =

∫

dk

(2π)2
φ(k, x, u)φ(k,−y, u)eik0(x0−y0)

−ik0 + (ε(k, u) − µ)
(13.4)mmmm

The spectral gap is equal to ∆n when pF = nπ and it is 0 for all the other values of pF . For small u we

have ∆n = cnu + O(u2) where cn is the n-th Fourier coefficient of ϕ(x). If pF = nπ the system is called

filled band Fermi system. The asymptotic behaviour for large values of |x − y| of the two-point Schwinger

function depends critically on the value of the Fermi momentum; it holds, see [BM1] and [BM2].

(1) If pF 6= nπ then, for a suitable constant C and |x − y| ≥ 1

|S0(x,y)| ≤ C

|x − y| (13.5)z.o

and for small u

|S0(x;y) − g(x − y)| ≤ C|u|
|x − y|

(2) If pF = nπ for any N > 1 one can find constants CN such that if |x − y| ≥ 1

|S0(x,y)| ≤ 1

|x − y|
CN

1 + ∆N
n |x − y|N (13.6)z.1

Probably an optimal bound is an exponential one.

Such two cases correspond to the metallic or insulating phase of the system; in one case the ground state

energy has no gap and in the other case it has a gap.

It can be of some interest to have some insights of how (13.5),(13.6), which are true for any value of u, can

be derived by the Bloch waves property. A very common technique to obtain similar bounds is to shift the

integration domain in the complex plane; this means that a detailed knowledge of the analytic properties

of Bloch waves in the complex plane is required. A study of this problem was done in [K], and we resume

quickly the results. The function ε(k, u) as a function of complex k may be represented on a Riemann surface

with an infinite sequence of sheets Sn, in such a way that on each Sn for k real one has the value of ε(k, u)

corresponding to the n-th energy band. Each sheet Sn is connected to Sn+1 by an infinite sequence of branch

points of order two given by k2m = ±[2(j + 1)π + ih2m] for j = 0,±1, . . . and by k2m+1 = ±[2jπ + ih2m+1]

for j = 0,±1, . . .; such branch points are closer and closer to the real axis as limn→∞ hn = 0. Then starting

on a real value of k on the band n, passing around kn and returning on the real axis, one is in the band

n+ 1. Close to the branch points one has

ε = εn + βn(k − kn)
1
2 + o((k − kn)

1
2 )

Analogous properties hold for φ(k, x, u) with the only difference that the branch points are now of order 4

and close to the branch points can be written as

φ(k, x, u) =
An

(k − kn)
1
4

[1 +Bn(k − kn)
1
2 + o((k − kn)

1
2 )
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Finally on each Sn the functions are periodic or antiperiodic with period 2π. The functions ε(k, u), φ(k, x, u)

appearing in (13.4) are the restriction to the real axis of functions defined in the complex plane, with cuts

from kn to k̄n, once that the value corresponding to the segment (−π, π) is fixed to the value of the first band.

Let us return now to the problem of shifting the contour of (13.4); as the singularity are closer and closer to

the real axis (unless one chooses some special periodic functions in which hn is bounded) one can consider

a path circunventing the singularities with infinitesimal circles, see [BM1]: one uses that the singularity is

integrable and the periodicity properties. Then the estimates (13.5),(13.6) are obtained.

The same results can be obtained in a different way, at least if u is small, without using any property

of the solutions of the Schrödinger equation. In fact one can apply the Renormalization group techniques

introduced above with λ = 0, φ(x) a periodic function and x ∈ R. The expansions of the preceding sections

can be easily adapted (in some sense they become trivial) to the case of H = H0 + uP + νN0. If λ = 0

all the contributions to the effective potential are bilinear in the fields, so that the definition of localization

is given by the analogue of (8.20) but the Kronecker delta is not defined mod. 2π; the running coupling

constants are, if pF = nπ, νh, σh, zh, αh; if pF 6= nπ they are the same but σh = 0. As the interaction is

bilinear in the field a bound on each Feynman graph is enough to prove the convergence and there is no need

of Gram-Hadamard bounds; moreover there is no small divisor problems.

In the filled band case pF = nπ one can choose ν = 0; this follows noting that, from (10.13), νh =

γ−h+1[
∑h+1
k=0 γ

k−2β
(k)
ν ] and |β(k)

ν | ≤ C|u|2 and γ−h ≤ C|u|−1. It is easy to show that the running coupling

constants ~vh remain close O(u2) to their values at h = 0. From (12.8) the infrared part of the Schwinger

function is given by

S0(x,y) =
1
∑

h=h∗

g(h)(x;y) + u
1
∑

h=h∗

S̄(h)(x;y) (13.7)4.33jjjj

where

g(h)(x;y) =
∑

ω,ω′=±1

e−i(ωx−ω
′y)pF g

(h)
ω,ω′(x;y)

and

|S̄(h)(x;y)| ≤ γh
CN

1 + (γh|x − y|)N

Remember that h∗ = O(log(|cnu|)−1) and let be σ = |cnu| (we are assuming that cn 6= 0). If 1 ≤ |x − y| ≤
(2σ)−1 and hx ≥ h∗ is such that γ−hx−1 < |x− y| ≤ γ−hx , (13.7) gives, if N > 1,

∣

∣

∣
S0(x;y)

∣

∣

∣
≤ CN

hx−1
∑

h=h∗

γh +
1
∑

h=hx

CNγ
h

γNh|x− y|N ≤ γhxCN ≤ CN
1 + |x − y| . (13.8)4.35jjjj

On the other hand, if |x − y| ≥ (2σ)−1, (13.7) implies that

∣

∣

∣S0(x;y)
∣

∣

∣ ≤ CN
|x − y|N

1
∑

h=h∗

γ−(N−1)h ≤ CN
|x − y|N |σ|−N+1 ≤ CN |σ|

1 + |σ|N |x − y|N , (13.9)4.34jjjj

provided that N > 1. By a sligth refinement of the above bounds one obtains (13.6).

Moreover
∑0
h=h∗ g(h)(x;y) in (13.7) can be written, in the L, β → ∞ as

∫

dk

(2π)2
f (i.r.)(k) φ̃(k, x, u) φ̃(k,−y, u) e−ik0(x0−y0)

−ik0 + ε̃(k, u)
(13.10)CCM

where f (i.r.)(k) is the numerator of the r.h.s of the third of (5.4), φ̃(k, x, u) = e−ikxũ(k, x, u) and

ũ(k, x, u) = eisign (k)pF x

[

cos(pFx)

√

1 − sign (|k| − pF )σ
√

((|k| − pF )v0)2 + σ2
(13.11)4.29b
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−i sign (k) sin(pFx)

√

1 +
sign (|k| − pF )σ

√

((|k| − pF )v0)2 + σ2

]

ε̃(k, u) = (|k| − pF )2/2m+ sign (|k| − pF )
√

v0(|k| − pF )2 + σ2 (13.12)4.29c

and v0 = pF /m. The first order term of (13.7) is very similar to (13.4), and φ̃(k, x, u) are just the Bloch

waves computed at the first order by degenerate perturbation theory.

In the not filled band case pF 6= nπ then σh = 0 so that the propagator is diagonal and by choosing a

suitable ν0

S0(x;y) =

1
∑

h=−∞
g(h)(x;y) + u

1
∑

h=−∞
S̄(h)(x;y) (13.13)4.33pp

where

g(h)(x;y) =
∑

ω,ω′=±1

e−iω(x−y)pF ghω(x;y)

where g
(h)
ω (x;y) is given by the analogous of (8.50) with σh = 0 and |S̄(h)(x;y)| ≤ γh CN

1+(γh|x−y|)N . It holds

if hx is such that γ−hx−1 < |x − y| ≤ γ−hx , (13.13) gives, if N > 1,

∣

∣

∣Si.r.0 (x;y)
∣

∣

∣ ≤ CN

hx−1
∑

h=−∞
γh +

1
∑

h=hx

CNγ
h

γNh|x − y|N ≤ γhxCN ≤ CN
1 + |x− y| . (13.14)13.14

A decomposition analogue to (13.7) holds. Note that if the occupation number is defined with respect to

the ”Bloch waves” then it is of course (tautologically) discontinuous. If we consider the occupation number

with respect to the plane waves, considering the Fourier transform of the Schwinger function, there is no

discontinuity, in the filled band case, while it is discontinuous in the not filled band case.

Finally one can consider fermions on a lattice with Hamiltonian H = H0 +uP +νN0 with P given by (2.4)

and p
π a rational number and one can prove bounds similar to (13.5),(13.6).

p.13.3 13.3. Noninteracting fermions in a quasi-periodic potential. We consider now a less trivial case in which the

periodic potential is replaced by a quasi-periodic one; more exactly we prefer to study the essentially equiva-

lent case of noninteracting fermions on a lattice with an incommensurate potential. As in the commensurate

case such problem could be studied by analyzing the spectrum of the finite difference Schrödinger equation

−ψ(x+ 1) − ψ(x− 1) + uϕ(x)ψ(x) = Eψ(x) , (13.15)1.29a

where ϕ(x) is defined as in §8 and p/π is irrational. In (13.15) there are two periods, the one of the potential

and the intrinsic one of the lattice, and this makes the properties of (13.15) and of the continuous Schrödinger

equantion with a quasi-periodic potential very similar. The eigenfunctions and the spectrum strongly depend

on u, contrary to the case of periodic potential, in which the eigenfunctions are always Bloch waves whenever

u is large or small. On the contrary in this case for large u there are eigenfunctions with an exponential decay

for large distances; this phenomenon is called Anderson localization (for details, see for instance [PF], [BLT]

and [S]) while for small u there are eigenfunctions which are quasi-Bloch waves of the form eik(E)x u(x) with

u(x) = ū(px) for (13.15), ū being 2π-periodic in its arguments. This is proved by using KAM techniques

(see [DS], [E], [BLT], [JM] and [MP]), if p verifies a Diophantine condition, i.e. ||np||
T

1 ≥ C0|n|−τ for any

n 6= 0 and with the additional condition that, if k(E) ≡ k, then

(a) k is such that ||k + np||
T

1 ≥ C0|n|−τ ∀n ∈ Z \ {(0)},
(b) or k = n̄p, n̄ ∈ N.

Of course such two cases do not cover all the possible k.

Probably one can get the asymptotic behaviour of the Schwinger functions just by studying the properties

of the solutions of the Schrödinger equation, as it was done for the periodic potential case; this result is
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however missing in the literature. On the other hand it is possible to obtain the Schwinger functions writing

them as Grassman integrals using the methods seen in the previous sections. We consider a model on a

lattice with Hamiltonian

H = H0 + uP + νN0 (13.16)nop

with P given by (2.4) and p/π irrational.

Small u case. We start by the case in which the incommensurate potential is weak with respect to the

kinetic energy. It is natural to distinguish the case pF = np, which is analogous of the filled band case in

the commensurate case, from the case pF 6= np. However if we assume simply pF 6= np one cannot prove the

convergence of the series, due to the small divisor problem, see §8; one needs a stronger condition, namely

that ||pF + np||
T

1 ≥ C0|n|−τ , ∀n ∈ Z \ {(0)}. Note that the condition pF = n̄p mod 2π can be verified by

a finite number of n̄ if p/π is a rational number, but by an infinite number in the irrational case. In other

words the values of pF in (−π, π) such that the system has a gap in the ground state form a dense set. In

order to perform a rigorous analysis we have to consider L finite with periodic boundary conditions; in this

way the Grassman algebra is finite dimensional and the Grassman integral are well defined. This means

that we cannot choose a p/π given by an irrational number, but we have to consider a sequence of rational

numbers converging uniformly to a diophantine one as the volume tends to infinity.

One can prove the following theorem, see [BGM1].

Theorem 2. Let us consider the Hamiltonian (13.16) with ν = 0 and a sequence Li, i ∈ Z
+
, such that

lim
i→∞

Li = ∞ , lim
i→∞

pLi = p ,

Suppose also that there is a positive integer n̄ such that pF = n̄pLi (mod 2π), ϕ̂n̄ 6= 0 , pLi satisfies the

diophantine condition

‖2npLi‖T
1 ≥ C0|n|−τ , ∀n ∈ Z \ {(0)} |n| ≤ Li

2
, (13.17)1.19

for some positive constants C0 and τ independent of i. Set σ = |uφ̂n̄|. Then there exists ε0 > 0, such that,

if |u| ≤ ε0 in the limit i→ ∞, β → ∞ for any N > 1 there is a constant CN , such that

|S(x;y)| ≤ 1

1 + |x − y|
CN

1 + (|σ| |x − y|)N , (13.18)1.23uu

Moreover, for 1 ≤ |x − y| ≤ |σ|−1

S(x,y) = g(x− y) + C2(x,y)

where g(x − y) is given by (3.4) and

|C2(x;y)| ≤ C

√

|σ||x − y|
|x − y|

for a suitable constant C. For any i, there is a spectral gap D ≥ |σ|/2 around µ0.

The above results can be also proved specializing the analysis on the Hubbard-Holstein model to the case

λ = 0. The existence of the sequence of Li is proved in [BGM1] by choosing them as the denominators of

the best approximants. A decomposition of the Schwinger function given by (13.7) and (13.11) holds so that

the above theorem say that, for small u, the Schwinger function behavior for pF = n̄p if p is rational or

diophantine is essentially the same; the crucial difference is that in one case there is a finite number of pF
of the form n̄p while in the second case there is a dense set.
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It is also possible to prove the following result.

Theorem 3. Let us consider the Hamiltonian (13.16) and a sequence Li, i ∈ Z
+
, such that limi→∞ Li =

∞, limi→∞ pLi = p, if pLi satisfies the diophantine condition (13.17) and

‖pF,Li + npLi‖T
1 ≥ C0|n|−τ , ∀n ∈ Z \ {(0)}, |n| ≤ Li

2
, (13.19)1.26xxg

with the same positive constants C0 and τ . Then there exist ε > 0 such that, for |u| ≤ ε, there exists a

function ν = ν(u) such that

|S(x;y)| ≤ C

1 + |x − y| , (13.20)1.28ppp

for some constant C. Moreover

S(x,y) = g(x − y) + uC3(x,y),

where g(x − y) is given by (3.4) and C3(x;y) verifies the same bound as (13.20).

The proof follows the lines of preceding sections; in fact Lemma 1 is still valid if one assumes (13.19)

instead of pF = n̄p. By the definition of localization, see (8.19), (8.20) and (8.21), one gets σh = 0 for any

h. However the construction of a sequence of Li, pF,Li , pLi verifying (13.19) seems to be much more involved

and it is until no construction has been exhibited (but we think that this is only a technical problem).

In any case, contrary to the commensurate case, the results obtained are not for all the possible values of

pF ; the behaviour of the system for pF neither verifying pF = n̄p or |pF + np‖
T

1 ≥ C0|n|−τ , ∀n ∈ Z \ {(0)}
is an open problem; likewise it is not known what happens if p is neither rational or Diophantine.

Large u case. We have seen that the asymptotic behaviour of the Schwinger functions for fermions both

with an external commensurate or incommensurate potential in the small u case are similar, at least if

proper diophantine conditions are imposed on the Fermi momentum. Such similarity is completely lost in

the large u case. In this case from the study of the Schrödinger equation we expect, see for istance [PF], the

phenomenon of Anderson localization (an exponential decay of correlation functions which is not due to the

presence of a gap in the spectrum and delocalized states, but due to the fact that the states are exponentially

localized). Again we write the Schwinger functions as Grassman integrals; however we develop in series of

ε = 1
u , considering H0 as the perturbation. In other words we write

H = H̄0 + V̄ ,

H̄0 =
∑

x∈Λ

(µ− ϕ(x))ψ+
x ψ

−
x ,

V̄ = −ε
2

∑

x∈Λ

[

ψ+
x ψ

−
x+1 + ψ+

x ψ
−
x−1 − 2ψ+

x ψ
−
x

]

+ ν
∑

x∈Λ

ψ+
x ψ

−
x ,

(13.21)1.2rr

with V̄ ≡ H0, H̄0 = P . The ε = 0 Schwinger function is given by

ĝ(x, y; k0) =

∫ β/2

−β/2
dτ eik0τg(x, y; τ) = δx,yĝ(x, k0) ≡

δx,y
−ik0 − ϕ(x) + µ

. (13.22)2.4rr

So one can see the analogy with the small u case; the two propagators are the same replacing x with k and

ϕ(x)−µ with E(k). If ϕ(x) is even one can introduce quasi-particles and one can apply RG methods similar

to the one discussed for the small u case. Then in [GM2] the following theorem is proven.

Theorem 4. Let us consider the Hamiltonian (13.21) and let be ϕ(x) = ϕ̄(ωx) an even periodic function in

its argument, ϕ(x) = ϕ(−x), ϕ̄(x) = ϕ̄(x+ 1), and with ω verifying a Diophantine condition

‖ωn‖T ≥ C0|n|−τ , ∀n ∈ Z \ {0} , (13.23)1.5ddd
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for some constants τ > 1 and C0 > 0. Let us define ω̄ ≡ ωx̄ such that µ = ϕ̄(ω̄) and assume that there

is only one x̄ ∈ (0, 1/2) satisfying such a condition and that ϕ̄′(ω̄) 6= 0 (the prime denotes derivative with

respect the argument).

Then there exists ε0 > 0, depending on ω and ω̄, and, for |ε| < ε0, a function ν ≡ ν(ε) 6= 0, such that

(1) if ω̄ 6∈ ωZ mod 1 and the additional Diophantine condition

‖ωn± 2ω̄‖T ≥ C0|n|−τ , ∀n ∈ Z \ {0} , (13.24)1.6ddd

is verified, then S(x;y) is bounded by

|S(x;y)| ≤ log (1 + min{|x|, |y|})τ CN exp
{

−4−1|x− y| log
∣

∣ε−1
∣

∣

}

1 + [(1 + min{|x|, |y|})−τ |x0 − y0|]N
, (13.25)1.7ddd

for any N ≥ 1 and for some constant CN depending on N ;

(2) if 2ω̄ = (2k + 1)ω mod 1, k ∈ N, then, for α = 2(k + 1) and for some constant C ′
N depending on N ,

|S(x,y)| ≤ log max{(1 + min{|x|, |y|})−τ , σ} C′
N exp

{

−(4α)−1|x− y| log
∣

∣ε−1
∣

∣

}

1 +
[

max{(1 + min{|x|, |y|})−τ , σ}|x0 − y0|
]N

, (13.26)1.8ddd

with 0 ≤ σ ≤ C |ε|η(k), where

η(k) =

{

(2k + 1)/4 , k > 1 ,
1 , k = 1 ,

(13.27)1.9ddd

for some constant C.

We see, under suitale conditions, that the Schwinger functions decay exponentially fast. The faster than

any power decay in the small u case was due to the presence of a gap in the spectrum, while in the large u

case is due the localization of the eigenstates. In the first case the decay rate is order O(uφ̂m), if pF = mp

while in the second case is O(log u−1).

p.13.4 13.4. Interacting spinless fermions. The case of spinless fermions interacting only through a two-body

potential was studied in [BGPS] in the continuum and in [BGL] in the lattice and can be derived by the

considerations in the preceeding sections putting u = 0 so that σh = 0 for any h, the propagator becomes

diagonal in the ω-indices and h∗ = −∞. In this case an expansion in Feynman diagrams does not lead to a

convergent expansion and one has to bound directly the truncated expectation, as explained in the previous

sections. By §10 it follows that, for a suitable ν = ν(λ), λh, δh, νh converge to a non trivial fixed point laying

in the analiticity domain of the expansion; moreover, as limh→−∞ Zh−1/Zh = γη, with η = aλ2 +O(λ3) (the

rules for computing it at every order were explained in the preceeding sections) we can write, from §12,

S(x;y) =

1
∑

h=−∞

g(h)(x;y)

Zh
+ λ

1
∑

h=−∞
S̄(h)(x;y) (13.28)4.33cc

with
∣

∣

∣S̄(h)(x;y)
∣

∣

∣ ≤ γh

Zh

CN
1 + (γh|x − y|)N .

If hx is such that γ−hx−1 < |x − y| ≤ γ−hx , (13.28) gives, if N > 1,

1
∑

h=−∞
|S̄(h)(x;y)| ≤ CN

hx−1
∑

h=h∗

γh

Zh
+

1
∑

h=hx

1

Zh

CNγ
h

γNh|x − y|N ≤ γhxCN ≤ CN
1 + |x − y|1+η . (13.29)4.35cc
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At the end the following result can be proved, see [BGPS].

Theorem 5. Given a Hamiltonian of the form H = H0 + λV + νN0, with H0, N0, V given by (2.1) and

(2.5), for spinless fermions on the continuum, one can find a ε > 0 such that, for |λ| ≤ ε, there are functions

ν = ν(λ), η = η(λ) such that the two-point Schwinger function of H is given by

S(x;y) =
g(x− y)

|x − y|η +
λAλ(x;y)

|x − y|1+η (13.30)mkm1

where g(x − y) is given by (13.2), Aλ(x;y) is bounded by a constant, ν = O(λ) and η = aλ2 +O(λ3), with

a > 0.

It is natural to compare (13.30) with the large distances asymptotic behaviour of the Luttinger model

(11.1); from [BeGM] and [ML] the sum of the ω = 1 and ω = −1 Luttinger model two point Schwinger

functions is given by

∑

ω=±1

1

2π

eiωpF (x−y)

iω(x− y) + v∗0(x0 − y0)

1 + λAω(λ)

(x2 + y2 + (v∗0(x0 − y0))2)η
′ ,

with Aω(λ) is bounded by a constant and v∗0 , η
′ are suitable functions of λ, see [BeGM] for the explicit

expression. The similarity of the above equations with (13.30) is clear, but there are also some differences:

for istance pF is changed by the interaction, while it is not changed in the Luttinger model. Moreover the

behaviour for small x − y is completely different in the two models, the dependence from pF is much more

complicate in the function S(x;y) given by (13.30) than in its analogue for the Luttinger model, and so

on. A more exhaustive comparison between the Luttinger model correlation functions and the one we are

considering is, in the case of the density-density one, in §16 below.

An analogous theorem can be proven if the fermions are on a lattice, see [BGL]. In this case however ε0 is

proportional to (sin pF )α, if α is a positive integer, so ε0 is vanishing for pF → 0 or pF → π.

p.13.5 13.5. Interacting spinless fermions with a periodic potential in the not filled band case. A result very similar

to Theorem 5 holds adding to the Hamiltonian a periodic potential, in the not filled band case. The result

is valid for small λ and any u and is found by realizing a Renormalization group analysis similar to the one

see in §8 performing a multiscale decomposition not on g(x − y) but on S0(x;y); this means that we are

considering as free hamiltonian not H0 but H0 + uP . The analysis uses many properties of the Bloch waves

found in [K]. Note that |λ| ≤ ε and ε is proportional to ∂ε(k,u)
∂k |k=pF which is vanishing for k = nπ. In [BM1]

it is proved the following result.

Theorem 6. Given a Hamiltonian of the form H = H0 + λV + uP + νN0, with H0, N0, V given by (2.1)

and (2.5), for spinless fermions on the continuum with pF 6= nπ, n ∈ N, one can find a ε > 0 such that, for

|λ| ≤ ε, there are functions ν = ν(λ), η = η(λ) such that the two point Schwinger function of H is given by

S(x;y) =
S0(x;y)

|x − y|η +
λAλ(x;y)

|x − y|1+η , (13.31)mkm11

where S0(x;y) is given by (13.4), Aλ(x;y) is bounded by a constant, ν = O(λ) and η = aλ2 + O(λ3), with

a > 0.

p.13.6 13.6. Interacting spinless fermions with a periodic potential in the filled band case. Let us consider the

Hamiltonian on the continuum

H = H0 + λV + uP + νN0 (13.32)jkj
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in filled band case pF = n̄π, n̄ ∈ N
+
. An analysis similar to the one for the Holstein-Hubbard model can be

performed and the following result holds that, see [BM2] and [BM3].

Theorem 7 Given the Hamiltonian (13.32), assume pF = n̄π andϕ̂n̄ 6= 0. There exists ε > 0 and functions

ν ≡ ν(λ, u), η2 ≡ η2(λ, u) and η3 ≡ η3(λ, u), continuous for |u|, |λ| ≤ ε such that ν = O(λ) and η3 =

β1λ
2 + λ2O(λ, u, û), η2 = β2λ + |λ|O(λ, u, û), with β1, β2 positive generically non vanishing constants, and

such that the Schwinger function, if |x − y| ≥ 1 and for any positive N , satisfies

|S(x,y)| ≤ 1

|x − y|1+η3
CN

1 + (|∆| |x − y|)N (13.33)z.1jjj

if CN is a suitable constant and

∆ = |uϕ̂n̄|1+η2 . (13.34)z.3oo

Moreover, for 1 ≤ |x − y| ≤ ∆−1

S(x,y) =
1

|x − y|η3 [g(x − y) + C2(x,y)]

where g(x − y) is given by (13.2) and

|C2(x;y)| ≤ C
|λ| +

√

∆|x − y|
|x − y|

for a suitable constant C.

Moreover there is a spectral gap D verifying

D ≥ ∆

2
(13.35)z.4

Let us state some physical consequences of this theorem. There is a non vanishing spectral gap also in

presence of an interaction but, at least if the interaction is attractive (λ < 0) and u≪ e−κ1|λ|, it is strongly

renormalized by the interaction as the ratio between the bare gap and the dressed gap is ≪ 1 for small u and

vanishing as u→ 0.

The two-point Schwinger function can be written as

S(x;y) = S1(x;y) +O(λ, u, û)S2(x;y) , (13.36)1.21koko

where, looking at (12.8) replacing the h dependence with a momentum dependence

∫

dk

(2π)2
1

Z(k)
f (i.r.)(k) φ̃(k, x, û(k)) φ̃(k,−y, û(k)) e−ik0(x0−y0)

−ik0 + ε̃(k, û(k))

with φ̃(k, x, û(k)) = e−ikxũ(k, x, û(k)) and

ũ(k, x, û(k)) = eisign (k)pF x

[

cos(pFx)

√

1 − sign (|k| − pF )û(k)
√

((|k| − pF )v0)2 + û(k)2
(13.37)4.29bkkk

−i sign (k) sin(pFx)

√

1 +
sign (|k| − pF )û(k)

√

((|k| − pF )v0)2 + û(k)2

]
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ε̃(k, û(k)) = (|k| − pF )2/2m+ sign (|k| − pF )
√

v2
0(|k| − pF )2 + û(k)2 (13.38)4.29ckkk

with, if pF = n̄p and û(k), Ẑ(k) are two bounded functions such that |û(k)−u| = O(uλ)|, |Ẑ(k)−1−1| = O(λ)

for ||k| − pF | > pF

2 , and

û(pF ) = |uφ̂n̄|1+η2 Ẑ(pF ) = |uφ̂n̄|−η3(1+η2)

Finally S1(x,y), S2(x,y) obeys to the same bound (13.33).

It is natural to compare (13.36) with (13.10), valid in the λ = 0 case; one could describe the result

saying that the particles near the Fermi momentum are still Bloch waves, but dressed and of the form

φ(k,x, û(k))/

√

Ẑ(k), i.e. a sort of interacting Bloch waves. This extra momentum dependence is natural as

we expect that the interaction changes the one-particle wavefunctions mainly for momenta near the Fermi

surface. One can expect then that the spectral gap, which in the non interacting λ = 0 case is O(u), is

deeply renormalized by the interaction between electrons becoming O(u1+η2), so becoming much larger or

much smaller, if u≪ e−κ1|λ|, depending on the attractive or repulsive nature of the interaction.

Similar results can be found if the fermions are on a lattice with a commensurate potential.

p.13.7 13.7. Interacting spinless fermions with a incommensurate potential. This is the Holstein-Hubbard model

we discussed in §8. It is a model for interacting fermions on a lattice with a incommensurate potential.

In the physical literature such systems are studied in connection with the so called quasi-crystals, see for

instance [VMG]. It holds the following theorem, see [M1].

Theorem 8. Let us consider the Hamiltonian (8.1) and a sequence Li, i ∈ Z
+
, such that

lim
i→∞

Li = ∞ , lim
i→∞

pLi = p .

Suppose also that there is a positive integer n̄ such that pF = n̄pLi (mod 2π), ϕ̂n̄ 6= 0 , pLi satisfies the

diophantine condition

‖2npLi‖T
1 ≥ C0|n|−τ , 0 6= n ∈ Z |n| ≤ Li

2
, (13.39)13.39

for some positive constants C0 and τ independent of i. There exist ε > 0 and functions ν ≡ ν(λ, u),

η2 ≡ η2(λ, u) and η3 = η3(λ, u), continuous for |u|, |λ| ≤ ε and such that ν = O(λ), η3 = β1λ
2 +λ2O(λ, u, û),

η2 = β2λ+|λ|O(λ, u, û), with β1, β2 positive generically non vanishing constants, and such that the Schwinger

function, if |x − y| ≥ 1 and for any positive N , satisfies

|S(x,y)| ≤ 1

|x − y|1+η3
CN

1 + (∆ |x − y|)N (13.40)z.1jjj1

if

∆ = |uϕ̂n̄|1+η2 (13.41)z.3oo1

and CN is a constant. Moreover, for 1 ≤ |x − y| ≤ ∆−1

S(x,y) =
1

|x − y|η3 [g(x;y) + C2(x,y)]

where g(x;y) is given by (3.4) and

|C2(x;y)| ≤ C
|λ| +

√

∆|x − y|
|x − y|

for a suitable constant C. Moreover there is a spectral gap D verifying

D ≥ ∆

2
(13.42)z.41
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The considerations done in the preceding sections hold also in this case; in same sense the quasi-Bloch

waves are replaced by interacting quasi-Bloch waves.

Finally the analogous of Theorem 3 for the interacting case holds.

Theorem 9. Let us consider the Hamiltonian (13.16) and a sequence Li, i ∈ Z
+
, such that limi→∞ Li =

∞, limi→∞ pLi = p, if pLi satisfies the diophantine condition (13.39) and (13.19) then there exist an ε such

that, for |λ|, |u| ≤ ε there are functions η(λ, u), ν(λ, u) with η(λ, u) = β1λ
2 + λ2O(λ, u) such that

S(x;y) =
g(x;y)

|x − y|η +
λAλ(x;y)

1 + |x − y|1+η (13.43)mkm1m

where g(x;y) is given by (3.4), Aλ(x;y) is bounded by a constant, ν = O(λ) and η = aλ2 + O(λ3), with

a > 0.

While a sequence of Li verifying the conditions of the first theorem is found in [BGM1], a sequence verifying

the conditions of the second theorem is not constructed at the moment.

p.13.8 13.8. Open problems. Finally let us list a list of open problems about d = 1 spinless fermions weakly

interacting with short range.

(1) In the case of periodic potential there are two different expansion for pF = nπ and pF 6= nπ; this second

one is such that λ has to be taken smaller and smaller as pF → nπ. One would like to know the correlation

functions also for pF ≃ nπ and λ fixed i.e. not vanishing as pF → nπ.

(2) One would like to study by these methods interacting fermions with a stochastic external potential. In

the λ = 0 the Schwinger function was obtained in [AG] by the properties of the solution of the Schrödinger

equation. It is likely that the interaction between fermions produces a renormalization of the decay rate

of the Anderson localization similar to the one for the quasi-periodic potential (see [SCP]). To prove this

probably Cluster expansion techniques have to be used (see [MPR]).

(3) Another interesting case is if there is a large incommensurate potential and an interaction between

fermions (Holstein-Hubbard model for large u).

14. Density-density response functionsec.14

p.14.1 14.1. The expansion. We have seen in §3 that the density-density response functions, in terms of which

many important physical quantities can be expressed, are related to the four-point Schwinger functions.

The expansion in §12 for the two-point Schwinger functions could be adapted to the case of the n-point

Schwinger function. However, while such expansion is suitable for the analysis of the asymptotic behaviour

of ST (x1,x2,x3,x4) when |x1 −x2|, |x2 −x3|, |x3 −x4|, |x1 −x4| are large, it cannot provide the asymptotic

behaviour of the density-density correlation functions, related to four-point Schwinger functions with coordi-

nates pairwise equal; see [M2]. The reason is that, while in the two point Schwinger function, or in the four

point one with all the difference of coordinates very large, the asymptotic behaviour is described in terms

of the same critical indices appearing in the effective potential, in the expression for the density-density

correlation function there are new ones. We give here an idea of the expansion referring for details and

proofs to [BeM].

The density-density correlation function Hx is given by

H3
x =

∂2 logS(φ)

∂φ(x)φ(0)
|φ=0 , (14.1)5.1yy
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where φ(x) is a bosonic external field, periodic in x and x0, of period L and β, respectively, and

eS(φ) =

∫

P (dψ(≤1))e−V (ψ(≤1))+
∫

dxφ(x)ψ
(≤1)+
x

ψ
(≤1)−
x . (14.2)5.2yy

For fixing ideas we study (14.2) for the Hamiltonian H0 +λV + νN0 on a lattice, and in §16 we discuss what

happens for more complex Hamiltonians.

We shall evaluate the integral in the r.h.s. of (14.2) introducing a scale decomposition and performing

iteratively the integration of the single scale fields, starting from the field of scale 1.

After integrating the fields ψ(1), . . . ψ(h+1), 0 ≥ h ≥ h∗, we find

eS(φ) = e−LβEh+S(≥h+1)(φ)

∫

PZh
(dψ≤h)e−V(h)(

√
Zhψ

(≤h))+B(h)(
√
Zhψ

(≤h),φ) , (14.3)5.4yy

where PZh
(dψ(≤h)) and Vh are given by (8.40) while S(≥h+1)(φ), which denotes the sum over all the terms

dependent on φ but independent of the ψ field, and B(h)(ψ(≤h), φ), which denotes the sum over all the terms

containing at least one φ field and two ψ fields, can be represented in the form

S(≥h+1)(φ) =

∞
∑

m=1

1

(Lβ)m

∑

p1,pm

S(≥h+1)
m (p1, . . . ,pm)

[

m
∏

i=1

φ(pi)δ(

m
∑

i=1

pi)
]

(14.4)5.5yy

B(h)(ψ(≤h), φ) =

∞
∑

m=1

∞
∑

n=1

∑

,ω

∑

p1,...,pm

∑

k1,...,k2n

· B(h)
m,2n,,ω(p1, . . . ,pm;k1, . . . ,k2n)

[

m
∏

i=1

φ(pi)
][

2n
∏

i=1

ψ
(≤h)σi

ki,ωi
δ(

m
∑

i=1

pi +

2n
∑

k=1

σiki)
]

.

(14.5)5.6yy

It is easy to see that the field φ is equivalent, from the point of view of dimensional considerations, to two

ψ fields so that the only terms in the r.h.s. of (14.5) which are not irrelevant are those with m = 1 and

n = 1, which are marginal. Hence we extend the definition of the localization operator L (8.19), (8.20) and

(8.21) so that its action on B(h)(ψ(≤h), φ) is trivial unless n = m = 1 and in that case:

L 1

(Lβ)3

∑

k1,k2,p

φ(p)ψ
(≤h)+
k1,ω1

ψ
(≤h)−
k2,ω2

B
(h)
1,2,,ω(p;k1,k2)δ(k1 − k2 + p)

L 1

(Lβ)3

∑

k1,k2,p

φ(p)ψ
(≤h)+
k1,ω1

ψ
(≤h)−
k2,ω2

B
(h)
1,2,,ω((ω2 − ω1)pF ;ω1pF , ω2pF )δ(k1 − k2 + p).

(14.6)locco

Then we can write

LB(h)(ψ(≤h), φ) =
Z

(1)
h

Zh
F

(≤h)
1 +

Z
(2)
h

Zh
F

(≤h)
2 , (14.7)5.9yy

where Z
(1)
h and Z

(2)
h are real numbers, such that Z

(1)
1 = Z

(2)
1 = 1 and

F
(≤h)
1 =

∑

ω=±1

∫

dxφ(x)e2iωpF xψ(≤h)+
x,ω ψ

(≤h)−
x,−ω , (14.8)5.10yy

F
(≤h)
2 =

∑

ω=±1

∫

dxφ(x)ψ(≤h)+
x,ω ψ(≤h)−

x,ω . (14.9)5.11yy

Of course we could write the above expressions in momentum space, like in (8.27); we prefer however to

write them in coordinate space to make evident that in F
(≤h)
1 there is an oscillating factor absent in F

(≤h)
2 .

Note also that Z
(1)
h and Z

(2)
h are new running coupling constants.
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By using the notation of §8, we can write the integral in the r.h.s. of (14.3) as

e−Lβth
∫

P̃Zh−1
(dψ(≤h))e−Ṽ(h)(

√
Zhψ

(≤h))+B(h)(
√
Zhψ

(≤h),φ) =

= e−Lβth
∫

PZh−1
(dψ(≤h−1)) ·

·
∫

P̃Zh−1
(dψ(h))e−V̂(h)(

√
Zh−1ψ

(≤h))−B̂(h)(
√
Zh−1ψ

(≤h),φ) ,

(14.10)5.12yy

where V̂(h)(
√

Zh−1ψ
(≤h)) is defined as in (8.63) and

B̂(h)(
√

Zh−1ψ
(≤h), φ) = B(h)(

√

Zhψ
(≤h), φ) . (14.11)5.13yy

B(h−1)(
√

Zh−1ψ
(≤h−1), φ) and S(h)(φ) are then defined through the analogous of (8.65), that is

e−V(h−1)(
√
Zh−1ψ

(≤h−1))+B(h−1)(
√
Zh−1ψ

(≤h−1),φ)−LβẼh+S̃(h)(φ) =

=

∫

PZh−1
(dψ(h))e−V̂(h)(

√
Zh−1ψ

(≤h))+B̂(h)(
√
Zh−1ψ

(≤h),φ) .
(14.12)5.14yy

The definitions (14.11) and (14.7) easily imply that

Z
(i)
h−1

Z
(i)
h

= 1 + z
(i)
h , i = 1, 2 , (14.13)5.15yy

where z
(1)
h and z

(2)
h are some quantities of order εh, which can be written in terms of a tree expansion similar

to that described in §8. It follows that

S(φ) = −LβEL,β +

1
∑

h=−∞
S̃(h)(φ) (14.14)esse

and S(≥h+1) =
∑1
k=h+1 S̃

(k)(φ), see (14.3); moreover deriving with respect to φ(x), φ(0)

Hx =
1
∑

h=−∞
S̃

(h)
2 (x, 0) . (14.15)5.18yy

The functionals B(h)(
√
Zhψ

(≤h), φ) and S(h)(φ) can be written in terms of a tree expansion similar to the

one described in §8. We introduce, for each n ≥ 0 and each m ≥ 1, a family T m
h,n of trees, which are defined

as in §8.4, with some differences.

(1) If τ ∈ T m
h,n, the tree has 2n+m (instead of 2n) endpoints. Moreover, among the 2n+m endpoints, there

are n endpoints, which we call normal endpoints, which are associated with a contribution to the effective

potential on scale hv − 1. The m remaining endpoints, which we call special endpoints, are associated with

a local term of the form (14.8) or (14.9); we shall say that they are of type Z(1) or Z(2), respectively.

(2) There are clusters with φ external fields, and on such clusters the R = 1 − L operation, if L is defined

as in (14.6), acts if there is only one φ external field and two external ψ fields. As dimensionally a φ field is

like a couple of ψ fields, (14.7) is enough to get a convergent renormalized expansion.

p.14.2 14.2. The results. The running coupling constant Z
(1)
h verifies a flow equation of the form

Z
(1)
h−1

Zh−1
=
Z

(1)
h

Zh
[β3λh + β

(h)
3 (~vh, . . . , ~v0)]
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with β3 > 0 and |β(h)
3 (~vh, . . . , ~v0)| ≤ C|λh|2. By performing an analysis similar to the one in §10 for the

running coupling constants one can prove, c2 ≤ c1 are constants

γ−c2β3λ1h ≤ Z
(1)
h

Zh
≤ γ−c1β3λ1h . (14.16)5.26yy

A similar results holds of course also for
Z

(2)

h

Zh
, namely

Z
(2)
h−1

Zh−1
=
Z

(2)
h

Zh
[β4λh + β

(h)
4 (~vh, . . . , ~v0)]

and it is easy to check, by explicit calculation, that one has β4 = 0. We shall show in the next section that

we can decompose β
(h)
4 in a Luttinger model part plus a correction, and that the Luttinger model part is

vanishing. This will be proved by a Ward identity. In particular one can show that

γ−C|λ| ≤ Z
(2)
h

Zh
≤ γC|λ| . (14.17)5.29yy

This means that there is a remarkable cancellation such that the ratio between Z
(2)
h and Zh remains near

to 1: they are two diverging quantities given by an (apparently) different perturbative series, however such

two series are equal to any order up to irrelevant terms.

At the end one finds for H = H0 + λV + νN , if the conditions of Theorem 1 are verified i.e. λ small

enough, pF 6= 0, π and ν chosen in a proper way

Hx =

1
∑

h,k=−∞

∑

ω=±1

{

e2iωpF x·

· (Z
(1)
h∨k)

2

Zh−1Zk−1
g(h)
ω,ω(−ωx)g

(k)
−ω,ω(−ωx) − (Z

(2)
h∨k)

2

Zh−1Zk−1
g(h)
ω,ω(−ωx)g(k)

ω,ω(ωx)+

+
1
∑

h=−∞







(

Z
(1)
h

Zh

)2

G
(h)
1 (x) +

(

Z
(2)
h

Zh

)2

G
(h)
2 (x) +

Z
(1)
h Z

(2)
h

Z2
h

G
(h)
3 (x)







,

(14.18)5.32yy

where h ∨ k = max{h, k} and given any integer N ≥ 0

|G(h)
1 (x)| + |G(h)

2 (x)| + γ−ηh|G(h)
3 (x)| ≤ CN |λ| γ2h

1 + [γ(h)|x|]N , (14.19)5.35yy

for a suitable constant CN (reacll that the propagator is diagonal in the case we are considering here).

Moreover, we can write

G
(h)
1 (x) =

∑

σ=±1

e2iσpF xḠ
(h)
1,σ(x) + r

(h)
1 (x) ,

G
(h)
2 (x) = Ḡ

(h)
2 (x) + r

(h)
2 (x) ,

(14.20)5.35ayy

such that

|r(h)
1 (x)| + |r(h)

2 (x)| ≤ CN |λ1|
γ(2+η)h

1 + [γh|x|]N , (14.21)5.35byy

and, if we define Dm0,m1 = ∂m0
x0
∂m1
x (∂x is a discrete derivative; see Appendix A2), given any integers

m0,m1 ≥ 0, there exists a constant CN,m0,m1 , such that

∑

σ=±1

|Dm0,m1Ḡ
(h)
1,σ(x)| + |Dm0,m1Ḡ

(h)
2 (x)| ≤ CN,m0,m1 |λ1|γ2h γh(m0+m1)

1 + [γ(h)|x|]N . (14.22)5.35cyy
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An easy corollary of the above equations is that the density-density correlation function can be written as

Hx = cos(2pFx)Ω
3,a
L,β,x + Ω3,b

L,β,x + Ω3,c
L,β,x (14.23)sssa

with

|∂ixΩ3,a
L,β,x| ≤

C1

1 + |x|2+2η2+i
|∂ixΩ3,b

L,β,x| ≤
C1

1 + |x|2+i |Ω3,c
L,β,x| ≤

C1

1 + |x|2+γ̃ (14.24)1.10xxx

where ∂x = (∂x0 , ∂x), γ̃, C1 > 0 depend only on pF and η2 = −b3λ + O(λ2). We will see in §16 that many

properties of the density-density correlation function can be obtained from (14.18).

Finally it is interesting to compare the above expression with the density-density correlation function in

the Luttinger model (11.1), obtained by the exact solution. The Luttinger model is defined in terms of two

fields ψx,ω, ω = ±1, and one expects that the large distance asymptotic behaviour of Ω3(x) is qualitatively

similar to that of the truncated correlation of the operator ρx = ψ+
x ψ

−
x , where ψσx =

∑

ω exp(iσωpFx)ψx,ω .

There is apparently a problem, since the expectation of ρx is infinite; however, it is possible to see that there

exists the limit, as ε1, ε2 → 0+, of [< ρx,ε1ρy,ε2 > − < ρx,ε1 >< ρy,ε2 >], where ρx,ε = ψ+
(x,x0+ε)

ψ−
(x,x0)

, and

it is natural to take this quantity, let us call it G(x − y), as the truncated correlation of ρx. From (2.5) of

[BeGM] (by inserting in the lst sum a (−εiεj), missing for a typo), it follows that, for |x| → ∞

G(x) ≃ [1 + λa1(λ)]
cos(2pFx)

2π2[(v∗0x0)2 + x2]1+λa3(λ)
+

(v0x0)
2 − x2

2π2[(v0x0)2 + x2]2
, (14.25)1.9lllll

where v∗0 = v0[1+λa2(λ)] and ai(λ), i = 1, 2, 3, are bounded functions. Note that, in the second term in the

r.h.s. of (2.7), the bare Fermi velocity v0 appears, instead of the renormalized one, v∗0 , as one could maybe

expect.

15. Approximate Ward identitiessec.15

In order to prove (14.17) we can reason as in §10 and we can write the Beta function for Z
(2)
h /Zh as sum

of several terms, like in (10.7), (10.5); one of them coincides with the beta function of the infrared Luttinger

model and is the crucial one in order to control the flow, while the others have a little effect on the flow of

Z
(2)
h /Zh. Then one is lead to consider the infrared Luttinger model beta function for Z

(2)
h /Zh in order to

prove the analogous of (10.11); once that we have proved this the flow for the original model can be controlled

repeating the consideration in §10. In this section we give a sketch of the proof of (14.17), following [BeM].

Let us consider the infrared Luttinger model with integration given by (10.1), and let be Z
(2),l
h and Z lh the

analogous of Z
(2)
h and Zh for such model.

Let us introduce a new external field Jx, commuting with the fields φσ and ψ[h,0]σ, and let us consider the

functional

W(φ, J) = − log

∫

P
(h)
(l) (dψ[h,0])e−V (ψ[h,0]+φ)+

∫

dxJx
∑

ω
ψ

[h,0]+
x,ω ψ

[h,0]−
x,ω . (15.1)6.15yy

with P
(h)
(l) (dψ[h,0]) defined by (10.1) with C−1

0 replaced by C−1
h,0 =

∑0
k=h fk. We also define the functions

Σh,ω(x − y) =
∂2

∂φ+
x,ω∂φ

−
y,ω

W(φ, J)
∣

∣

∣

φ=J=0
, (15.2)6.16yy

Γh,ω(x;y, z) =
∂

∂Jx

∂2

∂φ+
y,ω∂φ

−
z,ω

W(φ, J)|φ=J=0 . (15.3)6.17yy

These functions have here the role of the self-energy and the vertex part in the usual treatment of the Ward

identities. However, they do not coincide with them, because the corresponding Feynman graphs expansions
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are not restricted to the one particle irreducible graphs. However, their Fourier transforms at zero external

momenta, which are the interesting quantities in the limit L, β → ∞, are the same; in fact, because of the

support properties of the fermion fields, the propagators vanish at zero momentum, hence the one particle

reducible graphs give no contribution at that quantities.

Let us define

Z̃
(2)
h = 1 + Γ̂h,ω(0,0) , (15.4)6.25yy

Z̃h = 1 + Σ̂h,ω(0) , (15.5)6.26yy

If we did not perform any anomalous integration, Z̃
(2)
h and Z̃h coincide with Z

(2),l
h and Z lh; the anomalous

integration makes them a sligthly different but one can prove that, see [BeM]

| Z̃
(2)
h

Z
(2),l
h

− 1| ≤ C|λ| | Z̃h
Z lh

− 1| ≤ C|λ|

Let us consider a Feynman graph expansion for Z̃
(2)
h and Z̃h similar to the one discussed in §7 with propagator

C−1
h,0(k

′)/− ik0 +ωv0k; it is easy to see that the graphs contributing to Zh have two external fermionic lines

and a derived internal propagator (in momentum space) while the graphs contributing to Z̃
(2)
h have two

external fermionic lines and an external bosonic lines, representing the external field φ. If we proceed

formally replacing the propagator C−1
h,0(k

′)/ − ik0 + ωv0k with gω,F (k) ≡ 1/ − ik0 + ωv0k i.e. neglecting

the infrared and ulraviolet cut-offs one finds the formal equality of the two expansions, as a consequence of

the equality ∂kgω,F (k) = −ω[gω,F (k)]2; see Fig. 17. Of course such argument is only formal, as the two

expansion are both meaningless neglecting the cut-offs, but it suggests that formally Z̃
(2)
h = Z̃h.

= ∂

Fig. 17Graphic representation of the formal Ward identity.

What it possible to prove in a rigorous way is

Z̃h = Z̃
(2)
h + δZ̃

(2)
h (15.6)ward

with

|δZ̃(2)
h | ≤ C|λ|Z(2)

h (15.7)ward1

This shows that the corrections due to the presence of cut-off functions to the ”formal” Ward identity

Z̃
(2)
h = Z̃h are bounded by a diverging quantity as h → −∞, so that the cancellations seen above seems to

capture only the ”leading-log” behaviour.

In order to prove (15.6) we will find convenient to write the integration in (15.1) in terms of the space-time

field variables

P
(h)
(l) (dψ[h,0]) = Dψ[h,0] exp

[

−
∑

ω

∫

dx ψ[h,0]+
x,ω D[h,0]

ω ψ[h,0]−
x,ω

]

, (15.8)6.3yy
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where

D[h,0]
ω ψ[h,0]σ

x,ω =
1

Lβ

∑

k′

eiσk
′xCh,0(k

′)(iσk0 − ωσv0k
′)ψ̂[h,0]σ

k′,ω . (15.9)6.4yy

D
[h,0]
ω has to be thought as a “regularization” of the linear differential operator

Dω =
∂

∂x0
+ iωv0

∂

∂x
. (15.10)6.5yy

Let us now introduce the external field variables φσx,ω, ω = ±1, anticommuting with themselves and ψ
[h,0]σ
x,ω ,

and let us define

U(φ) = − log

∫

P
(h)
(l) (dψ[h,0])e−V (ψ[h,0]+φ) , (15.11)6.6yy

If we perform the gauge transformation

ψ[h,0]σ
x,ω → eiσαxψ[h,0]σ

x,ω , (15.12)6.7yy

and we define (e−iαφ)σx,ω = e−iσαxφσx,ω, we get

U(φ) = − log

∫

P
(h)
(l) (dψ[h,0]) exp

{

− V (ψ[h,0] + e−iαφ)−

−
∑

ω

∫

dx ψ[h,0]+
x,ω

(

eiαxD[h,0]
ω e−iαx −D[h,0]

ω

)

ψ[h,0]−
x,ω

}

.
(15.13)6.8yy

Note that the integration P
(h)
(l) (dψ[h,0]) is not Gauge invariant due to the presence of the cut-off.

Since U(φ) is independent of α, the functional derivative of the r.h.s. of (15.13) w.r.t. αx is equal to 0 for

any x. Hence, we find the following identity:

∑

ω

[

−φ+
x,ω

∂U

∂φ+
x,ω

+
∂U

∂φ−x,ω
φ−x,ω +

1

Z(φ)

∫

P (L,h)(dψ[h,0])Tx,ω e
−V (L)(ψ[h,0]+φ)

]

= 0 , (15.14)6.9yy

where

Z(φ) =

∫

P
(h)
(l) (dψ[h,0])e−V (ψ[h,0]+φ) , (15.15)6.10yy

Tx,ω = ψ[h,0]+
x,ω [D[h,0]

ω ψ[h,0]−
x,ω ] + [D[h,0]

ω ψ[h,0]+
x,ω ]ψ[h,0]−

x,ω =

=
1

(Lβ)2

∑

p,k

e−ipxψ̂
[h,0],+
k,ω [Ch,0(p + k)Dω(p + k) − Ch,0(k)Dω(k)]ψ̂

[h,0],−
p+k,ω ,

(15.16)6.11yy

Dω(k) = −ik0 + ωv0k . (15.17)6.12yy

Note that (15.16) can be rewritten as

Tx,ω = Dω[ψ[h,0]+
x,ω ψ[h,0]−

x,ω ] + δTx,ω , (15.18)6.13yy

where

δTx,ω =
1

(Lβ)2

∑

p,k

e−ipxψ̂
[h,0],+
k,ω ·

·
{

[Ch,0(p + k) − 1]Dω(p + k) − [Ch,0(k) − 1]Dω(k)
}

ψ̂
[h,0],−
p+k,ω .

(15.19)6.14yy

It follows that, if Ch,0 is substituted with 1, that is if we consider the formal theory without any ultraviolet

and infrared cutoff, Tx,ω = Dω[ψ
[h,0]+
x,ω ψ

[h,0]−
x,ω ] and we would get the usual Ward identities. The presence of
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the cutoffs make the analysis a bit more involved and adds some corrections to the Ward identities, which

however, for λ small enough, can be controlled by the same type of multiscale analysis, that we used before.

If we derive the l.h.s. of (15.14) with respect to φ+
y,ω and to φ−z,ω and we put φ = 0, we get

0 = −δ(x− y)Σh,ω(x − z) + δ(x − z)Σh,ω(y − x)− (15.20)6.18yy

<

[

∂2V

∂ψ
[h,0]+
y,ω ∂ψ

[h,0]−
z,ω

− ∂V

∂ψ
[h,0]+
y,ω

∂V

∂ψ
[h,0]−
z,ω

]

;
∑

ω̃

[

Dω̃(ψ
[h,0]+
x,ω̃ ψ

[h,0]−
x,ω̃ ) + δTx,ω̃

]

>T ,

where < ·; · >T denotes the truncated expectation w.r.t. the measure Z(0)−1P (L,h)(dψ[h,0]) e−V
(L)(ψ[h,0]).

By using the definitions (15.2) and (15.3), equation (15.20) can be rewritten as

0 = −δ(x − y)Σh,ω(x − z) + δ(x − z)Σh,ω(y − x)−
−
∑

ω̃

Dx,ω̃Γh,ω,ω̃(x;y, z) − ∆h,ω(x;y, z) , (15.21)6.19yy

where

∆h,ω(x;y, z) =<

[

∂2V

∂ψ+
y,ω∂ψ

−
z,ω

− ∂V

∂ψ+
y,ω

∂V

∂ψ−
z,ω

]

;
∑

ω̃

δTx,ω̃ >
T . (15.22)6.20yy

In terms of the Fourier transforms (15.21) can be written as

0 = Σ̂h,ω(k − p) − Σ̂h,ω(k) +
∑

ω̃

(−ip0 + ω̃p)Γ̂h,ω,ω̃(p,k) + ∆̂h,ω(p,k) . (15.23)6.24yy

and by (15.4), (15.5) we get (15.6). In order to bound the correction term ∆̂h,ω(p,k) one can define for it

a renormalized multscale expansion similar to the one of the density-density correlation function, see [BeM]

and the bound (15.7) can be proved.

Note finally that we have treated in a different way the vanishing of the Luttinger model part of the beta

function for λh and for
Z2

h

Zh
: in the first case we have used the exact solution of the Luttinger model, and in

the second one a Ward identity. It is very likely that a proof of the vanishing of the Luttinger model part of

the beta function for λh by the use of Ward identities is also possible.

16. Spin chainssec.16

We apply the results of the preceding two sections for obtaining the spin-spin correlation function in the

direction of the magnetic field of the Heisenberg XY Z model (2.10), for small anisotropy u and J3, see

[M2], [BeM]. This means that we have to generaliza the analysis in §14, see (2.15), to the lattice hamiltonian

H0 + λV + νN0 + uB with

B = −1

2

∑

x

[ψ+
x ψ

+
x+1 + ψ−

x+1ψ
−
x ]

Of course similar results hold for density-density correlation functions of all the models discussed in §13.

The Heisenberg XY Z chain has been the subject of a very active research over many years with a variety

of methods. A first class of results is based on the exact solutions. If one of the three parameters is vanishing

(e.g. J3 = 0), the model is called XY chain. Its solution is based on the fact that the Hamiltonian in

the fermionic form is quadratic in the fermionic fields, so that it can be diagonalized (see [LSM], [LSM1])

by a Bogoliubov transformation. The equal time correlation functions Ωα(x,0) were explicitly calculated in

[Mc] (even at finite L and β), in the case h = 0, that is pF = π/2. Note that, while Ω3
x coincides with the
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correlation function of the density in the fermionic representation of the model, Ω1
x and Ω2

x are given by

quite complicated expressions. It turns out that Ω3
(x,0) is of the following form:

Ω3
(x,0) = − α|x|

π2x2
sin2

(πx

2

)

F (−|x| logα, |x|) , α = (1 − |u|)/(1 + |u|) , (16.1)1.7lllll

where F (γ, n) is a bounded function, such that, if γ ≤ 1, F (γ, n) = 1 +O(γ log γ) +O(1/n), while, if γ ≥ 1

and n ≥ 2γ, F (γ, n) = π/2 +O(1/γ).

For |h| > 0, it is not possible to get a so explicit expression for Ω3
(x,0). However, it is not difficult to prove

that, if |u| < sin pF , |Ω3
(x,0)| ≤ α|x| and, if x 6= 0 and |ux| ≤ 1

Ω3
(x,0) = − 1

π2x2
sin2(pFx)[1 +O(|ux| log |ux|) +O(1/|x|)] . (16.2)1.7alllll

Note that, if u = 0, a very easy calculation shows that Ω3
(x,0) = −(π2x2)−2 sin2(pFx).

We want to stress that the only case in which the correlation functions and their asymptotic behaviour

can be computed explicitly in a rigorous way is just the J3 = 0 case.

If two parameters are equal (e.g. J1 = J2) and there is no external magnetic field (h = 0), but J3 6= 0, the

model is called XXZ model. It was solved in [YY] via the Bethe-ansatz, in the sense that the Hamiltonian

was diagonalized and the ground state energy was computed. However, it was not possible till now to obtain

the correlation functions from the exact solution. Such solution is contained in the general solution of the

XYZ model by Baxter [B], but again only in the case of zero magnetic field. The ground state energy was

computed, showing for istance that the ground state may have a gap in the spectrum which, if J1 − J2 and

J3 are not too large, is given approximately by (see [LP])

∆ = 8π
sinµ

µ
|J1|

( |J2
1 − J2

2 |
16(J2

1 − J2
3 )

)
π
2µ

(16.3)1.8lllll

with cosµ = −J3/J1.

The solution is based on the fact that the XY Z chain with periodic boundary conditions is equivalent to

the eight vertex model, in the sense that H is proportional to the logarithmic derivative with respect to a

parameter of the eight vertex tranfer matrix, if a suitable identification of the parameters is done, see [S],

[B]. The eight vertex model is obtained by putting arrows in a suitable way on a bidimensional lattice with

M rows, L columns and periodic boundary conditions. There are eight allowed vertices, and with each of

them an energy is associated in a suitable way (there are four different values of the energy). With the above

choice of the parameters and T − Tc < 0 and small, u = O(|T − Tc|), so that the critical temperature of the

eight vertex model corresponds to no anysotropy in the XY Z chain. Moreover, see [JKM], the correlation

function Cx between two vertical arrows in a row, separated by x vertices, in the limit M → ∞, is given by

Cx =< S2
0S

2
x >. Again an explicit expression for the correlation functions cannot be derived for the XY Z

or the eight vertex model. In [JKM] the correlation length of Cx was computed heuristically under some

physical assumptions (an exact computation is difficult because it does not depend only on the largest and

the next to the largest eigenvalues). The result is ξ−1 = (T − Tc)
π
2µ , if ξ is the correlation length. One sees

that the critical index of the correlation length is non universal.

Another interesting observation is that the XYZ model is equivalent to two bidimensional interpenetrating

Ising lattices with nearest-neighbor coupling, interacting via a four spins coupling (which is proportional to

J3). The four spin correlation function is identical to Cx. In the decoupling limit J3 = 0 the two Ising

lattices are independent and one can see that the Ising model solution can be reduced to the diagonalization,

via a Bogoliubov transformation, of a quadratic Fermi Hamiltonian, see [LSM1].

One can presume that the large distance asymptotic behaviour of Ω3
x is similar to the density-density

Luttinger model correlation function (14.25), if J1 = J2, to the large distance asymptotic behaviour of Ω3
x,
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if some ”reasonable” relationship between the parameters of the two models is assumed (one can make for

istance the substitutions λ → −J3, pF → arccos(J3 − h), p−1
0 → a = 1, if a the chain step and p−1

0 is

the potential range ). Of course such identification is completely arbitrary, but one can hope that for large

distances the function Ω3
x has something to do with the density-density Luttinger model correlation function.

If J1 6= J2, there is no solvable model suitable for a similar analysis. As we said before, Ω3
x can be obtained

from the exact solution only in the case J3 = 0, when the fermionic theory is a non interacting one. In

particular, if x = (x, 0) and |ux| << 1, (16.2) and a more detailed analysis of the “small” terms in the r.h.s.

(in order to prove that their derivatives of order n dacay as |x|−n), show that Ω3
L,β,x is a sum of oscillating

functions with frequency (npF )/πmod 1, n = 0,±1. The frequencies are then measured by pF , so they

depend only on the external magnetic field h.

If J3 6= 0, a similar property is satisfied for the leading terms in the asymptotic behaviour but the value of

pF depends in general also on u and J3. For example, if u = 0, the Hamiltonian is equal, up to a constant,

to the Hamiltonian of a free fermion gas with Fermi momentum pF = arccos(J3 − h) plus an interaction

term proportional to J3. As it is well known, the interaction modifies the Fermi momentum of the system by

terms of order J3 and it is convenient, in order to study the interacting model, to fix the Fermi momentum

to an interaction independent value, by adding a counterterm to the hamiltonian. We proceed here in a

similar way, that is we fix pF and h0 so that

h = h0 − ν , cos pF = J3 − h0 (16.4)1.10aaa

and we look for a value of ν, depending on u, J3, h0, such that, as in the J3 = 0 case, the leading terms in

the asymptotic behaviour of Ω3
L,β(x) can be represented as a sum of oscillating functions with frequencies

(npF )/πmod 1, n = 0,±1.

As we shall see, we can realize this program only if J3 is small enough and it turns out that ν is of order

J3. It follows that we can only consider magnetic fields such that |h| < 1. Moreover, it is clear that the

equation h = h0 − ν(u, J3, h0) can be inverted, once the function ν(u, J3, h0) has been determined, so that

pF is indeed a function of the parameters appearing in the original model.

If J1 = J2, it is conjectured, on the base of heuristic calculations, that to fix pF is equivalent to the impose

the condition that, in the limit L, β → ∞, the density is fixed (“Luttinger Theorem”) to the free model value

ρ = pF /π. Remembering that ρ − 1
2 is the magnetization in the 3-direction for the original spin variables,

this would mean that to fix pF is equivalent to fix the magnetization in the 3 direction, by suitably choosing

the magnetic field.

If J1 6= J2, there is in any case no simple relation between pF and the mean magnetization, as one can see

directly in the case J3 = 0, where one can do explicit calculations. The only exception is the case pF = π/2,

where one can see that, in the limit L→ ∞, ν = J3 (so that h = 0 by (16.4)) and that < S3
x >= 0.

By using the results in §14, §15 and adapting the scheme followed in §8 one can prove, see [M2],[BeM], the

following result.

Theorem 9. Suppose that v0 = sin pF ≥ v̄0 > 0, for some value of v̄0 fixed once for all, and let us define

a0 = min{pF /2, (π − pF )/2}; then the following is true.

a) There exists a constant ε, such that, if (u, J3) ∈ A, with

A = {(u, J3) : |u| ≤ a0

8(1 +
√

2)
, |J3| ≤ ε} , (16.5)1.10blllll

it is possible to choose ν, so that |ν| ≤ c|J3|, for some constant c independent of L, β, u, J3, pF , and the spin

correlation function Ω3
L,β(x) is a bounded (uniformly in L, β, pF and (u, J3) ∈ A) function of x = (x, x0),

x = 1, . . . , L, x0 ∈ [0, β], periodic in x and x0 of period L and β respectively, continuous as a function of x0.

b) We can write

Ω3(x) = cos(2pFx)Ω
3,a(x) + Ω3,b(x) + Ω3,c(x) , (16.6)1.10dlllll
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with Ω3,i(x), i = a, b, c, continuous bounded functions, which are infinitely times differentiable as functions

of x0, if i = a, b. Moreover, there exist two constants η1 and η2 of the form

η1 = −a1J3 +O(J2
3 ), η2 = a2J3 +O(J2

3 ) , (16.7)1.13lllll

a1 and a2 being positive constants, uniformly bounded in L, β, pF and (u, J3) ∈ A, such that the following

is true.

Then, given any positive integers n and N , there exist positive constants γ̃ < 1 and Cn,N , independent of

L, β, pF and (u, J3) ∈ A, so that, for any integers n0, n1 ≥ 0 and putting n = n0 + n1,

|∂n0
x0
∂̄n1
x Ω3,a(x)| ≤ 1

|x|2+2η2+n

Cn,N
1 + [∆|x|]N , (16.8)1.10lllll

|∂n0
x0
∂̄n1
x Ω3,b(x)| ≤ 1

|x|2+n
Cn,N

1 + [∆|x|]N , (16.9)1.101

|Ω3,c(x)| ≤ 1

|x|2
[

1

|x|γ̃ +
(∆|x|)1/2
|x|min(0,2η2)

]

C0,N

1 + [∆|x|]N , (16.10)1.102lllll

where ∂̄x denotes the discrete derivative and

∆ = max{|u|1+η1 ,
√

(v0β)−2 + L−2} . (16.11)1.10clllll

c) Ω3,a(x) and Ω3,b(x) are even functions of x and there exists a constant δ∗, of order J3, such that, if

1 ≤ |x| ≤ ∆−1 and v∗0 = v0(1 + δ∗)

Ω3,a(x) =
1 +A1(x)

2π2[x2 + (v∗0x0)2]1+η2
,

Ω3,b(x) =
1

2π2[x2 + (v0x0)2]2

{ x2
0 − (x/v0)

2

[x2 + (v0x0)2]2
+A2(x)

}

; ,

(16.12)1.10glllll

|Ai(x)| ≤ c1{|J3| + (∆|x|)1/2} , (16.13)1.10hlllll

for some constant c1.

The function Ω3,a(x) is the restriction to Z × R of a function on R
2
, satisfying the symmetry relation

Ω3,a(x, x0) = Ω3,a
(

x0v
∗
0 ,
x

v∗0

)

. (16.14)1.10klllll

d) Let Ω̂3(k), k = (k, k0) ∈ [−π, π] × R
1
, the Fourier transform of Ω3(x). For any fixed k with k 6=

(0, 0), (±2pF , 0), Ω̂3(k) is uniformly bounded as u→ 0; moreover, for some constant c2, c
′
2,

|Ω̂3(0, 0)| ≤ c′2 + c2|J3| log
1

∆
,

|Ω̂3(±2pF , 0)| ≤ c2
1 − ∆η2

η2
.

(16.15)1.11alllll

Finally, if u = 0, Ω̂3(k) is at most logarithmically divergent at k = (0, 0) for any J3, and, at k = (±2pF , 0),

it is singular only if J3 < 0; in this case it diverges as |k − (±2pF , 0)|η2/|η2|.
e) Let G(x) = Ω3(x, 0) and Ĝ(k) its Fourier transform. For any fixed k 6= 0,±2pF , Ĝ(k) is uniformly

bounded as u→ 0, together with its first derivative; moreover

|∂kĜ(0)| ≤ c2 ,

|∂kĜ(±2pF )| ≤ c2(1 + ∆η2) .
(16.16)1.11blllll
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Finally, if u = 0, ∂kĜ(k) has a first order discontinuity at k = 0, with a jump equal to 1 + O(J3), and, at

k = ±2pF , it is singular only if J3 < 0; in this case it diverges as |k − (±2pF )|η2 .
We comment the above very elaborated theorem.

a)The above theorem holds for any magnetic field h such that sin pF > 0, if pF = h− J3. Remember that

the exact solution [B] is valid only for h = 0. Moreover u has not to be small, see (16.5), and the only small

parameter is J3; however the interesting (and more difficult) case is when u is small.

b)A naive estimate of ε is ε = c(sin pF )α, with c, α positive numbers; in other words we must take smaller

and smaller J3 for pF closer and closer to 0 or π, i.e. for magnetic fields of size close to 1. It is unclear at

the moment if this is only a technical problem or a property of the model.

c)If J1 6= J2 and J3 6= 0 one can distinguish, like in the J3 = 0 case (16.1), two regions in the behaviour

of the correlation function Ω3(x), discriminated by an intrinsic length which is given approximately by the

inverse of spectral gap. In the first region the bounds for the correlation function are the same as in the

gapless J1 = J2 case, while in the second region there is a faster than any power decay with rate given

essentially by the gap size, which is O(|u|1+η1 ), see (16.11), in agreement with (16.3), found by the exact

solution. The interaction J3 has the effect that the gap becomes anomalous and it aquires a critical index

η1; the ratio between the renormalized and bare gap is very small or very large, if u is small, depending

on the sign of J3. In the first region one can obtain the large distance asymptotyc behaviour of Ω3(x), see

(16.12),(16.13); in the second region only an upper bound is obtained, but even in the J3 = 0 case we are

not able to obtain more from the exact solution if h 6= 0. If u = 0 only the first region is present as the

spectral gap is vanishing.

d)It is useful to compare the expression for the large distance behaviour of Ω3(x) in the case u = 0 with

its analogous for the Luttinger model (2.7). A first difference is that, while in the Luttinger model the Fermi

momentum is independent of the interaction, in the XY Z model in general it is changed non trivially by

the interaction, unless the magnetic external field is zero, i.e. pF = π
2 . The reason is that the Luttinger

model has special parity properties which are not satisfied by the XY Z chain (except if the magnetic field

is vanishing).

e)Another peculiar property of the Luttinger model correlation function is that the dependence on pF
of the correlation function is only by the factor cos(2pFx); this is true not only asymptotically (i.e. it is

true not only in (14.25) but in the complete expression in [BGM]) and is due to a special symmetry of

the Luttinger model (the Fermi momentum disappears from the Hamiltonian if a suitable redefinition of

the fermionic fields is done, see [BGM]). This is of course not true in the XY Z model and in fact the

dependence from pF of Ω3(x) is very complicated. However we will see that Ω3(x) can be written as sum of

three terms, see (16.6), and from (16.17),(16.9) we have that the derivatives of the first two terms verify the

same bounds as their analogue of the Luttinger model (which were pF independent). This is not true for

the third term Ω3,c(x), in which there are possibly oscillating terms making false a bound on the derivatives

like (16.17),(16.9). However we can prove that such term is smaller for large distances, see (16.10) (note

that γ̃ is J3 and u independent, contrary to η2). Of course this is true only for small J3 and it could be

that such third term plays an important role for larger J3. If we compare (16.12) with u = 0 with (14.25)

we see that the expressions differ essentially for the factors Ai(x), containing terms of higher order in our

expansion. We can prove that Ai(x) verify (16.13) and that the derivatives verify a bound like (16.8),(16.9)

which means that the higher order terms verify the same bound as the first order terms, or the same bound

as their analogue of the Luttinger model. However the first order terms, or (14.25), have subtle symmetry

properties which are very important in analizing the Fourier transform. We are able to prove that A1(x)

verifies (16.14), which says essentially that v∗0 is the renormalized Fermi velocity; in fact the decomposition

of Ω3a in the form (16.12) decomposition of Ω3a in the form (16.12) with A1(x) verifying (16.13) is not

unique, as one can replace v∗0 with any velocity v̄∗0 of the form v̄∗0 = v∗0(1 + O(λ)) and an expression similar

to (16.12) with A1(x) verifying (16.13) is still found; however with v̄∗0 the property (16.14) it is not true,

unless v̄∗0 = v∗0 , and this allows us to say that v∗0 is the renormalized Fermi velocity. We are not able however

to prove a similar properties for A2(x), see below.
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f)Another important property of the Luttinger model correlation function is the fact that the not oscillating

term does not acquire a critical index, contrary to what happens for the term oscillating with frequency pF

π .

In the Luttinger model the not oscillating term of the correlation function is exactly (i.e. not asymptotically)

equal to the non interacting one. Again in the XY Z model this is not true, but one is naturally lead to the

conjecture that still the critical index of Ω3,b
L,β(x) is vanishing, see for istance [Sp]. In our expansion, we have

a series also for the critical index of Ω3,b
L,β(x), and while an explicit computation of the first orders gives a

vanishing result, it is not obvious that this is true at any order. However due to some hidden symmetries

of the model (i.e. symmetries enjoyed approximately by the relevant part of the effective action) we can

prove that all the coefficients are vanishing proving a Ward identity. We want to stress that this is, at our

knowledge, the first example in which an approximate Ward identities is proved in a rigorous way. The Ward

identity we find is not the same obtained neglecting the regularizations and proceeding formally.

g) The above properties can be used to study the equal time density correlation Fourier transform; if

J3 = 0 its first derivative at k = ±2pF is logarithmically divergent at u = 0 and it is finite at k = 0; if

J3 6= 0 the behaviour of the first derivative at k = ±2pF is completely different, as it is finite if J3 > 0

while it has a power like singularity, if u = 0, if J3 < 0 see item e in the Theorem. This is due to the

fact that the critical index η2 appearing in the oscillating term in Ω3
L,β(x) has the same sign of J3 (note

that η2 has nothing to do with the critical index η appearing in the two point fermionic Schwinger function,

which is O((J3)
2)). On the other hand the equal time density correlation Fourier transform near k = 0 of

the Luttinger, XY Z or of the free fermionic gas (J1 = J2, J3 = 0) behaves in the same way (see also [Sp]

for a heuristic explanation). This is due to a parity cancellation in the expansion eliminating the apparent

dimensional logarithmic divergence.

h)From (14.25) in the u = 0 case we can see that the (bidimensional) Fourier transform can can be singular

only at k = (0, 0) and k = (±2pF , 0). If J3 = 0 the singularity is logharithmic at k = (±2pF , 0), but there

is no singularity if J3 > 0 and there is a power like singularity if J3 < 0, see item d in the Theorem. Then

the singularity at k = (±2pF , 0) is of the same type as in the Luttinger model, see (14.25). However, we can

not conclude that the same is true for the Fourier transform at k = 0, which is bounded in the Luttinger

model, while we can not exclude a logarithmic divergence. In order to get such a stronger result, it would be

sufficient to prove that the function Ω3,b(x) is odd in the exchange of (x, x0) with (x0v, x/v), for some v; this

property is true for the leading term corresponding to Ω3,b(x) in (14.25), with v = v0, but seems impossible

to prove on the base of our expansion. We can only see this symmetry for the leading term, with v = v∗0
i) Note that our theorem cannot be proved by building a multiscale renormalized expansion, neither by

taking as the “free model” the XY one and J3 as the perturbative parameter, nor by taking as the free

model the XXY one and u as the perturbative parameter. In fact, in order to solve the model, one cannot

perform a single Bogoliubov transformation as in the J3 = 0 case; the gap has a non trivial flow and one has

to perform a different Bogoliubov transformation for each renormalization group integration.

l) If u = 0 the critical indices and ν can be computed with any prefixed precision; we write explicitly in

the theorem only the first order for simplicity. However, if u 6= 0, they are not fixed uniquely; for what

concerns ν, this means that, in the gapped case, the system is insensitive to variations of the magnetic field

much smaller than the gap size.

m) Finally there is no reason for considering a nearest-neighbor Hamiltonian like (2.10); it will be clear

by the following analysis that our resuls still holds for non nearest-neighbor spin hamiltonian, as such

hamiltonians differ from (2.10) for irrelevant (in the RG sense) terms; see also [Spe] where the case J3 = 0

is studied.

17. Spinning fermionssec.17

p.17.1 17.1. The repulsive case. If the fermions are spinning, the general scheme is the same as the one discussed for

spinless fermions, but new complications arise from the fact that the number of running coupling constants
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is much higher. Let us consider a system of spinning fermions on a lattice in the not filled band case with

Hamiltonian

H = H0 + λV + νN0 (17.1)cll1

with H0, N0 given by (2.1), and V given by (2.5). This case was studied in [BM1] to which we refer for

details.

One can define an anomalous integration similar to the one in §8 for spinless fermions; the localization

operator is defined by (8.19),(8.20),(8.21). The spin has the effect that there are more running coupling

constants; in fact the relevant part of the effective potential, which in the spinless case is given by (8.25), is

,if pF 6= 0, π for any integer n:

LV (h) = γhνhF
(h)
ν + δhF

(h)
z + g1

hF
(h)
1 + g2

hF
(h)
2 + g4

hF
(h)
4 + δpF ,π/2g

3
hF

(h)
3 (17.2)cll

where

F
(h)
1 =

1

(Lβ)4

∑

k′
1,...,k

′
4∈DL,β

∑

σ,σ′

∑

ω

ψ
(≤h)+
k′

1+ωpF ,ω,σ
ψ

(≤h)+
k′

2−ωpF ,−ω,σ′ψ
(≤h)−
k′

3+ωpF ,ω,σ′ψ
(≤h)−
k′

4−ωpF ,−ω,σδ(
4
∑

i=1

σik
′
i)

F
(h)
2 =

1

(Lβ)4

∑

k′
1,...,k

′
4∈DL,β

∑

σ,σ′

∑

ω

ψ
(≤h)+
k′

1+ωpF ,ω,σ
ψ

(≤h)+
k′

2−ωpF ,−ω,σ′ψ
(≤h)−
k′

3−ωpF ,−ω,σ′ψ
(≤h)−
k′

4+ωpF ,ω,σ
δ(

4
∑

i=1

σik
′
i) (17.3)F2

F
(h)
4 =

1

(Lβ)4

∑

k′
1,...,k

′
4∈DL,β

∑

σ,σ′

∑

ω

ψ
(≤h)+
k′

1+ωpF ,ω,σ
ψ

(≤h)+
k′

2+ωpF ,ω,σ′ψ
(≤h)−
k′

3+ωpF ,ω,σ′ψ
(≤h)−
k′

4+ωpF ,ω,σ
δ(

4
∑

i=1

σik
′
i) (17.4)F4

F
(h)
3 =

1

(Lβ)4

∑

k′
1,...,k

′
4∈DL,β

∑

σ,σ′

∑

ω

ψ
(≤h)+
k′

1+ωpF ,ω,σ
ψ

(≤h)+
k′

2+ωpF ,ω,σ′ψ
(≤h)−
k′

3−ωpF ,−ω,σ′ψ
(≤h)−
k′

4−ωpF ,−ω,σδ(
4
∑

i=1

σik
′
i)

and

g2
0 = λv̂(0) +O(λ2) g4

0 = λv̂(0) +O(λ2)

g1
0 = λv̂(2pF ) +O(λ2) g3

0 = λv̂(2pF ) +O(λ2)

Note that g
(h)
2 , g

(h)
4 correspond with an interaction with a small exchange of momentum and are called

forward scattering processes; g1
h correspond to an interaction with a big exchange of momenta and it is called

backward scattering. Finally g3
h is possible only at pF = π/2 and it is an Umklapp scattering.

Of course one can obtain the analiticity of the beta function if the running coupling constant are small

enough, proving a result similar to Theorem 1 in §8. However the flow of the running coupling constants is

now much more complex. We consider the case pF 6= 0, π/2, π; the Renormalization Group flow equations

for the running coupling constants g1
h, g

2
h, g

4
h are given by, if µh = g2

h, g
4
h, δh

g1
h−1 = g1

h + g1
h[−βg1

h + β1
h(~vh, . . . , v0)]

g2
h−1 = g2

h + g1
h[−

β

2
g1
h + β̂h2 (~vh, . . . , v0)] + β

(h)
2 (µh, νh; . . . ;µ0, ν0)

g4
h−1 = g4

h + g1
hβ̂

h
4 (~vh, . . . , v0) + β

(h)
4 (µh, νh; . . . ;µ0, ν0)

with β > 0 and we have written explicitely the second order terms. Note that, by trivial symmetry consider-

ations, any contributions to g1
h−1 has at least a g1 end-point. Truncating the above equations at the second

order we see that g1
h → 0 if g1

0 > 0 while grows exiting out of the radius of convergence of the beta function

if g1
0 < 0. We consider for the moment the repulsive case λv̂(2pF ) > 0. One can proceed as in §10 dividing
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the Beta function in a part depending only on the Luttinger model part of the propagator g
(h)
ω (see Lemma

2 in §8) plus a “correction” which is smaller by a factor γηh. Moreover one can fix the counterterm ν so that

νh = O(γηh) so dividing, like in §10, the Beta function in a part indipendent from νh plus a correction smaller

by a factor γηh. Let be βih(µh, νh; . . . , µ0, ν0) the function obtained by βih(~vh, . . . , v0) putting g1
h = νh = 0;

one can show, see [BM1], that if

β2
h(µh, 0; . . . ;µh, 0) = 0 (17.5)van12

β4
h(µh, 0; . . . ;µh, 0) = 0 (17.6)van13

β1
h(µh, 0; . . . ;µh, 0) = 0 (17.7)van11

β̂2
h(µh, 0; . . . ;µh, 0) = 0 (17.8)van14

β̂4
h(µh, 0; . . . ;µh, 0) = 0 (17.9)van14a

then it is possible to choose a counterterm ν such that, if λv(2pF ) > 0 then

νh →h→−∞ 0 g1
h →h→−∞ 0

Zh−1

Zh
→h→−∞ γη

and g2
h, g

4
h, δh →h→−∞ g2

∞, g
4
∞, δ∞ with η = aλ2 +O(λ3) with a > 0, and g2

∞ = g2
0 +O(λ2), g4

∞ = g2
0 +O(λ2),

δ∞ = O(λ2).

In order to prove (17.5),(17.6),(17.7),(17.8) we follow essentially the same strategy for the spinless case, see

§11, but in the spinning case the role of the Luttinger model is played by the Mattis model with Hamiltonian

H =
∑

ω=±1

∑

σ=±1/2

∫ L

0

dx(1 + δ)ψ+
ω,σ,x(iω∂x − pF )ψ+

ω,σ,x+

∑

ω,σ

g2,p

∫ L

0

dxdyv(x−y)ψ+
ω,x,σψ

−
ω,x,σψ

+
−ω,y,σψ

−
−ω,y,σ+

∑

ω,σ

g2,o

∫ L

0

dxdyv(x−y)[ψ+
ω,x,σψ

−
ω,x,σψ

+
−ω,y,−σψ

−
−ω,y,−σ

+
∑

ω,σ

g4,p

∫ L

0

dxdyv(x − y)ψ+
ω,x,σψ

−
ω,x,σψ

+
ω,y,σψ

−
ω,y,σ +

∑

ω,σ

g4,o

∫ L

0

dxdyv(x − y)ψ+
ω,x,σψ

−
ω,x,σψ

+
ω,y,−σψ

−
ω,y,−σ

Also such model is solvable, see [M], and the Schwinger functions can be explicitely computed [M0].

Reasoning as in §11 one can study the above model by Renormalization group. Let us start from the spin

symmetric Mattis model g2,p = g2,o and g4,p = g4,o in which one obtains an expression for the relevant part

of the effective potential similar to (17.2) but with g1
h = g3

h = νh = δh ≡ 0. As the finite volume Schwinger

functions of the Mattis model are known we can reason exactly as in §11 and we obtain (17.5),(17.6).

In order to prove (17.7),(17.8) we study by renormalizaton group the non-spin symmetric Mattis model in

which g2,p 6= g2,o and g4,p 6= g4,o. One obtains an expression for the relevant part of the effective potential

similar to (17.2) but with g1
h = g3

h = νh = 0 but the relevant part of the effective potential is given by

LV (h) = g2,p
h F

(h)
2,p + g2,o

h F
(h)
2,o + g4,o

h F
(h)
4,o

where F
(h)
2,p and F

(h)
2,o are given by (17.3) with σ = σ′ and σ = −σ′ respectively, and in the same way are

defined F
(h)
p,4 = 0 and F

(h)
o,4 , see (17.4).

The beta function with all the running coupling constants computed with the same scale driving the flow

of of gα,hi with i = 1, 4 and α = o, p of the non spin symmetric Mattis model can be written as

∑

n1,..,n4

[g4,o
h ]n1 [g2,p

h ]n2 [g2,o
h ]n3 [δh]

n4β
(h)
i,α;n1,...,n4

(17.10)vvvh2
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Again reasoning as in §(11) by the comparison of the non spin symmetric Schwinger functions of the Mattis

model it follows the vanishing of (17.10) and from the independence of g4,o, g2,p
h , g2,o, δ it follows that

β
(h)
i,α;n1,...,n4

= 0 (17.11)jjj

Let us return to the spin symmetric model with effective potential given by (17.2) and g2,p
h = g2,o

h , g1,p
h = g1,o

h .

For the conservation of the quasi-particle and spin indices, it is not possible to have a contribution to g2
h−1

involving only one g1,o
h and any number of µh; then the only possibility is to have a contribution to g2

h−1

involving only one g1,p
h and any number of µh. But such contribution is equal to

[go,4h ]n1 [gp,2h ]n2−1[go,4h ]n3 [gp,1h ][δh]
n4β

(h)
2,α;n1,...,n4

(17.12)vvvh1

so it is vanishing. In fact the function β
(h)
2,α;n1,...,n4

in (17.12) and (17.10) are the same as F
(h)
p,2 = F

(h)
p,1 . This

proves (17.8). The same argument can be repeated for i = 4 so proving (17.9).

Finally let us consider the contribution to gh−1
1 involving only one g1

h and any number of µh. We consider

a contribution to gp,1h−1; by symmetry considerations it follows that there is no contribution to gp,1h−1 involving

one go,1h and any number of µh, and the only possibility is a contribution involving one gp,1h and any number

of µh. But replacing gp,1h with gp,2h and remembering that F
(h)
p,2 = F

(h)
p,1 this contribution coincides with a

contribution to gp,2h−1 so it is vanishing by (17.11). On the other hand we are considering the spin symmetric

case so gp,1h−1 = go,1h−1 and (17.7) is proved.

At the end the following theorem can be proved (the proof in [BM1] refers to the continuum case):

Theorem 10. Given the Hamiltonian (17.1) for spinning fermions with pF 6= 0, π/2, π, if λv̂(2pF ) > 0

there exists an ε > 0 such that, for |λ| ≤ ε, there are functions ν(λ), η(λ) such that the two point Schwinger

function is given by

S(x;y) =
g(x;y)

|x − y|η +
A(x;y)

|x − y|1+η

with A(x;y) bounded by a constant, ν(λ) = O(λ) and η = aλ2 +O(λ3), with a > 0.

In the half filled band case pF = π
2 there is a running coupling constant more g3

h whose second order flow

is not trivial and given by

g3
h−1 = g3

h + βg3
h(g

1
h − 2g2

h)

so that the flow of the running couplng constants becomes much more complex to study.

It is quite clear that one can add to the Hamiltonian (17.1) a term uP representing the interaction with

a commensurate or an incommensurate potential; in the λv̂(2pF ) > 0 and under proper conditions on pF
forbidding the comparison of extra running coupling constants (for istance if p/π a rational number we

require pF 6= np/2 for any integer n) one can prove results similar to their analogue in the spinless case, see

§13.

The attractive case. The analysis above shows that the presence of the spin , if pF 6= 0, π/2, π and the

interation is repulsive, is in some sense irrelevant, as the two point Schwinger funtion asymptotic behaviour is

similar to the one in the spinless case. The situation is completely different in the attractive case λv̂(2pF ) < 0,

in which the running coupling costants do not remain in the convergence radius of the series for the Beta

function unless, in the infinite volume limit, the temperature is larger than e
−κ

|λv̂(2pF )| for some suitable

constant κ. It is easy in fact to check that for h ≥ hβ̄ ≃ O(log(β̄−1)), with β̄ ≤ e
κ

|λv̂(2pF )| , the running

coupling constants remain O(λ). It is generally believed that the growing of the coupling g
(h)
1 in the attractive

case , or of g
(h)
3 if pF = π/2 and always in the attractive case, are related to the opening of a gap and to
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exponential decay of correlations. Our result gives an upper bound on a possible gap in the ground state

enrgy, saying that |∆| ≤ e
−κ

|λv̂(2pF )| .

A proof that really there is a gap in the spectrum is up to now lacking except in the remarkable case of the

Hubbard model; it is a particular case of the model we are considering in which v(x− y) = δx,y and pF = π
2 .

In this case it was proved in [LW] that the ground state has a gap for any λ < 0; moreover the ground state

is such that each site is occupied by an electron and the spins are alternating (so a spin density wave with

period 1
ρ ).

In the general situation only mean-field approximations are at our disposal; a very simple heuristic mean

field argument from which one can deduce from the growing of g
(h)
1 the appearence of a gap is the following

one. As g1
h is the instable process, this suggests that the relevant interactions involve the exchange of a

momentum of order 2pF so that the important term in the interaction are of the form, for |k|, |k′| ≤ pF /4

(say)
∑

ω,σ

[
1

L

∑

k

ψ+
k+ωpF ,σ

ψ−
k−ωpF ,σ

][
1

L

∑

k′

ψ+
k′−ωpF ,−σψ

−
k′+ωpF ,−σ] (17.13)sds

Making a BCS-type mean field theory we write

|S|eiα =
1

L

∑

k

< ψ+
k+pF ,σ

ψ−
k−pF ,σ

>

and neglecting quantum fluctuations one obtains an effective interaction
∑

x,σ |S| cos(2pFx + α)ψ+
x,σψ

−
x,σ,

from which the existence of a gap at the Fermi surface can be deduced. In this argument there is however

a flaw; it does not take into account that, if pF /π is irrational, then it can be that 2npF ≃ 2pF mod. 2π

for very large n, so that it is not a priori true that one the interactions exchanging momenta O(2npF ) are

negligible.

A more correct way to perform a mean field analysis is the following one. One can replace in the interaction

(assumed local for simplicity) ψ+
x,σψ

−
x,σψ

+
x,−σψ

−
x,−σ two fermionic fields with a classical field

ψ+
x,σψ

−
x,σ → ϕ(x) +

[

ψ+
x,σψ

−
x,σ − ϕ(x)

]

, (17.14)17.14

neglecting (this is the approximation) terms quadratic in the ”fluctuations” [ψ+
x,σψ

−
x,σ − ϕ(x)] so obtaining

a model

H0 + λ
∑

x∈Λ

ϕ(x)ψ+
x,−σψ

−
x,−σ −

∑

x∈Λ

ϕ2
x. (17.15)17.15

This model is called variational Holstein model and the non trivial problem is to minimize the ground-state

energy with respect to ϕ. One arrives to the same model also considering the interaction of fermions with a

phonon field, neglecting quantum fluctuations, and il will be discussed it sec.(19). We anticipate that even in

this approximation the existence of periodic ground states (which can be commensurate or incommensurate

depending if pF /π is a rational or an irrational number) is not trivial (for istance is not proved for small λ

and pF /π irrational, see below). In other words even in a mean field model the existence of a gap is not

proven in general in the attractive case.

18. Fermions interacting with Phonon fieldssec.18

p.18.1 18.1. Interaction with a quantized phonon field. The Hamiltonian of a system of one dimensional fermions

on a lattice interacting locally with the optical modes of a quantized phonon field is given by (2.8) and (2.9).

We refer to [BGL] for more details. The two-point Schwinger function can be written as

S(x;y) =

∫

P (dΦ)
∫

P (dψ) e−gṼ ψ+
x,σψ

−
y,σ

∫

P (dΦ)
∫

P (dψ)e−gṼ
, (18.1)18.1
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where P (dΦ) is a bosonic integration with propagator

v(x;y) =
1

Lβ

∑

eik0β=1

∑

eikL=1,|k|≤π

e−ik(x−y)

σ2
0k

2
0 + 1 + b22(1 − cos k)

, (18.2)18.2

with

|v(x, 0)| ≤ C(b)

σ0
e−κσ

−1
0 |x0|e−κ2(b)|x|, (18.3)18.3

and

κ2(b) =

{

O(b−1), for b→ ∞ ,
O(log b−1)), for b→ 0 ,

C(b) =

{

O(1), for b→ 0 ,
O(b−1 log b), for b→ ∞ .

(18.4)18.4

Integrating out the boson fields in (18.1) we obtain

S(x;y) =

∫

P (dψ)eg
2V ψ+

x,σψ
−
y,σ

∫

P (dψ)eg2V
, (18.5)18.5

with

V =
1

8

∑

x,y∈Λ

∫ β/2

−β/2
dx0

∫ β/2

−β/2
dy0 v(x − y)ψ+

x,σψ
−
x,σψ

+
y,σ′ψ

−
y,σ′ . (18.6)18.6

The only difference with the previously considered interacting spinless Hamiltonian is that it is not local in

time; it is easy to check that this changes nothing in the previous discussion.

Then in the spinless case one can prove that the Schwinger function has an anomalous behavior; of course

the convergence radius is vanishing as b→ ∞ (corresponding to a long range interactions, i.e. p0 → 0); it is

also vanishing if σ0 → ∞.

In the spinning case one is in the situation of the preceding section, so results are found only for temper-

atures greater than e−κ/g
2

.

p.18.2 18.2. Classical limit: the static Holstein model. We can study the above model also in the “static” limit in

which the quantum fluctuation are neglected; to corresponds to put formally σ0 = ∞, b = 0; one gets in this

way the again variational Holstein model found at the end of the previous section.

The ground state problem is now equivalent to find the field φ minimizing the ground state fermionic

energy. Before discussing this model, we stress again that the relationship between the variational Holstein

model and the models considered in this and in the preceding sections are not very understood. Surely if

there is no spin the quantum fluctuation changes completely the behaviour (the static Holstein model makes

no difference among spinning or spinless fermions), at least for small interactions.

19. The variational Holstein modelsec.19

p.19.1 19.1. Old results. In the two preceding sections we arrived to the variational Holstein model either by

considering a mean field model for spinning fermions with an attractive potential or by considering a semi-

classical model for phonon-fermion interaction. The problem is to find the function ϕ(x) minimizing the

ground state energy of a system of fermions with Hamiltonian

H ≡ Hel
L +

1

2

∑

x∈Λ

ϕ2(x)

=
∑

x,y∈Λ

txy ψ
+
x ψ

−
y − µ

∑

x∈Λ

ψ+
x ψ

−
x − λ

∑

x∈Λ

ϕ(x)ψ+
x ψ

−
x +

1

2

∑

x∈Λ

ϕ2(x) .
(19.1)19.1
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At finite L, the fermionic Fock space is finite dimensional, hence there is a minimum eigenvalue Eel
L (ϕ, µ)

of the operator Hel
L , for each given phonon field ϕ and each value of µ; let ρL(ϕ, µ) be the corresponding

fermionic density. The aim is to minimize the functional

FL(ϕ, µ) = Eel
L (ϕ, µ) +

1

2

∑

x∈Λ

ϕ2
x , (19.2)19.2

subject to the condition

ρL(ϕ, µ) = ρL , (19.3)19.3

where ρL is a fixed value of the density, converging for L→ ∞, say to ρ.

It is generally believed that, as a consequence of Peierls instability argument, [P] and [F], in the limit

L → ∞, there is a field ϕ(0), uniquely defined up to a spatial translation, which minimizes (19.2) with the

constraint (19.3), and it is a function of the form ϕ̄(2πρx), where ϕ̄(u) is a 2π-periodic function in u. This is

physically interpreted by saying that one-dimensional metals are unstable at low temperature, in the sense

that they can lower their energy through a periodic distorsion of the “physical lattice” with period 1/ρ (in

the continuous version of the model, since 1/ρ is not an integer in general). There are a few results about

this model in literature.

(1) An exact result, [KL], makes rigorous the theory of Peierls instability for the model (19.1) in the case

ρ = ρL = 1/2 (half filled band case), for any value of λ. In fact, in this case it has been proved that there is

a global minimum of FL(ϕ) of the form ε(λ)(−1)x, where ε(λ) is a suitable function of λ. This means that

the periodicity of the ground state phonon field is 2 (recall that in our units 1 is just the lattice spacing):

this phenomenon is called dimerization. The proof heavily relies on symmetry properties which hold only in

the half filled case. As in the case of the Hubbard model, the special symmetries at pF = π/2 play a crucial

role.

(2) In [AAR,BM] Peierls instability for the Holstein model is proven assuming λ large enough: in that case

the fermions are almost classical particles and the quantum effects are treated as perturbations. The results

hold for the commensurate or incommensurate case; in particular in the incommensurate case the function

ϕ̄(u), related to the minimizing field through the relation ϕ(x) = ϕ̄(2πρx), has infinite many discontinuities.

On the contrary, in the small λ case, according to numerical results, ϕ̄(u) has been conjectured to be an

analytic function of its argument, both for the commensurate and incommensurate cases, [AAR]. The results

are closely releted to the existence of the so called “Aubry-Mather” sets in Classical Mechanics.

p.19.2 19.2. New results. We discuss here a result in [BGM2] found using the RG methods rewieved above, in the

case of small λ and any pF . A local minimum of (19.2) satisfying (19.3) must fulfill the conditions

ϕ(x) = λρx(ϕ, µ) ,

ρL =
1

L

∑

x

ρx(ϕ, µ) ,
(19.4)19.4

and

Mxy ≡ δxy − λ
∂

∂ϕx
ρy(ϕ, µ) is positive definite . (19.5)19.5

If ϕ is a solution of (19.4), it must satisfy the condition ϕ̂0 = L−1
∑

x ϕ(x) = λρL. On the other hand, if

we define χx = ϕ(x) − ϕ̂0, we can see immediately that ρL(ϕ, µ) = ρL(χ, µ + λϕ̂0). It follows that we can

restrict our search of local minima of (19.2) to fields ϕ with zero mean, satisfying the conditions

ϕ(x) = λ(ρx(ϕ, µ) − ρL) ,

ρL =
1

L

∑

x

ρx(ϕ, µ) ,
(19.6)19.6
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and the condition (19.5).

Of course, if the field ϕ(x) satisfies (19.6), the same is true for the translated field ϕ(x + n), for any

integer n. On the other hand, one expects that the solutions of (19.6) are even with respect to some point

of Λ; hence we can eliminate the trivial source of non-uniqueness described above by imposing the further

condition ϕ(x) = ϕ(−x). We shall then consider only fields of the form

ϕ(x) =

[(L−1)/2]
∑

n=−[L/2]

ϕ̂′
ne

i2nπx
L , ϕ̂′

−n = ϕ̂′
n ∈ R , ϕ̂0 = 0 . (19.7)19.7

We want to consider the case of rational density, ρ = P/Q, P and Q relatively prime, and we want to look

for solutions such that ϕ(x) = ϕ(x + Q). Hence, we shall look for solutions of (19.6) with L = Li = iQ,

ρL = ρ, and

ϕ(x) =

[(Q−1)/2]
∑

n=−[Q/2]

ϕ̂ne
i2πρnx , ϕ̂n = ϕ̂−n ∈ R , ϕ̂0 = 0 . (19.8)19.8

Note that the condition on L allows to rewrite in a trivial way the field ϕ(x) of (19.8) in the general form

(19.7), by putting ϕ̂′
n = 0 for all n such that (2nπ)/L 6= 2πρm, ∀m, and by relabeling the other Fourier

coefficients.

The conditions (19.6) can be easily expressed in terms of the variables ϕ̂n; if we define ρ̂n so that

ρx(ϕ, µ) =

[(Q−1)/2]
∑

n=−[Q/2]

ρ̂n(ϕ, µ)ei2nπρx , (19.9)19.9

we get

ϕ̂n = λρ̂n(ϕ, µ) , n 6= 0 , n = −[Q/2], . . . , [(Q− 1)/2] , (19.10)19.10

ρ̂0(ϕ, µ) = ρL . (19.11)19.11

Also the minimum condition (19.5) can be expressed in terms of the Fourier coefficients; we get that the

L× L matrix

M̄nm ≡ δnm − λ
∂

∂ϕ̂′
n

ρ̂′m(ϕ, µ) (19.12)19.12

has to be positive definite, if the field ϕ satisfies (19.10) and (19.11) and ρ̂′m(ϕ, µ) is defined analogously to

ϕ̂′
m in (19.8). Hence, if we restrict the space of phonon fields to those of the form (19.8), we have to show

that the Q×Q matrix

M̃nm ≡ δnm − λ
∂

∂ϕ̂n
ρ̂m(ϕ, µ) (19.13)19.13

has to be positive definite, if the field ϕ satisfies (2.10) and (19.11).

Then the following result holds.

Theorem 11. Let ρ = P/Q, with P,Q relative prime integers, L = Li ≡ iQ. Then, for any positive integer

N , there exist positive constants ε, ε̃, c and K, independent of i, ρ and N , such that, if

0 ≤ 4πv0
log(ε̃v0 L)

≤ λ2 ≤ ε
v2
0(1 + log v−1

0 )−1

KNN ! log(cQ/v4
0)
, (19.14)19.14

where

v0 = sin(πρ) , (19.15)19.15

there exist two solutions ϕ(±) of (19.6), with L = Li, 1 − µ = cos(πρ) and ρL = ρ, of the form (19.8). The

matrices M̃ corresponding to these solutions, defined as in (19.13), are positive definite.
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Moreover, the Fourier coefficients ϕ̂
(±)
n verify, for |n| > 1, the bound

|ϕ̂(±)
n | ≤

(

λ2

v0|n|

)N

|ϕ̂(±)
1 | . (19.16)19.16

Finally, λϕ̂
(±)
1 is of the form

λϕ̂
(±)
1 = ±v2

0 exp
{

− 2πv0 + β(±)(λ, L)

λ2

}

, (19.17)19.17

with

|β(±)(λ, L)| ≤ Cλ2

(

1 + log
1

v0

)

, (19.18)19.18

where C is a suitable constant.

The one-particle Hamiltonian corresponding to this solution has a gap of order |λϕ̂1| around µ, uniformly

on i.

The above theorem proves that there are two stationary points of the ground state energy in correspondence

of a periodic function with period equal to the inverse of the density, if the coupling is small enough and

the density is rational, and that these stationary points are local minima at least in the space of periodic

functions with that period. The energies associated to such minima are different so that the ground state

energy is not degenerate.

The theorem is proved by writing ρx(ϕ, µ) as an expansion convergent for small λ and solving the set of

equations (19.10) by a contraction method. As a byproduct it is found that the ϕ̂n are fast decaying, (see

(19.16)), so that ϕ(x) is really well approximated by its first harmonics (this remark is important as the

number of harmonics could be very large).

The results are uniform in the volume, so they are interesting from a physical point of view (a solution

defined only for |λ| ≤ O(1/L) should be outside any reasonable physical value for λ). The case in [KL] for

the half filled case is contained in Theorem 11, but in [KL] it is also proved that the solution is a global

minimum.

Finally the lower bound in (19.14) is a large volume condition: this is not a technical condition as, if

the number of Fermions is odd, there is Peierls instability only for L large enough. The upper bound for

λ in (19.14) requires λ to decrease as Q increases: in particular irrational density are forbidden. This

requirement is due to the discreteness of the lattice and to Umklapp phenomena. Note that the dependence

of the maximum λ allowed on Q is not very strong as it is a logarithmic one.

We know that ρx(ϕ, µ) is well defined for small λ not only in the rational density case, (in which the proof

is almost trivial), but also in the irrational case: in fact the small divisor problem due to the irrationality of

the density can be controlled thanks to a Diophantine condition (see Theorem 2). However to solve the set

of equations (19.10), it is used a contraction method which is not trivially adaptable in the latter case. The

same kind of problem arises in proving the positive defineteness of M̄nm in the rational case (and this is the

reason why we are able to prove that the stationary points are local minima only in the space of periodic

functions with prefixed period). It is not known if such problems are only technical or there is some physical

reason for this to happen.

20. Coupled Luttinger liquidssec.20

A natural question is what happens if we consider two or more fermionic chains coupled with an hopping

term from one chain to another. This problem is surprisingly very difficult, as the number of running

coupling constants is very high (fifteen or more, see [F]) and many of them are growing so that a rigorous
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analysis in the limit β → ∞ based on RG seems impossible. We can consider a simple model of two Mattis

models exchanging Cooper pairs between them. Even of this model a Renormalization group analysis of the

β → ∞ limit is not possible (the flow equations are similar to the one for spinning fermions in the attractive

case) but it is possible to perform a sort of mean feld theory, see [M3],[M4], obtaining the equivalent of a

BCS theory but the corresponding critical temperature Tc is not exponentially small (see also [CG] for a

perturbative third order analysis).

We consider the following functional integral

ZL,β,r =

∫

Pa(dψ)Pb(dψ)e−Va−Vb−Vab−hr , (20.1)2.8hhh

where, calling 2g2 ≡ gt

Vi = −λ 1

(Lβ)4

∑

k1,k2,k3,k4

∑

ω,σ,σ′

ψ+
k1,ω,σ,i

ψ−
k2,ω,σ,i

ψ+
k3,−ω,σ′,iψ

−
k4,−ω,σ′,iδ(k1 − k2 + k3 − k4)

Vab = −2[
g

(βL)3/2

∑

k1,ω1

ψ+
k1,ω1,

1
2 ,a
ψ+
−k1,−ω1,− 1

2 ,a
][

g

(βL)3/2

∑

k2,ω2

ψ−
−k2,−ω2,− 1

2 ,b
ψ−

k2,ω2,
1
2 ,b

] (20.2)1.2ahhh

−2[
g

(βL)
3/2

∑

k1,ω1

ψ+
k1,ω1,

1
2 ,b
ψ+
−k1,−ω1,− 1

2 ,b
][

g

(βL)
3/2

∑

k2,ω2

ψ−
−k2,−ω2,− 1

2 ,a
ψ−

k2,ω2,
1
2 ,a

]

hr =
1

Lβ

∑

k

∑

ω,i

[rψ−
k,ω, 12 ,i

ψ−
−k,−ω,− 1

2 ,i
+ rψ+

k,ω, 12 ,i
ψ+
−k,−ω,− 1

2 ,i
]

where ψ±
k,ω,σ,i is grassman variable describing a fermion with momentum k and spin σ = ±1/2 associated

with the chain = a, b, Vi describes the interaction between fermions belonging to the same chain and Vab
describes the tunelling of Cooper pairs from one chain to another, in the Barden aproximation. The term hr
represents the interaction with an external field and the parameter r is real and positive (for fixing ideas). If

g = 0 the system reduces to two independent Mattis models, and the Schwinger functions have an anomalous

behaviour like (13.30).

It is convenient to write the interaction in terms of gaussian variables. We write

Vab = −2[∆a∆̄b + ∆b∆̄a]

where

∆i =
g

(βL)3/2

∑

k′,ω

ψ+
k′,ω, 12 ,i

ψ+

−k′,−ω,−1
2 ,i

∆̄i =
g

(βL)3/2

∑

k′,ω

ψ−
−k′,−ω,− 1

2 ,i
ψ−

k′,ω, 12 ,i

By using the identity (Hubbard-Stratanovich transformation) (φ = u+ iv, φ̄ = u− iv, u, v ∈ R)

e2ab =
1

2π

∫

R2

dudve−
1
2 |φ|

2

eaφ+bφ̄ (20.3)z1hhh

we can rewrite the partition function as

ZL,β,r =
1

2π

∫

R2

du1dv1e
− 1

2 |φ1|2 1

2π

∫

R2

du2dv2e
− 1

2 |φ2|2

∫

Pa(dψ)e−Va

∫

Pb(dψ)e−Vbe−hreφ1∆a+φ̄1∆̄beφ2∆b+φ̄2∆̄a (20.4)z2hhh

Performing the change of variables

(ui, vi) →
√

βL(ui, vi)
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we obtain

ZL,β,r =
βL

2π

∫

R2

du1dv1e
− βL

2 |φ1|2 βL

2π

∫

R2

du2dv2e
−βL

2 |φ2|2

∫

Pa(dψ)e−Va

∫

Pb(dψ)e−Vbeg(φ1−r/g)Da+g(φ̄1−r/g)D̄beg(φ2−r/g)Db+g(φ̄2−r/g)D̄a

where

Di =
1

(βL)

∑

k′,ω

ψ+
k′,ω, 12 ,i

ψ+

−k′,−ω,−1
2 ,i

D̄i =
1

(βL)

∑

k′,ω

ψ−
−k′,−ω,− 1

2 ,i
ψ−

k′,ω, 12 ,i

After the integration of the Fermi fields, if ~v = (u1, u2, v1, v2)

ZL,β,r = [
βL

2π
]2
∫

R4

du1dv1du2dv2e
− βL

2 [(u1+ r
g )2+(u2+

r
g )2+v21+v22 ]e−βLF

L,β,r
λ,g

(~v)

= [
βL

2π
]2
∫

R4

du1dv1du2dv2e
−βLHL,β,r

λ,g
(~v) (20.5)ffhhh

where where

e−βLF
L,β
λ,g

(~v) =

∫

Pa(dψ)

∫

Pb(dψ)e−Va−Vbegφ1Da+gφ̄1D̄begφ2Db+gφ̄2D̄a (20.6)z.zzhhh

The partition function is then written as the (four dimensional) integral of the exponential e−βLH
L,β,r
λ,g

(~v).

If the function

Hβ,r
λ,g(~v) = lim

L→∞
HL,β,r
λ,g (~v)

is two times differentiable and it admits a non degenerate global minimum ~v∗ for β large enough (the

parameter r is introduced just to remove the possible degeneration) then

lim
r→0

lim
L→∞

e−βLH
L,β,r
λ,g

(~v)

∫

du1du2dv1dv2e
−βLHL,β,r

λ,g
(~v)

= δ(~v − ~v∗) (20.7)z.zhhh

If we can prove that Hβ,r
λ,g(~v) has a global minimum the model is solved; all the Schwinger functions can be

computed using (20.7) and, if ~v∗ 6= 0, there is a spontaneous gap generation.

So the problem is reduced to the computation of Hβ,r
λ,g(~v) and to the determination of its global minimum.

However Hβ,r
λ,g(~v) is given by the Grassmanian integral (20.6) which is not quadratic in the grassman variables

and it is non trivial to compute, especially in the λ >> gt0 case. One has to take into account the interaction

Va + Vb which is responsible in the gt0 = 0 case of the Luttinger liquid behaviour of the model.

Let us assume that, given ~v∗, the function HL,β,r
λ,g (~v) is differentiable in a small neighborood of ~v∗ (uniformly

in L, β) and

∂HL,β,r
λ,g (~v)

∂ui
|~v=~v∗ = 0

∂HL,β,r
λ,g (~v)

∂vi
|~v=~v∗ = 0 (20.8)strhhh

This means that ~v∗ is an extremal point for HL,β,r
λ,g (~v). An extremal point satisfys the following extremality

equations:

u1 +
r

g
− g

1

Lβ

∑

k′,ω

[< ψ+
k′,ω, 12 ,a

ψ+

−k′,−ω,−1
2 ,a

> + < ψ−
−k′,−ω,−1

2 ,b
ψ−

k′,ω, 12 ,b
>] = 0

u2 +
r

g
− g

1

Lβ

∑

k′,ω

[< ψ+
k′,ω, 12 ,b

ψ+

−k′,−ω,−1
2 ,b

> + < ψ−
−k′,−ω,−1

2 ,a
ψ−

k′,ω, 12 ,a
>] = 0

v1 + ig
1

Lβ

∑

k′,ω

[< ψ+
k′,ω, 12 ,a

ψ+

−k′,−ω,−1
2 ,a

> − < ψ−
−k′,−ω,−1

2 ,b
ψ−

k′,ω, 12 ,b
>] = 0 (20.9)nikk
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v2 + ig
1

Lβ

∑

k′,ω

[< ψ+
k′,ω, 12 ,b

ψ+

−k′,−ω,−1
2 ,b

> − < ψ−
−k′,−ω,−1

2 ,a
ψ−

k′,ω, 12 ,a
>] = 0

where

Lβ < ψ+
k′,ω, 12 ,i

ψ+

−k′,−ω,−1
2 ,i

>=

∫

Pa(dψ)e−Va
∫

Pb(dψ)e−Vbegφ1Da+gφ̄1D̄begφ2Db+gφ̄2D̄aψ+
k′,ω, 12 ,i

ψ+

−k′,−ω,−1
2 ,i

∫

Pa(dψ)e−Va
∫

Pb(dψ)e−Vbegφ1Da+gφ̄1D̄begφ2Db+gφ̄2D̄a
(20.10)cc0000

and a similar one for < ψ−
−k′,−ω,−1

2 ,i
ψ−

k′,ω, 12 ,i
>. One has then to compute the r.h.s. of (20.9); if λ = 0

such computation is trivial and one obtains, as in BCS theory, that the gap and the critical temperature

are exponentially small in 1
g2 . However the presence of the interaction along the chain, which is responsible

of the anomalous behaviour, has a dramatic effect. One could think that the r.h.s. of the self-consistence

equation (20.9) is obtained by the one obtained in the λ = 0 case simply replacing the propagator(3.4) with

the Mattis model Schwinger function (see [A1], page 209). This is in fact what is found by a naive first order

perturbation theory. However the true result is more complex, as also the gap aquires a critical index. In

fact one can compute (20.10) by the techniques describes above and the following result holds, see [M3] and

[M4].

Theorem 12. There exist an ε such that, if λ ≥ 0, λ, |g| ≤ ε the function Hβ,r
λ,g(~v) defined in (2.10) is

differentiable at u1 = u2, v1 = v2 and the extremality equations (3.2) are pairwise equal. In particular the

l.h.s. of third and the fourth are vanishing while the first and the second are equal to, if 1
β ≤ K|gu|, K < 1

u+ r/g − g2u
1

η
[(
|gu|
A

)−η − 1][a−1 + λf(g, λ, u)] + g2u(
|gu|
A

)−ηf̃(g, λ, u) = 0 (20.11)ffahhh

where η = β1λ+ η̃, |η̃| ≤ Cλ2, |f |, |f̃ | ≤ C, and C, a, β1, A are positive constants.

Note that (20.11) is a non-BCS or anomalous self consistence equation describing a superconductor whose

normal state is a Luttinger liquid; the Luttinger interaction modifies the self-consistence equation for the

gap from the BCS-like one to (20.11). Note that λ, g2 have to be small but there is no restriction on their

ratio, in particular it can be λ
g2 >> 1.

Corollary. There exist ε and K < 1 such that, if λ ≥ 0, λ, |g| ≤ ε then Hβ.r
λ,g(~v) admits two extremal

points, both if λ
g2 < K or λ

g2 > K−1. In the limit β → ∞, r → 0 they become of the form (±∆,±∆, 0, 0). In

particular if λ
g2 > K−1

|g∆| = A[
g2

aη
]
1
η [1 +O(λ) +O(

g2

λ
)]

1
η (20.12)ffa1hhh

while if λ
g2 < K

|g∆| = Ae
−a+O(g)

g2

The above analys says two one dimensional spinning Fermi systems with an intrachain interaction given

only by forward scattering and an interchain interaction expressed by a Cooper pair tunnelling hamiltonian,

in the Barden approximation, are such that the two point Schwinger function has a behaviour similar to

the Mattis model Schwinger function if T > Tc while for T ≤ Tc there is long distance exponential decay

releted to the opening of a gap ∆; Tc ≃ ∆ and ∆ has the non BCS form given by (20.12) if the intrachain

interaction is smaller than the interchain one.
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21. Bidimensional Fermi liquidssec.21

The techniques we have applied to one dimensional fermions are general and can be applied also in d ≥ 2.

In this case much less is known, and there is no till now rigorous costruction of the theory in the β → ∞
limit. The study of d ≥ 2 fermions started in [BG] and in [FT1],[FT2], [FTMR1,2], [DR1,2]. In [BG] and in

[FT1], [FT2] a renormalization group analogous to the d = 1 case was defined; many new problems appear

due to the fact that the singularity (i.e. the Fermi surface) are not two points but a circle or a shere. The

main result obtained in such papers was the definition of a well defined matematical setting, n! bounds for

the perturbative series and the definition of the beta function.

However it appears that even truncating arbitrarely (as there is no proof of the convergence of the Beta

function, but only n! bounds) at the second order there are problems; one has infinitely many running

coupling constants and: (1) if the interaction is attractive, the flow is not bounded due to the BCS instability,

while (2) if it is repulsive due to the Kohn-Luttinger phenomenon it is likely that, except for very particular

interactions with special symmetries, the flow is still not bounded. As there is the generation of a gap, the

fermionic techniques discussed till here have likely to be supplemented by Cluster expansion techniques (the

theory becomes partly bosonic due to the appearence of a Goldstone boson).

At the moment the only rigorous construction for a problem of interacting fermions in d = 2 is for

temperature T ≥ e
−k
|λ| [FMRT2], [DR1] and [DR2]; note that we cannot expect to reach colder region due

to the appearence of BCS instability at Tc = e
−a
|λ| (but κ/c >> 1, see below; so pehaps fermionic techniques

will allow to reach at least κ/c ≃ 1).

Let us consider a model in d = 2 of interacting fermions with Hamiltonian H = H0 + λV + νN0, where

H0 and V are defined by the analogue of (2.2),(2.7) in two dimensions with an ultraviolet cut-off. In d = 2

the Fermi surface is the circle k2
1 + k2

2 − p2
F = E(k) and the propagator is given by

∑0
h=−∞ g(h)(x−y) with

g(h)(x − y) =

∫

dk0dkfh(k
2
0 + [E(k) − p2

F ]2)
eik0(t−s)+ik(x−y)

−ik0 + E(k) − p2
F

(21.1)mm1

Passing to polar coordinates we find

g(h)(x− y) =

∫

dk0dϑ

∫

|k|d|k|fh(k2
0 + [E(k) − p2

F ]2)
eik0(t−s)+ik(x−y)

−ik0 + E(k) − p2
F

(21.2)mm2

and we can introduce another decomposition over the integration in ϑ in the following way. The anolous of

radious γh around the Fermi surface is divided in sectors centered at ϑ = ϑr and of angular width γh/2 (the

choice γh/2 is not arbitrary, see below). Then 1 =
∑

ω χ
h,ω(ϑ), where χh,ω(ϑ) are compact support functions

with support in γh/2−1/2 ≤ |ϑ− ϑω| ≤ γh/2+1/2,
∑

ω 1 = γ−h/2 and

ghω(~x− ~y) = eiωpF (x−y)ḡhω(~x− ~y)

with

ḡhω(~x − ~y) =

∫

dk0dϑχ
h
ω(ϑ)

∫

kdkfh(k
2
0 + [E(k) − p2

F ]2)
eik0(t−s)+i[(k−ωpF )(x−y)

−ik0 + E(k) − p2
F

(21.3)bnbn

which is bounded by

|ghω(~x− ~y)| ≤ γ3h/2 CN
1 + [γ(h)|t− s| + γ(h)|(x − y)r | + γh/2|(x − y)t|]N

(21.4)oop

where (x − y)r = |x − y| cosϑω and (x − y)t = |x− y| sinϑω. As in d = 1 one can write

ψx =
∑

h

∑

ω

eiωpF xψ
(h)
ω,~x (21.5)oppo
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where ψ
(h)
ω,~x has propagator given by ḡhω(~x − ~y). The difference with respect to the d = 1 case is that

∑

ω = γ−h/2. We write a tree expansion as in the preceding section and we write the truncated expectation

as sum over anchored trees times determinants; the Gram-Hadamard inequality can be applied as there is

always a finite number of kind of fermions (on the contrary, if like in [BG] one considers a continuous ω

variables, one finds technical difficulty for doing the Gram-Hadamard bound). Then we get the following

bound for the effective potential; fixed a tree τ and an an anchored tree T we get:

(1) a factor γ−( 5
2 )hv(sv−1) for the integration over the coordinates, if sv are the subtrees coming out from

the vertex v;

(2) a factor γ
3
2hvñv where ñv are the propagators (in the anchored tree T or in the determinants) in the

cluster v and not in any smaller one; calling m4
v the number of vertices with 4 external lines we get, using

(5.32), (5.33), a factor

CnγhD
∏

v

γ(hv−hv′ )( 3
2 (2m4

v−
ne

v
2 )− 5

2 (m4
v−1)) (21.6)wfe

if D is a proper dimension;

(3) we have now to sum over ω, which is the crucial point. In order to perform this sum, suppose that we

have a number of vertices v with all the external lines fixed to some scale hv′ , with nev external lines; then

the sum over ω gives
∏

v

[γ
−h

v′
2 (ne

v−3)χ(nev > 3)] (21.7)wfwq

In order to understand this formula one has to note that for each vertex v there are nev sums over v but a)the

conservation of momentum on each vertex eliminates one sum b)the vertices are connected by an anchored

tree in the truncated expectations; so if v1, v2 are two vertices connected by a line l of the the spanning tree,

fixing the sector of v1 of the half-line forming l fixes automatically the half-line line of the vertex v2 which

formes l; c)by geometrical considerations [FMRT1] the fact that the momenta have to stay in an anolous

aroun the Fermi surafce of radius γ(h) and that the sectors are O(γh/2) cancels another sum.

However in general the external lines are not all on the same scale and we need a bit more complicated

argument. One can do an iterative argument for summing over ω; let we consider the end-points (assume

only four fields interactions for simplicity). In general the scales of the external lines are different; let we fix

all of the them equal to the largest one. By the above argument we get a factor (all the lines are fixed to

have the same scale):
∏

v

γ−( 1
2 )(hv−hv′ )m4

v (21.8)plpl

Now we have to sum on the lines of the vertices whose scale was not the largest one. We contract all the

minimal clusters in points, and we iterate the above argument; the lines external to the minimal clusters

v were fixed to a sector of width γhv/2; so summing on the sectors of these lines (fixing all of them to the

smallest scale) gives a factor γ−( 1
2 )(hv−hv′) and at the end we get

∏

v

γ( 1
2 )(hv−hv′)(ne

v−3)χ(nev > 3) (21.9)klmn

Putting togheter all terms we get

∏

v

γ(hv−hv′ )( 3
2 (2m4

v−
ne

v
2 )− 5

2 (m4
v−1)− 1

2m
4
v+( 1

2 )(ne
v−3)χ(ne

v>3) (21.10)mmio

which gives
∏

v

γ(hv−hv′ )[
−3
4 ne

v+ 5
2+( 1

2 )(ne
v−3)χ(ne

v>3)] (21.11)mm66
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From the above formula we see that the power counting is exactly the same than the d = 1 case i.e. the

dimension of the cluster with two external lines is −1 and the one with 4 is 0. Then if one can restrict to sum

to |Pv| ≥ 4 the series for the effective potential would be convergent (the above argument works really for

trees which, for any v 20 ≥ |Pv| ≥ 4, see [DR1]; in fact the sector sums done like above produces a constant

K |Pv| which should develop a factorial. For v with |Pv| ≥ 20 one uses that the dimension is very negative.

For this technical point, see [DR1]).

To renormalize the above theory one uses a definition very similar to the one for d = 1 fermions. If we allow

logaritmic divergences, we have only to renormalize at the first order the clusters with two external lines

(logarithmic divergences give a factor in the bounds Cnλnhnβ ≃ C2λn(log β)n which allow to get convergence

for T ≥ e
−k
|λ| , with kC ≤ 1).

The definition of localization is the same as in the d = 1 case (note that, by the conservation of momenta

the ω index of external lines of the clusters with two external lines are the same)

L
∫

dkdk0ψ
+,≤h
k,ω ψ−,≤h

k,ω W(h)(k0,k) =

∫

dkdk0ψ
+,≤h
k,ω ψ−,≤h

k,ω W(h)(0,ωpF ) (21.12)klmb

Note that the theory is rotation invariant so that W(h)(0,ωpF ) is in fact independent from ω.

There is however a difference with respect to the d = 1 case (see [DR2]). The effect of R gives

R
∫

dkdk0ψ
+,≤h
k,ω ψ−,≤h

k,ω W(h)(k0,k) =

∫

dkdk0ψ
+,≤h
k,ω ψ−,≤h

k,ω [(k − ωpF )∂kW(h) + k0∂k0W(h)] (21.13)lmbb1

Let us fix a reference frame in which the axis 1 is directed as ω and 2 is ortogonal; then k = k1, k2 and (1, 0)

is a radial vector while 0, 1 is a tangential vector. Then we can write the above equation as, if k−ωpF = k′

( k′ is the momentum measured from the Fermi surface)

k′1

∫

dt∂k1W
(h) +

∫ 1

0

dtk′2∂k2W
(h) , (21.14)klknn

where k′1 = O(γ(h)), k′2 = O(γh/2). The first addend gives a factor γhv′−hv which is the right factor to leave

only a logaritmic divergence; however the second addend gives a factor

γ
h

v′ −hv

2 γ−hv/2 (21.15)pomb

which is not the correct one to have only logarithmic divergences. To solve this problem in [DR2] it is used

the following argument:

1) One can write the renormalized cluster as

∫ 1

0

dtW ′(t) = W ′(0) +

∫ 1

0

dt(1 − t)W ′′(t) (21.16)pncs

The second factor has in any case the right dimensional factor γhv′−hv ; the first gives problems taking the

tangential component of k. Let us fix a reference frame as above. Then we can write the first addend in the

above equation as

k′1∂k1W(h)(ωpF ) + k′2∂k2W(h)(ωpF )

But

∂k2W(h)(ωpF ) = ∂ρW(h)(ωpF )
∂ρ

∂k2
|ωpF = 0 (21.17)pipo

as ωpF = (pF , 0) in this reference frame.



104 renormalization group for one-dimensional fermions

2) We have seen that the fact that an half-line is contracted with another one in the spanning tree has the

effect that of the two sums over ω for any half-line a priori necessary only one has to be done; the contraction

of two half-line eliminates a sum over ω. One can simply ”extract a proper loop line”, which means to develop

a bit the determinant in the formula for the truncated expectations to extract a propagator. This do no

produce factorial and allows to make a sum over ω less, so gaining γhv/2, see [DR2].

Appendix A1. Graphs, diagrams and treesapp.A1

p.A1.1 A1.1. Graphs. Given a set V with n elements, we shall call graph τ on V a couple (V,E), where E is a

subset of unordered pairs of elements in V ; we shall write V = V (τ) and E = E(τ) and shall call points the

elements of V (τ) and lines the elements of E(τ). We shall denote by |V (τ)| and by |E(τ)| the number of

elements in V (τ) and in E(τ), respectively; of course |V (τ)| = n. We shall write also ℓ ∈ τ for ℓ ∈ E(τ).

See Fig. A1.

Fig. A1. A graph τ with 14 points and 18 lines.

If a line ℓ connects two points v, w ∈ V (τ) we shall write also ℓ = (vw): we say that the line ℓ is incident

with the points v and w. Two points v, w ∈ V (τ) are adjacent if (vw) ∈ E(τ), while two lines are adjacent

if they are incident with the same point.

Given a point v ∈ V (τ) we define degree of the point v the number d(v) of lines incident with v; a point

such that d(v) = 1 is called an endpoint. Of course
∑

v∈V (τ)

d(v) = 2|E(τ)| . (A1.1)A1.1

A subgraph τ ′ of τ is a couple (V ′, E′) with V ′ = V (τ ′) ⊂ V (τ) and E′ = E(τ) a subset of lines (vw) in

E(τ) with v, w ∈ V (τ ′); we shall write τ ′ ⊂ τ .

A graph τ is connected if for any v, w ∈ τ there exist p ∈ N and p points v1, . . . , vp, with v1 = v and

vp = w, such that vj and vj+1 are adjacent for each j = 1, . . . , p − 1: in such a case we say that the lines

(v1v2), . . . , (vp−1vp) form a path P on τ connecting the point v with the point w. We shall say also that P
crosses or intersects the points v1, . . . , vp. See Fig. A2. A graph is disconnected if it is not connected.

v1
v2

v3

v4

v5

v6
P

Fig. A2. A path P connecting v1 with v6.
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A graph is acyclic if it has no cycle (or loop), i.e. if for any two points v, w ∈ V (τ) there is only one path

connecting them.

p.A1.2 A1.2. Trees. A tree graph (or tree tout court) τ is a connected acyclic graph. If |V (τ)| = n we say that τ is

a tree with n points.

Given a tree one has

|E(τ)| = |V (τ)| − 1 . (A1.2)A1.2

Note that given a tree τ any subgraph (subtree) of τ is still connected and acyclic: so any subtree is a tree.

A rooted tree is a tree with a distinguished point v0. A rooted tree can be seen as a partially ordered set

of points connected by lines. The partial ordering relation can be denoted by �: we shall say that v ≺ w if

there is a path P connecting w with v0 and v is crossed by P . We can also superpose an arrow on each line

pointing towards v0: we say that the lines of the tree are oriented; by extension also the tree is said to be

oriented. In the following (and in all the paper) by trees we shall mean rooted trees. See Fig. A3.

r v0

Fig. A3. A rooted tree of order 9 with 27 vertices.

We shall call also vertices the points in V (τ). The point v0 is called the first vertex of τ . To identify the

first vertex v0 we can draw an extra point r and an extra oriented line ℓ connecting v0 with r. We shall call

r the root of τ and ℓ the root line. Such a line is added to the lines in E(τ), while the root is not considered

a vertex. With such a convention, (A2.2) has to be replaced with

|E(τ)| = |V (τ)| = n . (A1.3)A1.3

Note also that in this way (A1.1) becomes

∑

v∈V (τ)

d(v) = 2|E(τ)| − 1 . (A1.4)A1.4

Given a vertex v ∈ V (τ) we denote by v′ the node immediately preceeding v, i.e. the vertex ≺ v such that

(v′v) ∈ E(τ). We say that the line ℓ = (v′v) exits from v and enters v′. Note that the vertex v′ is uniquely

defined, as the ordering relation implies a bijective correspondence between lines and vertices: given a vertex

there is one and only one line exiting from it.

For any vertex there are sv ≥ 0 exiting lines: one has sv = 0 if v is an endpoint. We define the order of a

tree as the number of its endpoints. We call trivial a vertex v with sv = 1 and nontrivial a vertex v either

with sv ≥ 2 or with sv = 0 (this means that the endpoints are counted as nontrivial vertices). Denote by
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Vf(τ) the set of endpoints in τ , by Vt(τ) the set of trivial vertices in τ and by Vnt(τ) the set of nontrivial

vertices in τ : of course V (τ) = Vt(τ) ∪ Vnt(τ) and

Vf(τ) = {v ∈ Vnt(τ) : sv = 0} . (A1.5)A1.5

By the notation v /∈ Vf(τ) we mean v ∈ V (τ) \ Vf(τ).

Given a vertex v ∈ V (τ) the subgraph (V ′, E′) with

V ′ = {w ∈ V (τ) : w � v} ,
E′ = {ℓ ∈ E(τ) : ℓ = (w′w) : w ≻ v} ,

(A1.6)A1.6

is a rooted subtree with root v′.
The just defined trees are sometimes called unlabeled trees, in order to distinguish them from the “labeled

trees” (to be defined).

The unlabeled trees are identified if superposable up to a continuous deformations of the lines on the plane

such that the endpoints coincide: in such a case we say that they are equivalent. In Fig. A4 two unequivalent

unlabeled trees of order n = 3 are drawn. Note that the indices used to identify the vertices v /∈ Vf(τ) play

no rôle.

root rootv0 v0

v1

v1

v2 v2

v3 v3

v4 v4

1

2

3

1

2

3

Fig. A4. Two unequivalent unlabeled trees of order 3.

The notions which will be used will be that of unlabeled tree and, mostly, that of labeled tree.

A (rooted) labeled tree can be obtained from an unlabeled tree by assigning labels hv to its vertices

v ∈ V (τ) in the following way. A label h ≤ 0 is associated to the root. If Th,n denotes the corresponding set

of labeled trees of order n (i.e. with n endpoints), we introduce a set of vertical lines, labelled by an integer

assuming values in [h, 2], such that each vertex v ∈ V (τ) is contained in a vertical line h′ ∈ [h, 2] (this will

be always possible, as the lines can be continously deformed): then we set hv = h′. The label hv will be

called the frequency or the scale of the vertex v. By construction hv > h for all v ∈ V (τ) and hv > h+ 1 for

all v ∈ Vf(τ). Moreover if v ≺ w then hv < hw.

The number of trees is controlled through the following result.

Lemma A1. The number of (rooted) unlabeled trees with n points is bounded by Cn for some constant C.

Proof. The number of (rooted) unlabeled trees is bounded by the number of one-dimensional random walks

W with 2n steps. This can be proved as follows.

We can imagine to move along the tree by remaining to the left of the lines and starting from the root line.

We move forward until an endpoint is reached: in this case we turn backwards until we meet a nontrivial

vertex; then we turn once more forward and so on, until we come back to the root line. See Fig. A5: +

means that we move from left to right along the line, while − means that we move from right to left.

Each time we move forward along a line we associate to it a sign +, while we associate to it a sign − when

we move backwards. So the tree can be characterized by a collections of 2n signs ± which define a walk

W = {± ± . . .±}. Note that not all one-dimensional random walks with 2n steps correspond to unlabeled
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+

+

+

+

+ +

++

+

−
−

−

−

− −

−−

−

W = {+ + + + −− + + − + −−− + + −−−}

Fig. A5. A rooted tree and the corresponding walk W .

trees: we call compatible the random walks for which this happens. For instance the first sign is always a +

and the last one is always a −: moreover the overall number of + signs has to be equal to the overall number

of signs −: note that the correspondence between unlabeled trees and one-dimensional compatible random

walks is 1-to-1. By neglecting all the constraints we can bound the number of collections of 2n signs, hence

the number of unlabeled trees with n nodes, by 22n, that is the overall number of random walks with 2n

steps. So we can choose C = 4 and the assertion follows.

Given a tree with n vertices one has, as it is straighforward to check,

1 ≤ |Vf(τ)| ≤
{

n− 1 , if n ≥ 2 ,
1 , if n = 1 ,

|Vnt(τ)| ≤ 2|Vf(τ)| − 1 .

(A1.7)A1.7

The number of labeled tree in Th,n can not be bounded uniformly in h: there are at most 2n−1 nontrivial

vertices, by (A1.7), but once they has been fixed, one can add many trivial vertices between them, and the

number of possible insertions goes to infinity for h → ∞. Nevertheless we have the following result about

labeled trees.

Lemma A3. Let Th,n be the number of labeled trees of order n and with scale h assigned to the root. If γ > 1

and α > 0, then
∑

τ∈Th,n

∏

v/∈Vf (τ)

γ−α(hv−hv′ ) ≤ Cn2 , (A1.8)A1.8

for some constant C2.

Proof. Let us denote by T ∗
h,n the set of labeled trees of order n having only nontrivial vertices, and by τ∗

any element in T ∗
h,n: of course τ∗ will have n − 1 (nontrivial) vertices. A labeled tree τ of order n can be

imagined as formed from a tree τ∗ of order n, by inserting trivial vertices between them: the number of

inserted vertices automatically determines the values of the scale labels.

Fixed a tree τ , so that the corresponding tree τ∗ is determined, we can write
∏

v/∈Vf (τ)

γ−α(hv−hv′ ) =
∏

v∈Vnt(τ∗)\Vf (τ∗)

γ−α(hv−hv′) , (A1.9)A1.9
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where, for v seen as a vertex of τ∗, v′ denotes the vertex in τ∗ immediately preceeding v. The tree τ can be

obtained by inserting hv − hv′ trivial vertices between v ∈ τ∗ and v′ ∈ τ∗. Then we have

∑

τ∈Th,n

∏

v/∈Vf (τ)

γ−α(hv−hv′ ) =
∑

τ∗∈T ∗
h,n

∏

v∈V (τ∗)\Vf (τ∗)

γ−α(hv−hv′) . (A1.10)A1.10

Denote by T ∗
n the set of unlabeled trees of order n having only nontrivial vertices. Then

∑

τ∗∈T ∗
h,n

=
∑

τ∗∈T ∗
n

∑

{hv}v∈τ∗

, (A1.11)A1.11

so that
∑

τ∗∈T ∗
h,n

∏

v∈V (τ∗)\Vf (τ∗)

γ−α(hv−hv′ ) =
∑

τ∗∈T ∗
n

∑

{hv}v∈τ∗

∏

v∈V (τ∗)\Vf (τ∗)

γ−α(hv−hv′ )

≤
∑

τ∗∈T ∗
n

(

1

γα − 1

)n

≤ Cn ,

(A1.12)A1.12

where we used |V (τ∗)| = |Vnt(τ)| ≤ 2n (see (A1.7)), so that the number of elements in T ∗
n is bounded by

C2n, for a constant C (see Lemma A1); moreover in performing the sum over the scales we neglected all

constraints except that hv − hv′ ≥ 1.

p.A1.3 A1.3. Feynman diagrams. A graph can be imagined as formed by giving n points v1, . . . , vn with dv1 , . . . , dvn

outcoming lines, respectively, and contractring (some of) such lines between themselves. We can also asso-

ciate to each line a sign σ = ±1 and allow only contractions such that a line with a sign + is contracted

with a line with a sign −.

In particular we can consider points with 2 or 4 outcoming lines: in the first case there is one line with a

sign + and one line with a sign −, while in the second one there are two lines with a sign + and two lines

with a sign −. We denote by n2 the number of points v with dv = 2 and by n4 the number of points v with

dv = 4: of course n = n2 + n4.

The points can have also a structure: when dv = 4 the point v is formed by two disjoint points connected

through an ondulated lines, while when dv = 2 the point can be characterized by an extra label. We shall

call graph elements the points with structure.

We shall consider only graphs of the above type which are connected: such graphs will be called Feynman

diagrams and will be denoted by Γ. Note that if all the lines are contracted then for each v ∈ Γ one has

d(v) = dv, while of we allow to some lines to remain uncontracted then d(v) ≤ dv: in such a case the

uncontracted lines are called the external lines of the diagram.

The number of Feynman diagrams is controlled through the following result.

Lemma A4. Consider a Feynman diagram formed with n graph elements v1, . . . , vn such that dvj ∈ {2, 4}
∀j = 1, . . . , n, and with 2p uncontracted lines (p with the sign + and p with the sign −). Then the number

of Feynman graphs is bounded by Cn(2n)! uniformly in p.

Proof. A generic Feynman graph can be obtained in the following way.

First construct a tree graph between the n graph elements: such a tree will be formed by contracting

2(n− 1) lines. The number of trees which can be obtained in this way is bounded by Cnn! (by Lemma A2).

Then contract all the remaining 4n − 2p − 2(n − 1) = 2(n − p + 1) lines (one has to exclude the p lines

which have to be left uncontracted), by using that only lines with opposite signs can be contracted between

themselves. Of course among the 2(n − p + 1) lines there are n − p + 1 lines with a sign + and n − p + 1

lines with a sign −: therefore such lines can be contracted in (n− p+ 1)! possible ways, so that the number

of diagrams which can be obtained starting from a fixed tree between the graph elements is bounded by n!

uniformly in p.
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By collecting together the two bounds the assertion follows.

Appendix A2. Discrete versus continuumapp.A2

p.A2.1 A2.1. Discrete derivatives Given a function F̂ (k) with k = (k, k0) ∈ DL,β, we set ∂k = (∂k, ∂k0), where

∂kF (k, k0) =
F (k + ∆k, k0) − F (k, k0)

∆k
, ∆k =

2π

L
(A2.1)A2.1

and, analogously,

∂k0F (k, k0) =
F (k, k0 + ∆k0) − F (k, k0)

∆k0
, ∆k0 =

2π

β
. (A2.2)A2.2

Note that, if

F (x) =
∑

k∈DL,β

e−ik·xF̂ (k) , (A2.3)A2.3

then
∑

k∈DL,β

e−ik·x∂kF̂ (k) =

(

e−i∆kx − 1

∆k

)

∑

k∈DL,β

e−ik·xF̂ (k) , (A2.4)A2.4

so that, for |x| ≤ L/2,

|xF (x)| ≤ C

∣

∣

∣

∣

(

e−i∆kx − 1

∆k

)

F (x)

∣

∣

∣

∣

≤ C
∑

k∈DL,β

∣

∣

∣
e−ik·x∂kF̂ (k)

∣

∣

∣
≤ C

∑

k∈DL,β

∣

∣

∣
∂kF̂ (k)

∣

∣

∣
,

(A2.5)A2.5

where C denotes some constant.

Appendix A3. Truncated expectations and Gram-Hadamard inequalityapp.A3

p.A3.1 A3.1. Truncated expectations and graphic representations. Given a Grassman algebra as in (4.1) and an

integration measure like (4.10) we define a simple expectation as in (4.12). Then

gα = E(ψ−
α ψ

+
α ) . (A3.1)A3.1

Given a monomial

X(ψ) ≡ ψ̃B =
∏

α∈B
ψσα
α , (A3.2)A3.2

where B is a subset of A and σα ∈ {±}, the expectation E(ψ̃B) can be graphically represented in the following

way.

Represent the indices α ∈ B as points on the plane. With each ψ+
α , α ∈ B, we associate a line exiting

from α, while with each ψ−
α , α ∈ B, we associate a line entering α. Let T be the set of graphs obtained by

contracting such lines in all possible ways so that only lines with opposite σα are contracted: given α, β ∈ B,

denote by (αβ) the line joining α and β and by τ an element of T , i.e. a graph in T .

Then we can easily verify that

E(ψ̃B) =
∑

τ∈T

∏

(αβ)∈τ
(−1)πτ gαδα,β , (A3.3)A3.2a
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which is the Wick rule stated in §4.1: here πτ is a sign which depends on the graph τ (see (4.20)).

Then define the truncated expecation

ET
(

ψ̃B1 , . . . , ψ̃Bp ;n1, . . . , np

)

, (A3.4)A3.3

with Bj ⊂ A for any j, as in (4.13).

One easily check that, if Xj are analytic functions of the Grassman variables (each depending on an even

number of variables, for simplicity, so that no change of sign intervenes in permuting the order of the Xj),

then

(1) ET (X1, X2) = E(X1X2) − E(X1)E(X2) ,

(2) ET (X1, X2, X3) = E(X1X2X3) − E(X1X2)E(X3) − E(X1X3)E(X2)

− E(X2X3)E(X1) + 2E(X1)E(X2)E(X3) ,

(3) ET (X1, X2, X3, X4) = E(X1X2X3X4) − E(X1X2X3)E(X4) − E(X1X2X4)E(X3)

− E(X1X3X4)E(X2) − E(X2X3X4)E(X1)

− E(X1X2)E(X3X4) − E(X1X3)E(X2X4) − E(X1X4)E(X2X3)

+ 2E(X1X2)E(X3)E(X4) + 2E(X1X3)E(X2)E(X4) + 2E(X1X4)E(X2)E(X3)

+ 2E(X2X3)E(X1)E(X2) + 2E(X2X4)E(X1)E(X3) + 2E(X3X4)E(X1)E(X2)

− 6E(X1)E(X2)E(X3)E(X4) ,

(A3.5)A3.3a

and so on. One can always write the truncated expectations in terms of simple expectations: it is easy to

check that in general one has

ET (X1, . . . , Xs) =

s
∑

p=1

∑

Y1,...,Yp

(−1)πE(Y1 . . . Yp) , (A3.6)A3.3b

where

(1) the sum is over all the possible partitions of {1, . . . , s} into p subsets such that ∪sj=1Xj = ∪pk=1Yp and

each Yk is the union of sets Xj,

(2) π is the parity leading to {Y1, . . . , Yp} with respect to the initial ordering.

Also the truncated expectation (A3.4) can be graphically represented. Draw in the plane n1 boxes

G11, . . . , G1n1 , such that each of them contains all points representing the indices belonging to B1, n2

boxes G21, . . . , G2n2 , such that each of them contains all points representing the indices belonging to B2,

and so on: we call clusters such boxes (for obvious reasons, if one recalls the definition of clusters given

in §5.2). Then consider all possible graphs τ obtained by contracting as before all the lines emerging from

the points in such a way that no line is left uncontracted and with the property that if the clusters were

considered as points then τ would be connected. If we denote the lines as before we have

ET
(

ψ̃B1 , . . . , ψ̃Bp ;n1, . . . , np

)

=
∑

τ∈T0

∏

(αβ)∈τ
(−1)πτ gαδα,β , (A3.7)A3.4

where T0 denotes the set of all graphs obtained following the just given prescription; again πτ is a sign

depending on τ .

If A = A1 ∪A2, with A1 ∩A2 = ∅, we can define E1 and E2 as the expectations defined as E in (4.10) and

(4.12), with the difference that we have the constraint a ∈ A1 and a ∈ A2, respectively.

Then if each field ψσα
α appearing in the products ψ̃Bj is replaced by

ψσα
α → ψ

σα1
α1 + ψ

σα2
α2 , (A3.8)A3.5
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with α1 ∈ A1 and α2 ∈ A2, we can consider

ET2
(

ψ̃B1 , . . . , ψ̃Bp ;n1, . . . , np

)

, (A3.9)A3.6

where ET2 denotes the truncated expectation corresponding to the simple expectation E2.

Consider for simplicity the case nj = 1 ∀j; by (4.18) this is not restrictive. We have for (A3.9) the following

graphic representation. For each Bj write Bj = Bj1 ∪Bj2, with Bj1 ∩Bj2 = ∅. Fixed the sets B11, . . . , Bp1,

define B = ∪pj=1Bj1 and T0(B) as the set of graphs obtained by contracting the lines emerging from the

points contained inside the boxes corresponding to B21, . . . , B2p. Then

ET2
(

ψ̃B1 , . . . , ψ̃Bp ;n1, . . . , np

)

=
∑

B

ψ̃B
∑

τ∈T0(B)

∏

(αβ)∈τ
(−1)πτgαδα,β . (A3.10)A3.7

If A = A1 ∪A2 ∪ . . . ∪AN for some N ∈ N, the above procedure can be iterated (in the obvious way).

p.A3.2 A3.2. Proof of (4.43). Given s set of indices P1, . . . , Ps, consider the quantity (4.38). Define

P±
j = {f ∈ Pj : σ(f) = ±} (A3.11)A3.8

and set f = (j, i) for f ∈ P±
j , with i = 1, . . . , |P±

j |. Note that
∑s

j=1 |P+
j | =

∑s
j=1 |P−

j |, otherwise (4.38) is

vanishing.

Define also

P (dψ) =
s
∏

j=1







∏

f∈P+
j

dψ+
x(f)













∏

f∈P−
j

dψ−
x(f)







(

ψ+,Γψ−) =
s
∑

j,j′=1

j
∑

i=1

j′
∑

i′=1

ψ+
(j′,i′)Γ(j,i),(j′,i′)ψ

−
(j,i) ,

(A3.12)A3.9

where, if

n =

s
∑

j=1

∣

∣P+
j

∣

∣ =

s
∑

j=1

∣

∣P−
j

∣

∣ , (A3.13)A3.10

then Γ is the n× n matrix with entries

Γ(j,i),(j′,i′) = g(x(j, i) − x(j′, i′)) . (A3.14)A3.11

Then one has

E





s
∏

j=1

ψ̃(Pj)



 = det Γ =

∫

P (dψ) exp
[

−
(

ψ+,Γψ−)] , (A3.15)A3.12

which is known as Berezin integral, [?].

Setting X ≡ {1, . . . , s} and

V jj′ =

|P−
j
|

∑

i=1

|P+

j′
|

∑

i′=1

ψ+
(j′,i′)Γ(j,i),(j′,i′)ψ

−
(j,i) , (A3.16)A3.13

write

V (X) =
∑

j,j′∈X
V jj′ =

∑

j≤j′
Vjj′ , (A3.17)A3.14
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so defining the quantity Vjj′ as

Vjj′ =

{

V jj′ , if j = j′ ,
V jj′ + V j′j , if j < j′ .

(A3.18)A3.14a

Then (A3.15) can be written as

E





s
∏

j=1

ψ̃(Pj)



 =

∫

P (dψ) e−V (X) . (A3.19)A3.13b

We want to express (A3.17) in terms of the following quantities. Define

WX(X1, . . . , Xr; t1, . . . , tr) =
∑

ℓ

r
∏

k=1

tk(ℓ)Vℓ , (A3.20)A3.15

where

(1) Xk are subsets of X with |Xk| = k, inductively defined as

{

X1 = {1} ,
Xk+1 ⊃ Xk ,

(A3.21)A3.16

(2) ℓ = (jj′) is a pair of elements j, j′ ∈ X and the sum in (A3.20) is over all the possible pairings (jj′),
(3) the functions tk(ℓ) are defined as

tk(ℓ) =

{

tk , if ℓ ∼ ∂Xk ,
0 , otherwise ,

(A3.22)A3.17

where ℓ ∼ Xk means that ℓ = (jj′) “intesects the boundary” of Xk, i.e. it connects a point belonging to

some Pj with j ∈ Xk to a point contained inside some Pj′ with j′ /∈ Xk. See Fig. A6.

P1

P2

P3

X1
X2

X3

Fig. A6. The sets Xk for k=1,2,3. One has X1={1}, X2={1,2} and X3={1,2,3}.

One has

WX(X1; t1) =

s
∑

j=2

t1V1j + V11 +
∑

1<j′≤j
Vj′j = (1 − t1) [V (X1) + V (X \X1)] + t1V (X) (A3.23)A3.18

so that

e−V (X) =

∫ 1

0

dt1

[

∂

∂t1
e−WX (X1;t1)

]

+ e−WX (X1;0)

= −
∑

ℓ1∼∂X1

Vℓ1

∫ 1

0

dt1 e
−WX (X1;t1) + e−WX(X1;0) .

(A3.24)A3.19
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If we define X2 ≡ X1 ∪ ℓ1, i.e. X2 = {1, point connected by ℓ1 with 1}, then

WX(X1, X2; t1, t2) = t2WX(X1; t1) + (1 − t2)
[

s
∑

j=2

t1V1j + V11

+
∑

1<j′≤j
Vj′j −

s
∑

j=3

( t1V1j + V2j )
]

= (1 − t2) [WX2 (X1; t1) + V (X \X2)] + t2WX(X1; t1) ,

(A3.25)A3.20

so that

e−WX(X1;t1) =

∫ 1

0

dt2

[

∂

∂t2
e−WX(X1,X2;t1,t2)

]

+ e−WX (X1,X2;t1,0)

= −
∑

ℓ2∼∂X2

Vℓ2

∫ 1

0

dt2 t1(ℓ2) e
−WX (X1,X2;t1,t2) + e−WX (X1,X2;t1,0) .

(A3.26)A3.21

Therefore

e−V (X) =
∑

ℓ1∼∂X1

∑

ℓ2∼∂X2

∫ 1

0

dt1

∫ 1

0

dt2 (−1)2 Vℓ1 Vℓ2 t1(ℓ2) e
−WX (X1,X2;t1,t2)

+
∑

ℓ1∼∂X1

∫ 1

0

dt1 (−1)Vℓ1 e
−WX(X1,X2;t1,0) + e−WX (X1;0) ,

(A3.27)A3.22

and, iterating s− 1 times,

e−V (X) =
s−1
∑

r=0

∑

ℓ1∼∂X1

. . .
∑

ℓr∼∂Xr

∫ 1

0

dt1 . . .

∫ 1

0

dtr (−1)r Vℓ1 . . . Vℓr

(

r−1
∏

k=1

t1(ℓk+1) . . . tk(ℓk+1)

)

e−WX(X1,...,Xr+1;t1,...,tr,0) ,

(A3.28)A3.23

where the factors which are meaningless have to be set equal to 1 and for r = s− 1 one has

WX(X1, . . . , Xs; t1, . . . , ts−1, 0) = WX(X1, . . . , Xs−1; t1, . . . , ts−1) . (A3.29)A3.24

One can easily check that

WX(X1, . . . , Xr; t1, . . . , tr−1, 0) = WXr (X1, . . . , Xr−1; t1, . . . , tr−1) + V (X \Xr) . (A3.30)A3.25

Let us introduce a tree graph T between the sets X1, . . . , Xr, such that

(1) for each k = 1, . . . , r, it is “anchored” to some point (j, i), i.e. it contains a line incident with (j, i), where

j ∈ Xk and i ∈ {1, . . . , |P±
j |},

(2) each line ℓ ∈ T intersects at least one boundary ∂Xk,

(3) the lines ℓ1, ℓ2, . . . are ordered so that ℓ1 ∼ ∂X1, ℓ2 ∼ ∂X2, . . .,

(4) for each ℓ ∈ T one defines two indices n(ℓ) and n′(ℓ) such that

n(ℓ) = max{k : ℓ ∼ ∂Xk} ,
n′(ℓ) = min{k : ℓ ∼ ∂Xk} .

(A3.31)A3.27

We shall call T an anchored tree.
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Then we can rewrite (A3.28) as

e−V (X) =

s
∑

r=1

∑

Xr⊂X

∑

X2...Xr−1

∑

T on Xr

(−1)r−1
∏

ℓ∈T
Vℓ

∫ 1

0

dt1 . . .

∫ 1

0

dtr−1

(

∏

ℓ∈T

∏r−1
k=1 tk(ℓ)

tn(ℓ)

)

e−WXr (X1,...,Xr−1;t1,...,tr−1) e−V (X\Xr)

(A3.32)A3.28

where “ T on Xr ” means that T is an anchored tree for the clusters Pj such that j ∈ Xr.

Define

K(Xr) =
∑

X2...Xr−1

∑

T on Xr

∏

ℓ∈T
Vℓ

∫ 1

0

dt1 . . .

∫ 1

0

dtr−1

(

∏

ℓ∈T

∏r−1
k=1 tk(ℓ)

tn(ℓ)

)

e−WXr (X1,...,Xr−1;t1,...,tr−1) ,

(A3.33)A3.29

so that (A3.32) becomes

e−V (X) =
∑

Y ⊂X
Y ∋{1}

(−1)|Y |−1K(Y ) e−V (X\Y ) , (A3.34)A3.30

and, iterating,

e−V (X) =
∑

Q1,...,Qm

(−1)|X| (−1)m
m
∏

q=1

K(Qq) . (A3.35)A3.31

Note that the constraint {1} ∈ Y in (A3.34) would yield a constraint like {1} ∈ Q1, min{k : k ∈ X\Q1} ∈ Q2

and so on in (A3.35), but, as a rearrangment of the sets Qq inside the partition {Q1, . . . , Qm} does not change

(A3.35) because the Grassman fields ψ± appear always in pairs, we can forget such a constraint.

Therefore, by (A3.19) and (A3.35), one has (recall also the first of (A3.12))

E





s
∏

j=1

ψ̃(Pj)



 =

∫

P (dψ)
∑

Q1,...,Qm

(−1)s (−1)m
m
∏

q=1

K(Qq) . (A3.36)A3.32

In (A3.33) we can sum first over the trees T , then over the sets Xk,
∑

X2...Xr−1

∑

T on Xr

=
∑

T on Xr

∑

X2...Xr−1
fixed T

, (A3.37)A3.33

where “fixed T ” recalls that the sets X2, . . . , Xr have to be compatible with the tree T .

Moreover we can write, by (A3.20),

WXr (X1, . . . , Xr−1; t1, . . . , tr−1) =
∑

ℓ∈Xr

t1(ℓ) . . . tr−1(ℓ)Vℓ =
∑

ℓ∈Xr

tn′(ℓ) . . . tn(ℓ)−1Vℓ (A3.38)A3.34

and set in (A3.33)
∏r−1
k=1 tr(ℓ)

tn(ℓ)
= tn′(ℓ) . . . tn(ℓ)−1 , (A3.39)A3.35

so obtaining

K(Xr) =
∑

T on Xr

∑

X2...Xr−1
fixed T

∏

ℓ∈T
Vℓ

∫ 1

0

dt1 . . .

∫ 1

0

dtl−1

∏

ℓ∈T

(

tn′(ℓ) . . . tn(ℓ)−1

)

e
−
∑

ℓ∈Xr
tn′(ℓ)...tn(ℓ)−1Vℓ .

(A3.40)A3.36
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We can reorder the integration measure P (dψ) in (A3.12) as

P (dψ) =

s
∏

j=1







|P−
j
|

∏

i=1

dψ−
(j,i)













|P+

j′
|

∏

i′=1

dψ−
(j′,i′)







= (−1)σ
m
∏

q=1





|Q−
q |
∏

i=1

dψ
(q)−
i









|Q+
q |
∏

i′=1

dψ
(q)+
i′



 = P (dψ) ,

(A3.41)A3.37

where

(i) ψ−
(j,i) and ψ+

(j,i) correspond to indices f ∈ Pj , while ψ
(q)−
i and ψ

(q)+
i′ corresponds to indices (q, i) and

(q, i′) in Qq = Q+
q ∪Q−

q ,

(ii)
∑m

q=1 |Q−
j | =

∑m
q=1 |Q+

j |,
(iii) σ is the parity of the permutaion leading the Grassman fields ψ± from the initial ordering (left hand

side) to the final one (right hand side).

The simple expectations can be expressed in terms of truncated expectations through the relation

E





s
∏

j=1

ψ̃(Pj)



 =
∑

Q1,...,Qm

(−1)πET
(

ψ̃(Q1), . . . , ψ̃(Qm)
)

, (A3.42)A3.38

where

(1) the sum is over all the possible partitions of {1, . . . , s} into m subsets Q1, . . . , Qm such that each Qk,

k = 1, . . . ,m is the union of sets Pj and ∪sj=1Pj = ∪mq=1Qq,

(2) π is the parity leading to {Q1, . . . , Qm} with respect to the initial ordering.

It is easy to realize that the parity σ in (A3.41) is equal to the parity π in (A3.42), if the sets Q1, . . . , Qm
are chosen in the same way (i.e. if the sets Qq in (A3.41) are the same sets Qq as in (A3.42)).

Therefore, by comparing (A3.42) with (A3.36) (by taking into account also (A3.40) and (A3.41)), we find

the following expression for the truncated expectations:

ET
(

ψ̃(Q1), . . . , ψ̃(Qm)
)

= (−1)m+1

∫

P (dψ)
∑

T on Xm

∑

X2...Xm−1
fixed T

∏

ℓ∈T
Vℓ

∫ 1

0

dt1 . . .

∫ 1

0

dtm−1

∏

ℓ∈T

(

tn′(ℓ) . . . tn(ℓ)−1

)

e
−
∑

ℓ∈X
tn′(ℓ)...tn(ℓ)−1V (ℓ)

.

(A3.43)A3.39

A remarkable property of (A3.43) is the following result.

Lemma A5. In (A3.43) one has

∑

X2...Xm−1
fixed T

∫ 1

0

dt1 . . .

∫ 1

0

dtm−1

∏

ℓ∈T

(

tn′(ℓ) . . . tn(ℓ)−1

)

= 1 , (A3.44)A3.40

for any anchored tree T . As in (A3.44)

dPT (t) ≡
∑

X2...Xp−1
fixed T

∏

ℓ∈T

(

tn′(ℓ) . . . tn(ℓ)−1

)

m−1
∏

q=1

dtq (A3.45)A3.41

is positive and σ-additive, it can be interpreted as a probability measure in the variable t = (t1, . . . , tm−1).

Proof. Let us denote by bk the number of lines ℓ ∈ T exiting from points x(j, i), with j ∈ Xk. By construction

the parameter tk inside the integral in the left hand side of (A3.44) appears to the power bk − 1, as all the
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X1

X2

X3

X4

X5

X6

Fig. A7. The sets X1,...,X6, the (anchored) tree T and the lines belonging to T .

lines intersecting ∂Xk contribute to tk, except the one connecting Xk with the point whose union with Xk

gives the set Xk+1 (this is clear by using the notations introduced after (A3.20)). See Fig. A7.

Then
∏

ℓ∈T

(

tn′(ℓ) . . . tn(ℓ)−1

)

=

m−2
∏

k=1

tbk−1
k , (A3.46)A3.41a

and in (A3.44) one has m− 1 independent integrations

∫ 1

0

dtm−1

m−2
∏

k=1

(∫ 1

0

dtk t
bk−1
k

)

=
m−2
∏

k=1

1

bk
, (A3.47)A3.41b

which is a well defined expression as bk ≥ 1 for k = 1, . . . ,m− 2. Moreover we can write

∑

X2...Xm−1
fixed T

=
∑

X2
fixed X1

∑

X3
fixed X1,X2

. . .
∑

Xm−1
fixed X1,...,Xm−2

, (A3.48)A3.41c

where the number of possible choices in summing over Xk, once X1, . . . , Xk−1 have been fixed, is exactly

bk−1: if bk−1 lines exit from Xk−1 then Xk is obtained by adding to Xk−1 one of the bk−1 points connected

to Xk−1 through one of the lines of the tree. Then

∑

X2...Xm−1
fixed T

1 = b1 . . . bm−2 , (A3.49)A3.41d

and, at the end,
∑

X2...Xm−1
fixed T

∫ 1

0

dt1 . . .

∫ 1

0

dtm−1

∏

ℓ∈T

(

tn′(ℓ) . . . tn(ℓ)−1

)

=

m−2
∏

k=1

bk
bk

, (A3.50)A3.41e
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which yields (A3.44).

Set

V (t) ≡
∑

ℓ∈X
tn′(ℓ) . . . tn(ℓ)−1 Vℓ , (A3.51)A3.42

so that, in (A3.43), we can rewrite
∏

ℓ∈T
Vℓ =

∏

(i,j)

(

V ij + V ji
)

(A3.52)A3.43

and use the definition (A3.45) to obtain

ET
(

ψ̃(Q1), . . . , ψ̃(Qm)
)

= (−1)m+1

∫

P (dψ)
∑

T on {x(q)
i

}

∏

(jj′)∈T

(

V jj′ + V jj′
)

∫

dPT (t) e−V (t) , (A3.53)A3.43a

where
∑

T on {x(q)
i

} denotes the sum over the trees on X , seen as a sum over the trees anchored on some

point x
(q)
i , q = 1, . . . ,m and i = 1, . . . , |Qq|.

If we integrate the Grassman fields appearing in the product

∏

(jj′)∈T

(

V jj′ + V jj′
)

(A3.54)A3.46

in (A3.53), we obtain

ET
(

ψ̃(Q1), . . . , ψ̃(Qm)
)

= (−1)m+1
∑

T on{x(q)
i

}

∏

ℓ∈T
gℓ

∫

P
∗
(dψ)

∫

dPT (t) e−V (t) , (A3.55)A3.47

where P
∗
(dψ) means that the Grassman fields which are left to integrate are the ones not appearing in

(A3.54).

The term
∫

P
∗
(dψ)

∫

dPT (t) e−V (t) (A3.56)A3.48

in (A3.55) is the determinant of a suitable matrix GT (t) with elements

GT(j,i)(j′,i′) = tn′(jj′) . . . tn(jj′)−1g (x(j, i) − x(j′, i′)) . (A3.57)A3.49

So (4.43) is proven, with tj,j′ = tn′(jj′) . . . tn(jj′)−1.

p.A3.3 A3.3. Estimates for the truncated expectations. The following results holds.

Lemma A6. Given m set of indices Q1, . . . , Qm such that

{x(f) : f ∈ Qq} = {x(q)
1 , . . . ,x

(q)
|Qq|} , q = 1, . . . ,m , (A3.58)A3.101

and
∑m

q=1 |Q+
q | =

∑m
q=1 |Q−

q | = n, then the number of trees T anchored on Q = {Q1, . . . , Qm} is bounded by

∑

T on {x(q)
i

}

1 ≤ m!Cn , (A3.59)A3.102
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for some constant C.

Proof. The proof goes through the following steps.

(1) First suppose that each set Qq is a point: we shall see at the end what happens if the sets contain several

points. We can write
∑

T on {x(q)
i

}

1 =
∑

{dq}

∑

T
fixed {dq}

1 , (A3.60)A3.103

where in the right hand side the first sum is over all the possible configurations {dq}, if we denote by dq the

number of lines emerging from (i.e. entering or exiting from) Qq ≡ q, while the second sum is over all the

trees compatible with a fixed configuration {dq}.
(2) The second sum in the right hand side of (A3.60) can be exactly computed and it gives

∑

T
fixed {dq}

1 =
(m− 2)!

(d1 − 1)! . . . (dm − 1)!
. (A3.61)A3.104

In fact, by definition of T , there are at least 2 points (which we can call 1 and m) such that there is only

one line emerging from them: then d1 = dm = 1. The line emerging from 1 can reach one of the other m− 2

points: we call 2 the point it reaches. Then there are d2 − 1 lines emerging from 2 leading the first one to

one of the other m− 3 points, the second one to one of the other m − 4 points, . . ., the (d2 − 1)-th one to

one of the other m− d2 − 1 points; moreover if we permute between themselves the d2 − 1 lines ther is no

change in the above discussion. Therefore so far we have obtained

(m− 2)

(d1 − 1)!
· (m− 3) (m− 4) . . . (m− d2 − 1)

(d2 − 1)!
(A3.62)A3.105

possible contributions. By iterating until the m-th point is reached we find (A3.61).

(3) The first sum in (A3.60) can be bounded by

∑

{dq}
1 ≤ Cm , (A3.63)A3.106

where one can choose C = 2. In fact one has two constraints
∑m

q=1 dq = 2(m − 1) and 1 ≤ dq ≤ m − 1 ∀
i = 1, . . . ,m, as the tree T has m − 1 lines, each lines emerge from two points and each point is connected

with no less than 1 point and no more than with all the others. Then, if we set M = 2(m− 1) and ignore

for simplicity the second constraint on {dq}, we have

∑

{dq}
1 ≤

∫ M

0

dx1

∫ M−x1

0

dx2 . . .

∫ M−
∑

m−1

q=1
1

0

dxm

≤
∫ M

0

dx1 . . .

∫ M−
∑

m−2

q=1
1

0

dxm−1

(

M −
m−1
∑

q=1

1
)

≤
∫ M

0

dx1 . . .

∫ M−
∑

m−3

q=1
1

0

dxm−2
1

2!

(

M −
m−2
∑

q=1

1
)2

≤
∫ M

0

dx1 . . .

∫ M−
∑m−4

q=1
1

0

dxm−3
1

3!

(

M −
m−3
∑

q=1

1
)3

≤ 1

m!
Mm =

1

m!
[2(m− 1)]m ≤ 2m

mm

m!
,

(A3.64)A3.107
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and as e−m ≤ mm/m! ≤ 1, then (A3.63) immediately follows with C = 2.

(4) As 1/(dq − 1)! ≤ 1, by using (A3.61) and (A3.63), we see that (A3.58) follows with C = 2.

(5) Now we take into account that, for each q = 1, . . . ,m, Qq is a collection of points. Then (A3.61) has to

be replaced with
∑

T on {x(q)

i
}

1 =
∑

{dq}

∑

anchored T
fixed {dq}

1 . (A3.65)A3.108

Fixed T on Q, the number of anchored trees is

m
∏

q=1

|Qq|!
(|Qq| − dq)!

, (A3.66)A3.109

as we have to consider the |Qq|! permutations of the |Qq| elements of the set Qq and divide by the (|Qq|−dq)!
permutations of the elements of Qq which no line emerges from. So, by using that [(dq − 1)!]−1 ≤ [dq!]

−12dq

and
∏m
q=1 2dq = 22(m−1) ≤ 4m, we obtain

∑

anchored T
fixed {dq}

1 ≤ C̃2(n+m) (m− 2)! , (A3.67)A3.110

where one can take C̃ = 22.

(6) From the previous bounds one has

∑

{dq}

∑

anchored T
fixed {dq}

1 ≤ m!Cn , (A3.68)A3.111

where one can take C = 25, if 2n =
∑m

q=1 |Qq|. Then the proof of the Lemma is complete.

Lemma A7. In (A3.57) one has |g(x−y)| ≤ C0 for some constant C0, then the term (A3.56) is bounded by

∣

∣

∣

∣

∫

P
∗
(dψ)

∫

PT (dt) e−V (t)

∣

∣

∣

∣

≡
∣

∣detGT
∣

∣ ≤ (C0C)n−m+1 , (A3.69)A3.112

for some constant C.

Proof. As the entries of the matrix GT are given by (A3.57), we try to write

tn′(jj′) . . . tn(jj′)−1g (x(j, i) − x(j′, i′)) = (uj ⊗A(x(j, i) − ·),uj′ ⊗B(x(j′, i′) − ·)) ≡ (fα,gβ) , (A3.70)A3.113

where (·, ·) denotes the inner product, i.e.

(uj ⊗A(x(j, i) − ·),uj′ ⊗B(x(j′, i′) − ·)) = uj · uj′
∫

dyA(x(j, i) − y)B(x(j′, i′) − y) (A3.71)A3.114

and the vectors fα and gβ , with α, β = 1, . . . , n are implicitly defined by (A3.70).

The reason why to rewrite (A3.7) as in (A3.70) is that then we can apply the Gram-Hadamard inequality,

[Ga], in order to bound the determinant of the matrix with entries

Mα,β = (fα,gβ) (A3.72)A3.115

as

|detM | ≤
n
∏

α=1

‖fα‖ ‖gα‖ , (A3.73)A3.116
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so that, if

max
α=1,...,m

{‖fα‖} ≤ Ca0 , max
α=1,...,m

{‖gα‖} ≤ Cb0 , a+ b = 1 , (A3.74)A3.117

then (A3.69) follows. The bound (A3.73) is a standard result: a proof is given in §A3.4 just for completeness.

So we are left with verifying that (A3.70) is possible and that the bounds (A3.74) hold.

We can define a family of vectors in R
m

inductively as

{u1 = v1 ,

uj = tj−1uj−1 + vj

√

1 − t2j−1 , j = 2, . . . ,m , (A3.75)A3.118

where {vi}mi=1 is an orthonormal basis and the sets Xk have been relabeled so that X1 = {1}, X2 = {1, 2},
. . ., Xm = {1, 2, . . . ,m}, hence

tn′(jj′) . . . tn(jj′)−1 = tj . . . tj′−1 (A3.76)A3.119

for a line (jj′).
By the definitions (A3.75) one has

uj · uj′ = tj . . . tj′−1 . (A3.77)A3.120

Therefore if we define the vectors A(x(j, i) − y) and B(x(j′, i′) − y) so that

g (x(j, i) − x(j′, i′)) = (A(x(j, i) − ·), B(x(j′, i′) − ·)) =

∫

dyA(x(j, i) − y)B(x(j′, i′) − y) , (A3.78)A3.121

and, simultaneously,
(A(x(j, i) − ·) , A(x(j′, i′) − ·)) <∞ ,

(B(x(j, i) − ·) , B(x(j′, i′) − ·)) <∞ ,
(A3.79)A3.122

we can apply (A3.70) and (A3.74). Then the proof of the lemma is complete.

How to define the vectors A(x(j, i)−y) and B(x(j′, i′)−y) depends on the problem one has to study. For

instance for propagators g(x) = g
(h)
ω (x) such that

g(h)
ω (x) =

1

Lβ

∑

k∈DL,β

e−ik·xĝ(h)
ω (k) , ĝ(h)

ω (k) =
fh(k

′)

−ik0 + E(k)
, (A3.80)A3.123

a possible definition for such vectors, in terms of their Fourier transforms, is

Â(k) =

√

fh(k′)

k2
0 + E2(k)

, B̂(k) = −
√

fh(k′) (ik0 + E(k)) , (A3.81)A3.124

so that |g(x − y)| ≤ C0, with C0 = CNγ
h (see (5.27)).

p.A3.4 A3.4. Gram-Hadamard inequality. Let x1, . . . ,xm be m vectors of an Euclidean space E of finite dimension

n. We define the Gram determinant as

Γ(x1, . . . ,xm) ≡ det Γ = det





(x1,x1) . . . (x1,xm)
. . . . . . . . .

(xm,x1) . . . (xm,xm)



 , (A3.82)A3.125

where (·, ·) denotes the inner product in E. The following results hold.

Lemma A8. Given an Euclidean space E and m vectors x1, . . . ,xm in E, the Gram determinant (A3.82)

satisfies

Γ(x1, . . . ,xm) = 0 , (A3.83)A3.126
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if and only if the vectors x1, . . . ,xm are linearly independent. If the vectors x1, . . . ,xm are linearly indepen-

dent then one has

Γ(x1, . . . ,xm) > 0 . (A3.84)A3.127

Proof. If the vectors x1, . . . ,xm are linearly dipendent then there esits m coefficients c1, . . . , cm not all

vanishing such that the vector
∑m

j=1 cjxj is vanishing. By considering its inner product with the vectors

x1, . . . ,xm, we obtain the system

c1(x1,x1) + . . . + cm(x1,xm) = 0
. . . . . . . . . . . .

c1(xm,x1) + . . . + cm(xm,xm) = 0
(A3.85)A3.128

which is an homogeneous system admitting a nontrivial solution c1, . . . , cm: therefore the determinant of the

matrix of the coefficients is zero, so implying (A3.83).

Vice versa if (A3.83) holds the system (A3.85) admits a nontrivial solution c1, . . . , cm. If we multiply the

m equationns defining the system by c1, . . . , cm, respectively, then we sum them, we obtain

‖c1x1 + . . .+ cmxm‖ = 0 , (A3.86)A3.129

where ‖·‖ is the norm induced by the inner product (·, ·). Therefore the vector
∑m

j=1 cjxj has to be identically

vanishing: as the coefficients c1, . . . , cm are not all vanishing, then the vectors x1, . . . ,xm have to be linearly

independent.

To prove (A3.84) consider a subset S ⊂ E, and set, for any x ∈ E, x = xS + xN , where xS ∈ S and xN

belonging to the orthogonal complement to S. We can write xN as xN = x1 + . . .+xp, with p = n−dim(S);

then we have that the vectors

det







(x1,x1) . . . (x1,xp) x1

. . . . . . . . . . . .
(xp,x1) . . . (xp,xp) xp
(x,x1) . . . (x,xp) xS






(A3.87)A3.130

are identically vanishing. In particular it follows that

xS = − 1

det Γ
det







x1

Γ . . .
xp

(x,x1) . . . (x,xp) 0






, (A3.88)A3.131

and, analogoulsy,

xN ≡ x − xS =
1

det Γ
det







x1

Γ . . .
xp

(x,x1) . . . (x,xp) x






, (A3.89)A3.132

so that

0 ≤ h2 ≡ (xN ,x) =
1

det Γ
det







(x1,x)
Γ . . .

(xp,x)
(x,x1) . . . (x,xp) (x,x)






=

Γ(x1, . . . ,xp,x)

Γ(x1, . . . ,xp)
. (A3.90)A3.133

By setting x ≡ xp+1 and h2 = h2
p, we can write (A3.90) as

Γ(x1, . . . ,xp,xp+1)

Γ(x1, . . . ,xp)
= h2

p ≥ 0 , (A3.91)A3.134
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where x1, . . . ,xp are p linearly indepenedent vectors and xp+1 is arbitrary. The sign = in (A3.91) can holds

if and only if xp+1 is a linear combination of the vecors x1, . . . ,xp so that if x1, . . . ,xp,xp+1 are linearly

independent, then (A3.91) holds with the strict sign, i.e.

Γ(x1, . . . ,xp,xp+1)

Γ(x1, . . . ,xp)
= h2

p > 0 . (A3.92)A3.135

As Γ(x1) = (x1,x1) = ‖x1‖2 > 0 for x1 6= 0, (A3.92) implies (A3.84).

Lemma A9 (Hadamard inequality). The Gram determinant satisfies the inequality

Γ(x1, . . . ,xm) ≤ Γ(x1) . . .Γ(xm) , (A3.93)A3.136

where the sign = holds if and only if the vectors are orthogonal to each other.

Proof. By (A3.92) and by using that (xN ,xN ) ≤ (x,x) = Γ(x), we have

Γ(x1, . . . ,xm,x) ≤ Γ(x1, . . . ,xm)Γ(x) , (A3.94)A1.136a

for any vectors x1, . . . ,xm,x ∈ E. By iterating and recalling the arguments above (A3.93) follows.

Let x1, . . . ,xm be m linearly independet vectors in E, with m = n if n = dim(E). Let {ej}mj=1 an

orthonormal basis in E: set xjk = (ej ,xk), so that xk =
∑m
j=1 xjkej , k = 1, . . . ,m. Then

Γ(x1, . . . ,xm) = det





(x1,x1) . . . (x1,xm)
. . . . . . . . .

(xm,x1) . . . (xm,xm)





=
∑

i1...im

∑

j1...jm

det





xi11xj11(ei1 , ej1) . . . xi11xjmm(ei1 , ejm)
. . . . . . . . .

ximmxj11(eim , ej1) . . . ximmxjmm(eim , ejm)





=
∑

i1...im

det





xi11xi11 . . . xi11ximm
. . . . . . . . .

ximmxi11 . . . ximmximm





= det





x11 . . . xm1

. . . . . . . . .
x1m . . . xmm









x11 . . . x1m

. . . . . . . . .
xm1 . . . xmm





=
∣

∣XT X
∣

∣ = detΞT detX = | detX |2 ,

(A3.95)A3.137

where the matrix X is defined as

X =







x11 x12 . . . x1m

x21 x22 . . . x2m

. . . . . . . . .
xm1 xm2 . . . xmm






. (A3.96)A3.138

This yields that the Gram determinant (A3.93) can be written as

Γ(x1, . . . ,xm) = | detX |2 , (A3.97)A3.139

so that from the lemma above the following result follows immediately.

Lemma A10. Given m linearly independent vectors of an Euclidean space E, and defined the matrix X

through (A3.95), one has

|detX |2 ≡ |det(ei,xj)|2 ≤
m
∏

j=1

‖xj‖2 , (A3.98)A3.140
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where (ei,xj) stands for the matrix with entries Xij = (ei,xj).

The lemma above is simply a reformulation of the preceeding Lemma: it implies the following inequality.

Theorem A1 (Gram-Hadamard inequality). Let {fj}mj=1 and {gj}mj=1 two families of m linearly inde-

pendent vectors in an Euclidean space E, and let (·, ·) an inner product in E and ‖ · ‖ the norm induced by

that inner product. Then

|det(fi,gj)| ≤
m
∏

j=1

‖fj‖ ‖gj‖ , (A3.99)A3.141

where (fi,gj) stands for the m×m matrix with entries (fi,gj).

Proof. If {gj}mj=1 is an orthogonal basis in E (so that {ej}mj=1, with ej = ‖gj‖−1gj , is an orthonormal basis)

then (A3.98) gives

|det(gi,xj)| = |det(ei,xj)|
m
∏

j=1

‖gj‖ ≤
m
∏

j=1

‖gj‖‖xj‖ , (A3.100)A3.142

Now consider the case in which the only conditions on the vectors {gj}mj=1 is that they are linearly indepen-

dent. Set g̃j = ‖gj‖−1gj , so that ‖g̃j‖2 = 1, and define inductively the family of vectors

ẽ1 ≡ g̃1 ,

ẽ2 ≡ g̃2 − (g̃2, g̃1)g̃1

1 − (g̃2, g̃1)2
,

(A3.101)A3.143

and so on, in such a way that one has (ẽi, ẽj) = δi,j . The basis {e1, . . . , em}, with ej = ẽj ∀j = 1, . . . ,m is

by construction an orthonormal basis.

If c2 = 1 − (g̃2, g̃1)
2, with 0 ≤ c2 ≤ 1, one has

g̃2 = c2ẽ2 + c2(g̃2, g̃1)g̃1 , (A3.102)A3.144

i.e. g̃2 ∼ c2ẽ2, if by ∼ we mean that, by computing det(g̃i, fj), no difference is made by the fact that one

has the vector g̃2 instead of c2ẽ2: in fact the contributions arising from the remaining part in (A3.100) sum

up to zero.

We can reason analogously for the terms with j = 3, . . . ,m, and we find g̃j ∼ cj ẽj , where ∼ is meant as

above and the coefficients cj are such that 0 ≤ cj ≤ 1 ∀j = 1, . . . ,m. In conclusion:

|det(gi, fj)| = |det(g̃i, fj)|
m
∏

j=1

‖gj‖ = |det(ei, fj)|
m
∏

j=1

cj ‖gj‖

=

m
∏

j=1

cj ‖gj‖ ‖fj‖ ≤
m
∏

j=1

‖gj‖ ‖fj‖ ,

(A3.103)A3.145

so that (A3.99) follows.

Appendix A4. Dimensional boundsapp.A4

p.A4.1 A4.1. Proof of (5.27). We call CN any constant depending on N and C any constant independent on N

and denote by ∂k = (∂k, ∂k0) the discrete derivative (see Appendix A2).
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One has
∣

∣

∣g(h)
ω (x)

∣

∣

∣ =

∣

∣

∣

∣

∣

∣

∑

k∈DL,β

e−ik·x
fh(k

′)

−ik0 + E(k)

∣

∣

∣

∣

∣

∣

≤
∑

k∈DL,β

fh(k
′)

|−ik0 + E(k)| ≤ Cγ−h
∑

k∈DL,β

fh(k
′) ≤ Cγ−hγ2h ≤ Cγh .

(A4.1)A4.1

In the same way one has

∣

∣

∣

(

γh|x|
)N

g(h)
ω (x)

∣

∣

∣ =

∣

∣

∣

∣

∣

∣

∑

k∈DL,β

[

(

γh∂k
)N

e−ik·x
] fh(k

′)

−ik0 + E(k)

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∑

k∈DL,β

e−ik·x
[

(

γh∂k
)N fh(k

′)

−ik0 + E(k)

]

∣

∣

∣

∣

∣

∣

≤
∑

k∈DL,β

∣

∣

∣

∣

(

γh∂k
)N fh(k

′)

−ik0 + E(k)

∣

∣

∣

∣

≤ CNγ
Nhγ−(N+1)hγ2h ≤ Cγh ,

(A4.2)A4.2

so that, by using together the two bounds, one obtains

∣

∣

∣1 +
(

γh|x|
)N

g(h)
ω (x)

∣

∣

∣ ≤ CNγ
h , (A4.3)A4.3

so implying (5.27).

p.A4.2 A4.2. Proof of (5.28) for Feynman diagrams. Consider a Feynman diagram Γ and call τ the tree associated

with it. The diagram Γ consists of n+n4 points (here n4 is the number of endpoints v ∈ Vf (τ) with iv = 4).

After integrating over n4 variables by using the potentials v(x − y), we are left with n integrations. As the

diagram has to be connected, for any cluster Gv containing sv subclusters Gv1 , . . . , Gvsv
one has sv − 1 lines

on scale hv assuring the connection between the subclusters: such lines form an anchored tree Tv for the

cluster Gv. Of course the union of the anchored trees Tv corresponding to all the clusters Gv, v ∈ V (τ),

is a tree T for the Feynman diagram Γ. So we can perform a change of coordinates and integrate over the

variables xℓ − yℓ, where xℓ,yℓ are the extremes of the lines ℓ such that ℓ ∈ Tv for some v ∈ V (τ), i.e. they

are the points which the line ℓ is incident with. For each line ℓ ∈ Tv we obtain a factor γ−2hv , by the compact

support properties of the propagators gℓ. In fact, by using (5.27), one obtains

∑

x∈Λ

∫ β/2

−β/2
dx0

∣

∣

∣g(h)
ω (x)

∣

∣

∣ ≤ Cγ−2hγh , (A4.4)A4.4

where the factor γh is taken into account by the factor

γhvn
0
v , (A4.5)A4.5

(see (5.29)). As for any v there are sv − 1 lines on scale hv, then (5.28) follows.

p.A4.3 A4.3. Proof of (6.16) for trees. By using (6.13) one immediately sees that one has to integrate

∫

dx(Iv0 )





∏

v∈V (τ)

∑

Tv

(

∏

ℓ∈Tv

gℓ

)



 , (A4.6)A4.6

where, for each v ∈ V (τ), Tv is an anchored tree between the sv maximal subclusters contained inside Gv
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For each line ℓ representing a propagator gℓ let us call xℓ and yℓ its extremes; analogously we can define

xℓ and yℓ the extremes of an ondulated line representing the potential v(x − y), if xℓ ≡ x and yℓ ≡ y.

The overall number of lines is
∑

v∈V (τ) (sv − 1) = n− 1, by (6.17), while the overall number of integratio

variables is n+n4. As the union of all trees Tv and of all ondulated lines representing the two-body interaction

potentials assures the connectedness of the clusters Gv, we can make a change of coordinates and integrate

over

(1) the n− 1 differences xℓ − yℓ, such that gℓ ∈ Tv for some v ∈ V (τ),

(2) over the n4 differences xℓ − yℓ, such that v(xℓ − yℓ) represents an ondulated line, and (3) over a fixed

variable, say x1.

The last integrations give simply a constant to the power n4 ≤ 4, while the first one gives a factor γ−2hv

for each line gℓ on scale hℓ = hv (see the analogous discussion in §A4.2). The integration over x1 gives a

factor (Lβ).

Appendix A5. Diophantine numbersapp.A5

p.A5.1 A5.1. Definitions. Given a vector ω ∈ R
n
, we say that ω is a Diophantine vector if

|ω · n| ≥ C0 |n|−τ ∀n ∈ Z
n \ {0} , (A5.1)A5.1

where |n| = |n1|+ . . .+ |nn| and C0, τ are suitable positive constants, which are called Diophantine constants.

If n = 2 and ω = (2π, ω) the above inequality can be rewritten as

‖nω‖T ≡ sup
p∈Z

|nω − 2pπ| ≥ C0|n|−τ ∀n ∈ Z \ {0} , (A5.2)A5.2

by renaming the constant C0. In fact (A5.1) for n = 2 would give |n1ω + 2n2π| ≥ C0(|n1| + |n2|)−τ . Of

course |n1ω + 2n2π| can be small only if, say, |n1ω + 2n2π| < 1/2, i.e. if n2 is such that 2n2π differs from

n1ω less than 1/2: therefore the supremum in the left hand side of (A5.2) is assumed for n2 such that

a1n1 ≤ |n2| ≤ a2n1, for some constants a1 and a2. So, by redefining the constant C0, the inequality in

(A5.2) follows.

If we write ω = (2π, ω) we call ω the rotation number.

p.A5.2 A5.2. Properties. The Diophantine vectors are of great interest as they are of full measure in R
n
, provided

that τ > n − 1 in (A5.1); see for instance [G0]. Very likely the results in §8 and §13 could be obtained

by relaxing the hypothesis on the rotation number, e.g. by imposing the weaker Bryuno condition: also in

KAM theory the persistence of invariant tori (for flows) and invariant curves (for diffeomorphisms) has been

proven under such a condition; see [Rü], [D], [BeG].

Anyway we note that the fact the Diophantine vectors are of full measure make such an extension to more

general vectors of secondary importance, unless some explicit questions are asked (as the dependece on the

rotation vector of the domain of convergence for the perturbative series, or the optimal condition on the

rotation vector, and so on).

Appendix A6. Some technical resultsapp.A6

p.A6.1 A6.1. Proof of (5.39) and (8.96). We want to show that, for any constant α > 0,

S(Pv0 , τ, n) ≡
∑

τ∈Th,n

∑

{Pv}





∏

v/∈Vf (τ)

γ−2α|Pv|



 ≤ Cn , (A6.1)A6.1
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for some constant C depending on α.

In (A6.1) we can write

∏

v/∈Vf (τ)

γ−2α|Pv| =
∏

v/∈Vf (τ)

γ−α|Pv|
∏

v/∈Vf (τ)

γ−α|Pv| ≤
∏

v/∈Vf (τ)

γ−α(hv−hv′ )
∏

v/∈Vf (τ)

γ−α|Pv| . (A6.2)A6.2

and
∑

{Pv}
=

∏

v∈V (τ)

∑

pv

∑

Pv
|Pv |=pv

χ (constraint on {pv}) , (A6.3)A6.3

if the χ denotes the constraint

1 ≤ pv ≤
sv
∑

j=1

qvj , (A6.4)A6.4

where qvj = |Qvj | and v1, . . . , vsv are the vertices immediately following v along the tree τ (we use the

notations (5.25)).

If we neglect the constraint χ and remove also the constraint that Pv0 is fixed (i.e. we sum over all the

possible Pv0), we can bound

∑

{Pv}





∏

v∈V (τ)

γ−α|Pv|



 ≤
∏

v∈V (τ)

[

∑

pv

γ−αpv

(

pv1 + . . .+ pvsv

pv

)

]

, (A6.5)A6.5

where we used that

∏

v∈V (τ)

∑

Pv
|Pv |=pv

χ (constraint on {pv}) ≤
∏

v∈V (τ)

∑

Pv
|Pv |=pv

1 ≤
(

pv1 + . . .+ pvsv

pv

)

. (A6.6)A6.6

We can write (A6.5) as

∏

v∈V (τ)

[

∑

pv

γ−αpv

(

pv1 + . . .+ pvsv

pv

)

]

≡
∏

v∈V (τ)

Iv , (A6.7)A6.7

which defines the factors Iv. In particular we have

Iv0 =
∑

pv0

γ−αpv0

(

pv01 + . . .+ pv0sv0

pv0

)

=
(

1 + γ−α
)pv01+...+pv0sv0 =

sv0
∏

j=1

(

1 + γ−α
)pv0j ,

(A6.8)A6.8

where v01, . . . , v0sv0
are the vertices immediately following v0, so that

∏

v∈V (τ)

[

∑

pv

γ−αpv

(

pv1 + . . .+ pvsv

pv

)

]

=
(

∏

v∈V (τ)
v≻v0

Iv
)

sv0
∏

j=1

(

1 + γ−α
)pv0j . (A6.9)A6.9

If we iterate the procedure we obtain

Iv0
sv0
∏

j=1

Iv0j =

sv0
∏

j=1

svj
∏

j′=1

(

1 + γ−α
(

1 + γ−α
))pv

jj′ , (A6.10)A6.10
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where vj1, . . . , vjsv are the vertices immediately following v0j . And so on until we reach all the endpoints of

the tree τ . If we denote by P a path (i.e. an oriented connected set of lines) from the root to an endpoint

we find
∏

v∈V (τ)

Iv =
∏

P

[(

1 + γ−α
(

1 + γ−α
(

1 + γ−α (. . .)
)))]4

, (A6.11)A6.11

where we used that the endpoints have at most four external lines (see (5.19) and the product is over all the

possible paths on τ . Then, if we denote by ℓ(P) the “lenght” of the path P , i.e. number of vertices along

the path P , we have

∏

v∈V (τ)

Iv =
∏

P





ℓ(P)
∑

k=0

γ−αk





4

≤
(

γα

γα − 1

)4n

≡ Cn1 , (A6.12)A6.12

where C1 = γ4α (γα − 1)
4
. By using the results in Appendix A1 one has

∑

τ∈Th,n

∏

v/∈Vf (τ)

γ−α(hv−hv′ ) ≤ Cn2 , (A6.13)A6.13

for some constant C2, so implying (A6.1) with C = C1C2, hence (8.96).

p.A6.2 A6.2. Proof of (5.23). First note that V is a sum of contributions (see (5.19)) which can be expressed as

∫

dx(Iv)W(1)(x(Iv)) ψ̃
(≤1)(Iv) , (A6.14)A6.14

where, for instance, x(Iv) = {x,y}, ψ(≤1)(Iv) = ψ+
x,σψ

+
y,σ′ψ

−
y,σ′ψ−

x,σ, W(1)(x(Iv)) = v(x− y) and

∫

dx(Iv) =
1

(2S + 1)2

∑

σ,σ′=±S

∑

x∈Λ

∫ β/2

−β/2
dx0

∑

y∈Λ

∫ β/2

−β/2
dy0 , (A6.15)A6.15

for iv = 4 in the discrete case. So if hv = 1 one has (see (5.7) with h = 1 denoting the ultraviolet scale)

1

n!
ET1
(∫

dx(Iv1 )W(1)(x(Iv1 ))ψ̃
(≤1)(Iv1), . . . ,

∫

dx(Ivn)W(1)(x(Ivn ))ψ̃(≤1)(Ivn)

)

=

∫

dx(Iv1 ) . . .

∫

dx(Ivn)W(1)(x(Iv1 )) . . .W(1)(x(Ivn))
1

n!
ET1
(

ψ̃(≤1)(Iv1), . . . , ψ̃
(≤1)(Ivn)

)

,

(A6.16)A6.16

which contains an expression like (5.23) with Pvj = Ivj for j = 1, . . . , n.

If hv ≤ 0, then one has, by the inductive hypothesis (see (5.22) and (5.23))

1

sv!
EThv

(

EThv+1

(

ψ̃(≤hv+1)(Pv11 ), . . . , ψ̃
(≤hv+1)(Pv1sv1

)
)

, . . . ,
)

, (A6.17)A6.17

where v1, . . . , vsv are the sv vertices following v and vj1, . . . , vjsvj
are the svj vertices following vj , j =

1, . . . , sv. Then, by the definitions,

EThv+1

(

ψ̃(≤hv+1)(Pvj1 ), . . . ψ̃
(≤hv+1)(Pvjsvj

)
)

=
∑

Qvj1
⊂Pjv1

. . .
∑

Qvjsvj
⊂Pvjsvj

ψ̃(≤hv)(Qvj1) . . . ψ̃
(≤hv)(Qvjsvj

)

EThv+1

(

ψ̃(hv+1)(Pvj1 \Qvj1), . . . , ψ̃
(hv+1)(Pvjsvj

\ Pvjsvj
)
)

,

(A6.18)A6.18
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where

EThv+1

(

ψ̃(hv+1)(Pvj1 \Qvj1), . . . , ψ̃
(hv+1)(Pvjsvj

\ Pvjsvj
)
)

(A6.19)A6.19

gives a constant (i.e. a quantity which does not depend on the fields). Then in (A6.17) one is left with an

expression like

1

sv!
EThv

(

ψ̃(≤hv)(Pv1 ), . . . , ψ̃
(≤hv)(Pvsv

)
)

, (A6.20)A6.20

with

Pvj =

svj
⋃

i=1

Qvji , (A6.21)A6.21

so that (5.23) is proven.

p.A6.3 A6.3. Proof of (8.91). Recall the definition of depth of nontrivial vertices given in §8. We call BD the set

of v ∈ V ∗
f (τ) such that the nontrivial vertex immediately preceeding v has depth D.

Given a tree τ define the depth of the tree as

Dτ = max{Dv : v ∈ Vnt(τ)} , (A6.22)A6.22

and set

BD =
D
⋃

p=0

Bp ; (A6.23)A6.23

by construction BD is the collections of all endpoints in V ∗
f (τ) contained inside a cluster Gv, for some v with

depth Dv = D.

We prove by induction on the depth D ∈ [0, Dτ ] ∩ N the following bound:

∏

v∈V ∗
f

(τ)∩BD

|ϕ̂mv |1/2

≤





∏

v∈V ∗
f
∩BD

F
1/2
0









D−1
∏

p=0

∏

v∈V ∗
f

(τ)∩Bp

e−κ|Nv|/2p+2









∏

v∈V ∗
f

(τ)∩BD

e−κ|Nv|/2p+1



 ,

(A6.24)A6.24

where the product in the first parentheses has to be thought as 1 for D = 0.

For D = 0, (A6.24) is a trivial identity: it is enough to recall that |ϕ̂m| ≤ F0e
−κm (see (8.6)) and that

Nv = mv if v ∈ Vf(τ) (see (8.17)).

Suppose that (A6.24) holds for some D − 1; then we want to show that it holds also for D. In fact, by

using that, for any vertex v ∈ V (τ) \ Vf(τ), one has

Nv = Nw1 + . . .+Nwsv
, (A6.25)A6.25

where w1, . . . , wsv are the sv nontrivial vertices immediately following v: this simply follows from the defi-

nition (8.17) and from the fact that if ṽ is a trivial vertex then Nṽ = Nw, where w is the nontrivial vertex

immediately following ṽ.
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Then one has

∏

v∈V ∗
f

(τ)∩BD

|ϕ̂mv |1/2 =





∏

v∈V ∗
f

(τ)∩BD

|ϕ̂mv |1/2








∏

v∈V ∗
f

(τ)∩BD−1

|ϕ̂mv |1/2




≤





∏

v∈V ∗
f

(τ)∩BD

F0e
−κ|mv|/2









∏

v∈V ∗
f
∩BD−1

F
1/2
0









D−2
∏

p=0

∏

v∈V ∗
f

(τ)∩Bp

e−κ|Nv|/2p+2









∏

v∈V ∗
f

(τ)∩BD−1

e−κ|Nv|/2D





≤





∏

v∈V ∗
f
∩BD

F
1/2
0









k−1
∏

p=0

∏

v∈V ∗
f

(τ)∩Bp

e−κ|Nv|/2p+2













∏

v∈V ∗
f

(τ)∩BD

e−κ|mv|/2









∏

v∈V ∗
f

(τ)∩BD−1

e−κ|Nv|/2D+1









≤





∏

v∈V ∗
f
∩BD

F
1/2
0









k−1
∏

p=0

∏

v∈V ∗
f

(τ)∩Bp

e−κ|Nv |/2p+2









∏

v∈V ∗
f

(τ)∩BD

e−κ|Nv|/2D+1



 ,

(A6.26)A6.26

so proving (A6.24). By taking k = Dτ , (A6.23) follows.
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